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Abstract. We study the nef cone of self-products of a curve. When the curve is very general of
genus g > 2, we construct a nontrivial class of self-intersection 0 on the boundary of the nef cone.
Up to symmetry, this is the only known nontrivial boundary example that exists for all g > 2. When
the curve is general, we identify nef classes that improve on known examples for arbitrary curves.
We also consider self-products of more than two copies of the curve.

1. Introduction

The closure of the ample cone of a projective variety X is the nef cone Nef(X). It is a fundamental
invariant that controls morphisms from X to other projective varieties, in particular projective
embeddings of X. It is important to compute this cone in specific examples; however, this is a
difficult problem already on surfaces. A famous open question here is the following:

Conjecture 1.1 (Nagata; see [Nag59, Conjecture on p. 772]). Let π : X → P2 be the blow-up of
n ≥ 10 very general points in P2 with exceptional divisors E1, . . . , En. Let H ⊂ P2 be any line.
Then

π∗(
√
nH)− E1 − · · · − En ∈ Nef(X).

Recall that a property is very general on a variety if it holds outside a countable union of Zariski
closed proper subsets. Conjecture 1.1 is a particular case of the SHGH conjecture (see [CHMR13,
Section 1.4] for an exposition). Note that the divisor in the Nagata conjecture has self-intersection
0, hence if it is nef, then it is on the boundary of the nef cone.

Another interesting class of surfaces is self-products of curves. Recall the following open problem:

Conjecture 1.2 (see [Laz04a, Remark 1.5.10]). Let C be a smooth projective curve of genus g over
C. Denote by f1 and f2 (resp. δ) the classes of the fibers of the projections (resp. the class of the
diagonal ∆) in C × C. Then, we have

(1 +
√
g)(f1 + f2)− δ ∈ Nef(C × C)

if g is sufficiently large and C has very general moduli.

The self-intersection of (1 +
√
g)(f1 + f2)− δ is 0, just like in Conjecture 1.1. In fact, Ciliberto–

Kouvidakis [CK99] and Ross [Ros07] prove that the Nagata conjecture implies Conjecture 1.2. In
the direction of Conjecture 1.2, Kouvidakis [Kou93, Theorem 2] shows that(

1 +
g

b√gc

)
(f1 + f2)− δ ∈ Nef(C × C).

In particular, the conjecture holds when g is a perfect square. An improvement when g is not a
perfect square is offered by [Ros07, (1.9)] who uses work of [SSS04] to prove that

(
1 +
√
g + 1

)
(f1 +

f2)− δ is nef.
It also makes sense to consider the non-symmetric divisors with zero self-intersection and ask:
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Figure 1. Nef classes on C × C for g = 10 and arbitrary C
The classes af1 + bf2 − δ are represented by the points (a, b). On the left, the outside curve is the conjectural nef

boundary for very general curves in Question 1.3. Inside, on the upper left is the graph of b = ba + (a− 1)(g − 1)

from (1.3.1). On the right is its reflection. The dotted curve in the middle is b = 1 + g2

a−1
from Remark 5.1. The line

segment bounds the convex hull. It is tangent to the curves at the specified points.

Question 1.3. Let C be a very general curve of (large) genus g. For any real a > 1, put

ba := 1 +
g

a− 1
.

Is the class af1 + baf2 − δ nef on C × C?

On arbitrary curves, the best known result is due to Rabindranath [Rab19, Proposition 3.2]. He
adapts an idea of Vojta [Voj89] to prove that

(1.3.1) af1 +
(
ba + (g − 1)(a− 1)

)
f2 − δ ∈ Nef(C × C).

See Figure 1. The line segment joining (2, 2g) and (2g, 2) is optimal for hyperelliptic curves.

Our sharpest result answers Question 1.3 in the affirmative for a = 2. Up to symmetry, this is
the only settled case of Question 1.3 that we know of, other than Kouvidakis’s when g is a perfect
square.

Theorem (see Theorem 3.7). Let C be a very general smooth projective curve of genus g 6= 2.
Then

(1.3.2) 2f1 + (1 + g)f2 − δ ∈ Nef(C × C).

The idea is to degenerate C to a rational curve with g simple nodes in general position using a
construction of [Ros07]. The nefness of the limit of the classes (1.3.2) follows from the elementary
Proposition 3.8 concerning the blow-up of P1 × P1 at g general symmetric pairs of points.

In Corollary 3.11 we apply the original techniques of Kouvidakis. We degenerate to simple covers
of P1 to show that for all integers 2 ≤ d ≤ 1 +

√
g (so that bd ≥ d) and very general C:

(1.3.3) df1 +
(
2bd − d

)
f2 − δ ∈ Nef(C × C).

See Figure 2.

Next, we propose an approach to Question 1.3 in terms of semistability of vector bundles and
give partial results. We start with the simple observation that if a > 1, then af1− δ is ample on the
fibers of the second projection pr2 : C ×C → C. If a is an integer and La is a divisor of degree a on
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Figure 2. Nef classes on C × C for g = 10 and very general C
To improve visibility, we only show the picture above the diagonal a = b. Note the difference in scale. The point

(2, g + 1) comes from Theorem 3.7. Keeping the contour from Figure 1 and from Figure 3 below, we have added two

polygonal lines. The inner line represents classes coming from (1.3.3), and from convexity and symmetry. In the

outer polygonal line we show classes induced by Theorem 3.7 and by previous results.

C, then we observe in Proposition 3.12.(ii) that the “positivity defect” of pr∗1La −∆ (in this case
the smallest b such that af1 + bf2 − δ is nef) is determined asymptotically by a similar measure of
positivity defect of the sheaves pr2∗O

(
m(pr∗1La −∆)

)
. These are higher conormal bundles of C in

the sense of [EL92]. The idea is an instance of a general “linearization” principle that we explain
in Proposition 3.14.

Fix a curve C and a rational number a > 1. In Theorem 3.6, we use the above to prove that
Question 1.3 is true for a and C if and only if the higher conormal bundles above are semistable in
an asymptotic sense on C.

Even in the asymptotic sense, understanding the semistability of the terms in the sequence of
higher conormal bundles seems very difficult. However, the first (or 0-th, depending on convention)
term pr2∗O(pr∗1La − ∆) is well-understood. It is the syzygy bundle MLa , i.e., the kernel of the
evaluation morphism H0(C,La)⊗OC → OC(La). Drawing on known results about its semistability,
we obtain the following:

Theorem (see Theorem 3.4.(i)). Let C be a general smooth projective curve of genus g ≥ 2 over
C. Denote by f1 and f2 (resp. δ) the classes of the fibers of the projections (resp. the class of the
diagonal in C × C). Then, we have

df1 +

(
bd +

g(g − 1)

(d− g)(d− 1)

)
f2 − δ ∈ Nef(C × C)

for every integer d ≥ b3g/2c+ 1.

When d < 2g and g is large, we obtain examples outside the convex span of the known examples
mentioned above due to Vojta and Rabindranath. Other examples are given in 3.4.(ii),(iii),(iv).
In particular the latter is obtained from [CLV22], a semistability result for the normal bundle of
general canonical curves. See also Figure 3.

Finally, we also consider self-products of more than two copies of C. Let fi be the class of any fiber
of the i-th projection Cn → C. Let δij be the class of the large diagonal {(x1, . . . , xn)

∣∣xi = xj}.
With assumptions as in Theorem 3.4, it is immediate that

n∑
i=2

((
1 +

g

d− g

)
f1 + dfi − δ1i

)
∈ Nef(Cn).
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Figure 3. Nef classes on C × C for g = 10 and general C
We again focus above the diagonal. Keeping the contour from the arbitrary case, we have added classes coming from

the corresponding four parts of Theorem 3.4 and from the convexity and symmetry of the nef cone.

We show furthermore in Theorem 4.3 that if C is an arbitrary smooth complex projective curve of
positive genus and d ∈ Z, then for certain values of n and d,

(n− 1) ·
(

1 +
g

d− g

)
f1 + d ·

n∑
i=2

fi −
∑

1≤i<j≤n
δij ∈ Nef(Cn).

The proof makes use of the rich geometry of symmetric products of curves, and a result of Kempf
on continuous global generation of vector bundles on abelian varieties.

Paper organization. In section 2 we review formal twists of sheaves by R-Cartier R-divisors
and their positivity on curves. In section 3 we treat the nef cone of C × C starting from general
considerations and known results for arbitrary curves, and then give our main results for general
curves and for very general curves. In section 4 we treat higher products Cn. In section 5 we sketch
what can be obtained by other natural approaches such as restricting from Jacobian varieties or
from K3 surfaces.

Our proofs of the main results Theorems 3.7, 3.4, 3.6 use lemmas that are proved later in the
paper in section 3.5. This is in an effort to present them as early as possible.

Acknowledgments. We thank Marian Aprodu, Thomas Bauer, Renzo Cavalieri, Alexandru Chir-
vasitu, Lawrence Ein, Mattias Jonsson, Alex Küronya, Robert Lazarsfeld, Emanuele Macr̀ı, Eyal
Markman, Mircea Mustaţă, Sönke Rollenske, Julius Ross, Praveen Kumar Roy, John Sheridan, and
Brooke Ullery for useful discussions. We thank the referees for their comments and suggestions.

2. Background and notation

Let X be a projective scheme over an algebraically closed field. While our main results are over
C, some of our important tools (Proposition 3.12 and its generalization in Proposition 3.14) are
valid in arbitrary characteristic.

2.1. Formal twists of coherent sheaves. Let V be a coherent sheaf on X, and let λ be an R-
Cartier R-divisor on X. Following the case of bundles in [Laz04b, Section 6.2], the formal twist of
V by λ is the pair (V, λ), denoted by V〈λ〉. When D is an integral Cartier divisor, the formal twist
V〈D〉 is identified with V ⊗OX(D).

The theory of twisted vector bundles has pullbacks. In particular, when V is a vector bundle and
D is a Q-Cartier Q-divisor and f : X ′ → X is a finite morphism such that f∗D is actually Cartier,
then f∗V〈f∗D〉 is f∗V ⊗OX′(f∗D).
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If V is a vector bundle, we have Chern classes c1(V〈λ〉) := c1(V) + rkV · λ. They are natural for
pullbacks.

Tensor products are defined by V〈λ〉 ⊗ V ′〈λ′〉 := (V ⊗ V ′)〈λ + λ′〉. Generally, when we talk
about extensions, subsheaves, or quotients of twisted sheaves, or about morphisms between twisted
sheaves, we understand that the twist λ is fixed.

Let P(V) := ProjOX Sym∗ V. Let ρ : P(V) → X denote the natural projection map, and let ξ
denote the first Chern class of the relative OP(V)(1) line bundle. If λ is an R-Cartier R-divisor on X,
define P(V〈λ〉) as P(V), polarized with the ρ-ample R-Cartier R-divisor OP(V〈λ〉)(1) := OP(V)(1)〈ρ∗λ〉
whose first Chern class is ξ + ρ∗λ. This is in line with the classical formula OP(V⊗OX(D))(1) =
OP(V)(1)⊗ ρ∗OX(D) whenever D is a Cartier divisor.

The sheaf V is said to be ample (resp. nef ) if the Cartier divisor class ξ has the same property.
This extends formally to twists.

2.2. Slopes and positivity. Assume that C is a smooth projective curve. Let V be a coherent
sheaf and let λ be an R-divisor. The degree of V〈λ〉 is degV + rkV · deg λ. The slope of the twisted
coherent sheaf V〈λ〉 on X is

µ(V〈λ〉) :=
degV〈λ〉

rkV
.

By convention, the slope of torsion sheaves is infinite. If V and V ′ are (twisted) coherent sheaves,
then

(2.0.1) µ(V ⊗ V ′) = µ(V) + µ(V ′).

The smallest slope of any quotient of V is denoted by µmin(V). The equality µ(V) = µmin(V) is
equivalent to the semistability of V. Put µmin(V〈λ〉) := µmin(V) + deg λ. A quotient of V with
minimal slope exists, and is determined by the Harder–Narasimhan filtration of V. In characteristic
0, set µmin(V) := µmin(V). In characteristic p > 0, let F : C → C be the absolute Frobenius
morphism, and consider

µmin(V) := lim
n→∞

µmin

(
(Fn)∗V

)
pn

.

The sequence in the limit is weakly decreasing and eventually stationary. In fact, [Lan04, Theorem
2.7] proves that there exists δ = δV ≥ 0 such that the Harder–Narasimhan filtration of (F δ+n)∗V is
the pullback of the Harder–Narasimhan filtration of (F δ)∗V for all n ≥ 0. In particular, the rational

number µmin(V) = µmin((F δ)∗V)
pδ

is the smallest normalized slope of all quotients of all iterated

Frobenius pullbacks (Fn)∗V. For twisted sheaves, put µmin(V〈λ〉) = µmin(V) + deg λ.

Lemma 2.1 ([BP14, Theorem 1.1]). Let C be a smooth projective curve over an algebraically closed
field. Let V〈λ〉 be a twisted vector bundle on C. Denote X := P(V〈λ〉) with bundle map ρ : X → C.
Denote by ξ the numerical first Chern class of the relative (twisted) OP(V〈λ〉)(1) sheaf, and by f the
class of a fiber of ρ. Then, we have

Nef(X) =
〈
ξ − µmin(V〈λ〉)f, f

〉
.

In particular, V〈λ〉 is nef if and only if µmin(V〈λ〉) ≥ 0.

The version in [BP14] holds more generally for Grassmann bundles over curves. The result was
seemingly first proved by Barton [Bar71, Theorem 2.1]. It is also stated explicitly by Brenner in
[Bre04, Theorem 2.3] and [Bre06, p. 534], Biswas in [Bis05, Theorem 1.1], and Zhao in [Zha17,
Theorem 4.3]. In characteristic zero it follows easily from Hartshorne’s Theorem [Laz04b, Theorem
6.4.15], as observed by Miyaoka [Miy87]. A similar computation is carried out by the first author
in [Ful11] to nef classes of arbitrary codimension.
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Remark. In positive characteristic, it is necessary to work with µmin(V) instead of µmin(V).
See [Har71, Example 3.2] for a counterexample to the näıve positive characteristic analogue of
Hartshorne’s Theorem [Laz04b, Theorem 6.4.15].

3. Products of curves

Let C be a smooth projective curve of genus g over C. Let p and q denote the projections onto
each factor of C×C. Let f1 denote the class of the fiber of p and f2 the class of a fiber of q. Denote
by δ the class of the diagonal ∆.

For large genera, it is a tantalizing open problem to understand the nef cone of C × C, even in
the symmetric slice given by intersecting with the span of f1 + f2 and δ.

3.1. Elementary considerations.

Remark 3.1 (Necessary conditions for nefness). Below, a, b, and c denote non-negative real num-
bers.

(1) The classes f1 and f2 are clearly on the boundary of Nef(C × C).
(2) The class af1 + bf2 + cδ is nef if and only if (af1 + bf2 + cδ) · δ = a + b − c(2g − 2) ≥ 0. For

example, (g − 1)f1 + (g − 1)f2 + δ is the pullback of the theta polarization on the Jacobian of
C via the difference map

C × C −→ Jac(C)

(x, y) 7−→ OC(x− y).

(3) If b and c are not both zero, then the class ±af1− bf2− cδ is not nef (or even pseudo-effective),
because it has negative intersection with f1. By symmetry, the analogous statement holds for
−af1 ± bf2 − cδ if a and c are not both zero.

(4) The class −af1 − bf2 + cδ is only pseudo-effective when a = b = 0, and only nef when a = b =
c = 0.

Thus, the classes that are not well-understood (up to scaling and interchanging f1 and f2) are
those of form

(1) af1 + bf2 − δ. By intersecting with f1 and f2, we get a ≥ 1 and b ≥ 1 as necessary conditions
for these classes to be nef. By considering their self-intersections, we also have a > 1 and

b ≥ ba := 1 +
g

a− 1

as necessary conditions.
(2) −af1 + bf2 + δ. Here 0 ≤ a < 1 and b ≥ g

1−a − 1 are necessary conditions for the class to be nef.

(3) af1 − bf2 + δ with 0 ≤ b < 1 and a ≥ g
1−b − 1.

Remark 3.2 (Genus g = 1). The conditions above are also sufficient when C is an elliptic curve.
See [Laz04a, Lemma 1.5.4].

Question 1.3, which asks for the nefness of the class

(3.2.1) af1 + baf2 − δ,

predicts that the conditions above are sufficient for classes of the form af1 + bf2− δ for very general
curves of sufficiently large genus.
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3.2. Nef classes for arbitrary curves.

Remark 3.3 (Rabindranath–Vojta divisors). Let C be an arbitrary smooth projective curve of
genus g ≥ 1. Inspired by [Voj89], Rabindranath in [Rab19, Proposition 3.2] proves that if r, s > 0,

then (
√

(g + s)r−1 + 1)f1 + (
√

(g + s)r + 1)f2 − δ is nef if r ≥ (g+s)(g−1)
s .We thereby deduce the

nefness of the divisor

(3.3.1) af1 +
(
ba + (g − 1)(a− 1)

)
f2 − δ

for a > 1. These are close to the conjectural bound (3.2.1) for a close to 1. See Figure 1.
The original argument of Vojta [Voj89] applies to the classes −af1 + bf2 + δ with 0 ≤ a < 1 and

proves that

(3.3.2) − af1 +

(
−1 +

g

1− a
+ (g − 1)(1− a)

)
f2 + δ is nef.

3.3. Our main results for general curves. We construct examples of nef classes for C general.
They improve the examples in Remark 3.3 that were valid for arbitrary C.

Theorem 3.4. Let C be a general smooth projective curve of genus g over C. Then

(i) If g ≥ 2, then for all integers d ≥ b3g/2c+ 1 the divisor class

df1 +

(
1 +

g

d− g

)
f2 − δ is nef.

(ii) If g ≥ 3, then for all integers 2g − 2 ≥ d ≥ b3g/2c the divisor class

df1 +
d

d− g + 1
f2 − δ is nef.

(iii) If g ≥ 7, then the divisor class(
b3g/2c − 3

)
f1 +

b3g/2c − 3

bg/2c − 1
f2 − δ is nef.

(iv) If g ≥ 7, then the divisor class

(g − 1)f1 +
3g − 3

g − 4
f2 − δ is nef.

See Figure 3 for a representation in genus 10 for how Theorem 3.4 improves Remark 3.3 for
general curves. When C is an arbitrary smooth projective curve of genus g ∈ {0, 1}, in fact
df1 +

(
1 + g

d−g
)
f2 − δ is nef for all real d > 1. See Remark 3.2. The key ingredients of our proof of

Theorem 3.4 are the simple nefness criterion in Proposition 3.12,(i), and the semistability of kernel
bundles and of higher order versions of kernel bundles.

Definition 3.5. If L is a Cartier divisor on C and i ≥ 0 is an integer, we denote

M (i−1)(L) := q∗
(
p∗OC(L)⊗OC×C(−i∆)

)
T i−1(L) := q∗

(
p∗OC(L)⊗OC×C(i∆)

)
.

Denote ML := M (0)(L). It sits in an exact sequence

0 −→ML −→ H0(X,L)⊗OC
ev−→ L,

which is why it is called a kernel bundle (it is also called a syzygy bundle, or sometimes Lazarsfeld–
Mukai bundle). When L is globally generated, then ML is the pullback of the twisted cotangent space

ΩPr(1) via the morphism induced by |L|. If |L| is an embedding, then M (1)(L) = N∨CPr ⊗ OC(L)
is a twist of the conormal bundle. [EL92], Ein and Lazarsfeld use the notation Ri−1(L) instead of

M (i−1)(L), and call them higher conormal bundles.
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Proof of Theorem 3.4. (i). On any smooth curve C, the bundle ML is semistable if L is globally
generated of degree d with d− 2(h0(C,L)− 1) ≤ Cliff(C). This result appears in several references,
e.g., [PR88], [But94], [Cam08], [BPO09], [MS12, Theorem 1.3], or [ES12, Proposition 3.1].

When C is general, Cliff(C) = b(g − 1)/2c by [ACGH85]. If furthermore L is general of degree
d ≥ b3g/2c + 1 ≥ g + 2, then L is globally generated, and so is L(−x) for general x ∈ C (e.g., by
[KM21, §3]). Furthermore L is non-special (i.e., h1(C,L) = 0), therefore h0(C,L)− 1 = d− g, and
d− 2(h0(C,L)− 1) = 2g − d ≤ b(g − 1)/2c.

We deduce that ML is semistable of slope − d
d−g = −

(
1 + g

d−g
)
. By Lemma 2.1, the twisted

bundle ML〈 d
d−gx〉 is nef. Furthermore the natural fiberwise evaluation map ε : q∗ML → p∗L(−∆)

relative to q specializes over general x to H0(C,L(−x))⊗OC → L(−x), hence it is surjective on the
general fiber. Note that p∗L(−∆) has degree d − 1 on the fibers of q, hence it is relatively ample.
Proposition 3.12.(i) then proves the claim.

(ii). When L is globally generated of degree d and h1(C,L) = 1, then µ(ML) = − d
d−g+1 . We

look for L satisfying the following properties:

(a) L is globally generated of degree d with 2g − 2 ≥ d ≥ b3g/2c.
(b) h1(C,L) = 1.
(c) L(−x) is globally generated for general x ∈ C.

Note that conditions (a) and (b) together imply d− 2(h0(C,L)− 1) ≤ b(g − 1)/2c, which gives the
semistability of ML. In fact the inequality is strict.

Condition (b) is equivalent by Serre duality to L = ωC(−E) for some effective divisor E with
h0(C,E) = 1. Let e = degE ≥ 0. Condition (b) is then met if we pick E with 0 ≤ e < gon(C). For

general C, we have gon(C) =
⌊g+3

2

⌋
=
⌈g

2 + 1
⌉
.

We now focus on (c). Let p ∈ C be an arbitrary point. The bundle L(−x) is generated at p if
H1(C,L(−x − p)) → H1(C,L(−x)) is an isomorphism. By Serre duality, this is equivalent to the
natural map H0(C,E+x)→ H0(C,E+x+p) being an isomorphism, where L = ωC(−E) as above.
The map is in any case injective, and both spaces are at least 1-dimensional. It is sufficient to ask
h0(C,E + x+ p) = 1. As above, for C general, this is implied by 2 ≤ e+ 2 <

⌊g+3
2

⌋
. In fact, under

this assumption, L(−x) is globally generated for all x.

Note that if 0 ≤ e ≤
⌊g+3

2

⌋
− 3, then d = 2g − 2− e is in the range 2g − 2 ≥ d ≥ b3g/2c.

Finally, to settle (a), we want to show that for all 0 ≤ e ≤
⌊g+1

2

⌋
− 3 we can find E effective of

degree e with L = ωC(−E) globally generated. Arguing as in (c), we find that any effective E will
do.

(iii). For d = b3g
2 c − 3, we have e = 2g − 2 − d = bg+3

2 c. This is the gonality of a general
curve. On such a general curve C we can pick a divisor E of degree e that is globally generated
and h0(C,E) ≥ 2. In fact h0(C,E + x+ p) = 2 for all x, p ∈ C because e+ 2 = bg+3

2 c+ 2 < 2g
3 + 2,

the next Brill–Noether threshold, under the assumption g ≥ 10. As in part (ii) we deduce that
L = ωC(−E) and L(−x) are globally generated for all x ∈ C. In this case h1(C,L) = h0(C,E) = 2

and the inequality d − 2(h0(C,L) − 1) = e − 2(h0(C,E) − 1) ≤ bg−1
2 c that gives the semistability

of ML is in fact an equality. The divisors L and E compute the Clifford index of the curve. This is
what restricts the result of (iii) to just one class.

(iv). By [CLV22], the normal bundle of a general canonical curve of genus g ≥ 7 is semistable,

i.e., M (1)(KC) is semistable. Since h1(KC) = 1, we have µ(M (1)(KC)) = −6g−6
g−4 . The assumption

g ≥ 7 also implies that gon(C) ≥ 5. It follows that ωC(−2x) is globally generated for all x ∈ C.

Arguing as in (i) but for M
(1)
KC

and p∗ωC(−2∆), we deduce that p∗KC + 6g−6
g−4 f2 − 2δ is nef. �

Remark. The Rabindranath–Vojta examples (3.3.1) or the generalized Kouvidakis classes (3.11.1)
for a = 2 give 2f1 + 2gf2 − δ ∈ Nef(C × C). Theorem 3.4.(i) for d = 2g gives 2gf1 + 2f2 − δ ∈
Nef(C × C), which is the same class up to symmetry. For this reason, the divisors in Theorem
3.4.(i) improve the Rabindranath–Vojta examples (3.3.1) only in the range b3g/2c + 1 ≤ d < 2g,
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which is nonempty when g ≥ 3. See Figure 3. The Mathematica software suggests that for g ≥ 32,
the nefness of the classes in Theorem 3.4.(i–iii) is a consequence of Theorem 3.4.(iv) and (3.3.1).

We show that Question 1.3 can be restated in terms of the semistability in an asymptotic sense
of higher conormal bundles of C. The proof will use Proposition 3.12.(ii).

Theorem 3.6. Let C be an arbitrary smooth projective curve of genus g over C.

(i) If a > 1 is a rational number, then the class (3.2.1) af1 +
(
1 + g

a−1

)
f2 − δ is nef if and only if

the sheaves M (n−1)(nL) are asymptotically semi-stable, i.e.,

lim
n→∞

1

n
µmin

(
M (n−1)(nL)

)
= lim

n→∞

1

n
µ
(
M (n−1)(nL)

)
,

where L is an arbitrary Q-divisor on C with degL = a, and n is sufficiently divisible.
(ii) If 0 ≤ a < 1 is rational, then −af1 +

(
−1 + g

1−a
)
f2 + δ is nef if and only if the sheaves

Tn−1(−nL) are asymptotically semi-stable.

Proof. (i). Consider the q-ample class af1 − δ. Since the class (3.2.1) has self-intersection zero, it
is nef if and only if sup

{
t
∣∣ af1 − tf2 − δ ∈ Nef(X)

}
= −

(
1 + g

a−1

)
. By Proposition 3.12.(ii), this

holds if and only if µmin(M(n−1)(nL))
n limits to −1− g

a−1 . Recall that L is a Q-divisor on C of degree
a. When computing the limit we restrict ourselves to n such that na ∈ Z. When a > 1, for large
divisible n (e.g., n ≥ (2g − 1)/(a− 1) by [EN18, Proposition 2.10.(1)]) we have exact sequences

0 −→M (n−1)(nL) −→ H0
(
C,O(nL)

)
⊗OC −→ Pn−1O(nL) −→ 0.

Recall that if L is a line bundle, then Pn−1L denotes the bundle of principal parts q∗(p
∗L⊗On∆).

It is a rank n vector bundle with a natural filtration with quotients L, L ⊗ ωC , . . . , L ⊗ ω⊗(n−1)
C .

From this, one computes

µ
(
M (n−1)(nL)

)
= −n

(
1 +

ng

na+ 1− g − n

)
.

As n grows, 1
nµ(M (n−1)(nL)) approaches−

(
1+ g

a−1

)
. In particular, the nefness of af1+(1+ g

a−1)f2−δ
is equivalent to the asymptotic semistability of M (n−1)(nL).

(ii). Assume now 0 ≤ a < 1, and consider the q-ample class−af1+δ. For large divisible n, pushing
forward the exact sequence 0→ p∗O(−nL)→ p∗O(−nL)⊗O(n∆)→ p∗O(−nL)⊗O(n∆)|n∆ → 0
by q, we obtain an exact sequence

0 −→ Tn−1(−nL) −→ q∗
(
p∗O(−nL)⊗O(n∆)|n∆

)
−→ H1

(
C,O(−nL)

)
⊗OC −→ 0.

From Riemann–Roch and by considering the surjections

q∗
(
p∗O(−nL)⊗O(n∆)|(i+1)∆

)
� q∗

(
p∗O(−nL)⊗O(n∆)|i∆

)
whose kernels are isomorphic to O(−nL)⊗ ω⊗(i−n)

C , one computes

1

n
µ
(
Tn−1(−nL)

)
=
−n2a−

(
n+1

2

)
(2g − 2)

n2(1− a) + n(1− g)
.

This limits to −
( g

1−a − 1
)

as n grows. �

Remark. For C an arbitrary curve of genus g, [EN18] prove that M (k)(L) is semi-stable if degL is
exactly equal to (k2 + 2k + 2)g + k. This can be used to reprove the nefness of the divisors (3.3.1)
when b = 1 + 1

k+1 with k ≥ 0 an integer.
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3.4. Nef classes for very general curves. Our main result for very general curves constructs
one optimal non-symmetric class, answering Question 1.3 in the affirmative for a = 2. The proof
will use Proposition 3.8 which in turn relies on Lemma 3.9.

Theorem 3.7. Let C be a very general smooth complex projective curve of genus g 6= 2. Then

2f1 + (1 + g)f2 − δ ∈ Nef(C × C).

When g = 2, the class 2f1 + (1 + g)f2 − δ is not nef. It has negative intersection with the class
2f1 + 2f2 − δ of the graph of the hyperelliptic involution.

Proof. If g = 0, then 2f1 + (1 + g)f2 − δ = f1 is nef (and not ample). If g = 1, then the class is on
the boundary of the nef cone by Remark 3.2. We may assume then g ≥ 3. The idea is to deform
C to a rational curve C0 with g simple nodes in general position. Since nefness is a very general
condition in families, it is enough to prove a nefness statement for C0. The complication introduced
by the nodes is that the positivity problem to be solved is on the blow-up of P1 × P1 at 2g points.
The construction comes from [Ros07]. We apply it to the non-symmetric situation.

Let C0 be an irreducible rational curve with g simple nodes in general position. There exists
a projective flat family C → T over a disc T , relatively smooth with fibers of genus g over the
punctured disk, and with central fiber C0. We may also assume that C has smooth total space (e.g.,
by using the Hilbert scheme constructions of [DM69]). For 1 ≤ i ≤ g, denote by xi, yi the preimages
of each node in the normalization P1 of C0. Let L ⊂ C be a section of C → T . It avoids the nodes
of C0.

We would like to construct a Cartier divisor on C ×T C that restricts to the general fiber with
class 2f1 + (1 + g)f2 − δ. It is clear that for f1 and f2 we will use the pullbacks of L by the two
projections. However C ×T C is singular at the g2 pairs of nodes, and the diagonal is not a Cartier
divisor at the g diagonal pairs. Instead we blow-up Y → C ×T C at the g2 pairs of nodes. This
resolves the singularities, in particular those along the diagonal. Let D ⊂ Y be the strict transform
of the diagonal.

For t 6= 0 in the disk T , the fiber Yt = Ct × Ct is the self-product of a genus g curve. For t = 0,
the fiber Y0 has g2 exceptional P1 × P1 components, and a component F , the strict transform of

C0 × C0. Let ν : F̃ → F be the normalization. As a variety, F̃ is isomorphic to the blow-up of
P1×P1 at the 4g2 ordered pairs of points from the list {x1, y1, . . . , xg, yg} ⊂ P1. See [Ros07, Lemma
3.1] for the proofs. Denote the classes of the exceptional P1’s over the corresponding points by
exixj , exiyj , eyixj , eyiyj . Let π be the blow-up of P1 × P1.

Let E be the sum of the g exceptional P1 × P1’s sitting over diagonal pairs of nodes (p, p). Over
each of the g components of E, the divisor D restricts with class f1 in N1(P1×P1), while E restricts
with class −2f1 − 2f2. By [Ros07, Lemma 3.2], we have ν∗(D|F ) = π∗∆P1 −

∑g
i=1(exixi + eyiyi).

Furthermore ν∗(E|F ) =
∑g

i=1(exixi + eyiyi + exiyi + eyixi). With p and q denoting the induced
projections from Y on the factors of C ×T C, consider on Y the Cartier divisor

N := p∗2L+ q∗(1 + g)L− (D + E).

If we prove that its restriction N |Y0 is nef, then the same holds for the restriction to the very general
fiber. Clearly for t 6= 0 the fiber restriction has class 2f1 + (1 + g)f2 − δ ∈ N1(Ct × Ct).

The restriction of N to the exceptional P1×P1 components has class f1 +2f2, so it is even ample.
On the other hand, the class of ν∗(N |F ) is

π∗
(
2f1 + (1 + g)f2

)
−
(
π∗δ −

g∑
i=1

(exixi + eyiyi)

)
−

g∑
i=1

(exixi + eyiyi + exiyi + eyixi)

= π∗(f1 + gf2)−
g∑
i=1

(exiyi + eyixi) ∈ N1(F̃ ).
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To settle the nefness of this class, it was enough to blow-up only the 2g points (xi, yi) and (yi, xi)
with 1 ≤ i ≤ g on P1 × P1. The conclusion follows from the result below. �

Proposition 3.8. Consider general points z1, . . . , zg ∈ P1 × P1 with g 6= 2. Let π : X → P1 × P1 be
the blow-up of the 2g points z1, . . . , zg and their reflections z′1, . . . , z

′
g across the diagonal. Denote

by E the exceptional divisor. Then

π∗(f1 + gf2)− E ∈ Nef(X).

For all g ≥ 0, the same nefness result holds if we blow-up 2g general points in P1 × P1.

Proof. Step 1. The case g ∈ {0, 1}. The case g = 0 is trivial. When g = 1, then π∗(f1 +f2)−E
is represented by F 1 + F 2, where F 1 is the strict transform of the fiber of the first projection
through z1, and F 2 is the strict transform of the fiber of the second projection through z′1. We have

F
2
1 = F

2
2 = −1. We may assume that z1 is not on the diagonal, hence F 1 · F 2 = 1. In particular

F 1 + F 2 has nonnegative (in fact 0) intersection with each of its irreducible components, hence it
is nef.

Step 2. The failure of the case g = 2. P2 can be identified with the second symmetric
power of P1. The sum map σ : P1 × P1 → P2 given by σ(x, y) = x + y is a cover of degree 2,
ramified on the diagonal ∆, and σ∗OP2(1) = O(1, 1). The image σ(∆) is a smooth conic. From the
projection formula we deduce that the vertical and horizontal fibers through (x, x) ∈ P1 × P1 are
both mapped by σ to the tangent to σ(∆) at 2x. In particular if z = (x, y) ∈ P1 × P1 is general,
then σ maps the horizontal and vertical fibers through z to the two tangents from σ(z) = x + y
to σ(∆). The tangents to the conic are the only lines in P2 that have reducible preimage by σ. If
` ⊆ P2 is a general line that meets σ(∆) at two points, then σ−1` is a smooth section of O(1, 1)
which intersects ∆ at the corresponding points.

In our case, the line through σ(z1) and σ(z2) lifts to a smooth section D of O(1, 1) through
z1, z

′
1, z2, z

′
2. Its strict transform D has class π∗(f1 + f2)−E and has intersection −1 with π∗(f1 +

2f2)−E, so the latter is not nef. The curve D is the base locus of the linear system determined by
π∗O(1, 2)(−E).

Step 3. Conclusion of symmetric case. Assume g ≥ 3. By Lemma 3.9.(iii), there exists a
smooth curve Cg through the g general pairs. In particular it has multiplicity 1 at each point. Its

strict transform C ⊂ X is a curve of class π∗(f1 + gf2)−E, which has self intersection zero. Since
it is also irreducible, it is nef.

Step 4. Conclusion of general case. Assume that the 2g points Z = {z1, z2, . . . , z2g} are
general (including the case g = 2). Consider the non-symmetric Cremona transform described in
the last paragraph of part 3 in the proof of Lemma 3.9 below. Applying it at the points z1, z2, then
at the images of z3, z4, and so on, reduces π∗(f1 + gf2)−E to π∗f1. By generality, for all 1 ≤ i ≤ g,
the images of z2i−1, z2i through any composition of the Cremona transforms above are never in the
same vertical or horizontal fiber on P1 × P1. �

Lemma 3.9 (Symmetric interpolation). Let Z = {z1, z
′
1, . . . , zm, z

′
m} be a set of m general sym-

metric pairs in P1 × P1.

(i) If (n,m) 6= (1, 2), then the linear system of sections of O(1, n) through Z has the expected
dimension.

(ii) If (n,m) 6= (1, 2) and r is a nonnegative integer, then the linear system of sections of O(1, n)
through Z and r further general points has the expected dimension.

(iii) If (n,m) 6= (2, 2), and the linear system in (i) is nonempty, then the general divisor in this
system is irreducible and smooth.

Proof. Denote by bm(n) the linear system in question. When no confusion is likely, we omit n and
denote bm(n) = bm.
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1. Continuous variation of bm(n). For fixed n and m, we show that the linear systems
bm vary continuously for general Z. The parameter space Zm of ordered m-tuples of ordered
symmetric pairs of points in P1 × P1 is isomorphic to (P1 × P1)m. Let Um ⊂ Zm × (P1 × P1)
be the universal family. The general linear systems bm are captured by the general fibers of the
sheaf pr1∗(pr

∗
2O(1, n) ⊗ IUm) (or of its projectivization). Here IUm is the ideal sheaf of Um. In

particular, the dimension of the general bm is constant, depending only on m. By considering the
ranks of subsheaves pr1∗(pr

∗
2O(1, a) ⊗ IUm) and pr1∗(pr

∗
2O(0, a) ⊗ IUm) for a ≤ n, one shows that

the divisorial components of the base loci of bm also vary continuously for general Z.
2. The cases n = 0 and n = 1. If n = 0, then the projective dimension of bm is 1 for m = 0,

and 0 for all m > 0. One vertical fiber cannot contain a general symmetric pair. If n = 1, then b0

consists of plane sections of the Segre embedding P1×P1 ⊂ P3. It has projective dimension 3. As in
Step 2 of Proposition 3.8, for Z = {z1, z

′
1}, the system b1 is the pullback by σ of the pencil of lines

in P2 through σ(z1) = σ(z′1). In particular dim b1 = 1. When m = 2, then b2 is (unexpectedly) one
point, corresponding to the pullback of the line through σ(z1) and σ(z2). For m > 2, the system
bm is empty as expected.

For general choices of Z, the divisors constructed above are irreducible.
3. A Cremona transform on P1×P1. Let z ∈ P1×P1 be a point, not on the diagonal, and let

z′ 6= z be its reflection. Let ρ : P2 99K P1 be the projection from σ(z) ∈ P2, where σ : P1 × P1 → P2

is the quotient map, identified with the sum map to Sym2P1 = P2. Let pr2 : P1 × P1 → P1 be the
second projection. Consider the rational map

Cr : P1 × P1 99K P1 × P1

Cr = (ρ ◦ σ, pr2)

We study some of its properties:

(1) Cr is undefined at z and z′. Indeed ρ is only undefined at σ(z) = σ(z′).
(2) If C is a section of O(1, 1) through z, z′, then ρ◦σ is constant on C \{z, z′}. For this, note that

C = σ−1L, where L is a line through σ(z).
(3) In particular Cr contracts the 2 fibers of pr2 that pass through z and z′ respectively. Clearly

pr2 contracts them. Let F2,z be the corresponding fiber of pr2, and let F1,z′ be the fiber of pr1

through z′. Then F1,z′ + F2,z is a section of O(1, 1) through z, z′, hence ρ ◦ σ is constant on it.
In particular it is constant on F2,z. (Note that Cr does not also contract F1,z′ since pr2 does
not contract it.)

(4) If x ∈ P1×P1 is any point different from z and z′, then Cr(x) and Cr(x′) are in the same fiber
of pr1. This is because z, z′, x, x′ are contained in some section of O(1, 1).

(5) Cr is birational. For general x ∈ P1 × P1, ρ(σ(x)) determines the section of O(1, 1) that passes
through z,z′, and through x, while pr2(x) determines the fiber F2,x. Clearly the section and the
fiber meet in one point unless the fiber is a component of the section, which is not the general
situation.

Finally we resolve Cr. Let π : X → P1×P1 be the blow-up of z and z′ with exceptional divisors E
and E′. Contracting the strict transforms F of F2,z and F ′ of F2,z′ , gives a morphism γ : X → P1×P1

which is also the blow-up of two points. We have Cr = γ ◦ π−1.
Because of the two blow-up structures of X, the Néron–Severi space N1(X) has two sets of

bases (π∗f1, π
∗f2, E,E

′) and (γ∗f1, γ
∗f2, F, F

′). The following relations are easy consequences of
the properties of Cr.

π∗f2 = E + F = E′ + F ′

γ∗f2 = E + F = E′ + F ′

γ∗f1 = π∗(f1 + f2)− E − E′
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In particular, the change of coordinates matrix is
1 0 0 0
1 1 1 1
−1 0 −1 0
−1 0 0 −1

 .

The matrix is self-inverse, though Cr is not immediately self-inverse because the source P1×P1 and
the target P1 × P1 are not canonically identified.

The construction of Cr also works in a less-symmetric situation. If z1, z2 are points not on the
same horizontal or vertical fiber, then blowing-up the points and contracting the strict transforms
of vertical (or of horizontal) fibers through the points gives birational Cr : P1 × P1 99K P1 × P1. In
fact one can find an automorphism that fixes z1 and sends z2 to z′1. When the two points are say
in the same vertical fiber, and we contract the strict transforms of horizontal fibers, then the target
of Cr is naturally the Hirzebruch surface F2 = PP1(O ⊕O(−2)), not P1 × P1.

4. The cases m ∈ {0, 1, 2}. Assume n > 1. The complete linear system b0 has the expected
dimension 2n+1 and irreducible general term. For m ∈ {1, 2}, we perform a Cremona transform Cr
on P1×P1 centered at z1, z

′
1. The linear system b1 corresponds to sections of π∗O(1, n)(−E−E′) =

γ∗O(1, n − 1) on X, so to sections of O(1, n − 1). This gives the expected dimension of b1, and
the irreduciblity of a general divisor. The linear system b2 similarly corresponds to sections of
O(1, n − 1) through Cr(z2) and Cr(z′2). These two points live on the same vertical fiber. When
n = 2, the sections of O(1, n − 1) = O(1, 1) through Cr(z2), Cr(z′2) all contain the vertical fiber
through the two points, and an arbitrary horizontal fiber, giving dim b2 = 1 as expected. We also
see how irreducibility failed in this case. When n > 2, a general section of O(1, n − 1) intersects
the vertical fiber containing the two points in n − 1 ≥ 2 distinct points. Using the PGL(2) action
on the second component, we can arrange that one of these points is Cr(z2), but none of the others
is Cr(z′2), and vice versa. Thus dim b2 = 2n − 3 as expected. By a similar construction, we can
see that there exist irreducible sections of O(1, n− 1) through Cr(z2) and Cr(z′2), and avoiding the
indeterminacy points of Cr−1, hence this is the general situation.

5. Conclusion of part (i). Assume n > 1 and m ≥ 3. For fixed 3 ≤ m ≤ n+1, assume bm−1

has the expected dimension 2(n−m+1)+1 ≥ 1, but dim bm = 2(n−m+1) for every general choice
of Z. This is indeed the only choice other than the expected dimension, easily verified by picking zm
outside the base locus of bm−1. For any such zm sufficiently general (so that dim bm = 2(n−m+ 1)
for example), consider T ∈ bm−1 passing through zm. Let C be an irreducible curve in the support
of T that passes through zm.

By our assumption that dim bm = 2(n − m + 1), for all general w in C, by replacing zm with
w, it holds that T also passes through w′. Then T contains C, but also its reflection C ′. If C is
symmetric, then it has class cf1 + cf2 for some c ≥ 1. Since T has class f1 + nf2, then necessarily
c = 1. If C is not symmetric, then similarly C+C ′ has class f1 + f2, so C is a vertical or horizontal

fiber. In both cases, denote C̃ = C ∪ C ′ (set theoretic union). It is a reduced effective symmetric

cycle of class f1 + f2, a section of O(1, 1) through zm and z′m. We can write T = C̃ + Fn−1, where

Fn−1 is a sum of n− 1 horizontal fibers (each of class f2). This is an equality of cycles, and so C̃ is
uniquely determined by T . Such a decomposition exists for all sufficiently general choices of the m
pairs. Permuting the pairs will also produce a general ordered m-tuple of pairs, without changing

bm. In particular, since C̃ passes through zm and z′m, it passes through all the m pairs. This is
impossible for m ≥ 3 general pairs by the case n = 1.

Since bn+1 is empty, so are bm for all m > n.
6. Conclusion of part (ii). By (i), the system bm has the expected dimension. For any

nonempty linear system, passing through one general point (e.g., not in the base locus) is a codi-
mension 1 condition. By iterating, we obtain the claim.
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7. Conclusion of part (iii). In all cases where irreducibility holds, smoothness is automatic.
Indeed any irreducible curve C of class f1+nf2 satisfies C ·f2 = 1, hence it is mapped isomorphically
by the second projection onto P1.

We assume n > 1 and m ≥ 3. By part (i), bm is nonempty precisely when m ≤ n. In this
case its dimension is 2(n −m) + 1. To prove the irreducibility of the general member of bm, it is
enough to prove that bm contains one irreducible curve. Since the first m − 1 pairs in a set of m
sufficiently general pairs are also general, we have bm−1 ⊃ bm. It is then enough to prove that bn
has an irreducible curve.

If every Cn ∈ bn is reducible, it is necessarily of form Cn = Cn−1 +F , where Cn−1 is a (potentially
reducible) section of O(1, n− 1), and F is a fiber of the second projection. By part (ii), the section
Cn−1 contains at most 2n− 1 of the points of Z, while F contains at most one point in Z. Since Cn
passes through all of Z, the bounds must be sharp. By part (ii), for every z ∈ Z, there is exactly
one section of O(1, n−1) that contains Z \{z}. Clearly there exists exactly one F through z. There
are then at most 2n choices for Cn ∈ bn. This contradicts the equality dim bn = 1 from (i). �

Remark (Blow-ups of P2). Let g ≥ 1 and let π : X → P2 be the blow-up of 2g general points
z1, . . . , z2g with exceptional divisors E1, . . . , E2g respectively. Let H be the class of a line in P2.
Then

π∗gH − (g − 1)E1 − E2 − · · · − E2g ∈ Nef(X).

Indeed this class can be reduced by a sequence of Cremona transforms to π∗H − E1. This result
is equivalent to the general case of Proposition 3.8 via the isomorphism between P2 blown-up at
2g + 1 points z0, . . . , z2g and P1 × P1 blown-up at 2g points. The exceptional divisor E0 over z0 is
considered with coefficient 0 in the class above, so it can be blown-down.

See also [CHS08, Proposition 3.4] for an interesting result of similar shape that uses a degeneration
construction of [Yan07].

We now construct nef classes on C×C by degenerating from simple covers of P1. This follows an
idea of [Kou93]. Recall that a finite map f : C → P1 is called a simple branched cover if any fiber
of f has at most one ramification point c, and if f is given locally around any such c by the map
x 7→ x2. For example hyperelliptic pencils are simple.

Example 3.10 (Simple branched covers). Let C be a curve of genus g ≥ 1. Assume that C admits
a simple branched cover f : C → P1 of degree 2 ≤ d ≤ b√gc+ 1.

If a, b ≥ d, then af1 + bf2 − δ is nef if and only if a+ b ≥ 2g

d− 1
+ 2

(Following [Kou93] and [Laz04a, Theorem 1.5.8], consider T the closure of the complement of the
diagonal in C ×P1 C. It is irreducible of class df1 + df2 − δ in C × C. Its self-intersection is
2 · ((d− 1)2 − g) ≤ 0. For example if f is a hyperelliptic pencil, then T is the graph of the induced
hyperelliptic involution. For A,B,C ≥ 0,

(A+ dC)f1 + (B + dC)f2 − Cδ = Af1 +Bf2 + C[T ]

is nef if and only if the intersection with T is nonnegative, i.e., (d−1)(A+dC+B+dC−2C) ≥ 2gC.
If C > 0, after setting a = A

C + d and b = B
C + d, we obtain the claim.)

When d > b√gc+ 1, and a, b ≥ d, the class af1 + bf2 − δ is ample. �

We obtain the following extension of the result of Kouvidakis [Kou93, Theorem 2].

Corollary 3.11. Let C be a very general curve of genus g ≥ 1. If 2 ≤ d ≤ b√gc+ 1 is an integer

and a, b ≥ d satisfy a+ b ≥ 2 + 2g
d−1 , then af1 + bf2 − δ is nef. In particular

(3.11.1) df1 +

(
2 +

2g

d− 1
− d
)
f2 − δ ∈ Nef(C × C)
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Proof. By the Riemann existence theorem, for any degree d ≥ 2 there exists a curve Cd of genus
g admitting a simple branched cover Cd → P1 of degree d. From the previous example we deduce
that af1 + bf2 − δ is nef. Since nefness is a very general condition in families, the result extends to
very general curves. For the last statement set a = d and note that 2 + 2g

d−1 − d ≥ d. �

Remark. When C is very general, the nefness of the classes in Theorem 3.4.(i) can be deduced
from Corollary 3.11. Some of the classes in Theorem 3.4.(ii) are better, e.g., when d = 2g − 2.
However, for large g (the Mathematica software suggests g ≥ 15), they are all in the convex span
of the classes in (3.3.1) and those in Corollary 3.11.

It is conceivable that for some countable union of families of curves inside Mg Corollary 3.11
fails, while Theorem 3.4 does not.

3.5. General technical results used in our proofs.

Proposition 3.12. Let ρ : X → C be a flat surjective morphism between projective varieties, where
C is a nonsingular projective curve over an algebraically closed field. Let L be a line bundle on X,
and let f be the class of a fiber of ρ.

(i) If L is nef on every fiber of ρ and relatively globally generated on a general fiber of ρ, then

c1(L)−
(
µmin(ρ∗L)

)
· f is nef on X.

(ii) If L is ρ-ample, then

(3.12.1) sup
{
t
∣∣ c1(L)− tf is nef

}
= lim

n→∞

µmin(ρ∗L⊗n)

n
.

Proof. (i). The assumption implies by cohomology and base change that the natural map ρ∗ρ∗L → L
is surjective on the general fiber of ρ. We thus have an exact complex

ρ∗ρ∗L −→ L −→ Q −→ 0,

where Q is supported in at most finitely many fibers of ρ. Since L is nef on the fibers and Q is
a direct sum of quotients of L restricted to fibers, we deduce that Q is a nef coherent sheaf. It is
invariant under twisting by classes of form ρ∗D with D an R-divisor on C, since these are trivial
on fibers. The twisted sheaf ρ∗ρ∗L〈−ρ∗µmin(ρ∗L)f〉 is nef by Lemma 2.1. The same is true of its
(twisted) image in L〈−ρ∗µmin(ρ∗L)f〉. We deduce that the latter is an extension of nef twisted
coherent sheaves. [FM21, Remark 3.4] and [FM21, Lemma 3.31] prove that such extensions are nef.

One can also argue by blowing-up the ideal sheaf I on X such that I ⊗ L is the image of the
natural map ρ∗ρ∗L → L.

(ii). We first show that the right-hand side of (3.12.1) is indeed a limit. Let n0 be an integer
such that ρ∗L⊗n is a vector bundle for every n ≥ n0, and such that the natural maps

(3.12.2) ρ∗L⊗n ⊗ ρ∗L⊗m −→ ρ∗L⊗(n+m)

are surjective for all n ≥ n0, m ≥ n0. Note that such an n0 exists by cohomology and base change
and by [Laz04a, Example 1.8.4.(ii)], respectively. We then have

µmin(ρ∗L⊗n) + µmin(ρ∗L⊗m) = µmin(ρ∗L⊗n ⊗ ρ∗L⊗m) ≤ µmin(ρ∗L⊗(n+m))

for all n ≥ n0, m ≥ n0. The equality holds by [Miy87, Corollary 3.7 and p. 464]. For the inequality,
in characteristic zero use (3.12.2) and (2.0.1). In positive characteristic, the same argument works
to show the inequality above after taking a large enough Frobenius pullback of the quotient map
by [Lan04, Theorem 2.7]. Finally, the sequence {−µmin(ρ∗L⊗n)}∞n=1 is a sequence satisfying the
hypothesis of de Bruijn and Erdős’s version of Fekete’s lemma [dBE52, Theorem 23] for the constant
function

ϕ(t) = max

{
0, max

1≤n,m≤n0

{
µmin(ρ∗L⊗n) + µmin(ρ∗L⊗m)− µmin(ρ∗L⊗(n+m))

}}
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in their notation, hence the right-hand side of (3.12.1) is indeed a limit.
We now show that

sup
{
t
∣∣ c1(L)− tf is nef

}
≥ µmin(ρ∗L⊗n)

n
for all n sufficiently large. By [Laz04a, Theorem 1.7.6.(iii)] and the ρ-ampleness of L, we may
assume that n is sufficiently large such that the natural map ρ∗ρ∗L⊗n → L⊗n is surjective. We may
also assume that ρ∗L⊗n is locally free. Choose a closed point c ∈ C. Letting a := −µmin(ρ∗L⊗n),
we see that

sup

{
t

∣∣∣∣ c1(L) +
a

n
f − tf is nef

}
=
a

n
+ sup

{
t
∣∣ c1(L)− tf is nef

}
µmin(ρ∗L⊗n〈ac〉)

n
=
a

n
+
µmin(ρ∗L⊗n)

n
= 0

hence it suffices to show that

(3.12.3) sup

{
t

∣∣∣∣ c1(L) +
a

n
f − tf is nef

}
≥ 0.

Since µmin(ρ∗L⊗n〈ac〉) = 0, we see that ρ∗L⊗n〈ac〉 is a nef twisted bundle by Lemma 2.1. Using
the surjection ρ∗ρ∗L⊗n � L⊗n, we have the commutative diagram

X � � //

ρ
&&

P
(
ρ∗(L⊗n)〈ac〉

)
π

��
C

where OP(ρ∗(L⊗n)〈ac〉)(1) is nef, hence so is O(1)|X = L⊗n〈af〉, and (3.12.3) follows.
It remains to show that the inequality ≤ holds in (3.12.1). Choose a closed point c ∈ C, and let

a be sufficiently large such that L〈af〉 is ample. We then see that replacing L by L〈ac〉 results in
both sides of (3.12.1) increasing by a, and it therefore suffices to consider the case when L is ample.
Now let t0 > 0 be the value of the supremum on the left-hand side of (3.12.1), and fix a real number
ε > 0. Choose integers u, v ≥ 1 such that u/v + ε > t0 > u/v. We then see that

µmin(ρ∗L⊗vn(−unc))
n

= −u+ v · µmin(ρ∗L⊗n)

n
.

Since L⊗v(−uf) is ample, Lemma 3.13 below implies

lim
n→∞

µmin(ρ∗L⊗vn(−unc))
n

≥ 0

by the fact that ρ∗L⊗vn(−unc) is nef for n sufficiently large, and then by Lemma 2.1. We therefore
have

lim
n→∞

µmin(ρ∗L⊗n)

n
≥ u

v
> t0 − ε.

Since ε was arbitrary, the inequality ≤ holds in (3.12.1). �

Lemma 3.13. Let ρ : Y → X be a morphism of projective schemes, and let L be an ample invertible
sheaf on Y . Let F be a coherent sheaf on X. Then F ⊗ ρ∗L⊗n is ample and globally generated for
all n sufficiently large.

Proof. Let A be a very ample divisor on X such that there exists a surjection
⊕
OX(−A) � F .

Since ampleness and global generation descend to quotients, it is enough to prove the lemma for
F = OX(−A). With the usual arguments of Castelnuovo–Mumford regularity [Laz04a, Theorem
1.8.5], it is enough to prove that if A is a very ample divisor on X, then ρ∗L⊗n is −2-regular with
respect to A, i.e., H i

(
X, ρ∗L⊗n(−(2 + i)A)

)
= 0 for all i > 0 for all n sufficiently large. This is
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because in this case ρ∗L⊗n(−2A) is globally generated, hence ρ∗L⊗n(−A) is ample and globally
generated.

Since L is ample, it is in particular also ρ-ample. Hence for n large, we have Riρ∗L⊗n = 0 for
all i > 0. The Leray spectral sequence and the projection formula show that H i

(
X, ρ∗L⊗n(−(2 +

i)A)
)

= H i
(
Y,L⊗n ⊗ ρ∗(−(2 + i)A)

)
. The ampleness of L and Serre vanishing show that these

cohomology groups are 0. �

Finally, we show that Proposition 3.12.(ii) extends to a more general setting:

Proposition 3.14. Let ρ : Y → X be a morphism of projective schemes over an algebraically closed
field. Let L be a ρ-ample line bundle on Y . For F a coherent sheaf on X, and H an ample line
bundle on X, denote νH(F) := sup{t | F〈−tH〉 is nef}. Then

sup
{
t
∣∣ c1(L)− tρ∗H is nef

}
= lim

n→∞

νH(ρ∗L⊗n)

n
.

Proof. The sequence νH(ρ∗L⊗n) > −∞ is superadditive (in the weaker sense in the proof of Propo-
sition 3.12.(ii)) by ρ-ampleness, hence the limit exists by de Bruijn and Erdős’s version of Fekete’s
lemma [dBE52, Theorem 23]. Since L is ρ-ample, for sufficiently large n, we have inclusions
Y ↪→ P(ρ∗L⊗n) such that OPX(ρ∗L⊗n)(1)|Y = L⊗n. It follows that the inequality “≥” holds.

For the reverse inequality, note as in Proposition 3.12.(ii) that both sides translate by t0 when
replacing L by L〈t0ρ∗H〉 for t0 ∈ Q (with the understanding that we only consider sufficiently
divisible n in the right-hand side). Without loss of generality, we may assume that L is ample on
Y . As in Proposition 3.12, we reduce to proving that ρ∗L⊗n is globally generated for large n, which
follows from Lemma 3.13. �

4. Products of arbitrarily many factors

In this section we work over C. Let n ≥ 2 be an integer. It is also interesting to study Nef(Cn).
To our knowledge, no conjecture on the shape of this cone has been made in the literature for n ≥ 3.
In fact it is quite a large cone.

Lemma 4.1. If g ≥ 1 and C is very general in moduli, then N1(Cn) has dimension
(
n+1

2

)
. A basis

is given by the class fi of the fibers of the projection from Cn onto the i-th factor for every i, and
by the classes δij of the big diagonals ∆ij = {(x1, . . . , xn) ∈ Cn

∣∣xi = xj}.

Pulling back by the projections prij : Cn → C2 gives nef classes on Cn.

Example 4.2. With assumptions as in Theorem 3.4.(i), on general curves we have

(n− 1)d

d− g
f1 + df2 + · · ·+ dfn − δ12 − · · · − δ1n =

n∑
i=2

((
1 +

g

d− g

)
f1 + dfi − δ1i

)
∈ Nef(Cn).

Indeed, each summand on the right is the pullback via pr1i of a nef class on C×C. On an arbitrary
curve, using (3.3.1), we obtain

∑n
i=2

((
1 + g

a−1 + (g − 1)(a − 1)
)
f1 + afi − δ1i

)
∈ Nef(Cn) for all

a > 1. �

Our main result of the section is the following

Theorem 4.3. Let C be a smooth complex projective curve of genus g > 0 and let n ≥ 2. Then

(n− 1)d

d− g
f1 + d ·

n∑
i=2

fi −
∑

1≤i<j≤n
δij ∈ Nef(Cn)

if one of the following holds:

(i) d ≥ 2g + n, or d ≥ max{2n+ g, 2g}, or
(ii) n ≥ 2g and d ≥ g + n− 1.
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The proof will make use of the rich geometry of the symmetric products of C. We recall some
notation and classical results about these. Denote by

Cn := HilbnC = Cn/Sn

the n-th symmetric product of C with quotient map π : Cn → Cn. It is also the space of effective
divisors D on C with degD = n. Let ∆ = ∆n be the big diagonal on Cn, the image through π
of ∆ij for any i < j. It is the ramification locus of π, hence there exists a (non-effective) Cartier

divisor on Cn denoted ∆n
2 such that π∗∆n

2 is the branching divisor
∑

i<j ∆ij and 2 · ∆n
2 = ∆n.

Let x and δ be the classes of c0 + Cn−1 and of ∆n respectively in N1(Cn). If C is very general,
then x and δ are a basis of N1(Cn).

The cone Nef(Cn) has been previously studied by [Pac03]. Our methods do not offer improve-
ments here, since we usually exploit the existence of a nonconstant map to a curve. This is in line
with our results above in the case n = 2. Instead we focus on Nef(C×Cn−1). Any of the nef classes
that we construct lift to Sn−1-symmetric (but not necessarily Sn-symmetric) nef classes on Cn.
Consider the diagram

Zn−1
� � // C × Cn−1

q //

p

��

Cn−1

C

where p and q are the two projections, and Z = Zn−1 is the universal family {(c,D)
∣∣ c ∈ SuppD}.

Denote by z its class in N1(C × Cn−1).

Lemma 4.4. If n ≥ 3, if g ≥ 1 and C is very general in moduli, then N1(C×Cn−1) is 4-dimensional,
generated by the fiber f of the first projection p, by q∗x and q∗δ, and by z.

Proof. Modulo pullbacks from either factor, a divisor on C×Cn−1 can be identified with a morphism
Cn−1 → J(C). From the universality property of the Albanese variety, this is equivalent to an
element of Hom(Alb(Cn−1), J(C)) = End(J(C)). The latter is Z for C very general. We used
Alb(Cn−1) = J(C). �

For L a divisor on C, consider the tautological divisors (cf. [She21, §3.1]) on Cn−1:

• TL := π(pr∗iL), where pri : C
n−1 → C is any of the projections. We have π∗TL = L�(n−1) :=∑

i pr
∗
iL. If L = c0 is a point, then TL = {c0 +D

∣∣D ∈ Cn−2} = c0 + Cn−2 ⊂ Cn−1.

• NL := TL− ∆n−1

2 . It is the determinant of the tautological bundle EL := q∗OZn−1(p∗L) (not
to be confused with the bundle EL = q∗(p

∗OC(L) ⊗ OC×C(∆)) from [EL92] appearing in
the previous section). For example, KCn = NKC .

Part (i) in the next result is an important computation for the proof of Theorem 4.3. Part (ii)
will not be used, but we find that the diagram used in its proof (taken from [EL15]) is instructive.

See Definition 3.5 for the definition of M (m−1)(L).

Lemma 4.5. Let C be a smooth complex projective curve, and let n ≥ 2 and m ≥ 1. If L is a
divisor on C, then

pr1∗O
(
pr∗23...nL

�(n−1) −m ·
n∑
i=2

∆1i

)
=

n−1⊗
M (m−1)(L).

Consequently,

(i) p∗O(q∗TL −mZ) = Symn−1M (m−1)(L) and p∗O(q∗NL −mZ) =
∧n−1M (m−1)(L).

(ii) p∗OZ(q∗TL) = Symn−2H0(C,L)⊗OC(L) and p∗OZ(q∗NL) =
∧n−2ML ⊗OC(L).



NEW CONSTRUCTIONS OF NEF CLASSES ON SELF-PRODUCTS OF CURVES 19

Proof. We can see Cn as

(C × C)×C . . .×C (C × C)︸ ︷︷ ︸
n−1 times

,

where the fiber product is always over the first projection. Then pr∗23...nL
�(n−1)−m ·

∑n
i=2 ∆1i is the

relative box product pullback of pr∗2L−m∆ from each C × C factor. Since pr1∗O
(
pr∗2L−m∆

)
=

M (m−1)(L), the claim follows by the projection formula.
For (i) consider the diagram

Cn
pr23...n //

1C×π

%%
pr1

��

Cn−1

π

&&
C × Cn−1 q

//

p
yy

Cn−1

C

The permutation group Sn−1 acts naturally on the last n − 1 components of Cn, and trivially on
the first component C and on the quotient Cn−1. Then the maps 1C × π, p, and pr1 are Sn−1-
equivariant. We have pr∗23...nL

�(n−1) − m ·
∑n

i=2 ∆1i = (1C × π)∗(q∗TL − mZ). The associated
line bundle can be linearized in two natural ways via the identity and alternating representation.
With these linearizations, it descends to C × Cn−1 as q∗TL − mZ and q∗NL − mZ respectively.
Part (i) follows from [She21, Proposition 2.3] since Symn−1M (m−1)(L) and

∧n−1M (m−1)(L) are

the respective invariants for pr1∗O
(
pr∗23...nL

�(n−1) −m
∑n

i=2 ∆1i

)
=
⊗n−1M (m−1)(L) under these

actions.

For part (ii), consider the commutative diagram

Cn−1

C × Cn−2

σ
;;

� �  //

p1
##

p2

��

C × Cn−1

q
cc

p
{{

Cn−2 C

where σ(c,Dn−2) = c+Dn−2, where p1 and p2 are the first and second projection, and (c,Dn−2) =
(c, c+Dn−2). The map  can be identified with the inclusion of the universal family Z. We compute
that σ∗(c0 + Cn−2) = p∗1(c0) + p∗2(c0 + Cn−3) which extends to σ∗TL = p∗1L+ p∗2TL, and hence

p∗OZ(q∗TL) = p1∗O(σ∗TL) = H0(Cn−2, TL)⊗OC(L)

by the projection formula and flat base change for cohomology.
For n = 3, we observe σ∗(∆

2 ) = ∆12 = Z1, hence

p∗OZ(q∗NL) = p1∗O
(
p∗2L−∆12

)
⊗OC(L) = ML ⊗OC(L).

For n > 3 we compute σ∗(∆
2 ) = Zn−2 + p∗2

∆n−2

2 . Then by part (i),

p∗OZ(q∗NL) = p1∗O (p∗2NL − Zn−2)⊗OC(L) =

n−2∧
ML ⊗OC(L). �

Starting with a divisor L = Ld of degree d on C, the classical approach for constructing nef
divisors on Cn has been to exploit the properties of tautological sheaves EL = q∗OZ(p∗L) and the
divisors TL and NL by working with them on Cn directly (see [EL15, She21]). The semistability of
ELd is known for large d (see [Mis19]). What we are missing is an understanding of the positivity
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of twists of EL as is necessary for Proposition 3.14. In our approach, where we work with vector
bundles on C instead, the positivity of twists is completely determined by semistability.

Proof of Theorem 4.3. In all cases we prove that

(4.5.1) q∗
(
dx− δ

2

)
− z +

(n− 1)d

d− g
f ∈ Nef(C × Cn−1).

Via π∗, it then lifts to (n−1)d
d−g f1 + df2 + · · ·+ dfn+1 −

∑
1≤i<j≤n δij ∈ Nef(Cn).

Recall that a divisor D on a smooth projective curve C is called k-very ample if the evaluation
map H0(C,D) → H0(Yk+1, D|Yk+1

) is surjective for all effective divisors Yk+1 of degree k + 1 on
C. Equivalently, the tautological bundle ED = q∗OZk+1

(p∗D) on Ck+1 is globally generated. In
particular, if D is k-very ample, then ND is globally generated on Ck+1. [CG90] prove that if D is
furthermore k + 1-very ample, then ND is in fact very ample on the same Ck+1.

It is immediate that if degD ≥ 2g + p, then D is p-very ample.

(i). Let L be a divisor of degree d ≥ 2g+n. Then L− c0 is n−1-very ample for all c0 ∈ C, hence
NL−c0 = NL − (c0 + Cn−2) is very ample on Cn−1. By Lemma 4.5,

p∗O(q∗NL − Z) =

n−1∧
ML.

Since ML is semistable for d ≥ 2g (see [EL92, Proposition 3.2]), so are its tensor powers
⊗n−1ML by

[Laz04b, Corollary 6.4.14], hence so are any direct summands of these tensor powers, e.g.,
∧n−1ML.

We conclude that
∧n−1ML is semistable of slope (n − 1) · µ(ML) = − (n−1)d

d−g . From Proposition

3.12.(i) we find that q∗NL − Z + (n−1)d
d−g · f is nef. Note that A = NL has class dx− δ

2 , which gives

(4.5.1).

Let L be a general divisor of degree d ≥ max{2n+ g, 2g}. Then ML is semistable of slope − d
d−g ,

in particular
∧n−1ML is semistable of slope − (n−1)d

d−g . It remains to prove that L− c0 is n− 1-very

ample for general c0 ∈ C. This follows from Lemma 4.6 below.

(ii). Let L = Ld be a divisor on C of degree d. Fix c0 ∈ C. We want to show that q∗NL − Z +
(n−1)d
d−g p∗c0 is nef on C × Cn−1. We begin with a reminder on the Abel–Jacobi map:

(4.5.2)
um : Cm −→ Pic0(C) = J(C)

D 7−→ OC
(
D −mc0

)
It is a projective bundle for m ≥ 2g − 1 [ACGH85, p. 309, Proposition 2.1(i)]. Here, c0 ∈ C is our
fixed point.

Let θ be the principal polarization on J(C) obtained as the image through the Abel–Jacobi map
ug−1. Denoting by τα the translation by α ∈ J(C), it induces an isomorphism

κ : J(C) −→ Pic0(J(C))

α 7−→ τ∗αθ − θ

whose inverse is u∗1 : Pic0(J(C))→ Pic0(C) = J(C). We make the following claims:

Main claim. For some large N > 0 and sufficiently general αi ∈ Pic0(C) with i ∈ {1, 2, . . . , N},
the natural map

(4.5.3)

N⊕
i=1

p∗p∗O(q∗NL+αi − Z)⊗O(q∗Tα∨i ) −→ O(q∗NL − Z)

is surjective along the general fiber of p. The map is obtained by summing the compositions
p∗p∗O(q∗NL+αi − Z)⊗O(q∗Tα∨i )→ O(q∗NL+αi − Z)⊗O(q∗Tα∨i ) = O(q∗NL − Z).
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Claim 2. If α ∈ J(C), then Tα is numerically trivial. In fact Tα = u∗(κ(α)), where u = un−1.
(Since u is a projective bundle map, u∗ is an isomorphism at the level of numerically trivial divisors.
Consider the morphism

ı : C −→ Cn−1

c 7−→ c+ (n− 2)c0

which satisfies un−1 ◦ ı = u1. The pullback ı∗ : Pic0(Cn−1)→ J(C) is an isomorphism with inverse
α 7→ Tα. See [She21, §3.2]. The class u∗κ(α) is a numerically trivial divisor η on Cn−1 such that
ı∗η = α. The claim follows.)

Claim 3. If E is a divisor of degree e on C with e ≥ 2g− 1, then Riu∗OCn−1(NE) = 0 for i > 0.

(The pullback u∗θ has class (g+n−2)x− δ
2 , e.g., by [Pac03, Lemma 2.1]. By the projection formula,

it is enough to prove that if F is a divisor of degree f ≥ −(n−1−g) on C, then Riu∗OCn−1(TF ) = 0

for i > 0. This is true because the fibers of u are projective spaces Pn−1−g, and TF restricts as
OPn−1−g(f) on them. These line bundles have no higher cohomology in the stated range.)

Claim 4. If E is a divisor of degree e on C with e ≥ 2g−1, then hi(Cn−1, NE) = 0 for i > 0.(We
have KCn−1 = NKC . Then NE = NKC + TE−KC . The claim follows by Kodaira vanishing.)

Let us assume for the moment that the main claim is proved. By Lemma 4.5.(i), we have

p∗O(q∗NL+αi −Z) =
∧n−1ML+αi . This is semistable of slope − (n−1)d

d−g since d ≥ g+ n− 1 ≥ 2g by

[EL92, Proposition 3.2], hence p∗O(q∗NL+αi − Z)
〈 (n−1)d

d−g c0

〉
is nef by Lemma 2.1. From Claim 2,

the line bundles O(q∗Tα∨i ) are numerically trivial. The twist of the LHS of (4.5.3) by p∗ (n−1)d
d−g c0 is

then nef. The conclusion follows as in the proof of Proposition 3.12.(i).

The proof of the main claim. The surjectivity of (4.5.3) along the general fiber is implied
by surjectivity on the fiber over c0. Note that Z|{c0}×Cn−1

= c0 + Cn−2 = Tc0 . By cohomology and
base change (using Claim 4), the fiber map is

(4.5.4)

N⊕
i=1

H0
(
Cn−1, NL−c0+αi

)
⊗ Tα∨i −→ OCn−1(NL−c0).

The natural relative evaluation map u∗u∗O(NL−c0)→ O(NL−c0) is surjective: arguing as in Claim
3, the divisor L− c0 restricts as O(d−1− (g+n−2)) on the fibers of u, and d−1− (g+n−2) ≥ 0.
Using Claim 2, the surjectivity of (4.5.4) follows after pullback from the surjectivity of

N⊕
i=1

H0
(
J(C), u∗O(NL−c0+αi)

)
⊗ κ(α∨i ) −→ u∗O(NL−c0).

From Claim 2 and from the projection formula, this is equivalent to the surjectivity of the map

N⊕
i=1

H0
(
J(C), u∗O(NL−c0)⊗ κ(αi)

)
⊗ κ(α∨i ) −→ u∗O(NL−c0).

In this form, the result is a direct application of [Par00, Corollary 2.4] if we prove that

H i
(
J(C), u∗O(NL−c0)⊗ κ(α)

)
= 0

for all i > 0 and all α ∈ J(C). This is a consequence of Claims 3 and 4, and the Leray spectral
sequence. �

Remark. Using the three parts of Theorem 3.4, the proof of Theorem 4.3.(i) gives slightly better
results when C is a general curve.

Lemma 4.6. Let C be a smooth projective curve of genus g, and let 0 ≤ n ≤ g. Let D be a divisor
of degree d on C such that OC(D) is general in Picd(C). If d ≥ 2n+ g+ 1, then D is n-very ample.
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We follow an idea of [KM21] where the case n = 0 was treated.

Proof. If d ≥ 2g+n, then any D is n-very ample by Riemann–Roch or Kodaira vanishing. Assume
d ≤ 2g + n − 1 and D is not n-very ample. Then there exists Zn+1 an effective divisor of degree
n+ 1 such that h1(C,D−Zn+1) 6= 0, in particular h0(C,KC −D+Zn+1) 6= 0. Note that deg(KC −
D + Zn+1) = 2g + n − 1 − d ≥ 0. We have KC − D + Zn+1 ∼ E, for some effective E of degree
2g+n−1−d. The pairs (Zn+1, E) move in an 2g+2n−d-dimensional family, and 2g+2n−d ≤ g−1.
For a general choice of OC(D) we have KC −D 6∼ E − Zn+1 for any such pair (Zn+1, E), which is
a contradiction. �

5. Other considerations

5.1. Product of very general distinct curves. If C1 and C2 are smooth projective curves, then
Pic(C1 × C2) ' Pic(C1) ⊕ Pic(C2) ⊕ Hom(J(C1), J(C2)). If the curves are sufficiently general,
there exists no nontrivial morphism between their Jacobians. In particular, N1(C1 × C2) is 2-
dimensional, generated by the classes f1 and f2 of the fibers of each projection. In this case
Nef(C1 × C2) = Eff(C1 × C2) = 〈f1, f2〉.

5.2. Restricting from larger ambient spaces.

Remark 5.1 (Restricting from the Jacobian). Let C be an arbitrary curve of genus g ≥ 1. Let
J(C) be the Jacobian of C. The “canonical part” of the nef cone of J(C) × J(C) is essentially
known by [DELV11]. By restricting these classes to C × C, one finds

af1 +

(
1 +

g2

a− 1

)
f2 − δ ∈ Nef(C × C) (∀) a > 1.

See Figure 1 for a comparison with Remark 3.3.

Remark (Restricting from Hilbert schemes of K3 surfaces). For (S,H) a polarized K3 surface of
degree 2t and Picard number 1, [BM14] compute the Nef cone of Hilb2S in terms of solutions to
the Pell equations x2 − 4ty2 = 5 and x2 − ty2 = 1. If C ⊂ S is a smooth curve, one can pullback
nef classes from Hilb2S to C ×C. The resulting examples are roughly of form 2

√
g(f1 + f2)− δ, off

by a factor of 2 from Conjecture 1.2.
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[dBE52] N. G. de Bruijn and P. Erdős, Some linear and some quadratic recursion formulas. II, Nederl. Akad.
Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 152–163. MR 47162 15, 17

[DELV11] Olivier Debarre, Lawrence Ein, Robert Lazarsfeld, and Claire Voisin, Pseudoeffective and nef classes on
abelian varieties, Compos. Math. 147 (2011), no. 6, 1793–1818. MR 2862063 22

[DM69] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études
Sci. Publ. Math. (1969), no. 36, 75–109. MR 262240 10

[EL92] Lawrence Ein and Robert Lazarsfeld, Stability and restrictions of Picard bundles, with an application
to the normal bundles of elliptic curves, Complex projective geometry (Trieste, 1989/Bergen, 1989),
London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 149–156.
MR 1201380 3, 7, 18, 20, 21

[EL15] , The gonality conjecture on syzygies of algebraic curves of large degree, Publ. Math. Inst. Hautes
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