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Abstract—We consider large scale distributed
optimization over a set of edge devices connected to
a central server, where the limited communication band-
width between the server and edge devices imposes a
significant bottleneck for the optimization procedure.
Inspired by recent advances in federated learning, we pro-
pose a distributed stochastic gradient descent (SGD) type
algorithm that exploits the sparsity of the gradient, when
possible, to reduce communication burden. At the heart of
the algorithm is to use compressed sensing techniques for
the compression of the local stochastic gradients at the
device side; and at the server side, a sparse approximation
of the global stochastic gradient is recovered from the
noisy aggregated compressed local gradients. We conduct
theoretical analysis on the convergence of our algorithm
in the presence of noise perturbation incurred by the
communication channels, and also conduct numerical
experiments to corroborate its effectiveness.

Index Terms—Optimization algorithms, large-scale
systems, distributed optimization, compressed sensing.

I. INTRODUCTION

LARGE-SCALE distributed stochastic optimization plays
a fundamental role in the recent advances of machine

learning, allowing models with vast sizes to be trained on mas-
sive datasets by multiple machines. In the meantime, the past
few years have witnessed an explosive growth of networks of
IoT devices such as smart phones, self-driving cars, robots,
unmanned aerial vehicles (UAVs), etc., which are capable
of data collection and processing for many learning tasks.
In many of these applications, due to privacy concerns, it
is preferable that the local edge devices learn the model by
cooperating with the central server but without sending their
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own data to the server. Moreover, the communication between
the edge devices and the server is often through wireless
channels, which are lossy and unreliable in nature and have
limited bandwidth, imposing significant challenges, especially
for high-dimensional problems.

To address the communication bottlenecks, researchers have
investigated communication-efficient distributed optimization
methods for large-scale problems, for both the device-server
setting [1], [2] and the peer-to-peer setting [3], [4]. In this
letter, we consider the device-server setting where a group of
edge devices are coordinated by a central server.

Most existing techniques for the device-server setting can be
classified into two categories. The first category aims to reduce
the number of communication rounds, based on the idea that
each edge device runs multiple local SGD steps in parallel
before sending the local updates to the server for aggregation.
This approach has also been called FedAvg [1] in federated
learning and convergence has been studied in [5]–[7]. Another
line of work investigates lazy/adaptive upload of information,
i.e., local gradients are uploaded only when found to be
informative enough [8].

The second category focuses on efficient compression of
gradient information transmitted from edge devices to the
server. Commonly adopted compression techniques include
quantization [9]–[11] and sparsification [12]–[14]. These tech-
niques can be further classified according to whether the
gradient compression yields biased [9], [14] or unbiased [10],
[13] gradient estimators. To handle the bias and boost con-
vergence, [12], [15] introduced the error feedback method
that accumulates and corrects the error caused by gradient
compression at each step.

Two recent papers [16], [17] employ sketching methods
for gradient compression. Specifically, each device compresses
its local stochastic gradient by count sketch [18] via a com-
mon sketching operator; and the server recovers the indices
and the values of large entries of the aggregated stochastic
gradient from the gradient sketches. However, theoretical guar-
antees of count sketch were developed for recovering one fixed
signal by randomly generating a sketching operator from a
given probability distribution. During SGD, gradient signals
are constantly changing, making it impractical to generate
a new sketching operator for every SGD iteration. Thus the
papers apply a single sketching operator to all the gradients
through the optimization procedure, while sacrificing theoret-
ical guarantees. Further, there is a limited understanding of
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the performance when there is transmission error/noise of the
uploading links.

Our Contributions: We propose a distributed SGD-type
algorithm that employs compressed sensing for gradient com-
pression. Specifically, we adopt compressed sensing tech-
niques for the compression of local stochastic gradients at the
device side, and the reconstruction of the aggregated stochas-
tic gradients at the server side. The use of compressed sensing
enables the server to approximately identify the top entries
of the aggregated gradient without querying directly each
local gradient. Our algorithm also integrates error feedback
strategies at the server side to handle the bias introduced
by compression, while keeping the edge devices to be state-
less. We provide convergence analysis of our algorithm in the
presence of additive noise incurred by the uploading com-
munication channels, and conduct numerical experiments that
justify the effectiveness of our algorithm.

Besides the related work discussed above, it is worth noting
that a recent paper [19] uses compressed sensing for zeroth-
order optimization, which exhibits a mathematical structure
similar to this letter. However, [19] considers the centralized
setting and only establishes convergence to a neighborhood of
the minimizer.

Notations: For x ∈ R
d, ‖x‖p denotes its �p-norm, and

x[K] ∈ R
d denotes its best-K approximation, i.e., the vector

that keeps the top K entries of x in magnitude with other
entries set to 0.

II. PROBLEM SETUP

Consider a group of n edge devices and a server. Each
device i is associated with a differentiable local objective
function fi : Rd → R, and is able to query a stochastic gra-
dient gi(x) such that E[gi(x)] = ∇fi(x). Between each device
and the server are an uploading communication link and a
broadcasting communication link. The goal is to solve

min
x∈Rd

f (x) := 1

n

n∑

i=1

fi(x) (1)

through queries of stochastic gradients at each device and
exchange of information between the server and each device.

One common approach for our problem setup is the stochas-
tic gradient descent (SGD) method: For each time step t, the
server first broadcasts the current iterate x(t) to all devices,
and then each device produces a stochastic gradient gi(t) =
gi(x(t)) and uploads it to the server, after which the server
updates x(t +1) = x(t)−η · 1

n

∑
i gi(t). However, as the server

needs to collect local stochastic gradients from each device
at every iteration, the vanilla SGD may encounter significant
bottleneck imposed by the uploading links if d is very large.
This issue may be further exacerbated if the server and the
devices are connected via lossy wireless networks of limited
bandwidth, which is the case for many IoT applications.

In this letter, we investigate the situation where the commu-
nication links, particularly the uploading links from each edge
device to the server, have limited bandwidth that can signifi-
cantly slow down the whole optimization procedure; the data
transmitted through each uploading link may also be corrupted
by noise. Our goal is to develop an SGD-type algorithm for
solving (1) that achieves better communication efficiency over
the uploading links.

Algorithm 1: SGD With Compressed Sensing

1 Input: sparsity level K, size of sensing matrix Q × d,
step size η, number of iterations T , initial point x0

2 Initialize: x(1) = x0, ε(1) = 0
3 The server generates the sensing matrix � ∈ R

Q×d and
sends it to every edge device

4 for t = 1, 2 . . . , T do
5 The server sends x(t) to every edge device
6 foreach device i = 1, . . . , n do
7 Device i samples a stochastic gradient

gi(t) = gi(x(t))
8 Device i constructs yi(t) = �gi(t) ∈ R

Q

9 Device i sends yi(t) back to the server
10 end
11 The server receives ỹ(t) = 1

n

∑n
i=1 yi(t) + w(t), where

w(t) denotes additive noise incurred by the
communication channels

12 The server computes z(t) = ηỹ(t) + ε(t)
13 The server reconstructs �(t) = A(z(t);�), where

A(z(t);�) denotes the output of the compressed
sensing algorithm of choice

14 The server updates x(t + 1) = x(t) − �(t)
15 The server updates ε(t + 1) = z(t) − ��(t)
16 end

III. ALGORITHM

Our algorithm is outlined in Algorithm 1, which is based
on the SGD method with the following major ingredients.

1) Compression of local stochastic gradients using com-
pressed sensing techniques. Here each edge device compresses
its local gradient by yi(t) = �gi(t) before uploading it
to the server. The matrix � ∈ R

Q×d is called the sens-
ing matrix, and its number of rows Q is strictly less than
the number of columns d. As a result, the communication
burden of uploading the local gradient information can be
reduced.

We emphasize that Algorithm 1 employs the for-all scheme
of compressed sensing, which allows one � to be used for the
compression of all local stochastic gradients (see Section III-A
for more details on the for-each and the for-all schemes).

After collecting the compressed local gradients and obtain-
ing 1

n

∑n
i=1 yi(t) (corrupted by communication channel noise),

the server recovers a vector �(t) by a compressed sensing
algorithm, which will be used for updating x(t).

2) Error feedback of compressed gradients. In general, the
compressed sensing reconstruction will introduce a nonzero
bias in the SGD iterations that hinders convergence. To handle
this bias, we adopt the error feedback method in [12], [15]
and modify it similarly as FetchSGD [17]. The resulting error
feedback procedure is done purely at the server side without
knowing the true aggregated stochastic gradients.

Note that the aggregated vector ỹ(t) is corrupted by additive
noise w(t) from the uploading links. This noise model incor-
porates a variety of communication schemes, including digital
transmission with quantization, and over-the-air transmission
for wireless multi-access networks [14].

We now provide more details on our algorithm design.
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A. Preliminaries on Compressed Sensing

Compressed sensing [20] is a technique that allows effi-
cient sensing and reconstruction of an approximately sparse
signal. Mathematically, in the sensing step, a signal x ∈ R

d

is observed through linear measurement y = �x + w, where
� ∈ R

Q×d is a pre-specified sensing matrix with Q < d, and
w ∈ R

Q is additive noise. Then in the reconstruction step, one
recovers the original signal x by approximately solving

x̂ = arg min
z

‖z‖0 s.t. y = �z, (w = 0) (2)

x̂ = arg min
z

1

2

∥∥∥y − �z
∥∥∥

2

2
s.t. ‖z‖0 ≤ K, (w �= 0) (3)

where K restricts the number of nonzero entries in x̂.
Both (2) and (3) are NP-hard nonconvex problems, and

researchers have proposed various compressed sensing algo-
rithms for obtaining approximate solutions. As discussed
below, the reconstruction error ‖x̂ − x‖ will heavily depend
on i) the design of the sensing matrix �, and ii) whether the
signal x can be well approximated by a sparse vector.

Design of the sensing matrix �: Compressed sensing algo-
rithms can be categorized into two schemes [21]: i) the
for-each scheme, in which a probability distribution over sens-
ing matrices is designed to provide desired reconstruction for
a fixed signal, and every time a new signal is to be measured
and reconstructed, one needs to randomly generate a new �;
ii) the for-all scheme, in which a single � is used for the sens-
ing and reconstruction of all possible signals. We mention that
count sketch is an example of a for-each scheme algorithm.
In this letter, we choose the for-all scheme so that the server
doesn’t need to send a new matrix to each device per iteration.

To ensure that the linear measurement y = �x can discrim-
inate approximately sparse signals, researchers have proposed
the restricted isometry property (RIP) [20] as a condition on �.

Definition 1: We say that � ∈ R
Q×d satisfies the (K, δ)-

restricted isometry property, if (1 − δ)‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 +
δ)‖x‖2

2 for any x ∈ R
d that has at most K nonzero entries.

The restricted isometry property on � is fundamental for
analyzing the reconstruction error of many compressed sensing
algorithms under the for-all scheme [22].

Metric of sparsity: The classical metric of sparsity is the �0
norm defined as the number of nonzero entries. However, for
our setup, the vectors to be compressed can only be approxi-
mately sparse in general, which cannot be handled by the �0
norm as it is not stable under small perturbations. Here, we
adopt the following sparsity metric from [23]:

sp(x) := ‖x‖2
1/(‖x‖2

2 · d), x ∈ R
d\{0}. (4)

The continuity of sp(x) indicates that sp(x) is robust to small
perturbations on x, and it can be shown that sp(x) is Schur-
concave, meaning that it can characterize approximate sparsity
of a signal. sp(x) has also been used in [23] for performance
analysis of compressed sensing algorithms.

B. Details of Algorithm Design

Generation of �: As mentioned before, we choose com-
pressed sensing under the for-all scheme for gradient compres-
sion and reconstruction. We require that the sensing matrix
� ∈ R

Q×d have a low storage cost, since it will be trans-
mitted to and stored at each device; � should also satisfy
RIP so that the compressed sensing algorithm A has good

reconstruction performance. The following proposition sug-
gests a storage-friendly approach for generating matrices
satisfying RIP.

Proposition 1 [24]: Let B ∈ R
d×d be an orthogonal matrix

with entries of absolute values O(1/
√

d), and let δ > 0 be
sufficiently small. For some Q = Õ(δ−2K log2 K log d),1 let
� ∈ R

Q×d be a matrix whose Q rows are chosen uniformly
and independently from the rows of B, multiplied by

√
d/Q.

Then, with high probability, � satisfies the (K, δ)-RIP.
This proposition indicates that, we can choose a “base

matrix” B satisfying the condition in Proposition 1, and then
randomly choose Q rows to form �. In this way, � can be
stored or transmitted by merely the corresponding row indices
in B. Note that Proposition 1 only requires Q to have log-
arithm dependence on d. Candidates of the base matrix B
include the discrete cosine transform (DCT) matrix and the
Walsh-Hadamard transform (WHT) matrix, as both DCT and
WHT and their inverses have fast algorithms of time complex-
ity O(d log d), implying that multiplication of � or �
 with
any vector can be finished within O(d log d) time.

Choice of the compressed sensing algorithm: We let A be
the Fast Iterative Hard Thresholding (FIHT) algorithm [25].
Our experiments suggest that FIHT achieves a good balance
between computation efficiency and empirical reconstruction
error compared to other algorithms we have tried.

We note that FIHT has a tunable parameter K that controls
the number of nonzero entries of �(t). This parameter should
accord with the sparsity of the vector to be recovered (see
Section III-C for theoretical results). In addition, the server
can broadcast the sparse vector �(t) instead of the whole x(t)
for the edge devices to update their local copies of x(t), which
saves communication over the broadcasting links.

Error feedback: We adopt error feedback to facilitate con-
vergence of Algorithm 1. The following lemma verifies that
Algorithm 1 indeed incorporates the error feedback steps
in [15]; the proof is straightforward which we omit here.

Lemma 1: Consider Algorithm 1, and suppose � is gen-
erated according to Proposition 1. Then for each t, there
exist unique p(t) ∈ R

d and e(t) ∈ R
d satisfying z(t) =

�p(t) + ηw(t), ε(t) = �e(t), e(1) = 0 such that

p(t) = ηg(t) + e(t), x(t + 1) = x(t) − �(t),

�(t) = A(�p(t) + ηw(t);�),

e(t + 1) = p(t) − �(t) + ηQ

d
�
w(t). (5)

where g(t) := 1
n

∑n
i=1 gi(t).

By comparing Lemma 1 with [15, Algorithm 2], we see
that the only difference lies in the presence of communication
channel noise w(t) in our setting. In addition, since error feed-
back is implemented purely at the server side, the edge devices
will be stateless during the whole optimization procedure.

C. Theoretical Analysis

First, we make the following technical assumptions:
Assumption 1: f (x) is convex and has a minimizer x∗ ∈ R

d.
Furthermore, f (x) is L-smooth for some L > 0, i.e., ‖∇f (x) −
∇f (y)‖2 ≤ L‖x − y‖2 for all x, y ∈ R

n.
Assumption 2: There exists G > 0 such that E[‖gi(t) −

∇fi(x(t))‖2
2] ≤ G2 for all t for any i.

1The Õ notation hides logarithm dependence on 1/δ.
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Fig. 1. Curves represent the average of 50 random trials, and light-colored shades represent 3-sigma confidence intervals.

Assumption 3: The communication channel noise w(t) sat-
isfies E[‖w(t)‖2

2] ≤ σ 2 for each t.
Our theoretical analysis will be based on the following result

on the reconstruction error of FIHT:
Lemma 2 [25, Corollary I.3]: Let K be the maximum

number of nonzero entries of the output of FIHT. Suppose
the sensing matrix � ∈ R

Q×d satisfies (4K, δ4K)-RIP for
sufficiently small δ4K . Then, for any x ∈ R

d and w ∈ R
Q,

‖A(�x + w;�) − x‖2

≤ (CA,s + 1)
∥∥x − x[K]

∥∥
2 + CA,s√

K

∥∥x − x[K]
∥∥

1 + CA,n‖w‖2 (6)

where CA,s and CA,n are constants that depend on δ4K .
We are now ready to establish convergence of Algorithm 1.
Theorem 1: Let K be the maximum number of nonzero

entries of the output of FIHT. Suppose the sensing matrix
� ∈ R

Q×d satisfies (4K, δ4K)-RIP for sufficiently small δ4K .
Furthermore, assume that

sp(p(t)) ≤ γ · 2K/d

[1 + CA,s(3 − 2K/d)]2
(7)

for all t ≥ 1 for some γ ∈ (0, 1), where p(t) is defined in
Lemma 1. Then for sufficiently large T , by choosing η =
L−1√n/T , we have that

E
[
f (x̄(t)) − f ∗] ≤ L‖x(1) − x∗‖2

2 + G2/L√
nT

+ 6

T

[
γ (1 + γ )G2

(1 − γ )2L
+ 2n

(
CA,n + √

Q/d
)2

σ 2

(1 − γ )L

]
,

where x̄(t) := 1
T

∑T
t=1 x(t) and f ∗ := f (x∗).

Remark 1: Theorem 1 requires sp(p(t)) to remain suffi-
ciently low. This condition is hard to check and can be violated
in practice (see Section IV). However, our numerical experi-
ments seem to suggest that even if the condition (7) is violated,
Algorithm 1 may still exhibit relatively good convergence
behavior when the gradient g(t) itself has a relatively low spar-
sity level. Theoretical investigation on these observations will
be interesting future directions.

IV. NUMERICAL RESULTS

A. Test Case With Synthetic Data

We conduct numerical experiments on a synthetic test case.
We set the dimension to be d = 214 and the number of edge
devices to be n = 20. The local objectives are of the form
fi(x) = 1

2 (x−x0)

Ai(x−x0) where each Ai ∈ R

d×d is diagonal.
We generate Ai such that the diagonal entries of A := 1

n

∑
i Ai

is Ajj = e−j/300 +0.001 for each j while the diagonals of each
Ai are dense. We let gi(x) give approximately sparse stochastic
gradients for every x ∈ R

d.
We test three algorithms: the uncompressed vanilla SGD,

Algorithm 1, and SGD with count sketch. The SGD with count
sketch just replaces the gradient compression and reconstruc-
tion of Algorithm 1 by the count sketch method [18]. We set
K = 500 for both Algorithm 1 and SGD with count sketch.
For Algorithm 1, we generate � from the WHT matrix and
uses the FFHT library [26] for fast WHT. We set T = 1000,
η = 1/

√
T and x0 = 0 for all three algorithms.

Fig. 1(a) illustrates the convergence of the three algorithms
with no communication channel error. For Algorithm 1, we
set Q = 5000 (the compression rate d/Q is 3.28), and for
SGD with count sketch we set the sketch size to be 16 × 500
(the compression rate is d/(16 × 500) = 2.05). We see that
Algorithm 1 has better convergence behavior while also achieves
higher compression rate compared to SGD with count sketch.
Our experiments suggest that for approximately sparse signals,
FIHT can achieve higher reconstruction accuracy and more
aggressive compression than count sketch, and for signals that
are not very sparse, FIHT also seems more robust.

Fig. 1(b) shows the evolution of sp(p(t)) and sp(g(t)) for
Algorithm 1. We see that sp(p(t)) is small for the first few
iterations, and then increases and stabilizes around 0.5, which
suggests that the condition (7) is likely to have been violated
for large t. On the other hand, Fig. 1(a) shows that Algorithm 1
can still achieve relatively good convergence behavior. This
indicates a gap between the theoretical results in Section III-C
and the empirical results, and suggests our analysis could be
improved. We leave relevant investigation as future work.

Fig. 1(c) illustrates the convergence of Algorithm 1 with
different levels of communication channel noise. Here the
entries of w(t) are i.i.d. sampled from N (0, W2) with
W ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. We see that the convergence of
Algorithm 1 gradually deteriorates as W increases, suggesting
its robustness against communication channel noise.

B. Federated Learning With CIFAR-10 Dataset

We test our algorithm on training a residual network with
668426 trainable parameters on the CIFAR-10 dateset. We set
n = 100 and split the training dataset such that all local
datasets are i.i.d.2 The results are shown in Fig. 2. We see
that Algorithm 1 is able to achieve 2× upload compression
with marginal effect on the training and testing accuracy over

2The detailed setup is provided in [27], together with analysis on the
nonconvex case and more detailed discussions on the simulation results.
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Fig. 2. Results for training on CIFAR10 with i.i.d. datasets.

50 epochs. As the compression rate increases, the convergence
of Algorithm 1 deteriorates gradually. As a comparison, SGD
with count sketch in our simulation setup diverges when the
compression rate is set to be greater than 1.

V. CONCLUSION

We develop a communication efficient SGD algorithm based
on compressed sensing. This algorithm has several direct
variants. For example, momentum method can be directly
incorporated. Also, when the number of devices n is very
large, the server can choose to query compressed stochastic
gradients from a random subset of devices.

Our convergence guarantees require sp(p(t)) to be persis-
tently low, which is hard to check in practice. The numerical
experiments also show that our algorithm can work even if
sp(p(t)) grows to a relatively high level. They suggest that
our theoretical analysis can be further improved, which will
be an interesting future direction.

APPENDIX

We first derive an alternative form of the reconstruction error
from the condition (7) and the guarantee (6).

Lemma 3: Suppose the conditions in Lemma 2 are satisfied.
Let w ∈ R

Q be arbitrary, and let x ∈ R
d satisfy that sp(x) is

upper bounded by the right-hand side of (7). Then

‖A(�x + w;�) − x‖2 ≤ √
γ /2‖x‖2 + CA,n‖w‖2.

Proof: By [28, Lemma 7], we have ‖x − x[K]‖2 ≤
‖x‖1/(2

√
K). Therefore by Lemma 2,

‖A(�x + w;�) − x‖2

≤ CA,s + 1

2
√

K
‖x‖1 + CA,s√

K

∥∥x − x[K]
∥∥

1 + CA,n‖w‖2

≤
[

CA,s + 1

2
+ CA,s

(
1 − K

d

)]∥∥x
∥∥

1√
K

+ CA,n‖w‖2.

One finishes the proof by (7) and the definition of sp(x).
Next, we derive a bound on the second moment of e(t).
Lemma 4: We have E[‖g(t) − ∇f (x(t))‖2

2] ≤ G2/n.
Proof: This follows from Assumption 2 by noting

E[gi(t)|x(t)] = ∇fi(x(t)) and that gi(t) and gj(t) are indepen-
dent for i �= j conditioned on x(t).

Lemma 5: We have

1

T

T∑

t=1

E

[
‖e(t)‖2

2

]
≤ 2η2

1 − γ

[
γ (1 + γ )G2

(1 − γ )n
+ 2

(
CA,n + √

Q/d
)2

σ 2
]

+ 2η2γ (1 + γ )

(1 − γ )2
· 1

T

T∑

t=1

E

[
‖∇f (x(t))‖2

2

]
.

Proof: By definition, we have

E

[
‖e(t + 1)‖2

2

]

≤ E

[(
‖�(t) − p(t)‖2 + ηQ

d

∥∥�
w(t)
∥∥

2

)2
]

= E

[(
‖A(�p(t) + ηw(t)) − p(t)‖2 + η

√
Q/d‖w(t)‖2

)2
]

≤ E

[(√
γ /2‖p(t)‖2 + η

(
CA,n + √

Q/d
)
‖w(t)‖2

)2
]

≤ γE
[
‖p(t)‖2

2

]
+ 2η2

(
CA,n + √

Q/d
)2
E

[
‖w(t)‖2

2

]

≤ γE
[
‖ηg(t) + e(t)‖2

2

]
+ 2η2

(
CA,n + √

Q/d
)2

σ 2,

where the second inequality follows from Lemma 3, and the
last inequality follows from the definition of p(t) and the
assumption that E[‖w(t)‖2

2] ≤ σ 2. Notice that

E

[
‖ηg(t) + e(t)‖2

2

]

≤
(

1 + 2γ

1 − γ

)
E

[
‖ηg(t)‖2

2

]
+

(
1 + 1 − γ

2γ

)
E

[
‖e(t)‖2

2

]
,

which leads to

E

[
‖e(t + 1)‖2

2

]
≤ 1 + γ

2
E

[
‖e(t)‖2

2

]
+ η2 γ (1 + γ )

1 − γ
E

[
‖g(t)‖2

2

]

+ 2η2
(

CA,n + √
Q/d

)2
σ 2.

By E[g(t)|x(t)] = ∇f (x(t)) and Lemma 4, we have

E

[
‖g(t)‖2

2

]
= E

[
‖∇f (x(t))‖2

2

]
+ E

[
‖g(t) − ∇f (x(t))‖2

2

]

≤ E

[
‖∇f (x(t))‖2

2

]
+ G2/n.

Therefore

E

[
‖e(t + 1)‖2

2

]
≤ 1 + γ

2
E

[
‖e(t)‖2

2

]
+ η2 γ (1 + γ )

1 − γ
E

[
‖∇f (x(t))‖2

2

]

+ η2
[

γ (1 + γ )G2

(1 − γ )n
+ 2

(
CA,n + √

Q/d
)2

σ 2
]
.

By summing over t = 1, . . . , T and noting that e(1) = 0 and
E[‖e(T + 1)‖2

2] ≥ 0, we get

1

T

T∑

t=1

E

[
‖e(t)‖2

2

]

≤ 1 + γ

2T

T∑

t=1

E

[
‖e(t)‖2

2

]
+ η2γ (1 + γ )

(1 − γ )T

T∑

t=1

E

[
‖∇f (x(t))‖2

2

]

+ η2
[
γ (1 + γ )G2

(1 − γ )n
+ 2

(
CA,n + √

Q/d
)2

σ 2
]
,

which then leads to the desired result.
The final step is then to establish the convergence of

Algorithm 1. Denote x̃(t) = x(t) − e(t), and it can be checked
that x̃(t + 1) = x̃(t) − ηg(t). We then have

‖x̃(t + 1) − x∗‖2
2 = ‖x̃(t) − x∗‖2

2 + η2‖g(t)‖2
2

− 2η〈g(t), x̃(t) − x∗〉.

Authorized licensed use limited to: Harvard Library. Downloaded on November 04,2022 at 06:55:30 UTC from IEEE Xplore.  Restrictions apply. 



TANG et al.: COMMUNICATION-EFFICIENT DISTRIBUTED SGD WITH COMPRESSED SENSING 2059

By taking the expectation and noting E[g(t)|x(t)] = ∇f (x(t))
and Lemma 4, we get

E

[
‖x̃(t + 1) − x∗‖2

2

]

≤ E

[
‖x̃(t) − x∗‖2

2

]
+ η2

(
E

[
‖∇f (x(t))‖2

2

]
+ G2/n

)

− 2ηE
[〈∇f (x(t)), x(t) − x∗〉] + 2ηE

[〈∇f (x(t)), e(t)〉],
and by using 〈∇f (x(t)), e(t)〉 ≤ 1

6L‖∇f (x(t))‖2
2 + 3L

2 ‖e(t)‖2
2,

we can show that

E
[〈∇f (x(t)), x(t) − x∗〉]

≤ 1

2η

(
E

[
‖x̃(t) − x∗‖2

2

]
− E

[
‖x̃(t + 1) − x∗‖2

2

])
+ ηG2

2n

+ η + (3L)−1

2
E

[
‖∇f (x(t))‖2

2

]
+ 3L

2
E

[
‖e(t)‖2

2

]
,

Now, we take the average of both sides over t = 1, . . . , T and
plug in the bound in Lemma 5 to get

1

T

T∑

t=1

E
[〈∇f (x(t)), x(t) − x∗〉]

≤ 1

2ηT
‖x(1) − x∗‖2

2 + ηG2

2n

+ 3η2L

1 − γ

[
γ (1 + γ )G2

(1 − γ )n
+ 2

(
CA,n + √

Q/d
)2

σ 2
]

+
(

η + (3L)−1

2
+ 3η2Lγ (1 + γ )

(1 − γ )2

)
1

T

T∑

t=1

E

[
‖∇f (x(t))‖2

2

]
.

With η = L−1√n/T , we have that for sufficiently large T ,

η + (3L)−1

2
+ 3η2Lγ (1 + γ )

(1 − γ )2
≤ 1

4L
.

Furthermore, by the convexity of f , we have f (x(t))− f (x∗) ≤
〈∇f (x(t)), x(t) − x∗〉, and since f is L-smooth, we have
‖∇f (x(t))‖2

2 ≤ 2L(f (x(t)) − f (x∗)). We then get

1

T

T∑

t=1

E
[
f (x(t)) − f (x∗)

]

≤ 1

2T

T∑

t=1

E
[
f (x(t)) − f (x∗)

] + 1

2ηT
‖x(1) − x∗‖2

2 + ηG2

2n

+ 3η2L

1 − γ

[
γ (1 + γ )G2

(1 − γ )n
+ 2

(
CA,n + √

Q/d
)2

σ 2
]
.

By subtracting 1
2T

∑T
t=1 E[f (x(t)) − f (x∗)] from both sides of

the inequality, and using f (x̄(t)) ≤ 1
T

∑T
t=1 f (x(t)) that follows

from the convexity of f , we get the final bound.
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