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Designing computerized approaches to support complex teamwork requires an understanding of how 
activity-related information is relayed among team members. In this paper, we focus on verbal 
communication and describe a speech-based model that we developed for tracking activity progression 
during time-critical teamwork. We situated our study in the emergency medical domain of trauma 
resuscitation and transcribed speech from 104 audio recordings of actual resuscitations. Using the 
transcripts, we first studied the nature of speech during 34 clinically relevant activities. From this analysis, 
we identified 11 communicative events across three different stages of activity performance—before, during, 
and after. For each activity, we created sequential ordering of the communicative events using the concept 
of narrative schemas. The final speech-based model emerged by extracting and aggregating generalized 
aspects of the 34 schemas. We evaluated the model performance by using 17 new transcripts and found that 
the model reliably recognized an activity stage in 98% of activity-related conversation instances. We 
conclude by discussing these results, their implications for designing computerized approaches that support 
complex teamwork, and their generalizability to other safety-critical domains.1 
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1 INTRODUCTION 

Collaborative, time-critical teamwork requires rapid decisions and timely task completion 
[2],[12],[17],[21],[22]. Workers must also monitor each other and coordinate tasks, which 
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increases the mental workload [9],[28],[33],[50],[62]. Although the perception of time is critical 
for timely performance, it is often skewed, leading to activity delays [30],[36]. For example, tasks 
during team-based emergency medical scenarios, such as trauma resuscitation, are often delayed 
[63] despite training [23], protocols [1], and low-tech solutions like checklists [43]. Adding a team 
member to monitor temporal aspects of work is unfeasible because (1) this task is cognitively 
demanding [24], and (2) this role would require costly domain expertise while remaining prone 
to the same timeliness errors as others over time. Several systems have been introduced to support 
temporal awareness in time- and safety-critical settings [14],[15],[39],[41] but were found 
intrusive because they relied on manual data entry. Increasing awareness of delays during 
extreme action teamwork requires an approach that can automatically and unobtrusively monitor 
the progression of activity and provide real-time data about the team’s status. 

An automated approach that supports complex situations typically relies on machine learning 
(ML) to account for the uncertainty and flexibility of the process. In healthcare, the availability of 
high-power computing and massive datasets has led to an increase in applying ML to disease risk 
prediction [42],[49]. Other domains, such as weather forecasting have long used ML to detect 
patterns and make predictions from large datasets [54]. However, this neural-network-based ML 
approach, where a model learns from raw data, is not feasible in complex teamwork for two 
related reasons. First, large video- or audio datasets about team activities are not publicly available 
for neural network training. Second, obtaining large datasets of teamwork is challenging. Events 
involving knowledge-based, time-critical teamwork occur at unpredictable times and frequencies. 
Ground-truth coding of these events requires costly domain expertise, takes time, and may be 
subject to privacy constraints. To compensate for small-size datasets, a common strategy has been 
to augment neural-network-based ML with heuristics extracted from domain knowledge [52]. 

In this paper, we determine speech-based heuristics for modeling the temporal progression of 
activity performance based on team conversations in an extreme action team setting. We use 
trauma resuscitation teamwork as an example of this setting, where highly skilled members 
cooperate on urgent and unpredictable tasks [28]. During trauma resuscitation, team members 
work together to rapidly identify and treat life-threatening injuries. Despite established protocols 
that guide this extreme action teamwork, modeling activity progression is not straightforward. 
Trauma team members sometimes plan activities but pause or abandon them before completion. 
Activities may also be attempted several times, repeated, or skipped. While model heuristics can 
be derived from events observed in different modalities (e.g., visual or touch-based, artifact use), 
our focus is on speech-based heuristics. We hypothesize that verbal communication during team-
based activities contains sufficient information for recognizing the stage of activity performance 
(before, during, and after). This hypothesis was based on prior research showing that speech in 
time- and safety-critical team-based work is rich with information about task parameters and 
coordination [22],[24],[53],[65]. Identifying the activity stage is critical for detecting activity 
delays because the stage indicates whether an activity was only considered (based on the “before” 
speech) or also performed and completed (based on the “during” and “after” speech). 

We tested our research hypothesis in three steps. First, we used 104 transcripts from actual 
resuscitations and analyzed team conversations during 2,414 activity performances. Using these 
analyses, we identified 11 types of “communicative events” and their order of occurrence across 
three stages of activity performance. Second, we developed speech-flows for 34 clinically relevant 
activities to represent the sequence of activity-related conversations. We adopted the framework 
of narrative schemas from statistical language modeling because it has been successfully used 
before for representing speech during activity performance [46]. The common features from the 
34 narrative schemas were then aggregated to develop a general speech-based model for tracking 
the activity progression over time. Finally, we evaluated the model using 17 new transcripts with 
conversations during 451 activity performances. The model successfully identified activity stages 
in 98% of the conversations. Of 451 conversations, 24 (5%) contained speech about all three stages, 
136 (30%) about any combination of two stages, and 284 (63%) about one stage (mostly “after”). 
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The model failed to recognize any stage in seven (2%) conversations. These results confirmed our 
hypothesis, while also suggesting that heuristics based on other modalities may be needed for 
recognizing the stages where speech is absent or offers weak cues. Our results also suggest that 
a system trained on our model could detect an activity delay because it can reliably detect activity 
completion based on team conversations during the after stage. Detecting the after stage is critical 
because it indicates that an activity is completed. If activity completion had not been detected 
within the expected time, the system can conclude it is delayed. Detecting the before and during 
stages is still important to improve the system accuracy and reduce false alarms. 

With this work, we make two contributions. First, we contribute two types of speech-based 
heuristics for modeling the temporal progression of activity in extreme action teamwork: (a) 11 
types of communicative events that indicate activity planning, execution, and evaluation, and (b) 
sequential ordering of these events that form the narrative schema for each of the 34 activities 
that we considered. Second, we contribute a speech-based model for identifying the stage of 
activity progression, along with the empirical evidence of how often the model can identify 
activity stages. A model that can identify the stage of activity progression based on verbal 
communication can be valuable for any type of teamwork analysis, for designing different types 
of team decision-support systems, as well as for designing a general system that supports 
collaborative work. 

2 RELATED WORK 

We review prior work from three areas of research: (1) communication as a coordination 
mechanism in extreme action team settings, (2) micro-level analysis of communication, and 
(3) speech-based modeling and its application in existing activity recognition systems. 

2.1  Communication as a Coordination Mechanism in Extreme Action Team Settings 

Studies of extreme action teamwork in traffic control rooms [4],[22], airline cockpits [18],[25], 
emergency response [6],[31],[45], and other “centers of coordination” [58] have shown how team 
members maintain constant communication to achieve coordination. For example, assignment 
and management of activities in the London Underground control room are primarily achieved 
through explicit communication among traffic controllers [22]. Team members also use implicit 
coordination mechanisms to trigger action, like overhearing conversations or talking out loud [5]. 
Similarly, speech, gesture, and space are being combined in an airline cockpit to support a shared 
mental model among team roles [25]. Analyses of situated action in medical scenarios have also 
found the combined use of speech, gesture, and movement to establish a shared mental model 
and coordinate activities [20],[51],[53],[65]. For instance, trauma team members constantly 
monitor each other’s talk, gestures, and body movement to make sense of actions and anticipate 
requests [65]. Although gesture and movement communicate actions, the crowded nature of 
dynamic work makes it challenging to closely monitor and react to parallel activities [65]. In 
contrast, speech does not require visual attention, offering an alternative approach for increasing 
temporal awareness through verbal sharing of activity progress and results. 

This prior work offers rich accounts of how embodied action interacts with speech and how 
team members achieve awareness through spoken interactions in dynamic team processes. Our 
study extends this line of research by performing a micro-analysis of speech alone, focusing on 
team member utterances and discussions of activity planning, execution, and evaluation. Through 
this analysis, we contribute empirical evidence of not only how but also how frequently teams 
discuss an activity and its progress. These findings provide new insight into how speech-based 
heuristics can be used for training ML algorithms to predict activity stages in domains where 
small datasets make it challenging for ML models to learn from raw data. 
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2.2 Micro-level Analysis of Verbal Communication 
CSCW researchers have long studied how speech shapes and reflects actions during cooperative 
work [16],[22],[25],[57]. Early work on the Coordinator system, for example, identified four 
linguistic actions of teamwork (requests, promises, assertions, and declarations), illustrating how 
teams managed action through conversations [16]. Similarly, Suchman and colleagues [57],[59] 
derived three forms of communication for achieving coherent teamwork: substantive exchanges 
about the main topic, annotative exchanges (e.g., questions, clarifications), and procedural 
exchanges (e.g., transitions to other topics). These early classifications were critical for designing 
CSCW systems that supported asynchronous communication. However, they are too coarse for 
systems that use synchronous communication for detecting activities and stages. 

Other areas of research, such as interactional sociolinguistics and its analytic methods (e.g., 
discourse analysis) also provide frameworks for understanding how speech informs social 
interaction [19]. In CSCW, discourse analysis has been used to analyze small-group conversations 
during the collaborative creation of drawings [56] and to determine the effects of interface 
affordances and multimedia content on computer-mediated small-group discussions [60],[61]. 
Similarly, conversation analysis has been used to unpack the situated practice of using intelligent 
personal assistants (IPAs) in multi-party conversations [48]. While offering rich insight into the 
practices of meaning-making in communication, these frameworks do not apply to our work for 
two reasons: (1) they focus on the form and meaning, rather than on communicative functions of 
speech, and (2) using these frameworks would result in heuristics that are too complex for 
augmenting ML models that predict activity stages. We needed a framework that could help us 
determine what speakers wanted to accomplish with an utterance, so we could model the 
associations between speech and activity progression. 

Several CSCW studies performed similar analyses when studying decision-making among 
different groups [11],[13],[35],[53]. For example, Feng and Mentis [13] adopted 12 dialogue acts 
from the conversational games framework [29] to analyze dyadic knowledge sharing during 
surgical procedures. In another study, Mentis et al. [35] used 11 codes from the rhetorical 
structural theory [32] to understand rationale development in a complex group decision-making 
task. Sarcevic et al. [53] analyzed communication patterns among trauma team members through 
the concept of transactive memory [38], identifying eight types of verbal communication that 
seek and share information. We build on these current categorizations by identifying and defining 
the utterance types based on the stage of activity performance in which they occurred. 

2.3 Speech-Based Modeling 
Related work in statistical language modeling explores the use of narrative schemas to represent 
script knowledge and predict a missing or upcoming event in simple stories about daily activities 
[8],[37],[40],[46],[47]. This research has mostly used large text-based datasets that were generated 
by crowdsourcing short descriptions of daily activities [37], or by breaking Wikipedia pages 
[46],[47] and news text [55] into paragraphs. Each description of an activity created in this way 
was called a “story” because it had a clear beginning and ending, with no deviations from the 
topic. More recently, ML and natural language processing (NLP) have been used to explore 
automated story generation from large text-based datasets through deep recurrent neural 
networks [27],[34],[44]. As another approach, Xu et al. [58] proposed a skeleton-based model that 
is learned by a reinforcement learning method to first generate the story outline and then extend 
it with complete sentences. The ML models in these studies have been trained on the semantics 
of the story, including the start and end, theme or emotion, and flow of events. 

Although we also model stories (i.e., specific sequences of sentences) through narrative 
schemas, our work differs in three ways. First, we use stories derived from actual conversations 
during dynamic teamwork, rather than stories generated by third parties. Second, we use speech 
data to infer the team’s status and progression of work, rather than to describe or generate stories 
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about work. Finally, the stories in our dataset are often incomplete and composed of choppy, 
grammatically incorrect sentences, making the ML model training more challenging.  

3 BACKGROUND: TRAUMA TEAMS AND TERM DEFINITIONS 

Trauma resuscitations occur in a designated area in the emergency department (ED) called the 
trauma bay. Patients brought from the injury scene are triaged as “stat” (lower acuity), “attending” 
(high acuity), or “transfer” (treated at another hospital) trauma team activations. A typical trauma 
team consists of eight to nine members, including a surgical team leader, an emergency 
department attending, a surveying physician, a nurse documenter, a medication nurse, two to 
three bedside nurses, an anesthesiologist, and a respiratory therapist. To prioritize resuscitation 
activities and achieve rapid diagnoses, trauma teams follow the Advanced Trauma Life Support 
(ATLS) protocol [1] that consists of two parts—the primary and secondary surveys. The goal of 
the primary survey is to stabilize the patient by focusing on the patient’s major physiological 
systems. During the secondary survey, the team performs a detailed head-to-toe evaluation of the 
patient to identify other injuries. The protocol activities are classified into two categories: 
assessment activities (information gathering and evaluating patient status) and control activities 
(taking an action to stabilize the patient based on the assessment). 

Depending on patient status, the sequence of activities may vary, leading to repetitions or 
omissions. This acceptable variability often leads to overlapping or interleaving activity-related 
conversations. For example, an activity may be planned but abandoned, delayed, repeated, or 
suspended and then resumed later. These scenarios are usually reflected through speech because 
teams use verbal communication to plan activities, assign tasks, and report results. Although team 
members do not always announce the activity that is being performed, they discuss it as they plan 
(before), execute (during), and evaluate (after). Despite frequent discussions, speech is succinct, 
simple, and contains domain- and task-specific keywords and phrases [3],[26]. Keywords and 
phrases alone, however, do not always indicate the stage of an activity performance because the 
same words may occur across multiple stages. For example, the keyword “pupils” related to the 
pupil examination activity (Figure 1) can be heard in both the before (line #20, Figure 1) and after 
stages (lines #22, #26, Figure 1). 

In the context of this study, we define activity as any action performed by team members with 
their hands (e.g., palpation) or eyes (e.g., observation). Depending on the activity, the speech that 
is accompanying that activity could be either about the activity or the activity itself. For example, 
when providers report the results of an activity, speech is about the activity. When providers ask 
the patient a few questions to assess their neurological status, speech is the activity. We use the 
term story for a sequence of sentences about an activity for which the beginning and ending can 
be identified. Each resuscitation contains one or more stories about a particular activity, 
depending on the number of times that activity was performed. Based on the content and order 

Figure 1: An excerpt from a transcript, showing line #, timestamp, speaker, and speech line. Italicized lines 
#20, 21, 22, 26, and 27 represent a single activity story about pupil examination. 
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of sentences in the stories of a particular activity, we used the narrative schema [8] framework to 
create an abstract representation of these stories. A narrative schema shows a conceptual 
summary of key “communicative events” that occur across all stories associated with an activity, 
where each “event” roughly corresponds to a spoken sentence. In other words, a narrative schema 
provides a generalized workflow-type depiction of speech patterns that occur during activity. 

4 METHODS 

We developed the narrative schemas and speech-based model based on an empirical study that 
took place in a level 1 trauma center of an urban, pediatric teaching hospital in the mid-Atlantic 
region of the United States. We obtained approvals from the hospital’s Institutional Review Board 
(IRB) before the study. All data generated during the study were kept confidential and secure per 
IRB policies and Health Insurance Portability and Accountability Act (HIPAA). To capture data, 
we used an always-on video and audio recording system with three cameras and microphones 
that was installed in the trauma bay for quality assurance purposes. The cameras were positioned 
at three strategic places to capture activities around the patient bed, among the leadership team, 
and at the room entrance. An array of high-quality shotgun microphones was also installed 
between the patient bed and leadership team for continuous capturing of audio data. The ongoing 
video and audio recording of live resuscitations was approved by the hospital’s Legal and Risk 
Management Department. Because most patients at our research site are children, written consent 
was obtained from the parent or guardian before using video or audio recordings for research 
purposes. Assent was obtained for patients >12 years old. For trauma team members, the 
requirement for obtaining consent was waived under the U.S. Department of Health and Human 
Service regulation 45 CFR 46.116(c) because video recordings are existing data used for quality 
assurance. All non-medical members of the research team have been trained in the fundamentals 
of trauma resuscitation and have acquired the domain knowledge through participant observation 
and video review of live resuscitations. The first author also has experience in conducting 
ethnographic fieldwork in emergency departments.  

4.1 Dataset and Data Collection 

During the 17-month study period (January 2016 – May 2017), 653 trauma activations occurred at 
our research site. Of these, 190 audio recordings were available for analysis after obtaining 
consent. The resuscitations lasted from five to 58 minutes, with an average duration of 15 minutes. 
Because manual transcribing is time-consuming, we could only produce 104 transcripts. The 
transcripts contained an average of 162 lines of speech (SD = ±83; range: min. 41 – max. 421).  

Table 1: Thirty-four trauma resuscitation activities used for speech modeling. 

Assessment Activities Control Activities 
Airway Assessment Eye Examination Intubation 
Breathing Assessment Nose Examination Breathing Control  
Blood Pressure (BP) Check Mouth Examination  Intravenous (IV) Placement 
Pulse Check Neck Examination  Fluid Administration 
Capillary Refill Check Chest Examination Cardiopulmonary Resuscitation (CPR) 
Pupil Examination Abdomen Examination Cervical Spine (C-Spine) Precautions 
Neurological Examination Pelvis Examination  Exposure Control  
Exposure Assessment  Genitalia Examination Medication Administration 
Oxygen Saturation Check Back Examination Wound Care 
Heart/Pulse Rate Check Upper Extremities Exam  
Head Examination Lower Extremities Exam  
Face Examination  Imaging  
Ear Examination   
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The six transcribers on our research team used a previously developed protocol to ensure 
consistency and preserve the structure of the discourse. The protocol included instructions for (a) 
timestamping speech lines to accurately reflect both linear and parallel speech, (b) marking 
unintelligible speech, (c) censoring sensitive information, and (d) identifying key team roles based 
on speech. The transcribers relied on their domain knowledge and the differences in voice tones 
for associating speaker roles with the uttered speech. Each transcriber followed the same steps. 
First, they filtered out the blank sections of the always-on audio files. Next, they listened through 
the entire event to remove any information that could identify the patient or a team member. 
They then repeatedly played the audio to transcribe all uttered speech while preserving its 
structure, disambiguate overlapping speech, timestamp linear and parallel speech lines, and 
identify speakers (Figure 1). The transcripts omitted physical interactions among team members 
and other annotations, including gestures and movements, because those aspects of teamwork 
were outside this project’s scope. 

To match the activities from the transcripts with those performed by trauma teams, we used 
an activity dictionary previously developed by medical experts on our team. This dictionary 
defines more than 200 resuscitation activities in the ATLS protocol and provides attributes that 
indicate successful or unsuccessful activity performance. We selected 34 activities (Table 1) based 
on (1) clinical relevance, (2) whether the speech was used to communicate activity status and 
progression, (3) clinical goal (assessment vs. control activity), and (4) occurrence in different 
phases of the protocol (primary vs. secondary survey). Among these 34 activities, 25 were 
assessment activities and the remaining nine were control activities.  

4.2 Data Analysis 
Two researchers analyzed the data in five steps. First, we processed the 104 transcripts, removing 
about 6% of speech lines that were marked unintelligible by the transcribers. We then performed 
a line-by-line analysis to associate speech lines with 34 activities (Table 1). Because trauma teams 
communicate in domain-specific language [26], we used keywords unique to each activity to 
make these associations. If we observed keywords spanning multiple activities in the same line 
(e.g., “Airway is patent, breath sounds bilateral” for the airway and breathing assessment 
activities), the line was assigned to more than one activity. Adjacent speech lines that had a clear 
start and end of conversation about a single activity were grouped into an activity-related story. 
For example, lines # 20, 21, 22, 26, and 27 in Figure 1 are all related to pupil examination and were 
clustered into one story, with each line corresponding to an event. 

Second, we applied Sarcevic et al. [53] coding scheme to identify activity-related 
communication types. The eight verbal communication types required extension because they 
were not granular enough to identify the nuances in speech and how it related to different stages 
of activity performance. We used open coding to identify these nuances and add new activity-
related types of communication encountered in the transcripts. To facilitate the construction of 
narrative schemas, we renamed communication types into “communicative events.” This analysis 
resulted in 11 communicative events (building blocks for the narrative schemas).  

Third, two researchers labeled every speech line with a communicative event, and by extension 
with an activity performance stage (as each of the 11 communicative events belongs to only one 
stage). To ensure this mapping was accurate and consistent between the researchers, we used the 
ground truth data generated by medical experts through a video review of 17 (out of 104, 16%) 
resuscitation videos. The experts marked the start and end times for each performed activity and 
whether that performance was successful. For these 17 cases, we aligned the timestamps of 
activity performance from the videos with those of transcribed speech lines, subsequently 
separating speech lines into stages. Using these data, we created a protocol for mapping speech 
lines to the appropriate stage of activity performance. For example, any speech lines associated 
with airway assessment that occurred before the physician talked to the patient belong to the 
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before stage; any speech lines associated with the physician’s assessment of the patient’s airway 
belong to the during stage; any speech lines occurring after the assessment belong to the after 
stage. We then used this protocol for assigning the communicative events based on the content 
of the speech line and the context within which the line occurred. For speech lines with similar 
content, we determined the label based on the occurrence of the speech line in relation to activity 
performance. The context was determined based on the lines that preceded or succeeded the 
target speech line in the transcript. Any uncertainties about label assignments were first discussed 
and then resolved between the two researchers. To further ensure consistency in labeling, a third 
researcher independently assigned speech lines by using ten transcripts that were aligned with 
the ground truth video data (9.6% of all cases). We compared the labels of the two initial 
researchers with those of the third and calculated a Cohen’s Kappa to determine intercoder 
reliability. The results showed an almost perfect inter-rater reliability score of 0.82. 

Fourth, we identified the characteristics of each activity so we could determine which 
communicative events to include in the narrative schemas. We then constructed narrative 
schemas for each of the 34 activities using the 11 communicative events. 

Finally, we analyzed the differences and similarities across the communicative events and the 
overall structure of the constructed schemas. Using this analysis, we derived generalizations 
across the 34 narrative schemas and constructed a speech-based model that represents a synopsis 
of the key communicative events and their order of occurrence. 

5 RESULTS 

We present our findings in four parts. First, we summarize the features of selected resuscitation 
cases (Table 2). We then describe the 11 communicative events and how they relate to activity 
performance. We explain the narrative schemas that emerged from our data by providing an 
example schema for both the assessment and control activities. Finally, we describe our speech-
based model for tracking activity progression over time and how we developed it.   

5.1 Dataset Overview: Features of Selected Resuscitation Cases 

To assess whether the randomly selected sample of transcribed cases was biased towards any 
patient or resuscitation feature, we compared them with not-transcribed cases using seven 
features (Table 2). A univariate analysis (Fisher’s exact test) showed no significant differences 
between groups (Table 2). Among the 104 patients, most were male (76.9%) with a mean age of 
6.7±5.4 years. Most patients were triaged as a “stat” (lower acuity) activation (57.7%) and arrived 

Table 2: Summary statistics for features of transcribed and not-transcribed cases during the study period. 

Case Characteristics Transcribed (n=104) Not Transcribed (n=86) p -value 
Age (years, mean±SD) 6.7 (5.4) 6.2 (4.9) 0.76 
Male (%) 76.9 64.0 0.06 
Activation Type (%)   0.29 
 Stat 57.7 68.6  
 Transfer 29.8 20.9  

 Attending 12.5 10.5  
Injury Type (%)   0.59 
 Blunt 93.3 90.7 
 Penetrating 4.8 4.7 
 Other 1.9 4.7 
No pre-notification (%) 12.5 16.3 0.53 
Daytime (%) 70.2 59.3 0.13 
Weekend (%) 19.2 24.4 0.48 
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after the team had been notified (87.5%). Resuscitations mostly occurred on weekdays (80.8%) and 
during the daytime (70.2%). Most patients were injured by a blunt injury mechanism (93.3%). 

5.2 Communicative Events and their Occurrence in Relation to Activity Performance 
Our analysis of transcripts showed that trauma team members communicated about resuscitation 
activities using 11 different communicative events (CEs) (Figure 2). We grouped these events 
based on their occurrence across the stages of activity performance: before, during, and after. 
5.2.1 Before Activity Performance. We identified four communicative events in this stage: 

(1)  CE-1  Assess feasibility or need for an activity: The teams sometimes discussed the results 
of pre-hospital interventions to decide if a control activity is needed. For example, patients often 
received fluids on their way to the hospital. Upon their arrival, the trauma team discussed with 
the transport team (EMT) if more fluids were needed, e.g., “Did you guys give him fluids?” When 
the EMT confirmed that the patient received fluids, the leader decided “He doesn’t need more fluids, 
he’s already got enough.” 

The team also evaluated the need for a control activity based on preceding assessments. For 
example, before proceeding with intubation (an airway control activity), the anesthesiologist 
confirmed with the leader, “Should we intubate him now?” The leader’s response in these 
situations either initiated or terminated a control activity (e.g., “Yes, go ahead and intubate”). 

(2)  CE-2  Request to perform an activity: The leader told other team members what actions to 
perform, either by requesting that they begin an activity or by inquiring about the activity status. 
For example, the leader requested the physician to begin airway assessment by stating “Check the 
airway.” For other activities, the leader asked if they performed it (e.g., “Did you check his pupils?”), 
which then prompted the physician to perform the activity. 

(3)  CE-3  Request clarification or more information on an assigned activity: When a team 
member wanted to clarify or confirm their task assignment, they asked for additional information 
or repeated what they initially heard. For example, the nurse confirmed with the leader “Did you 
say normal saline?” to ensure they administered the correct fluids.  

(4)  CE-4  Inform patient about an activity or request them to perform an action: Team members 
often interacted with the patient before performing an activity. For instance, the physician 
informed the patient “We are going to roll you on your left side, ok?” These announcements also 
signaled to the team that an activity was about to start. If an activity required the patient to 
perform an action (e.g., opening mouth during the mouth exam), the physician requested the 
action by saying, “Could you please open your mouth?” 

5.2.2 During Activity Performance. In this stage, we identified four communicative events: 

Figure 2: Types of communicative events across the three stages of activity performance. 
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(5)  CE-5  Query patient or request them to perform an action: For some activities, posing 
questions to patients to assess their status signaled the activity performance. For example, to 
perform the neurological exam (a three-part Glasgow Coma Score [GCS] for verbal, visual, and 
motor functions), the physician asked the patient, “What is your name? How old are you?” For 
other activities, patients were asked to move legs or arms (e.g., “Can you move your arms?” during 
the extremities exam). In contrast to physician-patient interaction before an activity, physicians 
in this communicative event request actions from patients while an activity is being performed. 

(6)  CE-6  Request information on progress of an activity: Requests about activity progress are 
phrased as questions, either to understand how long an activity will take or to decide whether 
and when to proceed with the next activity. For example, during the IV placement activity 
(insertion of an intravenous catheter for administering fluids or medications), the documenter 
frequently asked the bedside nurse, “How is the access?” to check if the IV line had been inserted.  

(7)  CE-7  Report progress of an activity: During multi-step activities that take longer to perform, 
team members continuously communicated about their progress. For example, while intubating 
a patient, the anesthesiologist stated, “Still working on the airway.” In another story about this 
activity, the physician notified the leader about the first failed attempt and announced the start 
of another attempt, “Second attempt on the airway starting now.” 

(8)  CE-8  Request to modify or terminate an ongoing activity: Team members sometimes asked 
each other to adjust activity performance, e.g., “Slow down your compressions” during 
cardiopulmonary resuscitation (CPR). If an ongoing activity required termination, the leader 
requested the performing team member to cease their operation, e.g., “You can take the oxygen 
off” to stop the oxygen flow during the breathing control activity. 

5.2.3 After Activity Performance. We identified three communicative events in this stage: 
(9)  CE-9  Report results of an activity: When reporting the numerical results of an assessment 

activity, team members verbalized a calculated value (e.g., “GCS is 15”), a measured value (e.g., “I 
got the blood pressure of 122 over 82”), or a read-out value from the monitor (e.g., “Saturation is 98 
percent”). The reports were also based on observation (e.g., “Pupils equal and bilateral” after 
inspecting the patient’s eyes) or palpation (e.g., “Abdomen is non-distended” after pressing the 
patient’s abdomen). When reporting the result of a control activity, team members communicated 
both successful and failed attempts. For example, after the first intubation attempt failed, the 
anesthesiologist reported, “Can’t get this tube in. I am going to try a smaller one,” communicating 
the restart of the activity. 

(10)  CE-10  Request clarification or more information on an activity: Requests for information in 
the after stage mostly came from the leader or documenter. Their requests sought (a) clarifications 
about reported results, (b) details missing from the initial report, and (c) a repeat of the report. 
For example, after the physician examined the patient’s head, the documenter clarified, “Did you 
say there is a laceration on her head?” The documenter was also requesting additional information 
about a completed activity, “What size tube did you put in?” The leader sometimes clarified the 
results with the physician, e.g., “Any step-offs or deformities?” 

(11)  CE-11  Assess results of an activity: After completing an activity, the team would assess the 
results. If the results were not satisfactory, the team would repeat the activity. For example, after 
hearing the physician’s report from the neurological exam, the leader commented “Can’t give him 
a 15. He does not seem completely oriented. Does he answer your questions?” With this comment, 
the leader asked the physician to recalculate the score. 

5.2.4 Summary of Communicative Events. After grouping the communicative events based on 
their occurrence in relation to activity stages, we found that not all events appeared in every story 
or always in the same order. For example, requests for information about the activity progress 
were not observed during short, single-step activities, such as the pupil exam. Similarly, 
requesting patients to perform an action was not possible when the patient was unconscious. In 
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contrast, some communicative events appeared multiple times during a single activity story, such 
as multi-step reports from the neurological exam.  

We also found two major syntactical differences between the 11 communicative events across 
three activity performance stages. First, most of the events in the before and during stages 
involved the use of verbs, such as “Did you check his pupils?” (before) or “I am still working on 
it” (during). In contrast, verbs were largely absent from the events during the after stage and were 
instead replaced by domain-specific keywords that indicated activity completion (e.g., “Airway is 
patent” in an airway assessment report). Second, two of the eight communicative events in the 
before and during stages exhibited similar sentence structures: request to perform an activity and 
query patient or request them to perform an action. Both were used to issue commands but were 
directed to different people in the room. These patterns suggest that distinguishing between these 
two events will require considering direct objects in the sentence and keywords associated with 
those objects. For example, in the request to perform an activity (e.g., “Did you check his pupils?”), 
you refers to the care provider and his refers to the patient. The keyword “pupils” further indicates 
that this request was directed to a care provider. In the query patient or request them to perform 
an action event (e.g., “Can you move your arms?”), both you and your refer to the patient. This 
communicative event also uses the words such as “sweetie” or “honey” to comfort the patient. 

The 11 communicative events extend the previous classification [53] by focusing on activity-
related speech and by including the sequence of communicated information. We reframed 
directives as requests to perform an activity to represent a broader set of requests through five sub-
categories. Reports were separated into two sub-categories to better distinguish between the 
during and after stages. We adopted inquiries to indicate questions for the patient during activity 
performance. Inquiries from other team members became requests for information. We added a 
new communicative event called assessments and identified two sub-categories to distinguish 
between assessments occurring before and after the activity. Responses and clarifications were 
combined into reports because these messages contained a repeat of the results. Finally, we 
excluded acknowledgments, message relays, and summons because these types were not relevant 
for our activity-centered analysis. 

 

Figure 3. Narrative schema for the Airway Assessment activity. Rectangular boxes represent key 
communicative events. Example lines from actual speech associated with each event are shown on the 

right side. Arrows between the boxes indicate possible transitions between key events in a single activity-
related story (solid lines for going forward and dashed lines for going back). A double-headed vertical 

arrow indicates the likely time of activity performance. 
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5.3 Narrative Schemas for Assessment and Control Activities 
Using the 11 communicative events as the building blocks, we constructed narrative schemas for 
25 assessment and nine control activities performed during trauma resuscitation (Table 1). We 
explain how we developed these 34 narrative schemas by describing one representative schema 
for each activity category: (1) airway assessment for the assessment category and (2) fluid 
administration for the control category.  
5.3.1 Narrative Schemas for Assessment Activities. The goal of an assessment activity is to gather 
information about the patient and evaluate their status. Airway assessment is one of several 
assessment activities in the ATLS protocol. The physician performs this activity by inspecting the 
patient’s mouth, followed by an exam of patient consciousness. We identified three key 
communicative events associated with airway assessment (Figure 3): (1) request to perform airway 
assessment—the leader initiates the activity by requesting the physician to begin airway 
assessment; (2) query patient or request them to open their mouth—the physician evaluates the 
patient’s airway by asking them to open their mouth or to answer simple questions; and, (3) report 
results of airway assessment—the physician verbalizes the activity results. The actual assessment 
of the airway usually occurs during an event (2). Talking to the patient is skipped if the patient is 
unconscious and the decision to establish a definite airway is made. 

The remaining 24 narrative schemas for assessment activities follow a similar pattern of 
communicative events and their order (Table 3 and Table 4). Specifically, for 19 other assessment 
activities (e.g., evaluating breath sounds, eyes, head, and abdomen), the physician directly 
addresses the patient. Activities such as heart/pulse rate check and oxygen saturation check use 
proxies (e.g., vital sign monitor) for obtaining information about the patient and do not require 
direct interactions with patients. We also observed that all but one assessment activity (capillary 
refill) started with a request to perform an activity event (Table 3 and Table 4). In addition, all 
assessment activities included report results of an activity at the end of the schema.  

Table 3: Number of speech lines per primary survey assessment activity associated with 11 communicative 
events in 104 transcripts. The total number of stories per activity (n) is in row #2. 
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Finally, we found that the report progress of an activity event mostly occurred in multi-step 
activities that took longer to complete, such as BP check, back exam, and imaging. In BP check, 
for example, team members first reported progress when the BP cuff was placed on the patient’s 
arm and then again when the device started calculating the value.  

5.3.2 Narrative Schemas for Control Activities. The purpose of a control activity is to manage 
an injury by intervening. The fluid (or bolus) administration activity belongs to the circulatory 
control category in the ATLS protocol. Its goal is to replace the fluids lost due to hemorrhage or 
other types of cardiovascular compromise. The narrative schema for fluid administration consists 
of four key communicative events (Figure 4): (1) assess feasibility or need for fluid administration—
the leader decides if fluid administration is needed; if fluids are not required, the activity ends; (2) 
request to start fluid administration—if fluids are needed, the leader requests a bedside nurse to 
start fluid administration; (3) request clarification or more information on fluid administration—the 
bedside nurse confirms the type and amount of fluid with the leader; and, (4) report results of fluid 
administration—the bedside nurse reports the results to the team. The actual fluid administration 
usually starts during events (3) and (4), as indicated by the nurse’s updates, e.g., “I put him on 
fluids” or “Saline is connected.” The activity then continues until the end of the resuscitation.  

Based on the narrative schemas for the remaining eight control activities, activity performance 
was initiated shortly after the leader’s request to perform a control activity (Table 5). All but one 
control activity (CPR) contained at least one decision-making exchange as the team was assessing 
feasibility or need for an activity, usually at the beginning. Five out of nine control activities 
contained interactions with the patient to offer comfort before (e.g., inserting a needle in the IV 
placement activity) or during the activity (e.g., applying wound care). For some control activities 
such as intubation, breathing control, or CPR, team members did not interact with the patient 
because the mouth and face were covered with oxygen bags, or the patient was unconscious. 

Because control activities usually took longer to perform than assessment activities, we found 
that the report progress of an activity event was more common for control than assessment 

Table 4: Number of speech lines per secondary survey assessment activity associated with 11 
communicative events in 104 transcripts. The total number of stories per activity (n) is in row #2. 
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activities. In five of the nine control activities, team members provided updates throughout the 
during stage of activity performance (e.g., progress on intubation or IV placement attempts).   

5.4 Speech-based Model for Tracking Activity Progression in Teamwork 

Our model represents a typical flow of speech among team members of an emergency medical 
team (Figure 5). The model consists of the generalized aspects of the 34 narrative schemas. 
Because the model provides the basis for ML algorithm training to recognize current activity and 
stage based on speech, we used the cost-benefit analysis when deciding which communicative 
event to include in the model. We considered factors such as the expected cost of acquiring 
sufficient training data to recognize each event versus the benefit of being able to differentiate 
between the communicative events.  

The model development proceeded in several steps. We first identified the number of speech 
lines associated with each communicative event per activity (Table 3, Table 4, Table 5). Through 
this analysis of 10,166 speech lines, we determined the frequency of communicative events across 
all 34 activities. For example, the report results of an activity event was heard in 3,697 (36%) lines, 
while the request to modify or terminate an ongoing activity event was heard in 56 (0.5%) lines. 
These frequencies are important for model building because they show a typical amount of data 
available for training the ML algorithm on each communicative event. Acquiring sufficient 
training data for rare events would require many cases, which is costly. At the same time, the 
benefit of being able to recognize these events is low because their recognition will be rarely 
needed. Training data for safety-critical domains are already hard to obtain due to the small 
number of cases (e.g., ~600 resuscitations per year) and the limited availability of domain experts 
for data labeling. 

With this challenge in mind, we excluded two communicative events with the lowest number 
of speech lines: assess results of an activity (n=66) and request to modify or terminate an ongoing 
activity (n=56). Next, we included the four events that contained the highest number of speech 

 
Figure 4. Narrative schema for the Fluid Administration activity. Rectangular boxes represent key 

communicative events. Example lines from actual speech associated with each key event are shown on 
the right side. Arrows between the boxes indicate possible transitions between key events in a single 

activity story (solid lines for going forward and dashed lines for going back). A double-headed vertical 
arrow indicates the likely time of activity performance. 
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lines and that were strong indicators of activity stages: report results of an activity, query patient 
or request them to perform an action, request to perform an activity, and inform patient about activity 
or request them to perform an action. We combined two of these four events that contained 
interactions with patients into one—interact or request to perform actions—because the speech lines 
were almost identical and the training effort to differentiate between the two is high. We also 
removed the word “patient” from this merged event to make the model applicable to other 
extreme action team settings, where the request could be directed to any actor in the setting. For 
the remaining five events that occurred less frequently (Figure 6), we focused on (1) their strength 
as predictors of activity stages and (2) the uniqueness of keywords for each activity and stage.   

The report progress of an activity event had a total of 484 speech lines, occurring in nine out of 
34 activities, mostly control and multi-step assessment activities (Table 3, Table 4, Table 5). This 
event was a strong indicator of the during stage because the speech lines contained verbs and 
keywords like “working on IV access” and “getting the tube in right now.” For activities that took 
longer to perform, reports about progress also indicated the during stage. For this reason, we 
included this communicative event in the model. 

The assess feasibility or need for an activity event had 475 speech lines, occurring in seven out 
of 34, mostly control activities (Table 3, Table 4, Table 5). These speech lines were in the form of 
questions, like “does he have an IV” and “should we intubate now?” Because responses to these 
questions triggered either activity performance or termination, the questions can serve as strong 
cues for recognizing the before stage. We, therefore, included this event in the model. 

The request information on progress of an activity event had 391 speech lines, occurring in 21 
out of 34 activities (Table 3, Table 4, Table 5). Although this communicative event occurred in 
many activities, the content of speech lines was similar to that of reports about activity progress. 
For example, a request “are you working on the access?” vs. a report “I am still working on the 
access;” a request “do you feel any hematoma?” vs. a report “no hematoma.” Because we already 
included the report progress of an activity event in the model, a similar event with no distinctive 
speech patterns would be inefficient for activity stage recognition. 

The request clarification or more information on an activity and request clarification or more 
information on an assigned activity events had 385 and 246 speech lines occurring in 28 and nine 
out of 34 activities, respectively (Table 3, Table 4, Table 5). These events repeated previous speech 

Table 5: Number of speech lines per control activity associated with 11 communicative events in 104 
transcripts. The total number of stories per activity (n) is in row #2. 
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lines from reports about results and requests for activity performance. For example, team 
members requested clarifications like “did you say no abrasions?” and “what was the BP again?” 
These communicative events may support activity stage recognition because they call for 
repeating the results (after stage) or for repeating the assigned activity (before stage). However, 
the frequency of clarifications is lower than that of reports and requests, which makes the system 
training more challenging. We, therefore, omitted these two events from the model. 

As a result of this cost-benefit analysis, the final model includes five of the initial 11 
communicative events (Figure 5, Figure 6). The left side of the model represents speech flow 
associated with assessment activities and the right side corresponds to control activities. Some 
communicative events occur in both types of activities (e.g., report results of an activity). To 
facilitate the model’s generalizability to other extreme action team settings, we removed medical 
terms from the event labels and simplified them using broader terms. 

Although our model represents a typical flow of speech associated with activity progression 
in an example extreme action team setting, the actual work practice may diverge from the model 
depending on different scenarios. For example, the team may perform several assessment 
activities before a control activity is executed, or a control activity may be followed by an 
assessment activity due to changes in the environment. Even so, the model can continue to track 
the progression of individual activities and be used for stage recognition and delay detection. 

6 EVALUATION OF THE SPEECH-BASED MODEL 

To assess the robustness of the speech-based model when applied to new scenarios, we evaluated 
the model using 17 previously unseen resuscitation transcripts from the April 2017 – May 2018 
period with a total of 1,466 speech lines. We compared this testing dataset with the original 104 
transcripts on the same seven features using Fisher’s exact test, finding that all p values were 
insignificant (>0.05). These results confirmed equal distribution of all features in both datasets.  

We prepared the testing dataset for evaluation by following the same steps we did for the 
modeling dataset: line-by-line analysis to associate speech lines with activities based on domain-
specific keywords, grouping the speech lines into 451 activity stories based on the start and end 
of each conversation, and labeling each of the new 1,466 speech lines with one of the 11 

Figure 5: Model for tracking activity progression over time in extreme action teamwork. 



Speech-Based Model to Track Activity Progression  39:17 

PACM on Human-Computer Interaction, Vol. 6, No. CSCW1, Article 73, Publication date: April 2022.

communicative events. To validate the labeling process, a second researcher independently also 
labeled each new speech line. After comparing the labels, the inter-rater reliability showed near- 
perfect agreement with a score of 0.91 (Cohen’s Kappa). Grouping the speech lines into stories 
supported the evaluation process because each story contained one or more speech lines in each 
activity stage (Figure 1). Through this evaluation, we analyzed if (1) the association of speech line 
to communicative event remained consistent between the two datasets, thereby justifying our 
decision to include 6 out of 11 events in the model, and (2) the speech-based model accurately 
recognized the activity stages in individual stories of the testing dataset. 

6.1 Evaluation of Speech Line-Communicative Event Associations Between Datasets 
Our findings showed that the top four communicative events with the highest number of speech 
lines from the testing dataset mirrored those from the modeling dataset (Figure 6). The report 
results or outcome of an activity event remained at the top, with a total of 623 (42%) speech lines, 
followed by query patients or request them to perform an activity (335 lines, 23%), request to perform 
an activity (231 lines, 16%), and inform patients about an activity or request them to perform an 
action (93 lines, 6%) events. The bottom five events with the lowest number of speech lines that 
were excluded from the model (Figure 6) were also consistent with the bottom five from the 
testing dataset, although ranked in a different order. The number of speech lines for these bottom 
five events ranged from 37 to five (out of 1,466). The remaining two communicative events 
included in the speech-based model—assess feasibility or need for an activity and report progress of 
an activity—had a similar ranking in the modeling dataset but in a reversed order. This 
consistency in the frequency of communicative events across the two datasets validated our 
decisions on which events to include in the model.  

6.2 Evaluation of the Robustness of the Speech-based Model 
We next manually “ran” each of the 451 activity-related stories through the speech-based model 
to assess if the model could accurately recognize the activity performance stages. Our model 
successfully recognized an activity stage if at least one communicative event from that stage in 
the model was also present in a given story (i.e., the events in the story and the model matched). 
As an example, when we “ran” the pupil examination story from Figure 1 through the model, it 
successfully “recognized” all three stages because this story contained at least one communicative 
event from each stage that is also included in the model. Of the five speech lines in the story, the 
first occurred in the before stage, the second was in the during stage, and the last three occurred 
in the after stage (Figure 1): 

Figure 6: Frequency of speech lines for each of the 11 communicative events across 34 activities in 104 
transcripts. Two events with patient interactions were merged into one for the model. Events excluded 

from the model are marked with an “x.” 
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1. #20 “Can you check his pupils?” > REQUEST TO PERFORM AN ACTIVITY > before stage 
2. #21 “Ok… I am going to shine light into your eyes. Look at me, don’t move.” > QUERY 

PATIENTS OR REQUEST THEM TO PERFORM AN ACTION > during stage 
3. #22 “Pupils are 2 millimeters, reactive bilaterally.” > REPORT RESULTS OF AN ACTIVITY > after 

stage 
4. #26 “Sorry, what were his pupils? 2?” > REQUEST CLARIFICATION OR MORE INFORMATION ON 

AN ACTIVITY > after stage 
5. #27 “2 millimeters” > REPORT RESULTS OF AN ACTIVITY > after stage 

The model recognized the event request to perform an activity as belonging to the before stage 
and the event query patients or request them to perform an action as belonging to the during stage. 
For the last three speech lines, the model recognized lines #22 and #27 as belonging to the after 
stage because their label is also in the after stage of the model. Although the model does not 
contain the communicative event for line #26, it was still successful in recognizing the after stage 
based on the communicative event in lines #22 and #27.  

6.2.1 Unsuccessful Model Runs. The model was unsuccessful in recognizing activity stages when 
the stories only contained speech lines associated with the communicative events excluded from 
the model. Of 451 stories, the model failed to recognize stages in seven stories (2%) because they 
contained speech lines associated with events that were excluded from the model (Table 6). 

6.2.2 Successful Model Runs. From the remaining 444 stories, the model successfully recognized 
the activity stage when the story contained speech about that stage: it recognized all three activity 
stages in 24 (5%) stories; any combination of two activity stages in 136 (30%) stories; and one stage 
in 284 (63%) stories (Figure 7). These results confirmed our hypothesis, as most conversations 
contained sufficient information for recognizing at least one stage of activity performance. 
Although the model performs most reliably when an activity story contains speech lines from all 
three stages, activity progression was also recognized with only one or two stages. For example, 
202 (45%) stories had speech lines only from the after stage, 53 (12%) stories had speech lines from 
the before and after stages, 74 (16%) stories had speech lines from the during and after stages, and 
24 (5%) stories had speech from all three stages (Figure 7). In these stories, the model could not 
predict the start of an activity when speech data from the before stage was missing, but it could 
always predict the after stage and, by extension, the activity completion. 

7 DISCUSSION 
In this work, we determined speech-based heuristics for modeling the temporal progression of 
activity in extreme action teamwork. Because large datasets for training ML models about 
complex team activities are hard to obtain, a computerized approach for supporting this type of 
teamwork can use heuristics to augment machine learning. Our speech-based heuristics contain 
information about the (a) communication types (i.e., communicative events), (b) order of these 
communication types (i.e., stages within which they occur), and (c) keywords associated with 
specific activities and communication types. These structured representations of speech (i.e., 

Table 6: Number of stories with only speech lines relating to the three communicative events that were 
excluded from the model.  
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narrative schemas) can now be used to support the modeling of the team’s state by recognizing 
the team’s current activity and the stage of that activity. Specifically, the model can guide the use 
of keywords for training ML algorithms to recognize the communicative events (i.e., parts of the 
model), the activity stage, and the activity type. We next discuss (1) the results of the model 
performance and their implications for designing computerized approaches that support complex 
teamwork; (2) how can the model be used with a neural network for machine learning, and (3) 
how can the model be used in other extreme action team settings.  

7.1 Performance of the Model and Implications for Supporting Complex Teamwork 

Most speech lines in both the modeling and testing datasets were associated with the after stage, 
as team members made sure to verbalize the results of their activities. When we grouped the 
speech lines in the testing dataset into activity-related stories (Figure 7), speech associated with 
the after stage was found in 353 stories (out of 444, 80%), speech about the before stage was found 
in 159 stories (36%), and about the during stage in 107 stories (24%). Because most stories contained 
speech in the after stage, the speech-based model detected this stage more reliably than the other 
two stages. The model could not detect the start of an activity in 64% of the stories, but it was still 
successful in detecting activity completion in 80% of the stories. 

As our analysis has shown, the after stage is the key in detecting activity delays because speech 
lines from this stage indicate that activity was completed. The before stage implies the activity 
was planned, but not necessarily started. Similar uncertainties about the activity status can 
emerge with speech in the during stage. The during stage is also relatively short in most activities 
and may not guarantee successful completion. In contrast, if the model did not detect the after 
stage within the expected time (e.g., calculated relative to the start of the entire case), the system 
can reliably issue alerts about delays. Detecting the before and during stages is important to avoid 
false alarms for delayed activities that are still being performed. 

Our results have several implications for designing a computerized approach for detecting 
delays in time-critical teamwork. First, the system design should focus on the after stage given its 
critical role in detecting activity completion. Twenty percent of the stories in our testing dataset 
were missing speech lines from the after stage. Three explanations may account for these 
omissions: (a) information was not communicated or it was communicated through non-verbal 
modalities (e.g., gesture, artifact use); (b) some lines were censored; and (c) some speech was 
unintelligible. While censoring should not be an issue in the real-world application—the system 
will be running in real time and no censoring will be needed—the other reasons suggest that other 
modalities may be needed to complement the lack of speech in this stage. Second, other modalities 
may be more suitable for detecting the before stage because the planning steps may be more visible 

Figure 7: The number of activity-related stories (out of 451) in which the model reliably recognized some 
or all activity performance stages across the 17 testing transcripts. 
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or detectable through artifact use. Additional barriers, where other modalities may better support 
activity and stage detection, include misalignment between activity performance and 
verbalization of activity status, as well as overlapping activities with parallel verbalizations from 
multiple team members [26]. 

Finally, even when speech is present, it is often incomplete and succinct. Prior work on 
learning models of events from large corpora included event inference [8],[46], learning a 
structured collection of events [7], and learning real-world situations from small corpora of events 
[40]. The text input in these script models consists of stories with complete, grammatically 
accurate sentences, which could be parsed into tuples of verb, subject, object, and prepositional 
relations [46]. However, a computerized approach for supporting complex teamwork will need to 
rely on imperfect input because it will have missing parts of speech (i.e., missing subjects or 
objects). The performance of the system in these cases could be improved by considering the 
context of adjacent sentences, as discussed next. 

7.2 Using the Speech-based Model for Machine Learning 
The training of the ML algorithms based on our model can proceed in two steps. In the first step, 
an algorithm can be trained to recognize the communicative event for each speech line. Under 
the assessment activity, the model contains two events with requests for provider activity or 
patient action, and two events with reports about activity results or progress (Figure 5). Under the 
control activity, the model contains two communicative events with reports about the activity 
results or progress, one request for activity, and one decision to assess the need for activity. To 
distinguish between these communicative events in the model, the algorithm should primarily 
rely on the subject, verb, and object parts of the speech line. As our analysis showed, the 
syntactical patterns in speech lines can support differentiating between the communicative events 
that belong to the same category (e.g., requests and reports), but occur in multiple stages. The 
presence and absence of a verb could be used to differentiate between the report progress of an 
activity (verb present in the during stage) and report results of an activity (verb absent in the after 
stage). Direct objects and associated keywords could be used to distinguish between a request 
directed to a care provider in the before stage and a request directed to the patient in the during 
stage. Once the algorithm predicts the communicative event for the speech line, it can assign the 
activity stage by looking up this event’s location in the model. To organize inputs that the ML 
algorithm can use for recognizing the communicative event, researchers can adopt approaches 
such as those of Pichotta and Mooney’s [46]: identify parts of speech for a given sentence and 
organize them into a fixed order, such as subject, followed by a verb, object, and other 
prepositional relations. A similar neural network structure can also be used to predict 
communicative events based on the current speech line. 

The results of this first step will be in the form of probabilistic predictions for isolated speech 
lines. However, as we observed, not all speech during extreme action teamwork is grammatically 
correct, most likely leading to lower performance than that of Pichotta and Mooney’s [46]. To 
strengthen these predictions, we may consider using the model and the context of predictions 
made for preceding speech lines. If the current prediction from the first step does not follow a 
previous prediction relative to the model, it is less likely to be correct. If it follows the previous 
prediction, it is more likely to be correct. This second step will result in the adjusted probabilities 
of activity stage predictions. In addition, a third ML algorithm can be trained to recognize the 
activity type, such as pupil examination or airway assessment in our case. Although the speech-
based model is activity-nonspecific, it will help distinguish between assessment and control 
versions of activities that have both (e.g., airway management comprises both an assessment and 
a control activity), as they differ in one communicative event (decision). 
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7.2   Applying the Speech-based Model to other Extreme Action Team Settings 

Although we developed our model within the context of an emergency medical domain, the model 
applies to other extreme action team settings because of the similarities in speech and activity 
patterns. To illustrate the generalizability of the model, we draw parallels between our results 
and those from two classic studies of safety-critical teamwork—the London underground control 
room [22] and the airline cockpit [25]. The line controller in the control room [22] and the captain 
in the cockpit [25] could be considered analogous to the trauma team leader in our study.  

Our findings showed that the trauma team leader explicitly assigned tasks to other team 
members, which was also observed in the airline cockpit, but not always in the control room. For 
example, the controller’s discussion with the driver to delay the train implicitly became a task for 
the Divisional Information Assistant (DIA) to announce this delay to passengers. Both trauma 
team leaders and line controllers issued requests to terminate or modify an activity, e.g., the 
controller requested the driver to reverse the train or wait until further instructions. In the airline 
cockpit, modifications to an ongoing activity were more implicit due to physical arrangements. 
When the second officer (SO) announced a potential fuel leak, the captain and first officer (FO) 
turned around, suggesting they could help even though they did not receive an explicit request. 

All three domains also relied on “self-talk” [22] to make the status of the actions more visible. 
The controller, for example, announced the completion of his changes to the timetable, which 
prompted the DIA to announce those changes to the passengers. Similarly, bedside physicians 
called out the results of their activity performance to keep others aware of the activity progress 
and completion. Descriptions of the activity progress in the airline cockpit were also in the form 
of continuous conversations among team members. Through phrases such as “you see, right now” 
or “but we’re still,” their verbalizations indicated the temporal relationships among their actions, 
and by extension, the stages of their activities. 

These parallels show that team activities in other safety-critical team settings also exhibit the 
same three stages of activity performance: preparation, execution, and assessment. Similar to our 
results, explicit verbalizations of these stages may sometimes be missing or communicated 
through other modalities. While applying our model to different domains may require extracting 
keywords that are specific to that domain, we expect that the communicative events and their 
ordering in the narrative schemas will remain the same or be only slightly modified because of 
the same activity pattern (preparation, execution, and assessment). 

Another generalizable aspect of our work is in the approach that we used to extract speech-
based heuristics and model the progression of team activity based on those heuristics. As other 
domains may need to extract heuristics specific to their work, they could apply our approach to 
analyzing team actions or conversations: identify events that indicate the activity stage, order 
them based on their occurrence, and aggregate them into a generalized model. A model that can 
determine the stage of activity progression using verbal communication can be valuable for any 
type of teamwork analysis, for designing different types of team decision-support systems, and 
for designing a general system that supports collaborative work. 

8  CONCLUSION, STUDY LIMITATIONS, AND FUTURE WORK 

Verbal communication among the members of extreme action teams contains rich information 
about task assignments, work coordination, progress, and results, providing an insight into the 
team’s overall state. These verbalizations of activity progress offer an alternative approach for 
increasing temporal awareness in time- and safety-critical settings, where the crowded nature of 
teamwork makes it challenging to visually monitor multiple activities. In this work, we set out to 
determine speech-based heuristics for modeling the temporal progression of activity. We 
hypothesized that verbal communication during team-based activities contains sufficient 
information for recognizing the stage of activity performance (before, during, and after). To test 
this hypothesis, we analyzed 10,166 speech lines from 104 actual trauma resuscitations and 
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identified 11 types of communicative events and their order of occurrence in the process. Using 
these results, we developed narrative schemas for 34 assessment and control activities, and then 
aggregated those schemas into an activity-nonspecific speech-based model for tracking the 
progression of individual activities over time. Evaluation of the model performed on a testing 
dataset showed that the model reliably recognized at least one activity stage in 98% of the activity 
stories. This result confirmed our hypothesis, while also suggesting the need for other modalities 
to improve the detection of stages when speech is missing or offering weak cues. Our analyses of 
team conversations and their modeling also helped shine the light on the prevalent “black box” 
of many current ML systems, as we now show how the model works and what information it 
uses to predict activity stages. 

Our study has two limitations. First, due to the limited availability of medical experts on our 
team, we were unable to generate video-based ground truth data for all transcripts in our dataset. 
Even so, close to 10% of our transcripts had the ground truth data available, which supported our 
inter-rater reliability assessments and ensured consistency in associating speech lines with the 
activity performance stages. Second, we evaluated the speech-based model with the testing data 
from the same domain. However, based on our discussion of parallels in communicative functions 
of speech across three safety-critical domains, we expect that both the model and communicative 
events can generalize to other speech-heavy extreme action team settings because they are not 
specific to activities. 

We already begun developing the ML algorithm for activity stage recognition based on the 
speech-based heuristics presented in this paper. Our next steps will focus on determining the 
thresholds for activity delays so we can predict delays based on the detected activity stage and its 
typical execution time relative to other activities in the workflow. Given the challenges in 
implementing algorithms for speech-based activity recognition, we will complement speech with 
other modalities and sensors in the environment. By combining multiple modalities, our overall 
research goal is to develop a robust computerized approach for tracking the team’s state and 
alerting them to potentially delayed critical activities. 
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