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ABSTRACT This article proposes an end-to-end framework for the learning-enabled control of closed
quantum systems. The proposed learning technique is the first of its kind to utilize a hierarchical design,
which layers probing control, quantum state tomography, quantum process tomography, and Hamiltonian
learning to identify both the internal and control Hamiltonians. Within this context, a novel quantum process
tomography algorithm is presented, which involves optimization on the unitary group, i.e., the space of
unitary operators, to ensure physicallymeaningful predictions. Our scalable Hamiltonian learning algorithms
have low memory requirements and tunable computational complexity. Once the Hamiltonians are learned,
we formalize data-driven model-predictive quantum control (MPQC). This technique utilizes the learned
model to compute quantum control parameters in a closed-loop simulation. Then, the optimized control input
is given to a physical quantum system in an open-loop fashion. Simulations show model-predictive quantum
control to be more efficient than the current state-of-the-art, quantum optimal control, when sequential
quadratic programming (SQP) is used to solve each control problem.

INDEX TERMS Quantum computing, quantum consensus, quantum control, quantum Hamiltonian learn-
ing, quantum networks, quantum process tomography.

I. INTRODUCTION
Quantum information science is a rapidly growing field that
seeks to utilize quantum dynamical systems to perform sens-
ing, communication, or computation [1]–[6]. The success of
many quantum devices, such as those employing quantum
bits (qubits), is dependent on the precise control of their dy-
namics [7]–[17]. In fact, quantum control techniques can be
used to realize quantum gates [18]–[20], and quantum gates
have numerous applications in quantum information science,
including localization, synchronization, communication, and
computing [21]–[24].
Quantum optimal control (QOC) has been of significant

research interest for the first part of the 21st century [25]–
[34]. However, much like classical systems, the dynamics
of quantum systems are not always known, which limits the
breadth of control strategies that may be used. A promis-
ing means for overcoming this uncertainty is via quantum
Hamiltonian learning (QHL). Learning quantum dynamics

from data is difficult due to the fundamental limitations of
observing quantum phenomena via classical measurement.
Measurement devices interact with quantum states and can
result in probabilistic outcomes. Quantum learning-based
system identification strategies must work with incomplete
or imperfect information about quantum states.
To overcome the obstacle of incomplete information about

quantum states, methods such as quantum state tomogra-
phy (QST) have been developed to infer quantum states via
repeated measurements of identically prepared states [35]–
[38]. Quantum process tomography (QPT) has been devel-
oped to infer a quantum process, which maps an input state
to an output state [6]. A survey on resource consumption
and measurement requirements for various QPT algorithms
is given in [39].
Both QST and QPT have been used to infer the evolu-

tion of closed quantum systems and ultimately learn the
system Hamiltonian in [40]. The method in [40] utilizes a
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large number of initial states to perform QPT. The work
in [40] gives an explicit upper bound on the estimation error
for the learned Hamiltonian. Conventional system identifica-
tion approaches have been used to estimate the Hamiltonian
[41]–[44]. In particular, control signals are used in [43]
and [44] to infer unknown parts of the Hamiltonian. Alterna-
tively, learning-based approaches have been used to estimate
the Hamiltonian [45]–[47].
Inspired by the learning-based control of classical sys-

tems [48]–[51], the learning-based control of quantum sys-
tems has also been proposed [52]–[59]. These methods work
in an iterative fashion to improve the control policy used
in each quantum experiment. However, these techniques
are model-free and do not come with theoretical guaran-
tees. On the other hand, if a model of the quantum sys-
tem is established, one may perform model-based control.
For several decades, QOC has been the most popular ap-
proach in the model-based quantum control literature. In
addition to some early works in this area [60]–[62], re-
cent results have reiterated the strength of QOC and ex-
panded upon earlier possibilities [63]–[65]. An influential
QOC technique is the so-called gradient ascent pulse engi-
neering (GRAPE) algorithm for computing optimal nuclear
magnetic resonance (NMR) pulses [61], whichwas expanded
upon in [66]–[69]. The principle of the GRAPE algorithm
is to use gradient-based solvers to compute optimal control
parameters for quantum systems. Other highly successful
QOC optimization schemes include the chopped random ba-
sis (CRAB) [70], [71] and gradient optimization of analytic
controls (GOAT) [72] algorithms, which use ansatzes of basis
functions to formulate control pulses. The purpose of these
algorithms is to identify optimal tuning parameters within the
ansatz.
In the classical control literature, layering model-based

and model-free control has been shown to produce desirable
results [73]. This has been done recently in the so-called C3

technique for controlling quantum systems [74]. The term
C3 stands for “control, calibrate, and characterize.” As the
name implies, this work meshes the ideas of controlling and
identifying the dynamics of the system. The first phase uti-
lizes a control ansatz based on the derivative removal by
adiabatic gate (DRAG) method. The tuning parameters in
the DRAG control pulse are then optimized in a closed-loop
experimental setting with a physical quantum system in the
calibration phase. Finally, the characterization phase uses
the data generated in the previous phase to update an ansatz
model of the quantum system.
Model-predictive control (MPC) for infinite-dimensional

quantum systems has been considered in the case where the
model of the system is fully known [75]–[77]. These works
only investigate systems with pure states governed by the
Schrödinger equation, and their control designs only con-
sider quadratic objectives. Recently, an optimization proce-
dure known as sequential quadratic programming (SQP) has
shown great promise to design robust quantum gates in the
context of QOC [78].We note that SQP can also be employed

to solve MPC problems. Hence, investigating SQP’s use in
MPC for quantum systems is of interest.
Most of the methods outlined above are based on the

optimal control of closed quantum systems, and additional
calibration and refinement may be needed for addressing
open quantum systems. Real-world applications of control-
ling closed quantum systems include, but are not limited to,
control of spin systems in NMR [79]–[82], control of molec-
ular systems in physical chemistry [83]–[85], and forming
baseline control policies for manipulating superconducting
qubits [86]–[91].
Learning and control of quantum dynamics poses chal-

lenges not yet solved by the literature. There is a need to
learn both internal and control Hamiltonians. The internal
Hamiltonian describes the free evolution of the quantum sys-
tem, and the control Hamiltonian describes the system’s in-
teraction with external fields. While successful, the quantum
tomography (QT)-based QHL algorithm proposed in [40]
requires the practitioner to readily and repeatedly prepare
d2 (where d is the dimension of the system) unique quan-
tum states to identify a system’s internal Hamiltonian and
does not address learning the effect of control on the sys-
tem. In terms of control, QOC is often computationally ex-
pensive, and closed-form solutions are only known in spe-
cific cases with simple models or restrictive assumptions.
For instance, time-optimal control of a qubit is known to
be of bang–bang type [26]; however, such discontinuous
control signals may excite unwanted energy levels in qubit.
The work-horse GRAPE algorithm, which has become the
standard for computing optimal quantum control pulses, still
takes a significant amount of computational time [92]. More-
over, data-driven techniques are desirable when no model of
the quantum system is known. While the C3 method [74]
has shown promising results, like [70]–[72], it utilizes a
heuristic ansatz for its control policy and can only improve
the efficacy of the control by tuning parameters (such as
the amplitude and frequency of the actuation) within this
policy. In summary, there is a need for scalable and ef-
ficient quantum learning and control algorithms. The fun-
damental questions related to quantum system identifica-
tion are: Is it possible to reduce the number of quantum
experiments required, computational complexity demanded,
and memory storage needed in order to properly identify
a quantum process? How can the error of various Hamil-
tonian identification methods be bounded in terms of the
number of quantum experiments performed? A reduction
in experimental, computational, and memory complexity
will enable the identification of higher dimensional quantum
systems—which is paramount to the future of quantum com-
puting. Improved error bounds on this process will allow
practitioners to design robust model predictive quantum con-
trol (MPQC) strategies. The goal of this article is to provide
an entirely data-driven end-to-end solution to the quantum
control problem.
In this article, we attempt to bridge the gap between learn-

ing and control for quantum systems. By not relying on
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FIGURE 1. QT-enabled QHL utilizes probing control inputs and physical experiments to infer internal and control Hamiltonians. Details of the
QT-enabled QHL block are discussed in Section II and Fig. 3.

FIGURE 2. Data-driven MPQC utilizes the trained model from the proposed QT-enabled QHL technique to optimize a control sequence offline in
simulation. Then, the optimized control sequence is provided to a real-world quantum system in an open-loop fashion. (a) Offline optimization.
(b) Online implementation.

manually designed models, which can be brittle, our method
will account for the complexity of real-world applications.
The contributions of this article are twofold. First, a new
QT-based QHL algorithm for identifying both internal and
control Hamiltonians for closed quantum systems is pro-
posed. This technique is visually summarized in Fig. 1.
Given a physical system under the influence of an external
control field, our method utilizes QST and QPT to learn
the Hamiltonians of interest. Within this algorithm, a new
optimization-based QPT procedure is presented. This opti-
mization procedure is defined over the unitary group, i.e.,
the set of all unitary operators, which is physically motivated
by the dynamics of closed quantum systems. An efficient
iterative method for solving this problem is presented, and,
in a special case, a closed-form solution and error bound are
given. The proposed QT-based QHL algorithm requires less
memory than the existing state-of-the-art and, in some cases,
greatly reduces the computational complexity.
The second contribution is that, for the first time ever,

we formulate data-driven MPQC, which uses the proposed
QT-based QHL algorithm to control quantum systems end-
to-end with unknown dynamics. MPQC leverages the ideas
from MPC for classical systems to produce an optimization-
based approach to controlling quantum systems. In our ex-
periments, when an SQP solver is used, MPQC is two orders
of magnitude faster at computing control sequences than
QOC, yet provides similar control performance. The MPQC

formulation is summarized in Fig. 2. First, MPQC generates
a control sequence offline in a closed-loop simulation using a
model of the quantum system [see Fig. 2(a)]. In this simula-
tion, the state of the quantum system can be fully known,
unlike that of a physical quantum system. Once a control
sequence has been optimized offline, it may be provided to
a physical quantum system in an open-loop fashion so as to
preserve the coherence of the physical system [see Fig. 2(b)].
The key contributions of this article are as follows:

1) develop a novel data-driven QHL algorithm to estimate
both internal and control Hamiltonians;

2) prove error bounds on the proposed control QHLmeth-
ods, under appropriate assumptions;

3) formalize an MPQC framework for the learning-
enabled open-loop control of quantum systems;

4) illustrate the scalability and efficacy of the proposed
data-driven MPQC via numerical experiments.

The rest of this article is organized as follows. Section II
describes QPT and our novel approach to QPT. Section III
utilizes the proposed QPTmethod to perform QHL and iden-
tify both the internal and control Hamiltonians of a closed
quantum system. This is followed by Section IV, which
proposes data-driven MPQC. Numerical results are given in
Section V. Finally, Section VI concludes this article.
Notations: Sets are denoted by calligraphic font, e.g.,X . In

particular, Zm:m+M is defined to be the set of integers from
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TABLE 1. Notations and Definitions of Important Quantities

m up to and includingm+M . For brevity, setZM � Z1:M .
Random variables are displayed in sans serif upright fonts;
their realizations in serif italic fonts. Vectors and matrices
are denoted by bold lowercase and uppercase letters, respec-
tively. For example, a random vector and its realization are
denoted by x and x; a random matrix and its realization
are denoted by X and X , respectively. In the context of
quantum states, complex vectors are denoted using bra-ket
notation, i.e., |ψ〉 and 〈ψ| denote a complex vector and its
conjugate transpose, respectively. The d-by-d identity ma-
trix is denoted by Id: the subscript is removed when the
dimension of the matrix is clear from the context. The Frobe-
nius norm and spectral norm of X are denoted by

∥∥X∥∥
F

and
∥∥X∥∥, respectively. The Euclidean and infinity norms

of the vector x are denoted
∥∥x∥∥ and

∥∥x∥∥∞, respectively.
The notation diag(A1, A2, . . . , An) represents a block diag-
onal matrix with the arguments on its main diagonal. The
trace, transpose, conjugate, and conjugate-transpose of the
matrix X are denoted by tr{X}, XT , X∗, and X†, re-
spectively. �A,B �− denotes the commutator of matricesA
andB. The Kronecker product is denoted by the symbol ⊗,
and we will denote the Kronecker product of multiple state
vectors as |ψ1ψ2 · · · ψn〉 � |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.
The notations R{·} and F{·} denote the real and imaginary
parts of the given argument, respectively. If f, g : Cp×d →
R are arbitrary functionals, f is said to grow on the order
O(g(X)) if there exists some numerical constant C ∈ R

such that
∣∣f(X)

∣∣ � C
∣∣g(X)

∣∣ for all X ∈ C
p×d. The mag-

nitude of a complex number z = a+ ıb ∈ C is denoted by
|z| = √

a2 + b2, where ı =
√−1. Notations and definitions

for important quantities used in this article are summarized
in Table 1. Important acronyms and optimization problems
are also summarized in Tables 2 and 3, respectively.

II. SCALABLE QPT ALGORITHM
In this section, we present a new and scalable QPT algorithm.
For ease of exposition, Section II-A considers systems which
start from pure states and Section II-B addresses those which
start from mixed states. If one’s experiments start from both
pure and mixed states, the method provided for mixed states
will suffice since it is possible to represent any pure quantum
state as a mixed state. The proposed QPT formulations rely
on solving an optimization problem on the unitary group,
whichmay be achieved via efficient iterative algorithms. Sec-
tions II-C gives a method for computing iterative solutions
to the QPT problem. Section II-D presents a closed-form
solution to theQPT problem in a special case, which provides
further insight into the nature of the proposed method.

A. LEARNING FROM PURE STATES
We begin by considering a closed quantum system and as-
sume no explicit external control influence. A pure state vec-
tor, or wave function, |ψ(t)〉 ∈ C

d evolves according to the

4100623 VOLUME 3, 2022



CLOUÂTRÉ et al.: MODEL-PREDICTIVE QUANTUM CONTROL VIA HAMILTONIAN LEARNING Engineeringuantum
Transactions onIEEE

TABLE 2. Expansions of Important Acronyms

TABLE 3. Notation for Optimization Problems

Schrödinger equation

ı�
∂

∂t

∣∣ψ(t)〉 =H
∣∣ψ(t)〉 (1)

where � is the reduced Planck constant and H ∈ C
d×d is

the system Hamiltonian, which is an unknown Hermitian
operator. For now,H is a time-independent Hamiltonian. In
this article, we elect to use atomic units such that � = 1. At
any time, |ψ(t)〉 is of unit length such that

∥∥|ψ(t)〉∥∥ = 1.
Given the initial state |ψ(0)〉 ∈ C

d, it is possible to calculate
the state at any arbitrary time in the future by directly solving
the Schrödinger equation:∣∣ψ(t)〉 = e−ıHt

∣∣ψ(0)〉
= U(t)

∣∣ψ(0)〉 . (2)

Here, we have defined the operator U(t) � e−ıHt. The ma-
trix exponential of any skew-Hermitian matrix is unitary.
Hence,U(t)†U(t) = Id. The relationship (2) highlights the
importance of closed quantum systems: since the evolution
of the state vector is unitary, the system preserves state co-
herence.
The set of all unitary operators defined on the space Cd×d

is called the unitary group, which is denoted

U(d) �
{
X ∈ C

d×d :X†X = Id

}
.

Throughout this article, every problem for learning a quan-
tum system’s dynamics will be formalized as an optimization
problem defined on the unitary group. Because closed quan-
tum systems evolve unitarily, U(t) ∈ U(d) for all t.

We are interested in a system identification problem of
the following form. First, let tf ∈ (0,∞) be some final time
where we perform a measurement and end the experiment.
The unitary operator U(tf) : Ψ

e

1:Ni
(t0) 	→ Ψ

e

1:Ni
(tf) maps

each input state to its corresponding output state, where

Ψ
e

1:Ni
(t0) =

[∣∣ψe1(t0)〉 ∣∣ψe2(t0)〉 · · · ∣∣ψeNi
(t0)

〉]
(3)

is a matrix of Ni initial states, whose nth column is a state
vector |ψen(t0)〉, and

Ψ
e

1:Ni
(tf) =

[∣∣ψe1(tf)〉 ∣∣ψe2(tf)〉 · · · ∣∣ψeNi
(tf)

〉]
(4)

is a matrix of Ni final states, whose nth column is a state
vector |ψen(tf)〉. The system identification goal is to learn
the mapping U(tf), which will be accomplished via QPT.
As shown in Section III, it is possible to estimate the system
HamiltonianH from U(tf).
It is assumed that the system is initiated in a known state.

However, it is only possible to estimate the final state matrix
Ψ
e

1:Ni
(tf), which can be accomplished via QST.1 The asso-

ciated state estimation error can be written as

E = Ψ
ê

1:Ni
(tf)− Ψe1:Ni

(tf) (5)

where Ψ
ê

1:Ni
(tf) is the estimate of the final states matrix,

with the nth column denoted by |ψên(tf)〉. The QPT methods
proposed in this article are agnostic to the underlying QST
algorithms used to estimate the final states.
To identify U(tf), one needs a measure of distance be-

tween two quantum states. An appropriate measure is the
infidelity [93]. For two pure quantum states |ψ〉 and |φ〉, the
infidelity between them is denoted and defined by

dI(|ψ〉, |φ〉) = 1− |〈ψ|φ〉|2 .
This function takes on values in the range of 0 to 1. An infi-
delity of one corresponds to perfectly orthogonal states, and

1Several practical QST algorithms are given in [35]–[38]. Through re-
peated measurements across multiple experiments, QST estimates proba-
bilities associated with different measurement outcomes. Then, QST uses
these estimated probabilities to infer the final state of the quantum system.
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an infidelity of zero indicates that |ψ〉 and |φ〉 are identical
up to a possible global phase difference. In fact, the selection
of the global phase is arbitrary, namely, eıθ|ψ〉 and |ψ〉 are
functionally equivalent in quantum dynamics, and they rep-
resent the same physical state for any global phase θ ∈ R. An
important interpretation of the infidelity is as follows. The
term |〈ψ|φ〉|2 is the probability that |ψ〉 will be measured to
be |φ〉. Hence, minimizing the infidelity between two pure
quantum states translates into maximizing the probability
that one will be observed as the other.
Since U(tf) : |ψe(t0)〉 	→ |ψe(tf)〉, we wish to find an

estimate Û(tf), which minimizes the distance dI(|ψê(tf)〉,
Û(tf)|ψe(t0)〉), where |ψê(tf)〉 is an estimate of the final state
obtained by using a QST algorithm. This is the distance
between the estimated final state and the one predicted by
Û(tf)|ψe(t0)〉. Hereafter, we will omit the explicit depen-
dence of Û(tf) on tf when it is clear from context. Since there
are many initial states and final states, we seek to minimize
the sum of the infidelities between all the pairs of initial con-
ditions and final conditions. This gives rise to the following
optimization problem, which is the basis of our proposed
QPT algorithm:

P1 : minimize
X

Ni∑
n=1

dI
(∣∣ψên(tf)〉,X∣∣ψen(t0)〉)

subject to X ∈ U(d)

where the objective function sums over all state pairs in (3)

and the estimate Ψ
ê

1:Ni
(tf) of (4). Let Û denote the optimal

solution of P1. It should be emphasized that Problem 1 is
an optimization problem defined over a constraint manifold,
which is a distinct feature of our QPT formulation.
Next, Problem 1 is transformed into a simpler problem,

which can be solved efficiently. The new problem takes sim-
ilar form to the well-studied Brockett cost function from the
controls and optimization literature [94]. The Brockett cost
function fB : U(d) → R is defined as

fB(X) =

Ni∑
n=1

tr
{
BnXAnX

†
}
. (6)

where An ∈ C
d×d and Bn ∈ C

d×d are Hermitian positive-
semidefinite matrices for all n.
Remark 1: Brockett’s original article considered a slightly

different functional defined over the real orthogonal group.
Since then, the literature has widely referred to functions
of the form f(X) = tr{NXAX†}, where N is diagonal
and A is real symmetric to be the “Brockett cost function.”
Our definition, with the summation, is closer to Brockett’s
definition in [94]. �
Define the density operators Ξ

e

n(t0) � |ψen(t0)〉〈ψen(t0)|
and Ξ

e

n(tf) � |ψen(tf)〉〈ψen(tf)| associated with the pure

states |ψen(t0)〉 and |ψen(tf)〉, respectively.2 The following
proposition relates Problem 1 to the Brockett cost function.
Proposition 1: Solving Problem 1 is equivalent to solving

the following optimization problem:

P2 : maximize
X

Ni∑
n=1

tr
{
Ξ
ê

n(tf)XΞ
e

n(t0)X
†}

subject to X ∈ U(d) .
�

Proof: We prove the case for Ni = 1; the case for Ni >
1 follows directly. First, note that to minimize the ob-
jective function in Problem 1, we need only maximize

|〈ψê(tf)|X|ψe (t0)〉|2. Expanding this expression, we obtain∣∣〈ψê(tf)∣∣X∣∣ψe (t0)〉∣∣2
=

〈
ψ
ê
(tf)

∣∣X∣∣ψe (t0)〉 〈
ψ
e
(t0)

∣∣X†∣∣ψê(tf)〉
= tr

{〈
ψ
ê
(tf)

∣∣X∣∣ψe (t0)〉 〈
ψ
e
(t0)

∣∣X†∣∣ψê(tf)〉}
= tr

{∣∣ψê(tf)〉〈ψê(tf)∣∣X∣∣ψe (t0)〉〈ψe (t0)∣∣X†}
= tr

{
Ξ
ê
(tf)XΞ

e
(t0)X

†} .

The second equality holds since the trace of a scalar is equiv-
alent to the scalar itself. The third equality is due to the cyclic
property of the trace. The final equality follows from the
definition of the density operator. �
In the general case, we propose an iterative gradient-based

algorithm for solving Problem 2. This solver and its effi-
ciency will be described in Section II-C. A closed-form solu-
tion in the special case whereNi = 1 is given in Section II-D.
In the next section, learning from mixed states is addressed.

B. LEARNING FROM MIXED STATES
Recall from Section II-A that the density operator for a pure
state |ψ〉 is denoted and defined byΞ = |ψ〉〈ψ|. In order to
properly represent mixed states, one should use the density
operator Ξ instead of the state vector |ψ〉. A mixed state is
a probabilistic mixture, or classical ensemble, of pure states.
In other words, a mixed state is characterized by the density
operator

Ξ =
∑
i

ηi|ψi〉〈ψi|

where
∑

i ηi = 1, ηi � 0, and |ψi〉 is a pure state for all i.
A mixed state cannot be described by a single state vector
alone; however, both the pure and mixed states can be fully
characterized by density operators. The density operatorΞ is
a Hermitian positive semidefinite matrix satisfying tr{Ξ} =

2In the quantum physics literature, it is common to use the variable ρ to
denote the density operator. However, we elect to use Ξ to emphasize that
this is a matrix quantity.
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1. Mixed states in a closed quantum system evolve according
to the Liouville–von Neumann equation

ı
∂

∂t
Ξ = �H,Ξ �− . (7)

The solution to this equation is given by

Ξ(t) = U(t)Ξ(0)U †(t) (8)

where U(t) = e−ıHt as usual. This solution can also be
derived from the fact that each state in the classical ensemble
Ξ is governed by (1).

As for the case where the system starts from a pure state,
QPT for mixed states starts by fixing some sampling time
tf ∈ (0,∞). A matrix of Ni ∈ N initial states is given

Ξ
e

1:Ni
(t0) =

[
Ξ
e

1(t0) Ξ
e

2(t0) · · · ΞeNi
(t0)

]
.

For each initial state, quantum experiments are run, and the
final states are measured at time tf . Similar to the case of pure
states, an estimate of the final state matrices is denoted by

Ξ
ê

1:Ni
(tf) =

[
Ξ
ê

1(tf) Ξ
ê

2(tf) · · · ΞêNi
(tf)

]
.

As before, the state estimation error for the final states is
given by

E = Ξ
ê

1:Ni
(tf)−Ξe1:Ni

(tf) . (9)

The nth block column of Ξ
ê

1:Ni
(tf) (i.e., the estimate of the

nth final state) is simplyΞ
ê

n(tf). Like their pure counterparts,
estimates of mixed states are given by QST, and our method
remains agnostic to what QST method is employed.
Mixed states are defined on the Hilbert space C

d×d en-
dowed with the canonical Frobenius inner product, which
induces the Frobenius norm. This leads to a natural metric, or
measure of distance, between two matrices X,Y ∈ C

d×d.
Namely, dF(X,Y ) =

∥∥X − Y ∥∥
F
. In the case of mixed

states, we propose the following optimization problemwhich

minimizes the sum of the squared distances betweenΞ
ê

n(tf)
and XΞ

e

n(t0)X
† to produce an estimate of the unitary dy-

namics:

P3 : minimize
X

Ni∑
n=1

d 2
F

(
Ξ
ê

n(tf),XΞ
e

n(t0)X
† )

subject to X ∈ U(d)
where Û denotes the optimal solution of P3, which is an
optimization problem defined on the unitary group. This
problem minimizes the Frobenius norm of the difference

between the predicted final states, ÛΞ
e

n(t0)Û
†
, and the QST

estimate of the final states, Ξ
ê

n(tf). Like the proposed QPT
formulation for pure states, Problem 3may be simplified into
an easier problem.
Proposition 2: Using the density representation for

mixed states, solving Problem 3 is equivalent to solving
Problem 2. �

Proof: We prove the case where Ni = 1, which is easily
extended to the case for any finite Ni. To begin, we observe
that∥∥XΞe (t0)X† −Ξê(tf)

∥∥2
F

= tr
{[
XΞ

e
(t0)X

† −Ξê(tf)
][
XΞ

e

k(t0)X
† −Ξê(tf)

]†}
= tr

{[
XΞ

e
(t0)X

† −Ξê(tf)
]2}

.

The first equality is the definition of the Frobenius norm. The

second equality is due to the fact that [XΞ
e
(t0)X

† −Ξê(tf)]
is Hermitian. Expanding the argument of the prior expres-
sion, we obtain[
XΞ

e
(t0)X

† −Ξê(tf)
]2

=XΞ
e
(t0)X

†XΞ
e
(t0)X

† −XΞe (t0)X†Ξ
ê
(tf)

−Ξê(tf)XΞe (t0)X† +Ξ
ê
(tf)

2 .

The cyclic property of the trace function gives

tr
{
XΞ

e
(t0)X

†Ξ
ê
(tf)

}
= tr

{
Ξ
ê
(tf)XΞ

e
(t0)X

†}
and

tr
{
XΞ

e
(t0)X

†XΞ
e
(t0)X

†}
= tr

{
X†XΞ

e
(t0)X

†XΞ
e
(t0)

}
.

Combining the prior two expressions, the constraint thatX
is unitary and the linearity property of the trace function, the
following is obtained:∥∥XΞe (t0)X† −Ξê(tf)

∥∥2
F

= tr
{
Ξ
e
(t0)

2
}− 2tr

{
Ξ
ê
(tf)XΞ

e
(t0)X

†}+ tr
{
Ξ
ê
(tf)

2
}
.

Since Ξ
e
(t0) and Ξ

ê
(tf) are fixed at the time of optimiza-

tion and are not functions of the variable X , only the term

tr{Ξê(tf)XΞe (t0)X†} can be optimized. To solve the orig-
inal optimization problem, we wish to maximize this term
subject to the constraint thatX is unitary, and the proposition
is proved. �
Remark 2: It is a pleasing result that Problem 1 (designed

for pure states) and Problem 3 (designed for mixed states)
both simplify to Problem 2. For the rest of this article, we
will refer to “solving Problem 2” unambiguously as it treats
both pure and mixed states equally. �

C. GENERAL CASE: Ni � 1
In the case where Ni � 1, we provide a computationally
efficient algorithm, which iterativelymaximizes the objective
function (i.e., a Brockett cost function) and solves Problem 2.
This process is equivalent to performing steepest ascent
on the unitary group. Our methodology is inspired by that
of [95], which was introduced in the context of minimizing
the Brockett cost function on the Stiefel manifold [96], [97]
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when Ni = 1. We now proceed by first introducing prelimi-
naries required to implement the proposed iterative method.
For generality, we initially adopt the same general notation
as in (6) for the Brockett cost and prove the main result. This
is done to emphasize the potential application of said result
to other domains and simplify the notation. At the end of this
section, the general result is used to solve Problem 2 using
the appropriate notation.
The unitary group is an example of a Lie group, which

is also a differentiable manifold [96]. The tangent space of
U(d) at any pointX ∈ U(d) is denoted and defined as

TX �
{
XA : A ∈ C

d×d, A+A† = 0
}
.

The projection of an arbitrary matrix Z ∈ C
d×d onto the

unitary group is denoted and defined by

PU (Z) � argmin
X∈U(d)

∥∥Z −X∥∥2
F
.

In fact, assuming that the singular value decomposition of
Z is Z = UΣV †, then PU (Z) = UV † [98]. For anyX in
either U(d), the canonical inner product on the tangent space
TX is defined as follows:

〈Z1,Z2〉T =
1

2
R
{
tr
{
Z†

2Z1

}}
where Z1,Z2 ∈ TX . A local parameterization h : Γ →
U(d) around any point X ∈ U(d) maps an open subset
Γ of the tangent space TX to the manifold U(d). Under
such parameterization, the tangent space should be suffi-
cient to locally characterize points on the manifold. In rig-
orous terms, this translates to: for any point Y ∈ U(d) suffi-
ciently close toX , there must exist some Z ∈ TX such that
Y = h(Z). This article uses the parameterization h(Z) �
PU (X + Z). Associatedwith the local parameterization is a
local cost function g : TX → R. In particular, we set g(Z) �
f ◦ h(Z) = f

(PU (X +Z)
)
. Steepest ascent on the unitary

group selects the steepest ascent direction to maximize the
local cost g(Z). The following proposition provides an ana-
lytic expression for this direction in the general case and is
a direct corollary of [95, Th. 14], which computes the direc-
tion of steepest descent for the local cost g. Noting that the
direction of steepest ascent for the cost g is the same as the
direction of steepest descent for −g proves this proposition.
Proposition 3: Given an arbitrary cost function f :

U(d) → R and the local cost function g(Z) = f
(PU (X +

Z)
)
about any point X ∈ U(d), the direction of steepest

ascent of the function g about the point Z = 0 under the
inner product 〈·, ·〉T is given by

G =DX −XD†
XX

whereDX is any matrix on C
d×d satisfying

f(X +Z) = f(X) +R
{
tr
{
Z†DX

}}
+O(‖Z‖2F

)
for all Z ∈ TX(d). �

Using Proposition 3, we present a closed-form expression
for the steepest ascent direction of the local cost function

Algorithm 1: Steepest Ascent for Maximizing (6) on the
Unitary Group:
1: Input: ε > 0
2: Initialize: SetX = Id, j = 1, and γ � 1.
3: while 〈G,G〉T � ε and j � C do
4: Compute the steepest ascent direction:

G = 2

Ni∑
n=1

BnXAn −XAnX
†BnX

5: while fB(PU (X + 2γG))− f(X) � γ〈G,G〉T
do

6: Set γ = 2γ
7: while

fB(PU (X + γG))− f(X) < 1
2γ〈G,G〉T do

8: Set γ = γ/2
9: SetX = PU (X + γG)
10: Set j = j + 1
11: Return:X

when the global cost is given by (6). This will be used in
our iterative algorithm for solving Problem 2. The proof of
the following proposition is presented in Appendix A.
Proposition 4: Let fB : U(d) → R be the Brockett cost

function (6). Moreover, for any X ∈ U(d), define the local
cost g : TX → R to be g(Z) � fB(PU

(
X +Z)

)
. Then, the

direction of steepest ascent in the sense of Proposition 3 is

G = 2

Ni∑
n=1

BnXAn −XAnX
†BnX . (10)

�
Exploiting this result, an iterative method for maximiz-

ing (6) may be formalized. The strategy is fully characterized
by Algorithm 1. The program starts with the initial guess
X = Id and a step size γ � 1. At each iteration, the direc-
tion of steepest ascent is computed according to (10). The
algorithm is stopped if one of two criteria are met: 1) if,
for some (small) user-defined threshold ε > 0, the inequality
〈G,G〉T < ε holds, i.e., the direction of steepest ascent is
sufficiently small. This is the case whenX approaches a sta-
tionary point or 2) if the number of iterations exceeds some
maximum thresholdC ∈ N. Steps 5–8 of the algorithm adap-
tively update the step size according to the Armijo criteria,
which ensures that the algorithm converges to a stationary
point [95]. In step 9, the variableX is updated according to
the direction of steepest ascent and the step size. As men-
tioned at the beginning of this section, Algorithm 1 be used
to solve Problem 2 by simply replacing An � Ξen(t0) and
Bn � Ξên(tf).

Recall that Ni is the number of state pairs used in QPT
and d is the dimension of the quantum system. Ignoring
the complexity of computing the Armijo step length, which
may be replaced with a constant step size, the worst-case
computational complexity of our optimization procedure is
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O(CNid
3). This is due to the matrix multiplication and ad-

dition performed in Step 4 and the maximum number of
iterations C. Tuning the hyperparameters Ni and C gives
the practitioner control over the computational complexity
of our approach at the potential cost of accuracy. The current
state-of-the-art QPTmethod for closed systems (see[40]) has
computational complexity O(d12) (or O(d6) in a special
case).
In terms of memory, our method has space complexity

O(Nid
2), which is determined by theNi matrices of dimen-

sion d2 that must be stored. The state-of-the-art (see[40])
has space complexity of O(d8) (or O(d4) in a special case).
The number Ni of input–output state pairs used in our QPT
method may be chosen by the designer. However, one can
expect to produce better results with more samples. In our
numerical experiments, we find thatNi = d is a good choice.
Remark 3: The choice ofNi is influenced by both the the-

oretical and practical limitations. In [99], the use of “unitarily
informationally complete (UIC)” quantum states for QPT
was studied. It was shown that as few as d pure states or
two mixed states are needed to uniquely identify a unitary
process. In practice, one may wish to use more states to
overcome noise and error in QST estimates. We have not
studied the use of UIC quantum states in our QPT approach;
however, this is an interesting research direction. �
Remark 4: The computational complexity studied above

is that of the QPT algorithm alone. In practical scenarios,
one should also consider the complexity of QST since QPT
is dependent on state estimates. Popular QST algorithms
proposed in [36], [100], and [101] have complexity O(d4)
andO(d3). Using such algorithms, the computational burden
resides with QPT. �

D. NOTE ON THE SPECIAL CASE WHEN Ni = 1
In the special case where QPT is performed using a single
pair of initial and final states, i.e., Ni = 1, we provide a
closed-form solution and error bounds on the recovered uni-
tary operator Û(tf). To begin, note that the spectral theorem
states that the eigendecomposition of the Hermitian matrix
Ξ
e
(t0) may be taken to be

Ξ
e
(t0) = VΛV

† (11)

where Λ ∈ R
d×d is the diagonal matrix of real eigenvalues

and the columns of V ∈ C
d×d consist of orthonormal eigen-

vectors. Similarly,Ξ
ê
(tf) is taken to be

Ξ
ê
(tf) = Q̂Λ̂Q̂

†
(12)

where Λ̂,Q ∈ C
d×d are matrices of eigenvalues and or-

thonormal eigenvectors, respectively. It is always assumed
that eigenvalues are placed in nondecreasing order. With
this setup, we are able to provide a closed-form solution for
calculating the maximizer Û for Problem 2. The proof of the
following proposition is postponed to Appendix B.
Proposition 5: When Ni = 1, Û = Q̂V † is a solution to

Problems 1, 2, and 3. �

Now that we understand the closed-form solution to Prob-
lem 2 in this special case, it is possible to bound the error
incurred by our approach. For an arbitrary vector of phases
φ � [φ1 φ2 · · · φd]

T ∈ R
d, define a diagonal unitarymatrix

Δφ as

Δφ � diag
(
eıφ1 , eıφ2 , . . . , eıφd

)
. (13)

The following proposition gives an upper bound on the uni-
tary dynamics recovered in terms of the amount of error in

the QST process to obtain the estimate Ξ
ê
(tf). The proof of

the following proposition is postponed to Appendix C.
Proposition 6: Let Ξ

e
(t0) have simple eigenvalues. Then,

let Û be calculated according to Proposition 5 and let E be
the state estimation error defined in (9). Then, the following
error bound holds:

min
φ

∥∥ΔφÛ −U∥∥2
F
� max

i�=j

8d

|λi − λj |2 ‖E‖2

where λi denotes the ith eigenvalue ofΞ
e
(t0). �

Remark 5: A matrix is said to have simple eigenvalues
if none of its eigenvalues are repeated. For Ξ

e
(t0) to pos-

sess this property, it must necessarily be a mixed state. In-
terestingly, mixed quantum states with this property occur
naturally in certain quantum systems, e.g., see the model
in [74, Sec. IV.A.3]. Moreover, sinceΞ

e
(t0) is chosen by the

designer, it may be designed so that its eigenvalues tighten
the bound stated in the previous proposition. �

Proposition 6 shows that from a single initial condition, it
is possible to identifyU up to a diagonal unitary matrixΔφ.
This is because the solution to Problem 2 given by Proposi-
tion 5 remains a solution when multiplied by any diagonal
unitary matrix. In the identification setting studied in [43],
which uses population measurements (which are important
in various applications including physical chemistry [27]), it
is only possible to identify unitary dynamics up to a diago-
nal unitary matrix. However, in general, it may be possible
to uniquely identify a quantum system’s dynamics up to a
global phase using other measurements, such as positive op-
erator valued measurements (POVMs) [102]. Nonetheless,
since the closed-form solution presented in Proposition 5 is
nonunique, more than one set of experimental states is nec-
essary to identify the quantum system’s dynamics using our
QPT formulation. The iterative solution given for the general
case of Ni � 1 can achieve this in a scalable and efficient
manner. Section V, which is devoted to numerical experi-
mentation, gives some examples of the number of states,Ni,
needed for obtaining “good” results.

III. HAMILTONIAN LEARNING
This section will discuss how to use the results of the pro-
posed QPT algorithm (see Section II) to estimate both in-
ternal (see Section III-A) and control (see Section III-B)
Hamiltonians of a closed quantum system.
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FIGURE 3. Summary of QT-enabled QHL. State estimates from QST drive QPT, which estimates a unitary operator that maps the initial state of the
quantum system to those measured at the termination of the experiment. QHL uses QPT’s result to learn an estimate of the system Hamiltonian.

A. RECOVERING THE INTERNAL HAMILTONIAN
Oncewe have estimated Û(tf) usingQPT, we seek to recover
an estimate Ĥ of the internal Hamiltonian. All the unitary
matrices are diagonalizable by a unitary transformation. Sup-
pose that the eigendecomposition of Û(tf) is

Û(tf) = V̂ Θ̂V̂
†
.

Here, Θ̂, V̂ ∈ C
d×d are the diagonal matrix of eigenvalues

and the matrix of orthonormal eigenvectors, respectively.
Then, according to the relationship Û(t) = e−ıĤt, it follows
that

Ĥ =
ı

tf
log

(
Û(tf)

)
=

ı

tf
V̂ log(Θ̂)V̂

†
(14)

where log (Θ̂) is just the usual logarithm applied entrywise
to the diagonal matrix Θ̂. In order for Ĥ to be a unique
estimate, we must limit the duration of the experiment. This
well-known result is in the spirit of theNyquist–Shannon the-
orem for digitally sampling classical signals and is due to the
fact that the logarithm of a complex variable is nonunique.
Proposition 7 ([40] and [103]): To uniquely identify H

from the unitary operatorU(tf), the duration tf of the exper-
iment should satisfy

0 < tf <
π

μmax − μmin
(15)

where μmax and μmin are the maximum and minimum eigen-
values ofH , respectively. �
While, in general, the spectrum ofH is unknown, choos-

ing a sufficiently short sampling time will ensure that this
condition is satisfied. If such a sampling time is employed
and the system Hamiltonian is estimated using the approach
presented above, it was shown in [40] that the following
bound holds: ∥∥H − Ĥ∥∥

F
� π

2tf

∥∥U − Û∥∥
F
. (16)

Hence, bounding the error in the estimate of U bounds the
error in the estimate ofH .

With these results in hand, the time has come to present
the proposed QT-enabled QHL algorithm for identifying an

Algorithm 2: QT-Enabled QHL:

1: Input:Ξ
e

1:Ni
(t0)

2: Perform QST to estimate the final states:
Ξ
ê

1:Ni
(tf)

3: Use Algorithm 1 to solve Problem 2 and
produce Û(tf)

4: Estimate Ĥ according to (14)
5: Return: Ĥ

internal Hamiltonian. This technique utilizes both QST and
QPT, and a visual depiction is given in Fig. 3. The process
is also summarized in Algorithm 2. A set of prepared states
are given to the quantum system and are measured at time tf .
Through repeatedmeasurement acrossmultiple experiments,
QST estimates the state of the quantum system at the termi-
nation of each experiment and returns a matrix of estimates

Ξ
ê

1:Ni
(tf). QPT uses these state estimates to solve Problem 2

and infer a unitary operator Û(tf) that best maps the prepared
input states to the experimentally measured output states.
Using the inferred unitary map, QHL is used to reconstruct
an estimate Ĥ of the system Hamiltonian.
Before concluding this section, an inequality relating the

error in QST to the error in QHL is in order. In particular, we
consider the case whereNi = 1, i.e., a single pair of states is
used in QPT. For any given φ, denote Ûφ �ΔφÛ and let
Ĥφ be the Hamiltonian inferred from Ûφ according to (14).
Then, Propositions 6 and 7 can be combined with (16) to
produce the following result.
Proposition 8: Under the assumptions of Proposition 6

and when the sampling time tf satisfies (15), the following
error bound holds:

min
φ

∥∥H − Ĥφ

∥∥
F
� max

i�=j

4πd

tf |λi − λj |2 ‖E‖2.

�

B. LEARNING THE CONTROL HAMILTONIANS
In the case of a controlled quantum system, we consider a
time-varying Hamiltonian, which may be decomposed as

H(t) =H0 +Hc(t) (17)
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Algorithm 3: QT-Enabled CQHL:

1: Input: {cl : l = 1, 2, . . . , Nc}
2: Initialize: ul = 0 for all l ∈ {1, 2, . . . , Nc}
3: Learn Ĥ0 using Algorithm 2
4: for l = 1, 2, . . . , Nc do
5: Set ul = cl
6: Use Algorithm 2 to learn Ĥ = [Ĥ0 + clĤ l]

7: Estimate Ĥ l = c−1
l [Ĥ − Ĥ0]

8: Set ul = 0
9: Return: {Ĥ0, Ĥ1, . . . , ĤNc}

whereH0 is the internalHamiltonian that appears in (1) and
Hc(t) is the control Hamiltonian. Furthermore, we assume
that the control Hamiltonian has the following structure:

Hc(t) =

Nc∑
l=1

ul(t)Hl

where Nc ∈ N, Hl is a Hermitian matrix for each l ∈
{1, 2, . . . , Nc}, and ul(t) ∈ R is a control input.3 Each Hl

is known as an interaction Hamiltonian, and it describes the
effect of the lth control field on the quantum system. We
emphasize that eachHl is time independent and that the only
temporal dependence is in the real control input ul(t). The
Schrödinger equation becomes

ı
∂

∂t

∣∣ψ(t)〉 =
[
H0 +

Nc∑
l=1

ul(t)Hl

]
︸ ︷︷ ︸

H(t)

∣∣ψ(t)〉 (18)

and the von Neumann equation becomes

ı
∂

∂t
Ξ =

�
H0 +

Nc∑
l=1

ul(t)Hl , Ξ
�
−
. (19)

During the learning phase, i.e., for t ∈ [0, tf ], it is assumed
that the control ul(t) can be placed under a zero-order hold
(ZOH), which removes the time dependence in (18) and (19)
and allows Algorithm 2 to be applied. This is outlined in
Algorithm 3, which we call QT-enabled CQHL. The premise
is to learn theHamiltonians one by one via selectively turning
on the control ul(t) and placing it under a ZOH for the dura-
tion of the sampling time. The value of ul(t) under the ZOH
hold is denoted cl ∈ R. This parameter may be chosen by the
designer and is called a probing control input. First, the inter-
nal Hamiltonian is learned according to Algorithm 1, while
all the control inputs are set to zero. Then, the first control
input is set to c1 (the other inputs remain zero) and the com-
posite (internal and control) Hamiltonian is estimated by re-
peating Algorithm 1. To recover the control Hamiltonian, the
estimated internal Hamiltonian from step one is subtracted
from the composite Hamiltonian learned in the second step.
This process is repeated for all l ∈ {1, 2, . . . , Nc}. At each

3It should be noted that the control input ul(t) and the unitary propagator
U(t) are separate entities despite the notational similarity.

step l, the sampling time tf can be arbitrarily chosen (and
possibly different across steps) as long as it satisfies Proposi-
tion 7 for the composite Hamiltonian,H =H0 + clHl. The
following proposition gives an error bound on the recovery
of the control Hamiltonians when Algorithm 3 is used.
Proposition 9: Let Ĥ0 and Ĥ l, for l = 1, 2, . . . , Nc, be

estimates of the internal and lth control Hamiltonian pro-
duced by Algorithm 3. Furthermore, suppose that Û0 is
the unitary operator produced by QPT for the internal dy-
namics and Û is the unitary operator produced by QPT
for the dynamics governed by the composite Hamiltonian
H =H0 + clH l. Finally, let the sampling time tf used by
QPT satisfy Proposition 7 for both the internal and composite
Hamiltonians. Then, the following error bound on the lth
control Hamiltonian holds:∥∥H l − Ĥ l

∥∥
F
� π

2tf |ck|
(∥∥U − Û∥∥

F
+
∥∥U0 − Û0

∥∥
F

)
.

(20)
�

Remark 6: Consider the special case where QPT uses a
single pair of states to estimate both Û and Û0. A corollary
to Propositions 8 and 9 could be given, which bounds the
error in our estimates of the control Hamiltonians in terms of
the error in QST. �

IV. DATA-DRIVEN MPQC
Once the dynamics (Hamiltonians) of the closed quantum
system are learned, one may turn attention to controlling the
system’s behavior. MPQC is inspired by MPC for classical
systems. Traditionally, MPC works by computing optimal
controls over a short prediction horizon based on a model of
the system’s dynamics [104]. It then implements only the first
control in this optimal sequence. After executing this action,
it measures the state of the system, recomputes an optimal
control sequence based on its new knowledge of the state,
executes the first control action in this sequence, and repeats.
Unlike classical systems, state measurements of quantum
systems are not always available as measurement may cause
decoherence of their states. Hence, MPQC performs MPC
in a closed-loop computer simulation of the quantum system
where its state can be fully known [see Fig. 2(a)]. Once a
control sequence is computed, it can be delivered to a physi-
cal quantum system in an open-loop manner so as to preserve
the coherence of the quantum state [see Fig. 2(b)]. Here, for
the first time, we propose the data-driven MPQC framework,
where the model of the quantum system is inferred by the
QHL algorithm proposed in the previous section.
This article is concerned with controlling a closed

quantum system whose dynamics are of the form (18)
or (19). All the systems studied in the rest of this article
are assumed to be controllable [28], which ensures that
any control problem considered is well posed. For ease of
exposition, the theory of MPQC will be presented in terms
of pure states with comments on the related formulation for
mixed states when necessary.
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TABLE 4. Sample Cost Functions for MPQC

The goal of the controller is to drive |ψ(t)〉 to a desired
state, |ψd〉, via an appropriate control input while minimiz-
ing a cost function. MPQC works by placing the control
vector u(t) under a ZOH on each time interval of length
Δt > 0. If tk = kΔt, the ZOH is realized as u(t) ≡ u(tk)
for all t ∈ [tk, tk +Δt). Let |ψ(tk)〉 denote the state of the
system at time step k ∈ N such that |ψ(t0)〉 is the initial state
at time t0 = 0. The lth element ofu(tk) is denoted by ul(tk).
Finally,H(tk) is the system Hamiltonian at time step k, i.e.,

H(tk) =H0 +

Nc∑
l=1

ul(tk)Hl .

The discrete-time dynamics that advance state |ψ(tk)〉 to
|ψ(tk+1)〉 are given by the solution to the Schrödinger equa-
tion over the time interval [tk, tk +Δt):∣∣ψ(tk+1)

〉
= e−ıH(tk)Δt

∣∣ψ(tk)〉 . (21)

Define an arbitrary cost as g(|ψ(tk)〉,u(tk), tk) where
g : Cd × R

Nc × R → R. Examples of such a cost are given
in Table 4 and discussed later. In many cases, the cost is
chosen independently of time. Let Kp,Kc ∈ N denote the
prediction horizon and control horizon, respectively, for the
controller such that Kc � Kp. During closed-loop quantum
simulation, at each time step tk, MPQC attempts to minimize
the total cost over the prediction horizon Kp by manipu-
lating the control u(tk) over the control horizon Kc. The
optimization problem performed at time step tk is given in
the following:

P4 : minimize
u(ts): s∈Zk:k+Kc

∑
s∈Zk:k+Kp

g
(∣∣ψ(ts)〉,u(ts), ts)

subject to
∣∣ψ(ts+1)

〉
= e−ıH(ts)Δt

∣∣ψ(ts)〉∥∥u(ts)∥∥∞� umax, ∀s ∈ Zk:k+Kp

where umax > 0 is the maximum control magnitude al-
lowed. If Kc < Kp, then for all s > k +Kc, MPQC sets
u(ts) ≡ u(tk+Kc). That is, MPQC will only optimize con-
trols over the horizon Kc—after that, allowing the con-
trol to remain constant—while considering the cost incurred
over the longer horizon Kp. After the optimal sequence{
u(tk),u(tk+1), . . . ,u(tk+Kc)

}
is computed, only the con-

trol action u(tk) is recorded and given to the simulator,
which then returns the next state according to (21). This is
repeated until a control sequence of the desired length is
constructed or the cost g becomes smaller than a designed
threshold. At the termination of this simulation, the sequence
of recorded control actions is given to the physical quantum
system in an open-loop manner.
The choice of cost function g determines the types of

control generated by MPQC, and Table 4 outlines several
different choices. In all cases, a summation over s in Table 4
is the sum over all s ∈ Zk:k+Kp . Cost g1 penalizes the sys-
tem’s state for occupying a forbidden state |ψbad〉. Costs g2
and g3 both reward the system’s state for tending toward the
desired state |ψd〉; however, g3 promotes quick convergence
by considering the distance of the state |ψ(ts)〉 from the
desired state over the entire prediction interval. Cost g2 is
the infidelity between the desired state and the system’s state
at the end of the prediction horizon. In g3, {αs}k+Kp

s=k is a set
of positive weighting parameters that can be designed to put
emphasis on different parts of the trajectory. If one would like
to consider the expense of control, g4 and g5 are a good start-
ing place. A controller utilizing g4 is called a β-minimum
norm controller. Function g4 adds a penalty for the control
expended over the prediction horizon Kp to the state cost
in g2. The term β/(Kpumax) is a scaling parameter, which
ensures that the control cost is the same order ofmagnitude as
the state cost. Here,β ∈ (0, 1]may be chosen by the designer.
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An (α, β)-minimum norm controller is given by optimizing
with respect to g5, which combines the α-weighted average
state cost with the β-weighted control cost. This promotes
quick convergence to the desired state while considering the
cost of actuation.
Solving the classical MPC problem has been a subject of

research interest for many years [105]. We would like to
utilize these methods to solve Problem 4; however, this is
not immediately feasible since the state |ψ(tk)〉 is a complex
variable, and most of these methods are designed to handle
real variables. To overcome this hurdle, we make use of the
isomorphism

|ψ〉 	→
[
R{|ψ〉}
F{|ψ〉}

]

between C
d and R

2d. The MPQC formulation (Problem
4) can then be cast, for the purpose of optimization, into
one involving only real variables. In this article, we make
use of SQP [106], which has been used to solve nonlinear
programs for classical MPC [107] and recently to design
robust quantum gates [78]. SQP solvers are part of many
available numerical optimization packages, including the
MPC toolbox in MATLAB [108].
Remark 7: Many nonlinear programming routines, in-

cluding SQP, require gradients of the cost and constraint
functions with respect to states and controls. These may ei-
ther be computed analytically or numerically approximated.
The literature on QOC provides an exhaustive review of how
these may be computed, and the reader is referred to [61],
[67], and [109] for a few examples of both the analytic and
approximate methods. �

Suppose one wishes to generate a control sequence of
length K ∈ N. If the prediction horizon and control horizon
are taken to be this entire length, i.e., K = Kp = Kc, then
MPQC reduces to QOC. Hence, MPQC can be considered as
a generalization to QOC that allows the practitioner to sim-
plify the optimization problem performed by breaking it into
smaller pieces. This simplification is intrinsically dependent
on the underlying optimization routine used. We use SQP to
solve the optimal control problem. Suppose, for simplicity,
that Kc = Kp in MPQC, i.e., the control horizon and pre-
diction horizon are the same length. The number of decision
variables used by the SQP program that solves Problem 4 is
given by Kp(d+Nc). At each iteration of the optimization
routine, SQP solves a quadratic program, which has com-
plexity that is cubic in the number of decision variables.
That is O(

K3
p(d+Nc)

3
)
. Hence, for large values of K and

Kp < K, one can expect a speedup in the optimization prob-
lem performed at each iteration.
Remark 8: We note that there are several different notions

of “QOC.” The one we refer to in the prior paragraph is
similar to that in which GRAPE is applied: assuming ZOH
on the control input, optimize a given cost function g over
the control horizon K. The differences are twofold. First,
GRAPE attempts to solve this problem via gradient ascent,

which is different than SQP. Second, the cost in GRAPE is
a terminal cost—only the cost of the final state at step K is
considered. QOC, more generally defined, could incur a cost
at each time step as is done in Problem 4. �
Remark 9: The implementation of MPQC in physical sce-

narios is highly dependent on the application. In the case
of superconducting qubits, high-fidelity arbitrary waveform
generators (AWGs) have enabled the physical implementa-
tion of control signals generated by QOC algorithms such as
GRAPE [68]. We, therefore, expect that MPQC could also
be physically implemented by such methods. In general, we
expect MPQC would perform well in any physical scenario
in which QOC has been applied previously. �

So far, MPQC has been formalized. Data-driven MPQC
is the same procedure; however, the Hamiltonians learned in
Section II are used as the simulation’s model. Once a control
sequence is generated using the learned model, it can be de-
livered to the physical system in an open-loop fashion. This
method is validated in Section V on numerical experiments,
and the effect of error in the learned Hamiltonians on the
performance of the proposed data-driven MPQC is analyzed.

A. GENERATING UNITARY GATES
In the previous section, MPQC was used to govern the evo-
lution of the state of a closed quantum system. MPQC can
also be used to generate control sequences for implementing
arbitrary unitary gates. Take the Schrödinger operator equa-
tion

ı
∂

∂t
U(t) =

[
H0 +

Nc∑
l=1

ul(t)Hl

]
︸ ︷︷ ︸

H(t)

U(t) (22)

which describes the evolution of the propagator U(t). This
allows one to ignore the initial state |ψ(0)〉 or density oper-
ator Ξ(0) and only consider what its net evolution is over
time. At time zero, U(0) = I . The objective of the control
may be to generate any number of unitary gates, such as an
X-gate, Y -gate,Z-gate, or Hadamard gate. In this scenario,
the MPQC formulation becomes

P5 : minimize
u(ts): s∈Zk:k+Kc

∑
s∈Zk:k+Kp

g (U(ts),u(ts), ts)

subject to U(ts+1) = e−ıH(ts)Δt U(ts)∥∥u(ts)∥∥∞� umax, ∀s ∈ Zk:k+Kp

where U(ts) is the unitary operator at time step s. A com-
monly used cost function in this control scenario is the “infi-
delity” between the unitary U(ts) and a desired unitary Ud

as follows:

g6 (U(ts)) � 1− 1

d2

∣∣∣tr{U(ts)U
†
d

} ∣∣∣2 . (23)

This infidelity is also referred to as the “gate error.”
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V. CASE STUDIES
In this section, various simulation scenarios are presented
to validate both the proposed QT-based QHL algorithm and
data-driven MPQC. In the first experiment, the accuracy of
the QHL algorithm is assessed for estimating both the in-
ternal and control Hamiltonians. Then, data-driven MPQC
is tested, and its performance is compared to QOC when the
same underlying optimization routine is used. In this section,
the percent error metric

ε(H, Ĥ) �
∥∥H − Ĥ∥∥

F∥∥H∥∥
F

100% (24)

is used to evaluate the recoverability properties of the pro-
posed QHL algorithm. All the experiments were performed
on a basic laptop with 8-GB RAM and an Intel® CoreTM

i5-7300 U CPU @ 2.60 GHz.

A. EXPERIMENT 1
In this experiment, the proposed QHL algorithm is used to
infer the dynamics of a four-qubit network. For the remainder
of Section V, let I denote the 2-by-2 identity matrix, X
denote the Pauli-x operator, Y denote the Pauli-y operator,
andZ denote the Pauli-z operator. The internal Hamiltonian
of the network is

H0 = ω1 X(1) + ω2 X(2) + ω3 X(3) + ω4 X
(4)

+ ω12X
(12) + ω13X

(13) + ω14X
(14)

+ ω23X
(23) + ω24X

(24) + ω34X
(34) .

Here, X(1) =X ⊗ I ⊗ I ⊗ I represents the evolution of
qubit 1 and ω1 is the frequency of this evolution. The term
X(12) �X ⊗X ⊗ I ⊗ I represents the coupling between
qubits 1 and 2 in the network and ω12 denotes the strength
of this coupling. In general,X(i) represents the independent
evolution of the ith qubit and is the matrix defined by a tensor
product of four matrices, which hasX at the ith element of
the tensor product and I at all other locations. The coupling
between the ith and jth qubits is specified by X(ij), which
is the matrix defined as the tensor product of four matrices,
which has X at both the ith and jth locations in the prod-
uct and I at the other locations. The frequency of the ith
qubit is denoted ωi and the coupling frequencies between the
ith and jth qubits are denoted ωij . In the following experi-
ments, ω1 = 0.1 GHz, ω2 = 0.025 GHz, ω3 = 0.075 GHz,
and ω4 = 0.13 GHz; moreover, all qubit coupling frequen-
cies are ωij = 0.01 GHz. Each qubit is controlled by two
external fields. The control Hamiltonian is

Hc(t) =
4∑

l=1

ul(t)X
(l) +

8∑
l=5

ul(t)Z
(l−4)

where Z(l) is defined analogously to X(l). In this experi-
ment, d = 16 is the dimension of the quantum system; how-
ever, only Ni = 8 pairs of initial and final states are used
to infer the system’s Hamiltonians. Random initial states

were generated using quantum entanglement theory labo-
ratory (QETLAB)’s random density matrix function [110],
which generates a random density matrix uniformly accord-
ing to the Hilbert–Schmidt measure. The final states used in
this experiment were generated by evolving the initial states
forward in time according to (19). In addition, the state esti-
mation error (9) is assumed to be a random (traceless) noise.
The sampling time of the final states is chosen as tf = 1ns.
The maximum number of iterations in Algorithm 1, which is
called by Algorithms 2 and 3, is chosen to be C = 15.

One hundred numerical experiments were performed with
various noise intensities. The results using Algorithm 2 to
infer the internal Hamiltonian are depicted in Fig. 4(a). The
recovery error of our proposed QHL method is sublinear
to the level of noise in the experimental data. Next in each
experiment, Algorithm 3 was used to infer the interaction
Hamiltonians. For inferring each control Hamiltonian, H l,
the corresponding control input was placed under a ZOH
with value cl = 1GHz. Fig. 4(b) presents the error in re-
covering the internal and control Hamiltonians over the 100
experiments. The recovery error for the control Hamiltonians
is usually higher than that of the internal Hamiltonian, which
is expected due to the design of Algorithm 3. In both figures,
the y-axis denotes the percent error. In all the numerical
experiments, the percent error in recovering any Hamiltonian
was less than 1%.

B. EXPERIMENT 2
Now, the efficacy of data-drivenMPQCwill be demonstrated
using the same four-qubit network studied in the previous
experiment. The Hamiltonians inferred in the previous ex-
periment, which correspond to the worst-case error, were
given to MPQC. The goal of the control is to drive the
qubit network from the state |0011〉 to the consensus state
|++++〉, where |+〉 � 1√

2
(|0〉+ |1〉). This task is known

as achieving “consensus” in a quantum network or driving
the network to a “consensus state,” i.e., all nodes (qubits) in
the network share the same state [111]. An (α, β)-minimum

norm controller was used with {αs}k+Kp

s=k = {1, 2, . . . ,Kp}
and β = 0.3 to generate a control input offline in simulation.
The control is limited with umax = 1GHz, the prediction
horizon is Kp = 4, the control horizon is Kc = 4, and the
discretization time is Δt = 0.05ns. The optimized control
input, which was calculated using the learned model, was
given to the ground-truth model and the outcome recorded.
As depicted in Fig. 5, data-driven MPQC quickly drove the
qubit network to a consensus state.

C. EXPERIMENT 3
In this insightful experiment, the performance of two differ-
ent MPQC controllers is analyzed in the case of a simple
qubit, where the Hamiltonians are perfectly known and their
efficacy is compared to QOC. The internal Hamiltonian of
the system isH0 = ωZ, the qubit frequency is ω = 5GHz,
and the interaction Hamiltonian is H1 = Y . The control
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FIGURE 4. One hundred numerical experiments were performed for various noise intensities. (a) plots the percent error in recovering the internal
Hamiltonian as a function of average percent noise in the experimental data (the Ni final states) used to infer the Hamiltonian. The circles represent the
outcome of each of 100 experiments and the lines represent the best linear approximation of the outcomes. (b) is a box chart which summarizes the
recovery error for each of the nine Hamiltonians across the 100 numerical experiments performed. The “×” marks are outlying data points, which are
defined as being beyond 1.5 times the interquartile range away from their corresponding box.

FIGURE 5. Results of Experiment 2. (a) Eight control inputs to the qubit network generated by data-driven MPQC. Then, these controls were given to the
ground-truth model of the system. (b) Infidelity between the states of the four ground-truth qubits and their target states at each time step of the
experiment.

is limited with umax = 1GHz and the discretization time is
Δt = 0.01 ns. The system is initiated in the excited state |1〉
and driven to the ground state |0〉.
First, a β-minimum norm controller with β = 0.005 is

considered; second is an (α, β)-minimum norm controller

with {αs}k+Kp

s=k = {1, 2, . . . ,Kp} and β = 0.005. A
prediction horizon of Kp = 5 and a control horizon of
Kc = 2 are used for both of these controllers. If we
allow Kp and Kc to be the entire length of the control
sequence, then MPQC is equivalent to the QOC problem
on that interval. Using this approach, the third controller
is an (α, β)-minimum norm quantum optimal controller.
Fig. 6 depicts the results of this experiment. Fig. 6(a)
plots the control input generated by each controller,

and Fig. 6(b) depicts the evolution of the qubit’s state
along the Bloch sphere in response to each control input.
Moreover, Fig. 7 shows the infidelity between the qubit’s
state and the desired state at each time step for the three
scenarios.
For this simple experiment, it took the basic laptop

discussed at the beginning of Section V roughly 6 s to
compute each MPQC control sequence and over 31 min to
solve the QOC problem despite using the same underlying
optimization procedure. QOC achieved complete
population transfer in the fewest time steps; however,
the (α, β)-minimum norm MPQC achieved quite similar
performance. The β-minimum norm MPQC took longer
to achieve population transfer, which was expected. While
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FIGURE 6. (a) Control input selected by (α, β)-minimum norm QOC in blue, the β-minimum norm MPQC in orange, and the (α, β)-minimum norm MPQC
in green. (b) Evolution of the qubit’s state on the Bloch sphere in response to each corresponding control input.

FIGURE 7. Infidelity of the simulated qubit at time step for each of the
three control scenarios.

the control sequence generated by this controller is longer
than required by the others, it appears to be more smooth.
This may be of practical interest in cases where highly
discontinuous changes in a control field excite unwanted
energy levels in a quantum system.

D. EXPERIMENT 4
For the final experiment, the goal is to generate arbitrary
unitary gates for the qubit system studied in Experiment 3.
We compare the efficacy of MPQC and GRAPE for this
task. Let K ∈ N be the total length of the control sequence.
GRAPE generates a control signal by solving the following
optimization problem:4

P6 : minimize
u(tk): k∈ZK

g6 (U(tK))

subject to U(tk+1) = e−ıH(tk)Δt U(tk)∥∥u(tk)∥∥∞ � umax, ∀k ∈ ZK

Notice that GRAPE only considers a terminal cost as op-
posed to MPQC, which can consider a different cost at each
step in the control sequence. For this comparison, Problem
5 uses the gate error, g6, at each time step as its objective
function. The control and prediction horizons are set to

4The original GRAPE paper [61] considers several optimization prob-
lems. In one scenario, they attempt to maximize the gate fidelity. This is
equivalent to minimizing the gate infidelity, which we consider here. The
hallmark of GRAPE is the optimization procedure used rather than the cost
function.
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TABLE 5. Comparison of MPQC and GRAPE for Generating Quantum Gates

FIGURE 8. Gate error as a function of qubit frequency for the three
single-qubit gates studied in Experiment 4. Control signals optimized by
MPQC (denoted by ◦’s) and GRAPE (denoted by ×’s) for a nominal 5-GHz
qubit were given to a qubit with each new frequency, and the resulting
gate error was recorded. In most cases, the control generated by MPQC
is more robust to uncertainty in the qubit frequency than that of GRAPE.

Kc = 4 andKp = 12, respectively. Problem 5 optimizes the
variableU(tk), which is of dimension d2, at each time step as
opposed to Problem 4, which optimized the variable |ψ(tk)〉
of dimension d at each time step. Thus, the number of
decision variables optimized at each step of SQP inMPQC is
greater than that of Experiment 3. Hence, longer computation
time can be expected. Our GRAPE implementation follows
that of [61], which uses a gradient-based procedure for
solving Problem 6. For this comparison, the control is limited
to umax = 2GHz. The iterative optimization procedures of
both MPQC and GRAPE were set to terminate after the
gate error reached a predefined threshold of 10−3. The qubit
dynamics are the same as in Experiment 3. Unlike MPQC,
the number of control steps, K, must be defined prior to
solving Problem 6 (GRAPE), and there are no established
rules for choosing this parameter. However, MPQC is
designed to iterate through time, solving Problem 5 at each
step, until a desired gate error is achieved. Hence, for this
experiment, MPQCwas performed first andK was recorded.
Then, Problem 6 (GRAPE) was solved using the same value.
Table 5 summarizes the results. For all gates studied, we
found that MPQC offered a significant speedup over GRAPE
and that both the methods achieved low gate errors.
Next, the robustness of the control signals generated by

MPQC andGRAPE is studied. Previously, control signals for

three single-qubit gates were optimized under the assump-
tion that the qubit’s frequency was 5 GHz. These control
signals were then provided to qubits whose frequency dif-
fers from the 5-GHz value. Fig. 8 plots the resulting gate
errors as a function of qubit frequency. In this figure, circles
represent data points for MPQC and crosses represent data
points for GRAPE. These points are color-coded to indicate
which unitary gate they correspond to. We observe that, in
almost all cases, MPQC generated gates, which are more
robust to uncertainty in the qubit frequency.

VI. CONCLUSION
This article introduced the concept of data-driven MPQC to
control general closed quantum systems, where no nominal
model is provided. To this end, a novel and efficient approach
for QHL was proposed. To learn the internal and control
Hamiltonians, a novel QPT algorithm was developed, which
involves optimization on the unitary group. The learned
Hamiltonians were then used byMPQC to compute quantum
control sequences. The proposed QHL algorithm allows for
inferring the Hamiltonians of high-dimensional quantum
systems due to its low memory requirement. In addition, the
MPQC framework is flexible and works for a variety of con-
trol costs. In our experiments, when an SQP solver is used,
MPQC is observed to be much faster at computing control
sequences than the current state-of-the-art, QOC. The suc-
cess of many quantum technologies depends on the ability to
precisely characterize and control quantum systems, and our
results offer a promising approach for controlling quantum
systems with uncertainty. Our results can serve as guidelines
for designing robust and efficient data-driven control policies
for the intervention in quantum dynamics such as interactions
of atoms and molecules or superconducting qubits.

APPENDIX
A. PROOF OF PROPOSITION 4
Proof: Let X,Z ∈ C

d×d be arbitrary matrices. By defini-
tion of the cost, we have

fB(X +Z) =

Ni∑
n=1

tr
{
Bn [X +Z]An [X +Z]

† }

=

Ni∑
n=1

tr
{
BnXAnX

† +BnXAnZ
†

+ BnZAnX
† +BnZAnZ

†}
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= fB(X) + fB(Z)

+

Ni∑
n=1

tr
{
BnXAnZ

† +BnZAnX
†} .

(25)

Using the linearity and cyclic properties of the trace, we have

tr
{
BnXAnZ

† +BnZAnX
†}

= tr
{
BnXAnZ

†}+ tr
{
ZAnX

†Bn

}
= 2R

{
tr
{
BnXAnZ

†}}
= 2R

{
tr
{
Z†BnXAn

}}
. (26)

Above, the second equality holds because, for any com-
plex number c ∈ C, the relationship c+ c∗ = 2R{c} holds.
Since eachAn andBn are positive semidefinite, they admit
principal square roots P n and Ln, respectively, such that
An = P †

nP n andBn = L†
nLn. Thus

fB(Z) =

Ni∑
n=1

tr
{
BnZAnZ

†}

=

Ni∑
n=1

tr
{
LnZP

†
nP nZ

†L†
n

}

=

Ni∑
n=1

∥∥LnZP
†
n

∥∥2
F

�
Ni∑
n=1

∥∥Ln

∥∥2
F

∥∥P n

∥∥2
F

∥∥Z∥∥2
F

(27)

which shows that fB(Z) grows on the order O(‖Z‖2F). The
definition of the Frobenius norm and its submultiplicative
property were used to obtain (27). Combining (25)–(27)
gives

fB(X +Z) = fB(X) + 2

Ni∑
n=1

R
{
tr
{
Z†BnXAn

}}
+ O(∥∥Z∥∥2

F

)
= 2R

{
tr
{
Z†

Ni∑
n=1

BnXAn

}}
+ fB(X) +O(∥∥Z∥∥2

F

)
which holds for all X,Z ∈ C

d×d. Hence, this expression
also holds for allZ ∈ TX(d) ⊂ C

d×d, and using Proposition
3, the desired result follows. �

B. PROOF OF PROPOSITION 5
Proof: Let Y ∈ U(d) and N ,A ∈ C

d×d. When A is Her-
mitian andN is diagonal, it is well known that the solution

to the Brockett optimization problem

“Y = arg max
Y ∈U(d)

tr
{
NY AY †}

is given by some “Y whose rows are orthonormal eigenvec-

tors ofA [95]. Hence, by the spectral theorem, “Y A “Y
†
is a

diagonal matrix whose diagonal entries are the eigenvalues

ofA. Note thatN “Y A “Y
†
is also a diagonal matrix. Hence,

the Brockett function is maximized by choosing the rows of
“Y to be an appropriate permutation of the eigenvectors ofA.
Next, we consider the implications of the previous dis-

cussion on Problem 2. Define the orthogonal transformation

Y � Q̂†
X , where Q̂ is the orthogonal matrix of eigenvec-

tors ofΞ
ê
(tf), as defined in (12). In Problem 2, the variableX

is unitary; hence, the variableY is unitary as well. Using (12)
and the cyclic property of the trace, Problem 2 becomes

“Y = argmax
Y ∈U(d)

tr
{
Λ̂Y Ξ

e
(t0)Y

†}
which is an optimization problem of the form discussed at
the beginning of the proof. Once a maximizer “Y to this
problem is obtained, we can recover the unitary maximizer
to Problem 2 as “X = Q̂ “Y . Recalling the prior discussion,
since Λ̂ is diagonal and Ξ

e
(t0) is Hermitian, the solution

to this problem is obtained by choosing the rows of Y to
be some permutation of the eigenvectors of Ξ

e
(t0) to max-

imize tr{Λ̂Y Ξ0Y
†} = tr{Λ̂Λ}. Since the eigenvalues in

decompositions (11) and (12) are nonnegative and are in
nondecreasing order, “Y = V † is a solution to the problem.
Therefore, Û = “X = Q̂V † is a solution to Problem 2. In
the case of pure states, Problem 2 is equivalent to Problem
1, so Û = Q̂V † solves Problem 1 as well. In the case of
mixed states, a similar conclusion is drawn for solutions of
Problems 2 and 3. �

C. PROOF OF PROPOSITION 6
Prior to presenting the proof, we provide a few remarks.
Since Ξ

e
(t0) and Ξ

e
(tf) are related by a unitary transforma-

tion, they share the same eigenvalues. Hence, given the as-
sumption that Ξ

e
(t0) has simple eigenvalues, so does Ξ

e
(tf).

The eigenspace associated with each simple eigenvalue is of
dimension one. Therefore, the orthonormal eigenvectors of
each matrix are unique up to a shift by a complex phase. For
instance, let qk represent an arbitrarily computed unit-length
eigenvector of Ξ

e
(tf) corresponding to the eigenvalue λk.

Namely, qk represents the kth column Q from (12). Then,
all possible unit-length eigenvectors (corresponding to λk)
ofΞ

e
(tf) can be represented as

Ξ
e
(tf) e

ıφkqk = λk e
ıφkqk

for an arbitrary phase φk ∈ R. It should also be noted that,
using (8) and (11),

Ξ
e
(tf) =

[
U(tf)V

]
Λ
[
U(tf)V

]†
(28)

4100623 VOLUME 3, 2022



CLOUÂTRÉ et al.: MODEL-PREDICTIVE QUANTUM CONTROL VIA HAMILTONIAN LEARNING Engineeringuantum
Transactions onIEEE

is a valid spectral decomposition of the final state; the or-
thonormal eigenvectors ofΞ f are the columns of the product
U(tf)V . Hence, if the error E is zero, the estimate Û of
Proposition 5 exactly recovers U(tf) up to a diagonal phase
shift Δφ. The proof of Proposition 6 follows below in the
general case for any estimation error E.
Proof: Suppose, without loss of generality, that U(tf) =

QV †. Then∥∥ΔφÛ −U∥∥2
F
=

∥∥ΔφQ̂V
† −QV †∥∥2

F

=
∥∥ΔφQ̂−Q∥∥2

F
. (29)

The second equality follows from the unitary invariance of
the Frobenius norm. It follows that

min
φ

∥∥ΔφÛ −U∥∥2
F
= min

φ

∥∥ΔφQ̂−Q∥∥2
F
. (30)

If for each pair of columns qk and q̂k of Q and its estimate
Q̂, respectively, the following inequality holds:

min
φk

∥∥eıφk q̂k − qk
∥∥2 � max

i �=j

8∣∣λi − λj

∣∣2 ∥∥E∥∥2 (31)

then

min
φ

∥∥ΔφQ̂−Q∥∥2
F
=

d∑
k=1

min
φk

∥∥eıφk q̂k − qk
∥∥2

� max
i�=j

8d∣∣λi − λj

∣∣2 ∥∥E∥∥2
which via (30) proves the desired result. Hence, it only re-
mains to show that (31) holds.
Wewill now prove (31) for an arbitrary k ∈ {1, 2, . . . , d}.

Therefore, qk and q̂k represent the kth columns ofQ and its
estimate Q̂, respectively. For an arbitrary angle ϑ ∈ R, note
that∥∥eıϑq̂k − qk

∥∥2 =
(
e−ıϑq̂†k − q†k

)(
eıϑq̂k − qk

)
=

(
q̂†kq̂k + q†kqk

)− 2R
{
e−ıϑq̂kqk

}
= 2

(
1−R

{
e−ıϑq̂†kqk

})
. (32)

The last equality above holds because qk and q̂k are unitary.
Fix the angle ϑ to be ϑ0 such that R{e−ıϑ0 〈q̂k|qk〉} =∣∣ 〈q̂k|qk〉 ∣∣. Since qk and q̂k are unit length, |〈q̂k|qk〉| � 1
and

R
{
e−ıϑ0 q̂†kqk

}
=

∣∣ 〈q̂k|qk〉 ∣∣
�

∣∣ 〈q̂k|qk〉 ∣∣2
from which (32) provides∥∥eıϑ0 q̂k − qk

∥∥2 � 2
(
1− |〈q̂k|qk〉|2

)
. (33)

Since the columns ofQ form a basis for Cd, it is possible
to rewrite q̂k as

q̂k =

d∑
m=1

〈q̂k|qm〉 qm . (34)

Next, using the orthonormality of the eigenvectors, observe
that∥∥∥[Ξe (tf)− λkI]q̂k

∥∥∥2= ∥∥∥[Ξe (tf)− λkI
] d∑
m=1

〈q̂k|qm〉 qm
∥∥∥2

=
∥∥∥ d∑

m=1
m �=k

〈q̂k|qm〉 (λm − λk) qm

∥∥∥2

=

d∑
m=1
m �=k

∣∣ 〈q̂k|qm〉 (λm − λk)
∣∣2

=
d∑

m=1
m �=k

(λm − λk)
2 ∣∣ 〈q̂k|qm〉 ∣∣2

� min
i�=j

(λi − λj)
2

d∑
m=1
m �=k

∣∣ 〈q̂k|qm〉 ∣∣2
= min

i�=j

(
λi − λj

)2 (
1− ∣∣ 〈q̂k|qk〉 ∣∣2) .

(35)

The first equality follows from (34), the second from the
eigenrelation between Ξ

e
(tf) and its eigenvector qk, and the

third equality comes from applying the definition of the 2-
norm and the orthogonality of the columns of Q. The final
equality follows from the fact that q̂k is unitary and qm for
m ∈ {1, 2, . . . , d} forms an orthonormal basis. On the other
hand, we have∥∥[Ξe (tf)− λkI]q̂k

∥∥ =
∥∥[Ξê(tf)−E − λkI

]
q̂k

∥∥
�

∥∥[Ξê(tf)− λkI
]
q̂k

∥∥+
∥∥Eq̂k∥∥

�
∣∣λ̂k − λk

∣∣ ∥∥q̂k∥∥+
∥∥E∥∥ ∥∥q̂k∥∥

=
∣∣λ̂k − λk

∣∣+ ∥∥E∥∥
� 2

∥∥E∥∥ . (36)

While deriving the previous inequality, we have used the
following facts:

1) the definitionΞ
ê
(tf) = Ξ

e
(tf) +E;

2) the triangle inequality;
3) the absolute homogeneity property of the 2-norm and

submultiplicative property of the operator norm;
4) the fact that q̂k is unit length;

5) for the perturbed Hermitian matrix Ξ
ê
(tf) = Ξ

e
(tf) +

E, Weyl’s celebrated eigenvalue perturbation inequal-
ity states that

∣∣λ̂k − λk

∣∣ � ∥∥E∥∥ for all k.

Together, (35) and (36) produce

1− ∣∣ 〈q̂k|qk〉 ∣∣2 � max
i �=j

4∣∣λi − λj

∣∣2 ∥∥E∥∥2 . (37)
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Together, (33) and (37) give∥∥eıϑ0 q̂k − qk
∥∥2 � max

i�=j

8∣∣λi − λj

∣∣2 ∥∥E∥∥2 .
Hence

min
φk

∥∥eıφk q̂k − qk
∥∥2 � max

i �=j

8

|λi − λj |2
∥∥E∥∥2

which proves that (31) holds and the proposition is
proved. �

D. PROOF OF PROPOSITION 9
Proof: Algorithm 3 estimatesHk according to

Ĥk =
1

ck

[
Ĥ − Ĥ0

]
.

Equation (16) allows the following deductions:∥∥Hk − Ĥk

∥∥
F
=

∥∥Hk − 1

ck

[
Ĥ − Ĥ0

]∥∥
F

=
1

|ck|
∥∥Ĥ − Ĥ0 − ckHk

∥∥
F

=
1

|ck|
∥∥Ĥ − [H0 + ckHk] +H0 − Ĥ0

∥∥
F

� 1

|ck|
(∥∥Ĥ − [H0 + ckHk]

∥∥
F

+
∥∥H0 − Ĥ0

∥∥
F

)
� π

2tf |ck|
(∥∥U − Û∥∥

F
+
∥∥U0 − Û0

∥∥
F

)
which proves the desired result. �
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