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Understanding, discovery, and synthesis of
2D materials enabled by machine learning

Byunghoon Ryu,a Luqing Wang,bc Haihui Pu,ad Maria K. Y. Chanbe and
Junhong Chen *ad

Machine learning (ML) is becoming an effective tool for studying 2D materials. Taking as input computed

or experimental materials data, ML algorithms predict the structural, electronic, mechanical, and

chemical properties of 2D materials that have yet to be discovered. Such predictions expand

investigations on how to synthesize 2D materials and use them in various applications, as well as greatly

reduce the time and cost to discover and understand 2D materials. This tutorial review focuses on the

understanding, discovery, and synthesis of 2D materials enabled by or benefiting from various ML

techniques. We introduce the most recent efforts to adopt ML in various fields of study regarding 2D

materials and provide an outlook for future research opportunities. The adoption of ML is anticipated to

accelerate and transform the study of 2D materials and their heterostructures.

Key learning points
1. Case studies for using ML toward the understanding, discovery, and synthesis of 2D materials.
2. The generation and gathering of training data for ML toward the discovery of 2D materials.
3. The key descriptors among a large number of characteristics of 2D materials for ML algorithms.
4. The usability of ML techniques in various fields of study related to 2D materials.
5. The applicability of ML techniques in future 2D materials research.

1. Introduction

Since the discovery of graphene, two-dimensional (2D) materi-
als have been considered wonder materials that can lead to
significant advancements in applications such as photovol-
taics, semiconductors, catalysts, and sensors. Due to this great
expectation, a large number of new 2D materials, such as
transition metal dichalcogenides (TMDs), carbides/nitrides/
carbonitrides (MXenes), and borides (MBenes), have been dis-
covered and appended to the 2D materials family.1 However,
only the tip of the iceberg has been revealed. According to a
recent study performed using density functional theory (DFT),

there are nearly 2000 2D materials which may be exfoliated
from their bulk-layered counterparts.2 Furthermore, van der
Waals heterostructures intentionally made up of combinations
of stacked 2D materials significantly increase the total number
of possible candidates in the 2D materials family.

Unfortunately, conventional experimental and computa-
tional approaches can scarcely keep up with the rapidly growing
demands in the study of 2D materials. In addition, both
experimental methods and computational simulations using
first-principles calculations, such as high-throughput DFT,
require considerable time and cost, which slows progress in
2D materials study. In recent years, machine learning (ML) has
become an effective tool for studying a wide variety of materi-
als, and 2D materials are no exception. Using the structural,
electrical, thermodynamic, and chemical features of already-
known or simulated 2D materials, ML algorithms intelligently
interpret complicated interconnections and correlations
among such features, in an attempt to make predictions of
unknown characteristics of new 2D materials.3 Moreover, once
trained, ML models can make very rapid predictions, making
ML a promising tool for evaluating a large number of 2D
materials. Therefore, the adoption of ML efficiently enables a
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wide variety of studies, including the understanding, discovery,
and synthesis of 2D materials.

There are a few recent reviews about ML applications in
materials research,4–6 but they tend to cover the general use of
ML in materials and mainly focus on the prediction of materi-
als properties, which is one of the most common applications
of ML. Therefore, a comprehensive review specifically concen-
trated on ML-enabled studies of 2D materials is still much
needed. In this tutorial review, we condense and introduce the
recent adoptions of ML in the field of 2D materials. Focusing
on the understanding, discovery, and synthesis of 2D materials,
we provide a comprehensive description and future outlooks.
Starting from the review of various ML algorithms for super-
vised, unsupervised, and semisupervised learning, we describe
how these algorithms have been applied to the specific study of

2D materials. More specifically, we discuss how various regres-
sion and classification algorithms can process labeled and
unlabeled data and extract meaningful predictions that are
otherwise difficult to detect. Such predictions enabled by ML
algorithms are beneficial for understanding the mechanical,
electrical, and chemical properties of 2D materials and their
heterostructures that have yet to be discovered.

Furthermore, ML accurately identifies the layer thickness
and size of 2D materials prepared by the mechanical transfer
method7–12 and predicts the synthesis probability of 2D
materials,13 which contributes to innovative synthesis
approaches. Studies on the use of ML in the application of
2D materials in sensing14,15 and catalysis16,17 are also pre-
sented. Finally, we present future opportunities that could be
an excellent starting point for researchers seeking to use ML in
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the field of 2D materials. It is highly anticipated that ML could
significantly promote the study of 2D materials. Therefore, this
review not only can inspire novice researchers but also guide
mature researchers who are interested in applying ML in their
studies.

2. Machine learning (ML) for 2D
materials research
2.1. Fundamental ML algorithms

Machine learning (ML) approaches, as a subset of artificial
intelligence (AI), are a group of algorithms which seek to
determine the underlying connectivity among data. This pro-
cess is referred to as ‘‘learning’’, in which ML algorithms are
trained to review a specific data set and predict reliable out-
comes upon new incoming data. Different from physics-based
modeling, ML prediction is a type of data-driven decision-
making process that can be self-improved by experiencing more
data sets without direct reprogramming. Before discussing
specific research examples that used ML to explore 2D materi-
als, we first provide an overview of the ML techniques, followed
by illustrative examples. An ML approach can be performed by
four steps: data preparation, model selection, training, and
evaluation. In data preparation, the dataset is collected, nor-
malized or standardized, subjected to outlier removal (if appro-
priate), and split into training and testing, or training,
validation, and testing subsets. Training consists of determin-
ing parameters to give functions that map inputs to outcomes
in the training data (i.e., ML models). Cross validation is
performed by calculating the prediction errors of the ML
models on validation data, in order to adjust and optimize
the hyperparameters used in ML model training. Often, N-fold
cross validation is used, in which the training/validation data is
split into N subsets, and the training is performed on N � 1

subsets while validation is performed on the last subset, and
the whole process is repeated N times. Testing is using the ML
models on data set aside, i.e., not used in training or validation,
to determine the accuracy of prediction. Evaluation can be
performed by using the various measures of error which
compare the original and predicted data. Depending on how
data is handled, ML techniques mainly comprise three cate-
gories: supervised, unsupervised, and semisupervised learning,
in which specific tasks such as regression, classification, clus-
tering, and feature dimensionality reduction are performed.
Fig. 1a and Table 1 illustrate the different types of ML techni-
ques and representative ML algorithms that have been widely
used for 2D materials research.

The first and most common type of ML is supervised
learning, which requires a large volume of pre-labeled data.
The labeled data implies that outcomes for given inputs are
correctly defined, which trains ML algorithms in the way that a
teacher who already knows the answers (labeled data) teaches
students (ML algorithms). Conceptually, supervised learning is
the process of finding a mapping function, f ({x}), that can give
outputs close to the labeled values of the original datasets for
given inputs, {x}. The trained ML algorithms in supervised
learning make predictions by ‘‘classification’’ or ‘‘regression’’
using known data. In classification, ML tries to find the best
category (‘‘class’’) to which a given input dataset likely belongs.
Such classification models are beneficial for answering ‘‘yes or
no’’ or discrete questions, such as ‘‘the feasibility of synthesiz-
ing 2D materials’’ or ‘‘the layer number of 2D materials’’.
Regression, on the other hand, predicts continuous outputs
from a given dataset. In other words, supervised regression
results in a specific numerical output that is as close as possible
to labeled outputs in the training data instead of producing
discrete results. Therefore, regression is suitable for predicting
the properties of 2D materials with specific values such as band
gaps, mechanical modulus, and formation energies.

A few ML algorithms commonly used for supervised learn-
ing to study 2D materials are support vector machine (SVM),
least absolute shrinkage and selection operator (LASSO), and
random forest (RF). SVM is one of the most robust ML training
algorithms for handling classification18 and regression (i.e.,
support vector regression (SVR)) problems. Based on statistical
learning frameworks, SVM optimizes the process (Fig. 1b) to
determine the hyperplane (red line) that bisects the maximized
margin (the distance between the black dashed lines) and
separates the datasets into different classes by choosing the
appropriate support vectors (circular and star-shaped dots
overlapped by dashed lines). Mathematically, the hyperplane
is a set of point x that satisfies wTx � b = 0, where w is the
normal vector to the hyperplane and b is the half distance of the
margin.

LASSO is a type of linear regression algorithm that uses
regularization to shrink the data values towards a central point,
such as the mean (Fig. 1c). Its objective is to find the coeffi-
cients of a fitting curve, which minimizes a loss function (least
square errors plus the L1 norm, which is defined as the sum of
the absolute values of the coefficients). In other words, for

Junhong Chen

Junhong Chen is currently a Crown
Family Professor of Molecular
Engineering at Pritzker School of
Molecular Engineering at the
University of Chicago and lead
water strategist at Argonne
National Laboratory. Chen
received his PhD in mechanical
engineering from the University of
Minnesota in 2002. His research
interest lies in molecular engi-
neering of nanomaterials and
nanodevices, particularly hybrid
nanomaterials featuring rich

interfaces and nanodevices for sustainable energy and environment.
His approach is to combine multidisciplinary experiments with first-
principles calculations to design and discover novel nanomaterials for
engineering various sensing and energy devices with superior
performance.

Chem Soc Rev Tutorial Review



1902 |  Chem. Soc. Rev., 2022, 51, 1899–1925 This journal is © The Royal Society of Chemistry 2022

input vector x and target vector y, LASSO minimizes

jy� wTxj
�� ��

2
2 þ a wj jj j1

n o
, where w is the vector of fitted coeffi-

cients, in contrast with ordinary least squares which minimizes

y� wTx
�� ���� ��

2
2

n o
. The parameter a is used for regularization and

is typically determined by minimizing cross validation errors.
LASSO is advantageous in regression problems in its ability to
avoid overfitting, which enhances the generalizability of the
regression model and thus increases prediction accuracy.
Furthermore, LASSO performs variable (coefficient) selection,
making the coefficients of trivial variables zero and automati-
cally ranking the remaining variables, and thus showing which
variables are more important than others. This variable selec-
tion capability is beneficial for increasing accuracy and provid-
ing interpretability in many ML problems with a large number
of possible input variables (input features).

Similar to LASSO, ridge regression (RR) and kernel ridge
regression (KRR) are also widely used and robust supervised
algorithms. RR estimates the coefficients of multiple-regression
models and is used where independent variables are highly

correlated. In RR, the quantity y� wTx
�� ���� ��

2
2 þ a wj jj j2

n o
is mini-

mized. The key difference between RR and LASSO is that RR
uses the L2 norm for regularization whereas LASSO uses the L1
norm, which results in small coefficients being more strongly

penalized by LASSO than by RR. Therefore, while both RR and
LASSO prevents overfitting, LASSO is more effective in model
reduction. KRR combines RR with the kernel trick, which
means learning a function in the space induced by the respec-
tive kernel. Instead of explicitly transforming data in raw
representation into feature vector representations, KRR simply
computes the inner products between the images of all pairs of
data in the feature space. The amount of calculation signifi-
cantly reduces for only access to the kernel and avoiding
explicit computation of the coordinates.

Like SVM, random forest (RF) is a robust algorithm widely
used for both classification and regression. RF is an ensemble
of decision trees constructed by random samples selected from
the original training data set (Fig. 1d). This random sampling
process, known as ‘‘bagging (or bootstrapping)’’, repeatedly
replaces the training set of decision trees. The RF fits the
decision trees to the repeatedly updated samples and outputs
the class most frequently selected by decision trees for the
classification. In regression, an RF model outputs the mean or
average of predictions returned by each tree. Additionally, the
RF helps to rank the importance of variables by the order of
nodes and correct overfitting issues observed in a decision tree.
Besides, more advanced methods have been developed to
improve RF, such as gradient boosting machine (GBM) and
extreme gradient boosting (XGBoost). GBM is a single strong

Fig. 1 Common ML algorithms for the study of 2D materials. (a) Types of ML. (b–g) Representative ML algorithms including SVM, LASSO, RF, NN, K-
means, and PCA, respectively.
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prediction model in the form of an ensemble of weak predic-
tion decision trees (i.e., shallow trees having high bias), which
trains and improves the ensemble by iteratively adding pre-
vious weak trees, eventually reducing the high bias. Building
upon GBM, XGBoost uses a more regularized model formaliza-
tion that prunes the trees, which lowers the variance, thereby
preventing overfitting. Furthermore, XGBoost builds trees in
parallel, while GBM is sequential, resulting in faster predictions
than GBM.

Furthermore, K-nearest neighbor (KNN) is a non-linear
classifier that finds decision boundaries from training data
and sorts testing data into various categories. Once a constant K
is initially defined, the algorithm examines the K-nearest data
around each testing data. Subsequently, testing data is
assigned to a category where a majority among K-nearest data
belongs.

In addition, the neural network (NN) shown in Fig. 1e
consists of input, hidden, and output layers and adaptively
learns highly complex non-linear relationships between the
input features and target outputs (i.e., labels of the original
data). The input layer delivers input features to hidden layers
comprised of neurons. Each neuron is connected to all the

neurons from the previous layers and adds up the input
features multiplied by weights. The weighted sum of the input
features is further delivered to the output layer, where the
activation function determines the predicted variables. A series
of such processes is repeated until the NN finds the optimal
weights that minimizes the difference between prediction and
labels (i.e., target outputs). With many hidden layers, the deep
neural network (DNN) incrementally correlates input features
with desired outcomes. There are several advantages of the
DNN: (1) automatic extraction of features from inputs without
human intervention (i.e., DNN does not require additional
labor to assign labels), (2) ability to handle non-linear and
complex problems, and (3) high predictive accuracy by increas-
ing learning epochs, neurons, and hidden layers.

Unlike supervised learning in which training data are
labeled in advance, unsupervised learning attempts to deter-
mine new patterns and distribution from unlabeled data. For
example, unsupervised clustering divides data into individual
groups with similar features. For materials research, data
belonging to the same group potentially can be considered to
have similar characteristics in material properties or synthesiz-
ability. Prime examples of unsupervised learning are K-means

Table 1 ML types and description

ML class Task Method Description

Supervised Regression Support Vector Machine (SVM) It optimizes the process to determine the hyperplane that bisects the maximized
margin and separates the datasets into different classes by choosing the
appropriate support vectors.

Least Absolute Shrinkage and
Selection Operator (LASSO)

A linear regression that uses regularization to reduce the number of fitted
coefficients, with advantage of avoiding overfitting.

Random Forest (RF) An ensemble of decision trees. It helps to rank the importance of variables by
the order of nodes and correct overfitting in one decision tree.

Neural Network (NN) NN learns complex non-linear relationships between the features and target
with the advantages of (1) automatic extraction of features from inputs without
human intervention, (2) ability to handle non-linear and complex problems, and
(3) high predictive accuracy by increasing learning epochs, neurons, and hidden
layers.

Kernel Ridge Regression (KRR) It combines ridge regression with the kernel trick which learns a function in the
space induced by the respective kernel. It simply computes the inner products
between the images of all pairs of data in the feature space.

Classification Support Vector Machine (SVM) See above.
Random Forest (RF) See above.
K-Nearest Neighbor (KNN) A non-linear classifier that finds decision boundaries and sorts data into various

categories.
Linear Discriminant Analysis
(LDA)

It classifies the data by creating an axis that maximizes the distance between the
means of categories while minimizing the scatter. Like PCA, it can reduce the
dimension of the data.

Neural Network (NN) See above.
Naive Bayes It is a probabilistic classifier considering all input features independently. Thus,

each feature equally contributes to drawing the estimation. It runs well with
only a small number of training data.

Unsupervised Clustering K-Means clustering Clusters samples into K groups based on distances.
Hierarchical clustering Starts from merging two most similar objects, and proceeds through an iterative

process that identifies and merges the two most similar clusters until the final
state, in which each cluster is distinct from other clusters.

Dimensionality
reduction

Principal Component Analysis
(PCA)

Widely employed to reduce the dimension of a large data set by computing the
principal components that constitute a set of orthonormal bases on the data.
Typically the first few to few dozen principal components, which explain most of
the variance in the data, are taken as input and the rest is ignored.

Semisupervised Classification Support Vector Machine (SVM) It can first classify only the labeled data, and then predict the probability for
unlabeled data.

Positive and Unlabeled (PU)
learning

A binary classifier that deals with two sets of data, the positive set P (labeled)
and a mixed set U (unlabeled).

Chem Soc Rev Tutorial Review



1904 |  Chem. Soc. Rev., 2022, 51, 1899–1925 This journal is © The Royal Society of Chemistry 2022

clustering and principal component analysis (PCA). The
K-means algorithm works by finding mutual similarity between
samples and clustering them into groups. Its goal is to achieve
high similarity within-cluster while keeping low similarity inter-
cluster. Technically, the K-means algorithm iteratively and
continuously updates the centers (or centroids) of clusters until
the variances of each cluster are minimized. For example, as
illustrated in Fig. 1f, to reach the clustered result, K-means first
generates three centroids of clusters at random locations of the
data space and assigns data points to the nearest cluster based

on the Euclidean distance (d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
) to the centroids.

Once the initial clusters are established, the mean variance
(sum of d2) of each cluster is evaluated and the centroids
updated. These steps are iterated until the mean value of the
variances saturates, indicating the formation of optimal
clusters.

PCA is a nonparametric statistical technique most widely
employed to reduce the dimension of a large data set in
exploratory data analysis while minimizing the loss of informa-
tion. Such data reduction is realized by computing the principal
components that constitute a set of orthonormal bases on the
data, where only the first few principal components are sig-
nificant and the rest is ignored. For example, the 2D data points
shown in Fig. 1g tend to be on a straight line (y = x), which
implies that such data contain redundant features. To reduce
redundancy (lower the dimensionality), PCA first looks for a
new axis (PC1) that maximizes the variance of projected data,
and then another new axis (PC2) orthogonal to it. The data
points show minimal variance along PC2, which means that
PC2 is not as important as PC1 to represent the data. In this
example, the dimension of data is lowered from 2-D (x, y) to 1-D
(PC1). By ignoring PC2, PC1 becomes the new axis representing
the original data without losing too much information. Often-
times, PCA is used prior to supervised regression or classifica-
tion, in which the reduced data dimensionality afforded by PCA
can lead to more compact supervised ML models with less
overfitting and better generalizability.

Another straightforward yet powerful unsupervised learning
method is hierarchical clustering, which is an algorithm that
iteratively groups similar objects into multi-level clusters.19 It
starts from merging two most similar objects, and proceeds
through an iterative process that identifies and merges the two
most similar clusters until the final state. The final state is a set
of clusters in which each cluster is distinct from other clusters
and the objects within each cluster are similar. The distance
between any two clusters is called the linkage distance. The
linkage criteria determine from where distance is computed.
Single-linkage computes the minimum distance between two
objects from two clusters, while complete-linkage takes the
maximum distance, and mean or average-linkage takes the
mean distance.

Semisupervised learning poses in between supervised and
unsupervised learnings, playing its role when handling datasets
in which only a few are labeled (supervised), but the rest is
unlabeled (unsupervised). Such semisupervised learning is a

practical ML model for dealing with many real-world classifica-
tion and clustering problems associated with predicting out-
comes based on a dearth of correct information. In 2D
materials research, for example, semisupervised learning can
be used to classify and predict the synthesizability of 2D
materials where there are a few 2D materials known to be
synthesizable (labeled as ‘‘Yes’’) and many unknown 2D mate-
rials yet to be synthesized. Semisupervised learning is the most
challenging ML approach compared with others and thus many
algorithms are under development in this field. Specifically, the
SVM shown in Fig. 1b can be applied to classify mixed datasets
(labeled and unlabeled). The SVM first classifies such datasets
using only labeled data, and predicts the probability of unla-
beled data belonging to each class. Such probabilities in SVM
are estimated using Platt scaling, which converts the outputs
from the classification model into a probability distribution.
Subsequently, unlabeled data showing high probability (i.e., a
high confidence level) at a specific class is considered pseudo-
labeled and added to the original training data. Finally, the
augmented dataset is used for training the SVM.

Another algorithm widely used in semisupervised learning is
positive and unlabeled (PU) learning. PU learning is a binary
classifier that deals with two sets of data: the positive set P
(labeled) and a mixed set U (unlabeled). In PU learning, various
techniques that are used for a supervised classifier can be
adopted. The PU algorithm first randomly selects a few unla-
beled data and considers them as positive. Then, such positive
and pseudo-positive data are classified using classifiers, and
the probability of the pseudo-positive data being positive is
evaluated. By repeating this process, PU learning probabilisti-
cally classifies mixed datasets into two classes (positive or not).

Note that in most cases, it cannot be determined a priori
which ML algorithm would be best for specific tasks in 2D
materials research. A common approach is to train several
typical ML models and judge their performance by the errors
and corresponding uncertainties. In the following, we present
detailed discussions on which ML algorithms introduced above
are applicable to a specific task, how they work, and how to
determine their hyperparameters, along with actual examples.

2.2. Performing ML and validation

In applying ML to the study of 2D materials, a series of steps
including data preparation, model selection, training, cross
validation, and testing should be successively carried out to
build an ML model. It is worth noting that ML study on 2D
materials often suffers from the lack of data, because data
acquisition processes are limited to time-consuming experi-
ments and computations. To address this problem, material
databases that provide comprehensive information about 2D
materials can be used to gather ML data. Table 2 shows a list of
material databases, including the structural, electronic, elastic,
thermodynamic, and optical properties of 2D materials
obtained from previously performed experiments and compu-
tations. After accumulating the data, an ML model suitable for
a specific study of 2D materials should be determined. Depend-
ing on the available data and the goal of the study, ML
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algorithms belonging to either supervised, unsupervised, or
semisupervised learning should be considered for regression,
classification, or clustering. For example, supervised regression
can be used for predicting the properties of 2D materials.
Furthermore, semisupervised classification can be considered
for investigating the synthesizability of 2D materials. More
examples of the application of ML models for specific studies
are introduced in the following sections. Once an ML model is
selected and trained, cross-validation is performed from valida-
tion dataset withheld from training to determine the accuracy
of the model and adjust the hyperparameters. Afterwards, the
trained and cross-validated ML model can generate predictions
using test datasets. The predictions are further compared by
labels from test datasets, and the model accuracy (i.e., error) is
evaluated using various statistical measures.18

Typically, there are two types of prediction errors in validat-
ing the ML model: variance and bias. Fig. 2a shows variance
and bias errors that can respectively induce overfitting and
underfitting of the model if not balanced. High variance error
implies that the model captures too many details in datasets,

including unnecessary noise, making the model less general-
izable and unable to predict beyond the original datasets. Many
ML algorithms, e.g., decision trees, support vector machines,
and k-nearest neighbors, can suffer from overfitting issues. To
address such overfitting, several approaches such as regular-
ization (e.g., using LASSO), removing features (using LASSO or
PCA), ensemble (using RF), and cross-validation can be used.

On the other hand, high bias error originates from the
model capturing the datasets too sparsely, resulting in an
over-simplified model that does not include important details
in datasets. Such an underfitting issue gives rise to inaccurate
predictions and can be reduced by increasing the complexity of
the model, the number of features, and the number of learning
iterations.

Fig. 2b suggests useful statistical measures to evaluate such
prediction errors and validate ML models. In regression
models, RMSE, MAE, MAPE, and R2 shown below are the most
popular metrics. In the above,

Root mean squared error ðRMSEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðYi � Ŷ iÞ2

vuut

Mean absolute error ðMAEÞ ¼ 1

N

XN
i¼1

ðYi � Ŷ iÞ
�� ��

Mean absolute percentage error ðMAPEÞ

¼ 1

N

XN
i¼1

Yi � Ŷ i

Yi

����
����� 100

Coefficient of determination; R2 ¼ 1�

PN
i¼1

ðYi � Ŷ iÞ2

PN
i¼1

ðYi � �YÞ2

where Yi are the original labeled data, Ŷi are the predicted
outcomes from the trained ML model, and %Y is the mean of the
original labeled data. Such metrics evaluate how much the

Table 2 List of open-source materials databases and software libraries

Name Description URL

C2DB Computational database of 2D materials https://cmr.fysik.dtu.dk/c2db/c2db.html
ICSD Experimental and computational database of

inorganic materials
http://www2.fiz-karlsruhe.de/icsd_home.html

Materials cloud Computational database of materials https://materialscloud.org/discover
AFLOWlib Computational database of materials http://aflowlib.org
Materials project Computational database of materials https://materialsproject.org
The open quantum materials database Computational database of materials http://oqmd.org/
1D and 2D materials database 599 1D vdW and 1755 2D vdW solids https://reedgroup.stanford.edu/databases.

html
CMR Computational database of materials https://cmr.fysik.dtu.dk
Materials web Computational database of materials https://materialsweb.org
COD Database of organic and inorganic materials searched from

previous journal publications
http://crystallography.net

Pymatgen Python library for materials analysis https://pymatgen.org
Matminer Python library for data mining the properties of materials https://hackingmaterials.lbl.gov/matminer
aNANt A functional materials database http://anant.mrc.iisc.ac.in

Fig. 2 Prediction errors and validation metrics for ML models. (a) Variance
and bias errors. (b) Useful evaluation metrics for regression, classification,
and clustering models.
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regression curve fits the original data, determining the perfor-
mance of the regression model.

Precision, recall, accuracy, and area under curve (AUC) for
receiver operating characteristic (ROC) curves are widely used
to evaluate the performance of classification models. To under-
stand such metrics, basic terminologies such as true positive
(TP), true negative (TN), false positive (FP), and false negative
(FN) should be demonstrated. TP and TN represent number of
items for which the classifier correctly predicts the class of
data, while FP (FN) shows the number of items for which the
classifier incorrectly predicts the data belonging to a negative
(positive) class to a positive (negative) class. Using such ter-
minologies, precision is defined as TP/(TP + FP), showing the
ratio of correctly predicted positives to all the predicted posi-
tives. On the other hand, recall, defined as TP/(TP + FN), shows
the ratio of correctly predicted positives to all true positives.
Such precision and recall metrics are used to evaluate how
many incorrectly classified FP and FN the classifier produces,
respectively. Combining these two metrics, the F1-score,
defined as 2 � ((precision � recall)/(precision + recall)), or
the accuracy, (TP + TN)/(TP + TN + FP + FN), are generalized
scores to evaluate the overall performance of the classifier.

ROC curve is a useful way to visualize the performance of a
classifier, defined as the ratio of true positive rate (i.e., TPR or
recall) to false positive rate (FPR = FP/(FP + TN)). The FPR shows
how often the classifier incorrectly predicts the data as positive
out of all true negatives. The ROC curve plots the TPR or recall
as a function of the FPR, indicating a better performance as the
curve is closer to the top-left corner. Additionally, AUC calcu-
lates the area under the ROC curve, scoring the performance of
the classifier between 0 (bad) and 1 (good).

Effective metrics widely applied to clustering models are the
rand index (RI) and gap statistics. RI, similar to the accuracy
discussed above, is calculated by RI = (TP + TN)/(TP + TN + FP +
FN), showing how similarly the model predicts the data com-
pared to the ground truth. Besides, RI scores the similarity
between clustered datasets using two different clustering
models, validating the new model on the basis of the already
verified model.

In clustering models, choosing an optimal number of clus-
ters (i.e., hyperparameter, K) is imperative to maximize the
performance of models. The simplest way to determine K is to
use the elbow method that plots within-cluster distances with
respect to K, which determines the K, the starting point of
significant drop. The elbow method is straightforward but
often ineffective if the curve does not show a noticeable drop
(i.e., elbow shape). The gap statistics method depicted below is
an alternative and advanced strategy to address this issue.

Gap Kð Þ ¼ log W ref
K

� �
� log W

orig
K

� �

SKþ1 ¼ SK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=N

p

whereWorig
K andWref

K are within-cluster distances obtained from
the original dataset and the reference dataset generated by
uniform sampling when the number of clusters is K. SK is the

standard deviation of within-cluster distances, log(Wref
K ), calcu-

lated from reference datasets obtained from sampling N times.
Finally, the optimal number of clusters is the smallest K that
satisfies the following relationship.

Gap(K) Z Gap(K + 1) � SK+1

In short, the gap statistics compares the within-cluster dis-
tances of the original dataset with that of the reference dataset,
thus finding a K value exhibiting the most significant gap
between them.

Such evaluation metrics introduced above can be appropri-
ately applied to various studies in 2D materials. For example,
metrics for the regression and classification models can be
used in the studies, such as investigating the properties and
correlating them with molecular structures. Furthermore,
metrics for the classification and clustering models can be
applied when identifying the thickness and size of 2D materials
and studying their synthesizability. Detailed usage of such
metrics is introduced in the following sections.

3. Understanding and designing 2D
materials using machine learning

2D materials have given rise to countless possibilities for
applications due to their interesting planar atomic structures
that contribute to promising mechanical, electrical, and
chemical properties. Considering the tunability of 2D materials
by composition tuning, defect engineering, surface doping, and
the formation of heterostructures, the design space for
potential 2D materials is staggeringly large. Recent studies
introduced below illustrate how the use of ML takes advantage
of materials data to significantly enhance the speed and lower
the cost of studying 2D materials.

3.1. ML-enabled study on the mechanical properties of 2D
materials

Unlike 3D bulk materials in which chemical bonds extend to
three dimensions, bonding in 2D layered materials is strongly
localized in-plane, resulting in weak out-of-plane stacking by
van der Waals (vdW) forces. While this weak layer-stacking
facilitates the separation of atomically thin 2D materials, the
strong in-plane bonds generally endow the isolated 2D materi-
als with promising mechanical stiffness and strength, such as
high elastic modulus and tensile/compressive strengths.
Furthermore, the atomic-scale thickness of 2D materials gives
rise to their superior flexibility compared to their 3D bulk
counterparts made up of the same atoms. For example, gra-
phene, the most renowned and first-isolated 2D material, has
been ranked as the strongest material ever discovered, exhibit-
ing high levels of stretchability and flexibility that exceed its 3D
allotrope, diamond. Graphene’s intrinsic tensile strength,
Young’s modulus, and stretchability are evaluated at 130 GPa,
1 TPa, and B20% (from its initial lateral dimension),
respectively,20 nearing or surpassing those of diamond
(125 GPa, 1.1 TPa, and B13.4%, respectively, when the
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diamond is in the form of a 60 nm-diameter nanoneedle
engineered to achieve its maximum tensile strength and
strain).21

Besides graphene, other 2D materials such as hexagonal
boron nitride (h-BN) and molybdenum disulfide (MoS2), which
exhibit insulating and semiconductive behaviors, respectively,
show excellent Young’s modulus and tensile strength of
270 GPa/22 GPa and 865 GPa/70.5 GPa, along with high
flexibility.22 The promising mechanical robustness of 2D mate-
rials triggers the rapid development of strong composite mate-
rials and flexible/wearable electronics. Additionally, 2D
materials show interesting mechanical behaviors, such as easy
interlayer fracture and shear due to the weak vdW forces,
making them promising lubrication additives for controlling
friction and wear.

The prevailing methods for evaluating the mechanical beha-
viors of 2D materials are direct measurements and computa-
tional simulations. In a direct measurement, target 2D
materials are carefully transferred to cover an etched hole on
a substrate, forming suspended 2D materials. These materials
are then subjected to several nanoindentation tests using an
atomic force microscopy (AFM) tip, resulting in force–displace-
ment (F–D) curves. The F–D curves are subsequently analyzed
to calculate Young’s modulus (from the slope) and tensile
strength (from the maximum stress point). AFM can also be
used to evaluate the tribological characteristics (i.e., friction
and wear) of 2D materials. Specifically, lateral force microscopy

(LFM) detects how much the AFM tip twists while traveling
across the surface of 2D materials and converts the torsions to
friction forces, thus evaluating nanoscopic friction behaviors.
Yet such experimental approaches require intensive labor to
prepare experimental setups and perform multiple tests. Com-
putationally, MD and DFT simulate experimental configura-
tions such as nanoindentation, bi/uni-axial stretching, and
friction tests to calculate the mechanical properties of 2D
materials; however, these methods can be computationally
expensive, and thus are far from an efficient approach for
studying numerous 2D materials.

To support such conventional methods, various ML techni-
ques can be introduced to effectively study the mechanical
properties of 2D materials. For example, SVM can be adopted
to predict the fracture strength of graphene by identifying the
monolayer and sampling its distribution of lateral sizes.12 The
optical micrograph (OM) of graphene layers transfer-printed on
an Si/SiO2 substrate shows different colors due to the thickness
dependence of thin-film optical interference, and the intensi-
ties of red, green, and blue components from the image are
extracted and used as input features for ML. In detail, each
pixel on the OM can be represented by the combination of red,
green, and blue (R, G, B) color values ranging from black (0, 0,
0) to white (255, 255, 255), which are strongly associated with
the thickness of the 2D materials.

Fig. 3a shows the SVM classified graphene layers according
to their thickness using labeled data (i.e., input features:

Fig. 3 ML-enabled prediction of the mechanical properties of graphene and WS2. (a) A plot of input features (the intensities of green and red) from the
OM of graphene, classified by the SVM. (b) The accuracy of ML-enabled classification of the size of graphene compared with manual inspection. (c) ML-
enabled prediction of the strength of graphene as a function of layer size. (d) A schematic of the regression tree. (e) Pearson’s correlations between
material features and target outputs of WS2. (f) A comparison plot of Young’s moduli obtained from ML prediction vs. the corresponding values from MD
simulations. Panels (a)–(c) are adapted from ref. 12 with permission from Elsevier, copyright 2020. Panels (e) and (f) are adapted from ref. 23 with
permission from American Chemical Society, copyright 2019.

Chem Soc Rev Tutorial Review



1908 |  Chem. Soc. Rev., 2022, 51, 1899–1925 This journal is © The Royal Society of Chemistry 2022

intensities of red and green, labels: the thickness of graphene).
The lateral sizes of the identified monolayer graphene layers
were further determined by counting the number of pixels
occupied in the OM. Compared with visual inspection, the
accuracy of ML-assisted identification of monolayer graphene
and their sizes was 98.2% (Fig. 3b). It is noteworthy that the
amount of time spent identifying the sizes of the monolayer
graphene wasB136 s, much faster than the manual inspection.
According to the Weibull strength theory, the size distribution
of mechanically transferred graphene is dependent on the
fracture behavior of graphene. Together with other materials
properties such as shear modulus, Young’s modulus, and
thickness, the fracture strength of a graphene layer can be
predicted (Fig. 3c).

In another example, the mechanical properties (fracture
strain, strength, and Young’s modulus) for tungsten disulfide
(WS2) were evaluated using an RF regression algorithm.23 To
obtain sufficient data for ML, uniaxial tensile tests were per-
formed using MD simulations under various conditions. Spe-
cifically, the input conditions (e.g., chirality, strain rate, and
density of defects) of the MD simulations and the corres-
ponding outputs (e.g., fracture strain, strength, and Young’s
modulus) served as input features and labeled outputs, respec-
tively. Fig. 3d shows the schematic of a regression tree com-
prised of multiple nodes including root, decision, and leaf
nodes. Input features from collected data occupy root and
decision nodes, where branch splitting occurs according to if-
else statements. A regression tree divides labeled data into two
categories at every node and evaluates the error using the
metrics of RMSE, MAE, MAPE, or R2. If the error is minimized
and meets the requirement, the tree splitting stops and reaches
the leaf node. Finally, the data settled at the leaf nodes are
averaged and used for prediction. The complexity of an RF
algorithm is controlled by two hyperparameters, max-depth
and n-estimator. The max-depth is related to the number of
splits from a single tree, and n-estimator indicates the number
of trees in the RF. The higher number of hyperparameters can
lead to better prediction accuracy in the training dataset but at
the cost of overfitting. To reduce overfitting, it is very important
to choose an optimal feature at the root node. In selecting the
optimal parameter, RF generally calculates the Gini index of
each feature, which counts the number of splits. The lower Gini
index of the feature indicates more efficient data splitting, thus
showing higher importance. However, in this study, an alter-
native metric that calculates feature importance was intro-
duced. Fig. 3e shows the Pearson’s correlation evaluating a
linear relationship between the input features and the target
outputs. Five input features (type, chirality, temperature, strain
rate, and defect) were correlated to three target outputs (frac-
ture strain, strength, and Young’s modulus). In this study,
‘‘defect’’ was chosen for the feature at the root node because
it showed a strong connection to the target outputs. Fig. 3f plots
the prediction results of Young’s modulus of WS2 using the
trained RF algorithm. The prediction error was 3.8 GPa
(cf. 117.8 GPa Young’s modulus for WS2), revealing that the
prediction using RF was highly accurate.

Moreover, the nanoscopic friction behaviors of 2D materials
were predicted using Bayesian learning in a recent study.24

Specifically, the inter-layer friction that occurs when two layers
slide relative to each other was considered. Since the inter-layer
friction occurs by overcoming the maximum energy barrier
(MEB) of the potential energy surface (PES), MEB is the core
parameter for understanding the friction behavior of 2D mate-
rials. In this study, the structural, electronic, chemical, and
thermal properties affecting PES were used as the input
features, and DFT and MD-calculated MEB values of five
different 2D materials found in the literature were used as
the target outputs (i.e., labels). The low volume of labeled data
(only five) would very likely end up overfitting many other ML
models, and thus a probabilistic Bayesian algorithm was
adopted in this study to handle such sparse data. Bayesian
learning is based on the Bayes’ theorem (Fig. 4a), in which the
posterior probability of A given B (P(A|B)) can be calculated with
the knowledge of the likelihood of B given A (P(B|A)), prior of A
(P(A)), and evidence of B (P(B)). Namely, it makes a prediction

Fig. 4 Prediction of the nanoscopic friction of 2D materials. (a) A concept
of Bayes’ theorem that is the foundation of the Bayesian algorithm.
(b) Visualization of the correlation coefficients among 15 different 2D
materials. (c) Predicted MEB from 15 2D materials compared with pre-
viously reported and MD-calculated values. Panels (b) and (c) are adapted
from ref. 24 with permission from Springer, copyright 2020.
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(posterior) by adjusting the likelihood in consideration of other
probabilities (e.g., prior, evidence) associated with the target
outputs. In this study, the Bayesian algorithm predicted ten
new 2Dmaterials to be close to the knownMEB values from five
2D materials in probability according to their similarity. Fig. 4b
shows the correlation coefficients among 15 different 2D mate-
rials obtained by comparing their input features. A similar
approach was used in the Bayesian algorithm, and conse-
quently, MEB values of 15 different 2D materials including five
already-known values were predicted as shown in Fig. 4c.

The examples discussed above indicate that ML algorithms
can produce fast and accurate predictions when synergistically
combined with computational simulations and previously
reported data, thereby reducing the time and cost to investigate
the mechanical properties of 2D materials. Notably, conven-
tional approaches to studying 2D materials are usually used for
accumulating data, while ML subsequently infers outputs by
determining the correlations among data and applying these
correlations to other materials.

3.2. ML-enabled study on the electronic properties of 2D
materials

Other appreciated characteristics of 2D materials are their
fascinating electronic and optical properties resulting from
the confinement of electrons in a 2D plane. Contrary to 3D
bulk materials, the crystal structure of 2D materials loses its
periodicity along the direction normal to the plane, generating
interesting band structures. For example, several 2D materials
such as graphene, silicene, germanene, and graphynes (sp–sp2

allotropes) show a Dirac-cone band structure which gives rise to
massless Fermions, resulting in ultrahigh carrier mobility that
is more than 100 times higher than that of silicon.25 Addition-
ally, the band structures of most 2D materials are highly
dependent on the thickness (i.e., the number of layers) from
bulk to monolayer, providing the tunability of band gaps. Such
tunable band gaps combined with high carrier mobility could
enable the development of next-generation optoelectronic,
semiconductor, and sensor devices. Moreover, the dimensional
confinement of 2D materials reduces the dielectric screening
effect between the electrons and the holes, thus increasing the
Coulomb interactions and exciton binding energy. As a result,
excitons found in 2D materials are more tightly bound and
stable than those in bulk materials, which leads to strong light-
matter interactions. More interestingly, naturally existing con-
ducting (e.g., graphene), semiconducting (e.g., MoS2), and
insulating (e.g., h-BN) 2D materials present many advantages,
thus opening new opportunities to design electronic devices in
which all the components (e.g., semiconducting channel,
metallic electrode, and insulating dielectric) consist of atom-
ically thin 2D materials. Such a combination benefitting from
the variety in the band gap of 2D materials is expected to
overcome the scaling limit issue in current semiconductor
devices.

In order to investigate these electronic properties of 2D
materials, sophisticated experimental approaches and expen-
sive computational calculations are required. For example,

absorption spectroscopy is widely used to extract band gap
and exciton energies by analyzing the absorption spectrum
representing the absorption intensity of 2D materials to the
incident radiation as a function of wavelength. In addition,
carrier mobility can be experimentally inferred from the trans-
fer characteristic curve of field-effect transistors (FETs) or Hall
measurement. In a computational approach, DFT is used to
calculate the band structure of 2D materials, identifying elec-
tronic characteristics such as the band gap and the effective
mass, and with some approximations also the mobility of the
charge carrier and conductivity. However, DFT says nothing of
the experimental methods and some of the calculations require
a significant amount of time and resources, even with the use
of high-performance computers.

In recent years it has been shown that ML supports experi-
mental and computational approaches, thus enabling produc-
tive studies on the electronic properties of 2D materials. For
example, ML has been employed to unearth 2D MXenes with
band gaps ranging from 0.5 to 2 eV and thus hold significant
potential for various applications.26 Additionally, the band gaps
of discovered MXenes were accurately predicted within seconds
with the aid of ML. A series of ML steps for the above tasks is
depicted in Fig. 5a. Initially, 23 870 functionalized MXenes with
a structure described as MM0XTT0, where M and M0 are
elements in groups IIIB to VIB, X represents either C or N,
and T and T0 are either single elements (H, F, Cl, Br, O) or
groups (CN, NO, PO, OH, OCl, OBr, OCN, SCN, NCS), were
considered as subjects of the study. Afterwards, the evaluation
of the Perdew–Burke–Ernzerhof (PBE) band gaps was carried
out using DFT for 7200 MXenes randomly chosen from the total
of 23 870. The calculation of PBE band gaps is faster but
significantly underestimated compared with GW band gaps
(which currently are closest to experimental values among
first-principles band gap prediction approaches for solids).
However, such PBE band gaps are enough to be used as data
labels for qualitatively building a metal-semiconductor classi-
fication model. In a decision tree (DT) classification model, a
single tree from the RF method described in Section 3.1 was
used to divide the MXenes into metallic and semiconducting.
For the DT model, the PBE band gaps served as labels (i.e.,
target outputs) and the corresponding input features were
adopted from materials databases.26 As mentioned earlier,
ML study on 2D materials often suffers from the lack of data,
because data acquisition processes are limited to experiments
and computations. Here, 643 MXenes randomly selected from
7200 MXenes with pre-evaluated PBE band gaps were used to
train the DT model. This trained model successfully screened
out the metallic MXenes from all 23 870 MXenes, with an
accuracy greater than 94%. After the classification, it was found
that MXenes based on Sc and Y have band gaps between 0.5
and 2 eV, which is suitable for electronic and catalytic applica-
tions. Although the DT classification model successfully dis-
covered promising semiconducting MXenes buried in a large
number of MXenes, the predicted band gaps were underesti-
mated because the model was trained with PBE band gaps.
Therefore, additional ML was carried out to evaluate the
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accurate band gaps of classified MXenes. Here, 70 randomly
chosen MXenes among as-classified MXenes underwent further
high-accuracy band gap calculations based on the GW approxi-
mation. The GW band gaps along with 47 primary features of
MXenes (e.g., volume per atom: V, lattice parameter: a, phase of
MXene: c, boiling point: TM, etc.) collected from material
databases were used for the labels (Y) and input features ({x}),
respectively. The 47 input features were subsequently reduced
to 15 features that strongly correlated to GW band gaps,
resulting in an efficient ML model with high accuracy and a
low chance of overfitting.

The feature reduction was performed using the LASSO
algorithm, and the 15 features (e.g., vacuum potential for lower
surface:+L, standard meting point: TSTDM , etc.) having non-zero
correlation to the GW band gap are shown in Fig. 5b. The
LASSO described in Section 2.1 is one of the regression algo-
rithms and expressed as L(b) = ||Y � Xb||2

2 + a||b||1 (summa-
tion of L1 and L2 norms), where b is coefficients of the
regression model, Y is target outputs (here, GW band gaps),
and a is the coefficient to control the penalty. Since the
constraint boundary of L1 norm of L(b) is a diamond shape,
which makes coefficients b zero at vertices, input features not
directly involved (i.e., irrelevant) to the regression model can be
thus removed.

Finally, supervised learning with the Gaussian process
regression (GPR) algorithm was performed using the input
features and GW band gaps as the data set {X, Y}. GPR is a
kernel-based stochastic process which is highly accurate even
when using a low volume of data. In GPR, the regression model
(i.e., regression function) does not predict deterministic out-
puts, but rather outputs with stochastic randomness because

the model consists of Gaussian distributions, N(m, s2). The
following equation implies the concept of GPR,

y0 ¼
PN
i¼1

wðx0; xiÞyi, where w are the weights, xi and yi are original

data, and x0 and y0 are missing data points and corresponding
outputs, respectively. In GPR, w is represented by a kernel, and
learning is the process to tune the kernel in order that y0

reflects yi more as x0 is closer to xi. GPR has a strong advantage
of accurate prediction and provides the uncertainty of predic-
tions. Fig. 5c shows the predicted band gaps of MXenes using
GPR, which is highly consistent with GW gaps with a RMSE of
0.14 eV. The trained model could successfully predict accurate
band gaps of MXenes within seconds, even though the model
did not include PBE band gaps ETPBEg as one of the input
features. This indicates there is no need to perform DFT
calculations for extracting the GW band gaps of MXenes, as
illustrated in Fig. 5d.

Another recent study demonstrates that ML combined with
DFT calculations can also significantly contribute to predicting
the band gaps of 2D heterostructures.18 Since 2D heterostruc-
tures consist of different 2D materials stacked vertically or
stitched laterally, use of ML dramatically enhances the effi-
ciency of studying countless combinations of them. In this
study, 21 non-metallic 2D materials such as MoS2, HfS2, BN,
and CdO were used to construct 210 2D heterostructures
consisting of two different monolayers stacked vertically. Sub-
sequently, DFT calculations were carried out to collect the band
gaps from 49 heterostructures that were randomly selected
from 210. For data preparation, the property-labeled materials
fragments (PLMF) method was used to extract a material’
characteristics from a graph representing its crystal structure.
In the PLMF method, the adjacency matrix is widely used to

Fig. 5 Prediction of the band gaps of 2DMXenes and 2D heterostructures. (a) A schematic of the working flow for ML processes. (b) A feature correlation
plot of material features (i.e., input features) extracted from the bagging method. (c) Comparison of the predicted gap (from ML) with the true gap (GW).
(d) A diagram showing the advantage of the ML approach over DFT simulation for predicting the band gaps of 2D materials. (e) Comparison between the
lattice parameter predicted using the Tkatchenko–Scheffler (TS) vdW functional and experimental values. (f) Schematics of the adjacency matrix for
extracting input features and neural networks for predicting the band gaps from 2D heterostructures. (g) A correlation plot between the predicted band
gaps (from ML) and the calculated band gaps (from DFT) of 2D heterostructures. Panels (a)–(d) are reproduced from ref. 26 with permission from
American Chemical Society, copyright 2018. Panels (e) and (g) are adapted from ref. 18 with permission from Wiley-VCH, copyright 2019.
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represent the crystal structures of materials.27 Fig. 5f shows an
example of the adjacency matrix constructed from MoS2. Each
atom in the MoS2 has numbered labels and the connectivity is
represented as a matrix, where 1 indicates the existence of a
bond between atoms and 0 otherwise. The adjacency matrix
does not necessarily reflect only the connectivity using either 1
or 0; instead, components of the matrix can include the
structure and properties of materials such as bond lengths,
angles, and charges, among others, which can be found in the
materials databases shown in Table 2. Therefore, the PLMF
method using the adjacency matrix can produce a considerable
number of input features that encode the topology and proper-
ties of the corresponding materials. Furthermore, in this study,
1529 input features were obtained using the PLMF method and
then reduced to 11 significant features using LASSO.

Using such features and band gaps obtained from DFT, a
neural network (NN) was trained to predict the band gaps from
all 210 2D heterostructures. Fig. 5g shows that the band gaps
predicted from the trained NN for a test set of 2D heterostruc-
tures have a linear correlation with the gaps from DFT calcula-
tions with an MSE of 0.047 eV2. Additionally, the trained NN
successfully predicted the band gaps of all possible 210 2D
heterostructures, revealing the powerful and promising advan-
tage of ML for the study of 2D materials.

Lastly, the exciton valley polarization landscape of mono-
layer WSe2 was predicted using an RF algorithm.28 Typically,
the exciton valley polarization of 2D materials can be observed
using a low-temperature photoluminescence (PL) measure-
ment, which requires high-end experimental apparatus. In this
study, RF correlates the PL spectra obtained from 300 K with
those acquired from 15 K, allowing the prediction of the exciton
valley polarization landscape of WSe2 without performing
onerous low-temperature PL. For ML, the polarization and
position-resolved PL spectra from nine WSe2 were measured
under 300 K (for input features) and 15 K (for target outputs or
labels). Fig. 6a shows the intensity, energy, full-width at half-
maximum (FWHM) and the trion–exciton intensity ratio (T–X
ratio) spectra obtained from the 300 K experiment that were
used for the input features. The trained RF algorithm success-
fully predicted the exciton valley polarization of other WSe2
using PL spectra measured from 300 K, thereby mitigating the
experimental complexity and cost required to perform low-
temperature measurements. Fig. 6b displays a strong correla-
tion between the predicted and experimentally measured
exciton valley polarizations with a correlation coefficient (R2)
of 0.97.

In summary, supervised learning that correlates the input
features with target outputs has been adopted to predict the
electronic properties of 2D materials. In addition to conven-
tional experiments and simulations, materials databases pro-
vide comprehensive data for ML, which is expected to promote
many more studies on the various properties of 2D materials.

3.3. ML-enabled design of 2D materials

2D materials design and engineering reveal fantastic prospects
as well as significant challenges for fully leveraging quantum

confinement effects. Novel 2D materials can be designed
through various routes, such as defect engineering, adsorption
of atoms or molecules, and formation of heterostructures.
Defect engineering is an attractive option, and studies have
shown that purposefully-designed defects in 2D materials could
exhibit exciting performance for novel applications such as
single-photon emission, resistive switching, and neuromorphic
computing. However, the diversity and complexity of defects
make their control challenging, and experimental screening
and exploration are very slow. Therefore, the rapid prediction of
defect properties in 2D materials through highly efficient
methods such as ML is crucial.

A recent study has employed ML to rapidly predict defects in
2D materials for quantum emission and neuromorphic
computing.29 In this work, the most promising 2D material
hosts for point defects were first identified through deep
learning (DL), and then defects in these 2D material hosts for
quantum emission and neuromorphic computing were pre-
dicted by the RF algorithm, as illustrated in Fig. 7a. To identify
the 2D material hosts, a dataset of 4000 2D materials is
available from the Computational 2D Materials Database
(C2DB),30 but this amount of training data is still insufficient
for deep neural networks (DNNs). Thus, the DNN was pre-
trained on a data set of 104–105 bulk materials from the
Materials Project31 database. Three models of graph networks
as implemented in MatErials Graph Network (MEGNet)32 were
used to map the input structure graphs to the output target

Fig. 6 Prediction of the exciton valley polarization of monolayer WSe2.
(a) A schematic of the training process for the RF algorithm. Input features
and labels (i.e., target outputs) were obtained from PL spectra performed
under 300 K and 15 K, respectively. (b) Comparison of the RF-predicted
exciton valley polarization of WSe2 with the one directly measured under a
low-temperature PL experiment. Panels (a) and (b) are reproduced from
ref. 28 with permission from American Chemical Society, copyright 2019.
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properties. The input graph representations were characterized
by the atomic numbers of the constituent elements and the
spatial distance (bond lengths) between atoms. The output
targets were the formation energy, band gap, and Fermi energy.
As an example of transfer learning, these pretrained models
were then trained on the 2D materials data set C2DB (B103),
and the model weights were fine-tuned for 2D cases. Fig. 7b
shows the good performance of the deep-learning model on the
formation energy prediction, as R2 is 0.98 and MAE is 0.06 eV
per atom on the test data. The accuracy of the metal versus
nonmetal classifier is 0.84, with F1 scores (which measures a
combination of precision and recall) of 0.88 and 0.73 for metals
and nonmetals, respectively. Though the performance of the 2D
band gap model is worse than the others with an R2 of 0.73, its
MAE (0.36 eV) is similar to that of the bulk model (0.33 eV).32

For applications in quantum emission and neuromorphic
computing, a good host material should have a wide band gap
for isolating deep defect levels and small spin–orbit coupling
(SOC). To identify optimal host 2D materials for these applica-
tions, the screening criteria were set as screening for nonmag-
netic materials with band-gaps greater than 2 eV calculated
with the GW approximation. Here, 158 wide band gap (WBG)

semiconductor 2D materials were identified as candidates.
Screening out compounds with heavy elements to reduce the
effects of SOC, 150 WBG candidates were obtained. Next,
potential defects for quantum emission and neuromorphic
computing in these 2D material hosts were explored by ML.
To build the ML model, a data set with more than 1000
quantum point defects (QPDs) was generated. The model
started from combination of the 150 optimal 2D material hosts
identified from the first step through DL and 70 defects in 2D
materials containing all possible vacancies, divacancies, anti-
sites, and common dopants, which yielded more than 10 000
defect structures. These candidate defects were funneled into a
subset for electronic structure calculations, which were then
used to test ML models, as illustrated in Fig. 7c. Relaxed defect
geometries and band structures were computed for more than
1000 QPDs and for 140 substitutional metal defects in the
atomically thin resistive memory materials MX2 (M = Mo, W;
X = S, Se, Te) and h-BN. To identify promising defects, two ML
models were built: one classifier to identify the deep center
defects and one regressor for predicting defect formation
energies. The output targets for ML prediction were DFT-
computed band structures for the classifier, and the neutral

Fig. 7 Designing point defects in 2D materials using ML predictions. (a) A schematic of the work flow for the ML process. (b) Comparison of the DFT-
calculated true formation energy of 2D host materials with the predicted formation energy obtained by deep transfer learning. (c) A schematic of the
dataset generation for ML models. (d) Comparison of the DFT-calculated true formation energy of point defects versus the predicted formation energy.
(e) Feature importance for predicting the formation energy. (f) A plot of defect scores sorted in high order for 100 defects. (g) Defects with the highest and
lowest maximum binding energy for resistive switching. (h) Predicted vs. DFT-calculated adsorption energies for Li, Na, K, and Rb adsorbed on the TMDs.
Panels (a)–(g) are reproduced from ref. 29 with permission from American Chemical Society, copyright 2020. A panel (h) is adapted from ref. 35 with
permission from Royal Society of Chemistry, copyright 2020.
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defect formation energies Ef for the regressor. For the classifier,
DVB and DCB were defined, which are the energy differences
between the defect level and the valence band maximum and
conduction band minimum, respectively. The threshold for a
deep center defect was set as DCB 4 kBT and DVB 4 kBT at
room temperature. For both the classifier and regressor, the
input features for the ML approach were the structural and
chemical properties of the host material and defect that were
obtained from C2DB databases or the first-step deep transfer
learning model predictions. The defect descriptors were nor-
malized as percent differences between the corresponding
descriptor for the bulk structure and the unrelaxed defect
structure. The RF algorithm from scikit-learn was used for both
models, and some descriptors were generated with matminer33

and automatminer. Here, 90% of the data was split into a
training set and 10% was held as a test set. Fig. 7d shows that
the RF model for Ef prediction has R2 of 0.74 and MAE of
0.67 eV on the test set. From the permutation feature impor-
tance in Fig. 7e, the chemical potential of the defect species is
directly related to Ef among the most important features. The
linear Pearson correlations of individual features is lower than
0.3, implying the invalidity of a simple linear model to predict
defect properties. Indeed, the performance of the nonlinear RF
model on Ef prediction is much better than previously reported
linear models such as LASSO and Ridge regression.34 The RF
model performed even better for the deep-center classifier, with
an F1 score of 0.92 on the test set, and 442 deep-center QPDs
were identified. The most important feature is the lowest
unoccupied molecular orbital (LUMO) energy.

Finally, to identify optimal defect candidates, a defect score
metric that represents the fitness as a deep-center defect for
quantum emission was defined as

S ¼ 1

N
EGW
bg þ 1

2
sd þ

1

2
st

� 	
� A� Ef

� 	

where EGW
bg , sd, st, A, and Ef are the GW band gap, dynamic

stability, thermodynamic stability, maximum atomic number
in the host, and defect formation energy, respectively. N is an
overall normalization factor. Higher scores indicate the optimal
defect candidates with larger band gaps, greater stability,
smaller defect formation energies, and smaller SOC. The top
100 defect scores are plotted in Fig. 7f, with the top 10 high-
lighted in the inset. Furthermore, a subset of substitutional
metal defects in TMDs and h-BN with defects were identified
for their potential nonvolatile resistance switching (NVRS)
applications for information storage and neuromorphic com-
puting. They were screened out based on Dz and EBE, which are
the change in out-of-plane distance relative to the equilibrium
distance between the TM plane and the chalcogen plane, and
the defect-binding energy of a metallic dopant, respectively.
Fig. 7g shows the highest five and lowest five defects by the
maximum binding energy EBE. The highest binding energy
defects are of interest in memory applications for their
assumed stability, while the lower binding energy defects
require small switching voltages that are useful for

neuromorphic architectures. These identified optimal defect
candidates may find applications in quantum emission, resis-
tive switching, and neuromorphic computing.

Adsorption is another effective way to engineer and design
2D materials. The intriguing success of 2D TMDs synthesis
achieved through various methods such as mechanical exfolia-
tion, chemical exfoliation, physical vapor deposition, and
solution synthesis has led to intensive study of their potential
applications. The adsorption of alkali metal atoms on 2D TMDs
plays a crucial role in their performance as batteries, catalysts,
and sensors. A recent work35 has used a linear regression ML
model to investigate the characteristic energetic factors that
determine the adsorption energy of lithium on 2D TMDs. The
work demonstrated that the lowest unoccupied states ELUS is a
novel efficient descriptor for predicting adsorption energies
due to the linear correlation.

In the ML process of this work, 112 cases were considered
through the combination of seven transition metals (Ti, Hf, V,
Nb, Ta, Mo, and W), two chalcogens (S and Se), two phases (the
2H stable semiconducting phase and 1T metastable metallic
phase of TMDs), and four adsorbed alkali metals (Li, Na, K, and
Rb). The input features were the DFT-calculated lowest unoc-
cupied states ELUS and the cohesive energy Ecoh, and the
ionization energy of the adsorbate EIE from the literature. The
output target was the DFT-calculated adsorption energy. A
linear regression was performed, taking the ordinary least
squares (OLS) scheme as implemented in the scikit-learn
package, to determine the values of the parameters x0, a, b,
and c in the equation Eads E x0 + a�ELUS + b�Ecoh + c�EIE. The six-
fold cross-validation scheme was used, i.e. the data set was
randomly divided into six sets; five of them was used for
training with the remaining one for testing. This procedure
was repeated for all six sets and the performance on the test set
was averaged and reported. Fig. 7h shows the OLS-predicted
adsorption energies versus the DFT-calculated results. To assess
the regression model, R2, RMSE, and MAE were calculated to be
0.968, 0.012 eV and 0.080 eV, respectively, and thus confirmed
the validity of the model. The ML-trained parameter for ELUS
was 0.974, implying a linear correlation of Eads and ELUS. This
result suggests that the lowest unoccupied state energy ELUS can
be used as a descriptor and further assist a high-throughput
scanning of materials with desired adsorption properties.

4. Strategies for producing 2D
materials using machine learning

The two most commonmethods for producing 2Dmaterials are
top-down and bottom-up. Simply, 2D materials can be trans-
ferred from their corresponding bulk crystals to target sub-
strates using scotch tape in the top-down method. The
transferred 2D materials can then be placed on top of other
2D materials to form 2D heterostructures. Recent deterministic
methods using viscoelastic (e.g., polydimethylsiloxane (PDMS))
or sacrificial polymers (e.g., polymethyl methacrylate (PMMA))
as carrying layers place the target 2D materials precisely on the

Chem Soc Rev Tutorial Review



1914 |  Chem. Soc. Rev., 2022, 51, 1899–1925 This journal is © The Royal Society of Chemistry 2022

designated locations on a substrate using control apparatus
equipped with a motorized stage and an optical microscope.
Such methods have opened a facile pathway to fabricate various
types of 2D heterostructures, but the use of heterostructures
produced via these methods is still limited to research, because
their production requires extensive pre-processing time to
identify the optimum 2D materials (e.g., ideal size and thick-
ness) to be transferred. To expand the usability, this tedious
pre-process should be automated, and the latest studies using
ML give hints for coping with this issue. Another top-down
method is the liquid exfoliation, which delaminates the mono-
layers of 2D materials from their corresponding bulk crystals
using etching or ion intercalation to weaken the vdW forces and
expand interlayer spacing. Even though these methods have
successfully synthesized many TMDs and some MXenes,
numerous newly proposed 2D materials have yet to be synthe-
sized. Liquid exfoliation also requires lots of time to find and
transfer optimal 2D materials with the ideal size and thickness.

With bottom-up approaches such as chemical vapor trans-
port (CVT) and chemical vapor deposition (CVD), precursor
molecules are supplied to a heating tube and 2D materials are
synthesized as a result of chemical reactions. Recently, these
synthesis approaches combined with theoretical calculations
have been efficiently performed by reducing potentially fruit-
less attempts to synthesize new 2D materials. The theoretical
calculations can screen out a large number of 2D materials that
are less likely to be synthesized by investigating the critical
materials’ features, such as lattice parameters, formation ener-
gies, and cohesive energies that affect the stability of 2D
materials in the ambient. A recent described in Section 4.1
correlates the critical features of such materials with the
synthesizability and successfully predicts the most synthesiz-
able 2Dmaterials rapidly using ML, which could be an essential
strategy in producing new 2D materials.

4.1. ML-enabled automatic identification of exfoliated 2D
materials

The most critical weakness of the current mechanical exfolia-
tion and transfer method is the lack of controllability in the
size, thickness, and location of transferred 2D materials. Even
though several previous studies demonstrated that pre-
patterned 2D materials stamps or the use of adhesion layers
(e.g., Au, Ni)36 can control the size and thickness, respectively,
of 2D materials after transferring, they are still premature and
have a low rate of success. Therefore, identifying 2D materials
with the optimal size and thickness among numerous other
randomly distributed 2D materials transferred together is still
required before moving on to the next step of the study of 2D
materials. The identification process performed under the
optical microscope is usually tedious and time-consuming,
but strongly required to design functional devices with the
desired size and thickness of 2D materials or heterostructures.

While observed under the optical microscope, 2D materials
transferred on an Si/SiO2 substrate have different colors
depending on their layer thickness, which results from the
thin-film optical interference. Once the incident visible light to

the 2D materials on the substrate reflects at interfaces (e.g., air/
2D materials, 2D materials/SiO2), reflected lights produce con-
structive or destructive interference depending on their phase
(i.e., optical path) difference modulated by the different thick-
ness of the 2D materials. As the 2D materials get thinner,
reflected lights with shorter wavelengths corresponding from
yellowish to greenish tend to sequentially generate constructive
interference (i.e., Bragg’s law), resulting in a color code used to
estimate the thickness of 2D materials. Recent studies have
demonstrated that ML can precisely and promptly distinguish
such a subtle color change and thus automatically identify the
thickness and size of 2D materials with high accuracy and
reliability.7,8,11

Fig. 8a shows the use of the K-means clustering algorithm to
identify mechanically transferred graphene. At first, an OM of
graphene was analyzed using image processing tools such as
MATLAB, Python, and ImageJ, followed by extracting color
features (R, G, B) from all pixels comprising the OM. Afterward,
the K-means algorithm clustered the color features into sub-
groups according to their mutual similarity. In Fig. 8a, the color
features were grouped into four clusters and the thickness
value was subsequently assigned to each cluster using the
AFM measurement. The labeled clusters were used to deter-
mine the thickness of graphene very quickly.

A similar approach was used to identify the thickness of
MoS2, as shown in Fig. 8b.8 The 3D plot shows the distribution
of color features obtained from the OM of MoS2, displaying
wide-spreading features with a rod shape. Based on the shape
of the distribution of features, it is necessary to consider other
ML algorithms, because the K-means algorithm performs best
when the distribution of features have a round shape with
roughly equal sizes/density clusters. In this study, SVM was
applied to classify color features into sub-groups implying
different thicknesses. The color features of the OM were used
as a feature vector, x = (R, G, B), and the thickness of the MoS2
investigated using AFM and Raman was added to the vector as
labels. Finally, a training data set, (x, y) = (R, G, B, y), was
acquired and used to train the SVM classification model.

The performance of classification models explained above
depends on the quality of the OM. In other words, OMs for
training and testing should be taken under consistent condi-
tions such as optical contrast, color temperature, and balance
to acquire reliable classification results with high accuracy.
Such requirements need an optical microscope well-suited for
the classification models, which results in low accessibility.
This limitation was resolved in a recent study employing a
DNN. Fig. 8c illustrates how a DNN can identify 2D materials
that possess mono- or bi-layer thicknesses. In this study, 24
images for MoS2 were initially obtained, which were then
increased to 960 images by augmentation processes such as
randomly cropping, rotating, changing color, and changing the
HSV (hue, saturation, value) from the original images. The
augmentation process is expected to impart the DNN with high
robustness in variations on input images, thereby improving
the generalizability and increasing the accessibility of the
model. The DNN learned by using cross-entropy, softmax,
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and stochastic gradient descent (SGD) as loss, activation func-
tions, and solver, respectively. Fig. 8d shows a segmented
image using the trained DNN. The DNN was trained for solving
a multi-classification problem that classifies 2D materials
shown in the image into monolayer, bilayer, or nothing. It
was reported that the optimized DNN algorithm could distin-
guish mono- and bi-layer MoS2 from bulk MoS2 and graphene
with an accuracy of 70–80%.

As another top-down approach, liquid exfoliation holds
great promise to realize the industrialization of various 2D
materials in the form of dispersions in solution. For example,
2D materials dispersions can be applied to high throughput
manufacturing technologies such as spin and spray coating,
and inkjet printing, possibly enabling mass production of 2D
materials. However, the most significant challenge in such

dispersions is to control the quality, guaranteeing the
industrially-required ratio of successfully exfoliated to un- or
partially exfoliated sheets. In a recent study shown in Fig. 8e
and f, K-means clustering combined with advanced optical
microscopy, such as quantitative polarized light microscopy
(qPOM), has efficiently evaluated the quality of graphene-based
dispersions.37 Fig. 8e shows the clustering process of graphene
oxides, unexfoliated and partially exfoliated graphite oxides in a
dispersion after the liquid exfoliation process. Two optical
parameters, brightness and retardance, extracted from bright-
field microscopy and qPOM, respectively, were used as princi-
pal components for ML datasets. It is noted that the retardance
(R = Dn � t, where Dn is a birefringence and t is the layer
thickness) derived from the anisotropy in the refractive indices
along the in-plane and out-of-plane directions of 2D materials,

Fig. 8 Identification and thickness analysis of 2D materials. (a) Thickness profile of graphene using an OM image and the K-mean clustering algorithm.
(b) Identified thickness of MoS2 flakes using an OM image and the SVM algorithm. (c) Neural network for predicting the thickness of MoS2 flakes. (d) OM
image of MoS2 flakes and recognized thickness through NN. (e) K-Means clustering using brightfield and quantitative polarized optical microscope
(qPOM) images for quantifying each type of GO sheets in a dispersion (f) Quantified uGtO, GO, and pGtO in the dispersion. Panels (a) and (b) are adapted
from ref. 7 with permission from Elsevier, copyright 2019 and ref. 8 with permission from Springer, copyright 2018, respectively. Panels (c)–(f) are adapted
from open-access articles ref. 11 with permission from Nature Publishing Group, copyright 2019 and ref. 37 with permission from Wiley-VCH, copyright
2020.
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is strongly related to the layer thickness. Such brightness and
retardance at each pixel in the original image were normalized
to the range between 0 and 1, clustered into three sub-groups
using the K-means algorithm. The optimal number of clusters
(i.e., hyperparameter, K) was determined by the aforemen-
tioned gap-statistics, i.e. finding a K value that results in the
largest gap between within-cluster distance curves both
obtained from the original dataset and a reference dataset
distributed with no apparent clustering. Finally, Fig. 8f shows
the quantified fraction of GO sheets (i.e., successfully exfo-
liated) from the dispersion. Within 30 minutes, K-means algo-
rithm along with qPOM quantified unexfoliated graphite oxide
(uGtO, 13.9%), partially exfoliated graphite oxide (pGtO,
13.6%), and graphene oxide (GO, 72.6%) in the dispersion,
which can significantly advance the evaluation process of 2D
materials dispersions manufactured by the liquid exfoliation.

The identification of optimal 2D materials occupies a sub-
stantial fraction of the current top-down methods such as
mechanical transfer and liquid exfoliation processes. There-
fore, the strategies for replacing manual laboratory work with
an ML-based system could significantly enhance the efficiency
and yield in producing 2D materials. Furthermore, the ML
approaches described in this section could be combined with
a modern robotic system, resulting in a fully automated
identification and transferring system for producing 2D mate-
rials and heterostructures.

4.2. ML-enabled prediction of the synthesizability of 2D
materials

Even though countless 2D materials have been predicted to
exist, only very few have been demonstrated experimentally due
to not only the technical difficulties but also the fundamental
limitations. Such limitations originate from the fact that 2D
materials which have been predicted to exist may not always be
synthesizable, which renders many experimental efforts unsuc-
cessful. For example, only approximately 20 out of many
MXenes whose existence had been predicted by theoretical
(e.g., DFT, MD) calculations have been successfully
synthesized.1 To cope with this problem, ML can be used to
predict synthesizable candidates among numerous 2D materi-
als, which could be an efficient strategy for saving resources by
minimizing trials and errors for the synthesis. In a recent study,
synthesizable MXenes were predicted in the order of probabil-
ities of being synthesized using ML.13 From the perspective of
ML, there was a small amount of positively labeled data (i.e.,
already proved to be synthesized) and a large amount of
unlabeled data (i.e., MXenes to be tested for their synthesiz-
ability), which produced imbalanced data that required an
advanced ML algorithm. In this study, the positive and unla-
beled (PU) learning algorithm in semisupervised learning was
adopted and trained to tackle such an imbalance.

Fig. 9a shows schematics of material search space and the
PU learning algorithm. Considering 11 transition metal M, 12 A
group elements, two X (carbon or nitrogen), and n = 1, 2, or 3
(number of layers of X), a total of 792 MAX and 66 MXenes were
considered as the initial materials search space. MAX, a bulk

phase of MXene, was also added to the search space because
the corresponding MXene could potentially be produced from
MAX via the liquid exfoliation process as long as there is
synthesizable MAX. Therefore, synthesizable MAX and MXene
were independently predicted among the search space in
this study.

Input features including structural, thermodynamic, electro-
nic, and elemental information were gathered from DFT simu-
lations and materials databases to train the ML algorithm. In
the process of predicting synthesizable MXenes, a total of 66
MXenes, including 10 experimentally synthesized MXenes such
as Hf3C2, Mo2C, and Ti2C (true positives), and 56 unlabeled
MXenes were applied to the PU learning algorithm using the
bootstrapping method. Bootstrapping is typically used for
augmenting the original dataset by sampling with replacement.
For example, k-times repeated bootstrapping produces k num-
ber of bootstrapped datasets that complement the deficiency of
the original dataset. Such augmented datasets help avoid over-
fitting from insufficient original data and enhance the stability
of the ML algorithm. Before applying the PU algorithm, the
bootstrapped data were divided into training sets (90%) and
test sets (10%). In Fig. 9a, the PU algorithm first randomly
chooses some of the unlabeled data (blue squares) and labels
them as ‘‘negative’’ (green squares, not synthesizable). Subse-
quently, a classification algorithm finds a hyperplane that
classifies the dataset as positive (red circles, synthesizable) or
negative. Thereafter, the trained classifier determines if indivi-
dual unlabeled data not chosen in the first step belongs to
‘‘positive’’ or ‘‘negative’’. Such processes are repeated for all
bootstrapped datasets, which results in k-times repetitions. In
this study, a decision tree was used as a classifier and a
‘‘synthesizability score’’ was defined to sort MXenes in the
order of high synthesizability. The synthesizability score can
be described as the ratio of the number of times an unlabeled
MXene is classified as positive out of k-repetitions. Specifically,
k-repetitions of the PU algorithm with k-augmented datasets
result in a k-trained decision tree. If l-number of decision trees
out of k classify a given unlabeled MXene as ‘‘positive’’, the
synthesizability score of the specific MXene is evaluated as l/k.
In the study, 18 out of 56 unlabeled MXenes were predicted as
synthesizable because their high synthesizability score
exceeded 0.5. With the same approach applied to MAX, 111
out of 729 unlabeled MAX were suggested as synthesizable.

Fig. 9b shows the probability of synthesizing MAX and MX
with respect to transition metals M and A group elements. It
was predicted that MAX comprised of Zr, Ti for M and Al, and
Ga for A exhibits the highest possibility of being synthesized,
and MX based on Hf and C as M and X, respectively, displays
the most promise. Since most MXenes are synthesized by
etching the A layer from the corresponding MAX, synthesiz-
ability predicted separately for MAX and MXene may not
necessarily guarantee the true synthesizability. For example,
although a MAX is predicted to be synthesizable, it could not
produce the corresponding MXene if it requires high etching
energy. Similarly, an MXene predicted to be synthesizable could
not be synthesized if there is no synthesizable corresponding
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MAX, and thus it is important to investigate the synthesizability
of MAX and MX pairs as combined synthesizability. Fig. 9c
illustrates a schematic of the process to evaluate the combined
synthesizability of MAX and MX pairs. First, the synthesizability
scores of 111 pairs of MAX and the corresponding MX were
obtained from the PU learning algorithm, and then the etching
energy (Eetch) of 111 MAX was calculated. Subsequently, these
111 MAX and MX pairs were plotted as functions of the
synthesizability of MAX and MX and the etching energy. Finally,
the k-means algorithm was used to cluster these 111 pairs and
found the top 20 pairs with the highest combined synthesiz-
ability scores, as shown in Fig. 9d. These MAX/MX pairs include
Zr2GaC/Zr2C, Nb3AlC2/Nb3C2, and Ti4AsC3/Ti4C3, which have
yet to be synthesized but the outlook is promising.

Predictions of synthesizability using ML could be an essen-
tial pre-process for efficiently synthesizing numerous new 2D
materials, because the ML algorithm can filter out only those
2D materials likely to be synthesized successfully, thereby
accelerating the synthesis process. Furthermore, ML combined
with DFT calculations can help understand the fundamentals
in the synthesis of 2D materials by revealing input features
most relevant to the synthesizability.

5. ML-assisted applications of 2D
materials

Due to their excellent properties, 2D materials have had a
significant impact on applications such as transistors, optoe-
lectronics, sensors, and catalysts. Recent studies have shown
that ML can be an effective tool for studying such
applications14,15,17,38,39 because it can determine the complex
connectivity and relationships between numerous data and
draw meaningful results beyond human intuition. The studies
introduced in the following section show how ML can be used
for applications based on 2D materials.

5.1. ML-enabled application of 2D materials in chemical
sensing

2D materials have pushed the boundary of detection in sensing
applications because their excellent structural, electrical, opti-
cal, and electrochemical properties enable them to outperform
conventional 3D sensing materials. Specifically, the large sur-
face area, tunable band gap, high electron mobility, electrically
low-noise, long-lived plasmons, high stability, and low toxicity
of 2D materials have been exploited to design electrochemical,

Fig. 9 Prediction of the synthesizability of 2D MXenes. (a) Schematics of material search space (792 MAX and 66 MX) and the positive and unlabeled (PU)
learning algorithm. (b) Extracted synthesis probability of MAX and MX with respect to composing atomic species. (c) A workflow for finding synthesizable
(MAX, MX) pairs. (d) K-Means clustering of (MAX, MX) pairs as a function of synthesizability and etching energy. Panels (a), (b), and (d) are reproduced from
ref. 13 with permission from American Chemical Society, copyright 2019.
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electrical, and optical-based sensing schemes.40 In an electro-
chemical sensing scheme, 2D materials are designed for a
working electrode (WE) of electrochemical sensors that mea-
sure the change in the faradaic current (using amperometry or
voltammetry) or interfacial impedance (using electrochemical
impedance spectroscopy (EIS)) by reduction–oxidation (redox)
reactions upon the adsorption of target analytes to the WE.
Field-effect transistors (FETs) made of 2Dmaterials are used for
the sensing channels in electrical sensors to assess the change
in channel resistance by the gate potential modulation due to
the binding reactions between the analytes and receptors
grafted on the surface of the 2D material. Additionally, optical
systems such as surface plasmon resonance (SPR) and surface-
enhanced Raman spectroscopy (SERS) measure the change in
the local refractive index resulting from the adsorption of
analytes on the sensor surface made of 2D materials. Sensors
consisting of 2D materials as a sensing membrane show
unprecedented detection capabilities that conventional 3D
sensing materials cannot achieve; for example, a single mole-
cule of NO2 gas was detected using a graphene FET in 2007.
Other 2D materials such as MoS2, phosphorene, and Ti3C2Tx

have been demonstrated as sensitive bio- and environmental
sensors, exhibiting a low signal-to-noise ratio, high sensitivity,
and low limit-of-detection.40

Recently, new trials adopting ML techniques have been
reported for improving the superior potential of 2D materials
in sensing applications. For example, the atomically thin layer
of 2D materials has enabled the sensitive analysis of the
sequence of bases in DNA by detecting corresponding amino

acids.14 This sensing technology, known as nanopore-
sequencing, takes advantage of the conductance change while
a strand of DNA passes through a nanopore in 2D materials, as
shown in Fig. 10a. However, the conductance change from the
single nanopore of 2D materials is very subtle, measuring in the
pico-ampere (pA) range, which requires a well-controlled
experimental setup and analysis to discern the sensor signals
from background noises. In a recent study, ML was used to
identify sensor signals coupled with noises for detecting amino
acids using MoS2 with a nanopore.14 Once a chain of amino
acids travels through a nanopore of MoS2, the change in ionic
current originating from the conductance change is observed,
depending on the type of amino acids comprising the chain.
Each amino acid has various functional groups, such as amino
(–NH2) and carboxyl (–COOH), molecular sizes, and weights,
which show different interactions with the nanopore and result
in varying residence times. Therefore, the ionic current and
residence time associated with amino acids can serve as critical
sensor signals during the nanopore-sequencing process. In this
study, the ionic currents and residence times from 20 standard
amino acids moving through a nanopore in MoS2 were calcu-
lated using MD simulation with 100 repetitions. Fig. 10b plots
the ionic currents and residence times that form scattered
clusters. This plot was further used as training data for ML
algorithms such as KNN and RF. Fig. 10c and d show the
decision boundaries obtained from the KNN (k = 3) and RF
(n-estimator = 9), respectively. Different color regions shown in
Fig. 10c and d are associated with the individual amino acid,
enabling the classification of testing data depending on their

Fig. 10 Identification of amino acids with a sensitive nanoporous MoS2 and ML classifications. (a) A schematic illustration of nanoporous MoS2 and a
chain of amino acids. (b) Ionic currents and residence times obtained from 20 standard amino acids traveling through an MoS2 nanopore. (c and d)
Classified amino acids with respect to current and residence time using KNN and RF, respectively. (e) A plot of ionic current as a function of time, obtained
from a chain of amino acids. (f) A series of ML screening steps for discovering optimal 2D materials for Hg sensing. (g) Representative phase diagrams
obtained from Pymatgen and Factsage, predicting the stability and synthesizability of WS2. Panels (a)–(e) are adapted from an open-access article ref. 14
with permission from Nature Publishing Group, copyright 2018. A panel (g) is reproduced from ref. 15 with permission from Elsevier, copyright 2019.
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two features (i.e., ionic current and residence time). These
decision boundaries trained by the KNN and RF efficiently
classified the testing data with an accuracy of 94.6% and
99.6%, respectively. Furthermore, the trained KNN and RF
algorithms were further used to identify a chain of amino acids,
reflecting a more realistic sensing problem because amino
acids favorably form a chain. Fig. 10e shows a chain of 16
amino acids used as test data and a plot of the corresponding
ionic current with respect to the residence time. The plot
obtained from a chain of amino acids includes a high degree
of fluctuations originating from background noises, and thus it
is unlikely that the sensor signals corresponding to amino acids
can be easily deciphered. ML, given this condition, can be a
powerful tool to analyze sensor signals buried in noises. In this
study, two characteristic features were extracted by averaging ionic
currents and residence times obtained from 10 repetition tests
using the same chain of amino acids. Following that, predictions
of amino acids were performed by applying such features to trained
KNN and RF algorithms. The RF predicted better than the KNN, and
the overall accuracy was 62.5%. It should be noted that only two
features were used for training the ML models in this study, which
could be one of the reasons for such relatively low accuracy. There-
fore, capturing multiple characteristic features related to amino
acids could further increase the accuracy.

In another recent study, material databases beneficial to
construct materials data for ML were used to discover 2D
materials suitable for adsorbing and detecting airborne mer-
cury (Hg0) through a series of screening processes.15 Materials
databases (pymatgen41 and AFLOW42 listed in Table 2) and a
thermochemical software (FactSage) were used to screen a
number of 2D materials, as shown in Fig. 10f. First, stable
TMDs were investigated using Pymatgen. Subsequently, easily
synthesizable TMDs selected from previously chosen TMDs
were identified using FactSage. Fig. 10g shows phase diagrams
of WS2 obtained from pymatgen and FactSage. The red dots in
the pymatgen phase diagram show the stable compounds that
can be obtained from the combinations between transition
metals and chalcogens, and WS2 was found as a stable TMD.
Moreover, the FactSage diagram displays synthesizable
chemical compounds from precursors. For example, type-I
(pure TMD, WS2) occupies a large portion of the diagram,
indicating that 2D WS2 is likely to be synthesized compared
with other partial TMDs (from type-II to VI, WxOy–H2S–H2). In
the last screening, the AFLOW database was used to confirm
the atomic structure of previously screened TMDs and discover
only 2D TMDs. Throughout such screening processes, TiS2,
NiS2, ZrS2, MoS2, PdS2, and WS2 survived as promising TMDs
for Hg0 detection. Finally, DFT calculations confirmed that
PdS2 is the most suitable TMD because of its high Hg-uptake
capacity and high charge density change under Hg adsorption.
This study used open-source online databases that provide ML-
based predictions to discover the best TMDs for the Hg sensor,
which is beneficial for designing sensors with maximum sen-
sing performance. Additionally, with the use of databases, this
study could be carried out with minimal knowledge of ML and
thus can serve as an excellent example for novice researchers.

The studies introduced in this section show that ML and
material databases can be used to obtain meaningful findings
from noisy sensing signals and find optimal 2D sensing chan-
nels for detecting a specific target analyte, thus improving the
resolution and sensitivity of the 2D materials-based sensor. ML
could also be considered for calibrating 2D materials-based
sensors and compensating for the drift of sensor signals. A
brief discussion on potential research ideas on these topics is
provided in Section 6.

5.2. ML-enabled application of 2D materials in catalysis

As the worldwide demand for energy continues to rise, the
exploration of electrocatalysis, such as the hydrogen evolution
reaction (HER), oxygen evolution reactions (OER), and nitrogen
reduction reaction (NRR), is flourishing as it plays a central role
in clean, effective, and sustainable energy conversion. Electro-
catalysis has even been accelerated by 2D materials and single-
metal-atom doping, as the former has a large surface area for
reaction and the latter introduces more active-sites. However,
as an experimental approach, electrocatalysis is time-
consuming and expensive. A recent work has used ML to
rapidly and accurately screen out excellent HER catalysts from
MBenes and MXenes.17 In this work, bare MBenes and MXenes
were first compared to understand their differences in HER
activity, then bare and single-atom doped MBenes were inves-
tigated extensively to predict the ideal HER catalysts. In both
cases, simple structural and elemental descriptors were used as
input features in the ML model. These descriptors can be
grouped as DFT-calculated and elemental. As a major indicator
of the catalytic activity, the Gibbs free energy of hydrogen
adsorption DGH*

43 (with an optimal value of B0 eV) was
calculated by DFT and used as the ML output target. For bare
MBenes and MXenes, 66 MXenes and 46 MBenes were geome-
trically optimized and used as the dataset. Fig. 11a shows the
example structures. A simple linear regression algorithm was
applied in the ML model. Fig. 11b shows the descriptor-
predicted and DGH*. It was found that MBenes have much
better HER performance than MXenes, as the ranges of DGH*

were �0.4 to 0.4 eV for the former and �1.2 to �0.5 eV for the
latter, respectively. Pd2B1 and Co2B2 were selected as potentially
promising HER catalysts with DGH* of only �0.04 and �0.05 eV.
Next, bare and single-atom doped MBenes were explored, since
single-metal-atom doping may introduce more active-sites and
improve HER performance. A workflow for the ML screening
process of combined bare and single-atom doped MBenes is
illustrated in Fig. 11c. A dataset containing 180 MBenes was
generated. It started from the combinations of 19 bare MBenes,
23 metal elements of dopant, and n = 1, 2 of the layer ratio in
M2Bn, yielding 874 potential candidates. Then, 70 candidates
were randomly selected and combined with 110 pre-existing
candidates to generate a diverse dataset.

The dataset was divided, randomly placing 75% of the
candidates in a training set and 25% in a testing set. Four
ML algorithms were employed and compared to predict DGH*:
LASSO, RF, kernel ridge regression (KRR), and support vector
regression (SVR). LASSO, KRR, and SVR paradoxically exhibit
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predictions with lower RMSE for the testing set than for the
training set. Fig. 11d shows that the performance of SVR was
quite good, with RMSE and R2 of 0.12/0.09 eV and 0.85/0.91 for
training/testing data. Considering the distribution of RMSE
and R2 values from more than 100 random trials, LASSO and
SVR show better prediction of DGH* through the preliminary
evaluation. To accelerate the training process, the correlated
features, especially the DFT-calculated features, which are
relatively expensive, should be removed to further speed up
the predicted process. Using the Pearson correlation coefficient
(PCC), the number of features was reduced from 21 to 16, which
led to a 0.02 eV increase of RMSE in the testing data for LASSO,
while the RMSE of SVR decreased by 0.01 eV. Thus, SVR is the
best of the four models in this work. Then, an additional 25
single-atom doped MBenes were randomly selected and trained
by the SVR model using 13 simple features. The value of RMSE
is 0.15 eV, as shown in Fig. 11e. Based on the criteria that DGH*

should be in the range of �0.25 to 0.25 eV and the cohesive
and substitution energies should be less than�5.02 (MoS2) and
0 eV, respectively, five MBenes (Co/Ni2B2, Pt/Ni2B2, Co2B2, Os/
Co2B2 and Mn/Co2B2) were determined using the SVR model
and DFT calculations to be promising HER catalysts among 205
MBenes and 66 MXenes, as shown in Fig. 11f. To ensure
accurate screening, accurate DFT calculations, including spin-
polarization, vdW-interaction, and PBE+U, were calculated for
the final candidates. The changes in the predicted DGH* were

small, indicating that reliable screening can be obtained by ML
models trained on less accurate DFT calculations. Furthermore,
the phonon dispersion curves and dynamic stability were
calculated and considered. Finally, Co2B2 and Mn/Co2B2 were
predicted as excellent HER catalysts, with |DGH*| o 0.15 eV
among bare and single-atom doped MBenes.

2D TMDs have been reported as very promising catalysts,
but the performance of intrinsic TMDs for electrocatalysis
processes such as water splitting is inadequate.44 However,
different 2D TMDs can be stacked to form heterojunction
materials with novel properties. A recent study has applied
the LASSO ML approach to predict the vertical stacking hetero-
structures of 2D TMDs as bifunctional electrocatalysts for HER
and OER.39 In consideration of the stacking rotation angles, the
study predicted that MoTe2/WTe2 with a rotation of 3001 is the
best electrocatalyst for water splitting, exhibiting an overpoten-
tial of 0.03 V for HER and 0.17 V for OER, respectively. The
catalytic performance can be estimated through reaction free
energy DG. The mechanism for HER is H+ + e� + * - *H,
whereas for OER four steps are involved:

H2O(g) + * - *OH + H+ + e�

*OH - *O + H+ + e�

*O + H2O(g) - *OOH + H+ + e�

Fig. 11 ML-assisted screening of 2D MBenes to find an optimal hydrogen evolution catalyst. (a) The structures of MBenes and MXenes. (b) Comparison
of descriptor-predicted and DFT-calculated hydrogen adsorption DGH* for bare MBenes and MXenes. (c) A workflow for the ML screening process.
(d) Comparison of predicted Gibbs free energy of DGH* with DFT-calculated DGH* for bare and single-atom doped MBenes. (e) Additional comparison
plot of DGH* by using 25 new MBenes to evaluate the trained ML model. (f) DFT-calculated substitution and cohesive energy plot of 28 promising HER
catalysts screened by using ML. Panels (a), (b), (d), (e), and (f) are adapted from ref. 17 with permission from Elsevier, copyright 2020.
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*OOH - * + O2 + H+ + e�

The ideal HER catalyst should have DG*H near 0 eV, while the
ideal OER catalyst should have similar reaction free energies in
those four charge transfer steps at zero potential (4.92 eV/
4 = 1.23 eV). In this work, the overpotential of HER ZHER and
OER ZOER were calculated to estimate the catalytic performance,
where ZHER is |DG*H|/e for HER, and ZOER is determined by the
potential limiting step as ZOER = DGmax/e � 1.23. For the ML
approach, 48 systems were optimized, which were constructed
by combining eight heterostructures (MoS2/WS2, MoSe2/WSe2,
MoS2/WSe2, MoSe2/WS2, MoTe2/WTe2, MoS2/WTe2, MoTe2/
WS2, and MoTe2/WSe2), and six rotation angles (01, 601, 1201,
1801, 2401, and 3001). The input variables were the rotational
angle y, the distance d between two TMDs, the average bond
length l, and the ratio (l) of the bandgaps of two component
materials. Output targets were the reaction overpotential ZHER

and ZOER. First, 257 703 possible descriptors were generated by
combining one or more input variables through operations
including addition, subtraction, multiplication, division, abso-
lute value, square, and square root. A linear regression LASSO
algorithm was applied and repeated 50 times. The best-fit
descriptor expression PL (l, y, d, l) was selected. For OER, a
good linear relationship between the best-fit descriptor PL (x)
and the catalytic performance (y) was found to be y = 1.04x + 0.6
with an R2 of 0.83, as shown in Fig. 12a. For HER, the same
descriptor PL led to y = �1.73x + 0.18 with an R2 of 0.80. Then,
these equations from the LASSO regression were used to predict
the overpotentials ZHER and ZOER. Fig. 12b and c shows the

relationships of the rotational angle and the overpotentials. It
was concluded that MoTe2/WTe2 with a rotational angle of 3001
had the best overall performance for HER and OER, with an
overpotential of 0.03 V for HER and 0.17 V for OER.

NRR on the transition metals (TMs) is promising, but the
efficiency was low in most cases. Recently, boron-doped gra-
phene (B–Gr) exhibited a higher efficiency of NRR than most
TMs.45 A recent study has designed a DNN to predict efficient
electrocatalysts for NRR among B–Gr single-atom catalysts
(SACs).38 Three candidates were selected as very promising
catalysts for NRR, especially B–Gr, with CrB3C exhibiting a
minimal overpotential of 0.13 V. In this work, the metric
for a good NRR catalyst is determined by the adsorption energy
DEN2 of N2 and the hydrogenation free energy DG for each
reaction step, as DEN2 o �0.50 eV, DGN2–N2H o 0.55 eV, and
DGNH2–NH3 o 0.7 eV. To construct the ML dataset, 182 struc-
tures of B–Gr with single-metal atoms were considered by
combining 26 TMs and seven different types of coordination
in SACs as shown in Fig. 12d. Fig. 12e shows the designed DNN
model through the Keras library. A Coulomb matrix with
components of the atomic number position was used as an
input descriptor for representing atomic structures. PCA was
used to reduce the dimensions of the Coulomb matrix into one
axis (PC1). The adsorption energies and free energies of some
intermediate steps involved in the NRR were predicted by using
the Light Gradient Boosting Machine (LGBM) model, as shown
in Fig. 12f. The output of the DNN is the probability of efficient
catalysts. After screening, three B–Gr SACs were proposed to be
very promising for NRR: B–Gr with CrB3C, TcB3C, and HfBC2.

Fig. 12 (a) The relationship between the descriptor and the catalytic performance for OER. (b and c) Relationships of the rotational angle with
overpotential ZHER and ZOER. (d) Structures of B-doped graphene with single-metal atoms. (e) Deep neural network (10 neurons in each hidden layer)
architecture. (f) Prediction performance plot between DFT-calculations and machine-learning outputs. Panels (a)–(c) are adapted from ref. 16 with
permission from American Chemical Society, copyright 2020. Panels (d)–(f) are adapted from ref. 38 with permission from Royal Society of Chemistry,
copyright 2020.
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6. Conclusion and outlook

Over the last decade, the rapidly growing number of 2D
materials and their heterostructures have surpassed the capa-
city that conventional experimental and computational
approaches can handle. In recent years, ML has been on the
rise as a powerful tool to support such conventional methods,
thus bringing new opportunities to study them in intelligent
ways. Harvested from materials databases and experimental
and computational observations, the characteristics of 2D
materials serve as input features to train various ML algorithms

belonging to supervised, unsupervised, and semisupervised

learning approaches. By understanding the intricate interrela-

tionships among input features or correlating input features

with target outputs, such trained ML algorithms result in new

insights from accurate predictions, enabling the understand-

ing, discovery, and synthesis of 2D materials.
This tutorial review has introduced recent efforts that seek

to understand how ML can contribute to the study of 2D
materials. The early and frequent adoption of ML is for
predicting their properties. ML algorithms have quickly and

Table 3 Summary of machine-learning-assisted studies of 2D materials

Research area 2D materials
Source of descriptors/
targets Predicted features ML algorithms Ref.

Prediction of
materials’
properties

Mechanical
Graphene OM image (R, G, B) Material strength SVM 12
WS2 Molecular dynamics (MD)

simulation
Fracture strain, strength
Young’s modulus

RF 23

MX2 M (Mo, Nb, W, Ti) X (S, Se,
Te)

Previous literature (struc-
tural, electrical properties)

Nanoscale friction Bayesian model 24

Electronic
MXenes DFT, chemical structures Band gap KRR, SVR, GPR 26
Many 2D materials Computational 2D materi-

als database (C2DB)
Band gap, exciton binding
energy

LASSO 47

Optoelectronic
1L-WSe2 Polarization resolved PL

mapping image
Exciton valley polarization
landscape

RF 28

Thermodynamic
Many 2D materials C2DB Thermodynamic stability XGBoost, SISSO 48

Production of 2D
materials

Top-down approaches (mechan-
ical printing, liquid exfoliation)
Graphene, MoS2 Optical microscope image Thickness of materials K-Means clustering 7
Graphene, hBN, WTe2, MoS2 Optical microscope image Thickness and position of

materials
Convolution neural network
(CNN)

10

Graphene, MoS2 Optical microscope image Layer number (mono-, bi-
layer)

CNN 11

Graphene, MoS2 Optical microscope image
(RGB)

Layer numbers SVM 8

Graphene Optical microscope image Layer numbers (mono-, bi-,
tri-layer)

Bayesian Gaussian mixture
model (BGMM)

9

Graphene Optical microscope image
(R–G plane)

Layer number, flake size SVM 12

Graphene dispersions Optical microscope image
(brightfield)

Layer number, flake size K-Means clustering 37

Quantitative polarized
optical microscope (qPOM)

Synthesizability
MXenes DFT, elemental features Synthesizability PU learning 13
Materials discovery
2D topological insulator DFT, 2DMatPedia database Discover 12 new 2D topolo-

gical insulators
SISSO, XGBoost 49

Applications Sensor
2D TMDs pymatgen, FactSage,

AFLOW material database
Good TMDs for Hg0 sensing Material screening based on

material databases
15

Nanoporous MoS2 MD simulation (residence
time, ionic current)

Distinguish sensor readings
of amino acids

Logistic regression (LR),
KNN, RF

14

Catalyst
MBenes DFT, elemental features Predict good MBenes for

HER
LASSO, RFR, KRR, SVR 17

2D TMD Heterostructures DFT Predict a good TMD hetero-
structure for HER and OER

LASSO 16

Photovoltaic (not discussed)
Many 2D materials DFT, inorganic crystal

structure database (ICSD)
Predict good 2D photovoltaic
materials

Gradient Boosting Classifier
(GBC), LR, SVM, RF, etc.

50
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accurately predicted the properties of numerous undiscovered
2D materials and heterostructures which otherwise would have
required considerable time and resources. A relatively recent
application of ML is for synthesis. ML algorithms, trained by
using the features from optical images, are able to identify
mechanically transferred 2D materials with the optimal size
and thickness. Furthermore, ML predicts their synthesizability, thus
significantly enhancing productivity by pre-screening countless
candidates that are unlikely to have been synthesized. Finally, ML
has been adopted to study the applications of 2D materials, which
opens new opportunities such as ultrasensitive sensing and dis-
covering the most competent catalysts. The recent studies per-
formed using ML are organized and listed in Table 3.

Yet despite such great opportunities, there are several chal-
lenges that must be kept in mind in order to apply ML. First, it
is rather difficult to obtain a sufficiently large volume of data to
use ML to study newly discovered 2D materials. For example, as
described in Section 4.2, only 20 MXenes were used as labeled
data to predict the synthesizability of numerous others because
MXenes are relatively new whose synthesizability has not been
thoroughly investigated. Although advanced ML techniques
such as PU learning can be applied to handle such sparse data,
a minimal volume of data for the algorithms should be accu-
mulated in advance through experimental or computational
methods. Furthermore, such a low volume of data often cannot
impartially represent the characteristics of 2D materials, result-
ing in biased predictions.

Second, ML requires not only a large quantity of but also
high quality data to produce accurate predictions. Since ML is a
stochastic process, prediction accuracy depends heavily on how
well the data is used to train ML algorithms. In the study of 2D
materials, the data source is limited to databases, experiments,
and computations. Moreover, such data related to the struc-
tural, electronic, chemical, and thermal characteristics are
usually represented as floating numbers with an error range,
and thus suitable data normalization and averaging techniques
should be applied to such data for accurate predictions. More-
over, repeated experiments or computationally expensive simu-
lations are required to acquire reliable data with low variances.

Lastly, predictions from ML should be carefully interpreted
and validated using experiments or computational simulations,
because such predictions do not come from understanding the
underlying physics of 2D materials. Instead, ML correlates the
input features with target outputs and makes predictions based
on those correlations. For example, NN generates complex
interconnections between numerous nodes in hidden layers
without considering any theoretical backgrounds in 2D materi-
als, which could produce theoretically wrong correlations.
However, such challenges in ML for the study of 2D materials
could be resolved in the near future, as researchers worldwide
are collaborating to put together vast and accurate 2D materials
libraries. Furthermore, state-of-the-art ML studies are incorpor-
ating physics-informed constraints into ML algorithms, thus
enabling more theoretically reasonable predictions.

Leveraging ML can open new research opportunities. First,
an automated system for producing an array of 2D materials

and their heterostructures could be designed using ML and
robotic technologies. For example, a recent study demonstrated
that a robotic arm equipped with a Bernoulli gripper can
successfully transfer individual 2D materials onto a target
substrate, producing heterostructures.46 This robotic system
could be synergistically integrated with ML algorithms that
identify optimal materials (discussed in Section 4.1), resulting
in an intelligent production system. Second, in sensing appli-
cations, ML can be used for optimizing various sensors made of
2D materials. For example, ML can be used to correct the drift
of sensor signals. The drift is a natural process of changing
sensor signals with time due to environmental change or aging
sensors. Since ML specializes in predicting expected trends
based on historical data, it can generate a predicted drift curve
that could be subtracted from the original sensor signal to
remove the drift. Furthermore, ML could be beneficial for
calibrating sensors that exhibit a relatively high device-to-
device variation due to the lack of uniform manufacturing
methods. By correlating the initial properties of 2D materials
with sensor outputs, ML can accurately predict the concen-
tration of target species at a given sensor output, which leads to
calibration curves that compensate for device-to-device varia-
tions of sensors. Finally, ML could be adopted to design an
all-in-one system that includes a series of ‘‘Discovery–Under-
standing–Screening–Synthesis–Application’’. In this concept,
ML first predicts new 2D materials and reveals the materials’
properties; among these, a few that have optimal properties for
a specific application are screened, and, subsequently, the
synthesizability of them can be evaluated. Finally, applications
using the synthesized 2D materials are optimized using ML.

In conclusion, ML has become an essential tool for support-
ing a series of studies in 2D materials from fundamentals to
applications, which significantly accelerates the development
of 2D materials and their heterostructures and thus opens
numerous opportunities for applying them to more practical
and real-world applications.
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