Building a Secure mHealth Data Sharing Infrastructure over
NDN

Saurab Dulal Nasir Ali
University of Memphis University of Memphis
sdulal@memphis.edu cnali@memphis.edu
Siqi Liu Suravi Regmi
UCLA University of Memphis
tylerliu@g.ucla.edu sregmil @memphis.edu
ABSTRACT

Exploratory efforts in mobile health (mHealth) data collection and
sharing have achieved promising results. However, fine-grained
contextual access control and real-time data sharing are two of the
remaining challenges in enabling temporally-precise mHealth inter-
vention. We have developed an NDN-based system called mGuard
to address these challenges. mGuard provides a pub-sub API to
let users subscribe to real-time mHealth data streams, and uses
name-based access control policies and key-policy attribute-based en-
cryption to grant fine-grained data access to authorized users based
on contextual information. We evaluate mGuard’s performance
using sample data from the MD2K project.

CCS CONCEPTS

« Networks — Naming and addressing; « Security and privacy
— Access control.

KEYWORDS

Named Data Networking (NDN), mHealth, Access Control, Real-
time Data Sharing

ACM Reference Format:

Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Sigi Liu, Suravi
Regmi, Lixia Zhang, and Lan Wang. 2022. Building a Secure mHealth Data
Sharing Infrastructure over NDN. In 9th ACM Conference on Information-
Centric Networking (ICN °22), September 19-21, 2022, Osaka, Japan. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3517212.3558091

1 INTRODUCTION

Wearable devices have seen a wide adoption in the consumer mar-
ket, and are expected to grow exponentially in the near future [1].
This growth is fueled by their increasing use in health and well-
ness [33], which are made possible by an increasing number of
mobile health (mHealth) biomarkers. The research community has
been engaged in the discovery and validation of novel biomarkers
and interventions using these wearables.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICN °22, September 19-21, 2022, Osaka, Japan

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9257-0/22/09...$15.00
https://doi.org/10.1145/3517212.3558091

Adam Robert Thieme Tianyuan Yu
University of Memphis UCLA
athieme@memphis.edu tianyuan@cs.ucla.edu

Lixia Zhang Lan Wang
UCLA University of Memphis

lixia@cs.ucla.edu lanwang@memphis.edu

Our work aims to address two identified data access challenges
in sharing mHealth data among researchers. First, because wearable
sensor data may expose privacy-sensitive information about a user,
it should only be accessible by authorized users. Currently, this
access control is largely handled manually or through passwords, in-
curring high overhead while being subject to human error. Second,
supporting real-time intervention for certain medical conditions
requires retrieving and processing high-frequency sensor data in
real-time, a functionality not supported by existing systems. High
frequency data has proved useful to get insights from mHealth data
and produce better biomarkers [29, 35]. For example, eating disor-
ders [4] and smoking episodes [32] can be detected using data from
high-frequency sensors such as accelerometer and gyro. If the data
can be streamed and analyzed in real time, medical professionals
can intervene as soon as the problems are detected [18].

We tackle the above challenges by utilizing the functionalities
provided by NDN [2, 40], specifically name-based access control
(NAC [43, 45]) which automates cryptographic key management
for data access control and NDN Sync [15, 16] which enables real-
time notification of newly published data. NAC encrypts data as
soon as it is produced and shares the decryption key with authorized
consumers. mGuard uses NAC-ABE [43] to grant contextual data
access to authorized users [11]. It also provides a Sync-based pub-
sub API to enable users to subscribe to mHealth data streams.

Our contributions can be summarized as follows: First, we de-
signed a naming scheme for mHealth data (§3.2). This hierarchi-
cal, semantic naming structure can be applicable to other studies
that collect sensing data from human subjects. Second, different
from existing NDN access control solutions [31, 43], we developed
an intuitive access control policy specification using name-based
data-centric attributes, which allows data owners to (1) specify fine-
grained policies based on time, location, or other context informa-
tion, and (2) add policies for new data requesters over time (§3.4.2).
Third, our pub-sub API publishes manifests that contain sets of data
names, and uses Sync to notify data requesters of newly-published
manifests §3.5). This design achieves real-time data dissemination
while avoiding the overhead of signing, verifying, and sending noti-
fications for individual data objects. Lastly, we evaluated mGuard’s
performance using Mini-NDN [20] with the NDN testbed topology
and sample data from the MD2K project [12]. This experimentation
not only demonstrated the feasibility of our design, but also re-
vealed the design and implementation issues in NDN Python Repo
and NAC-ABE (§5 and §6). Addressing these issues will improve the
storage and access control support for future NDN applications.

https://doi.org/10.1145/3517212.3558091
https://doi.org/10.1145/3517212.3558091

ICN ’22, September 19-21, 2022, Osaka, Japan

2 BACKGROUND

Our work was motivated by challenges encountered by the MD2K
center [12] in their development of an mHealth research cyberin-
frastructure. In this section, we first provide a brief overview about
mHealth data collection and distribution and the MD2K cyberin-
frastructure. We then introduce some basic NDN concepts.

2.1 mHealth Data

Today’s sensors in wearables, hand-held devices, and environments
produce a massive amount of data that can be used for advanced
healthcare and wellness management. A single user’s wearable
device may produce GBs worth of data each day. Wearable devices
typically have limited onboard memory to store collected data, so
they usually upload their data to an external storage device, e.g., a
mobile phone, a local or a cloud server. The data is then processed
to compute biomarkers to predict physiological and behavioral
events. The server can also send computed results, e.g., activities
performed, and/or interventions, back to the wearable or handheld
devices. Once the data is uploaded to the server platform, data can
be accessed by study coordinators, data scientists, or researchers.

Unlike most other mHealth systems, MD2K collects high-frequency
data that varies from 1hz to 128hz from various sensors. Real-time
data collection and dissemination of such high-frequency data can
help detect eating disorders [4] and smoking episodes [32] and
perform timely interventions. Currently, MD2K researchers can log
on to a server to access and process data there, but cannot receive
the data in real-time to perform timely intervention.

Data security and privacy becomes challenging [7], especially
when distributing data generated at a high rate. Data collected by
mHealth research, e.g., raw GPS data, and the computed biomarkers,
are sensitive in nature. Researchers who conduct research involving
identifiable human participant data streams are bound via federal
laws and oversight by the Institutional Review Boards (IRBs) to pre-
serve the rights and welfare of human research subjects. mHealth
data is typically shared with terms of use overseen by an inter-
nal oversight body and IRBs. Moreover, study participants must
be made aware and agree to the manner by which their data are
disclosed and used. Currently, researchers’ access to the MD2K
server is authenticated via a user name and password, but there
is no additional control based on the user’s roles or any other re-
strictions once the user is inside the server. In some cases, MD2K
staff members manually identify which data can be accessed by a
researcher based on their access rights, then send the encrypted
data to the researcher using a storage device. This process is slow
and prone to human error.

The above limitations in the MD2K cyberinfrastructure are shared
by other mHealth data collection systems. Most of these platforms
do not support real-time data distribution, and their data access
control do not support fine-grained contextual access control poli-
cies based on time, location, or other context information. More
information about existing mHealth systems can be found in §7.

2.2 NDN

Today’s Internet applications, by and large, are built on the web
semantics of requesting data by names. Applications seek to get the
named data, and do not care where they reside. However, because
today’s Internet protocol stack uses IP addresses to communicate,

Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

the application data names, e.g., https://mhealth.md2k.org/images/
datasets/mOral_dataset.zip which identifies a dataset from an oral
health study curated by MD2K, must be first translated to the IP
addresses of a specific server, so that applications can fetch data
from that server.

In contrast, Named Data Networking (NDN) [40] adopts the
web’s request-reply communication model and uses application
data names in network layer data delivery. NDN’s requests and
responses work at a network packet granularity — each request,
carried in an NDN Interest, contains the name of the requested data
and fetches one NDN Data packet back. Each NDN forwarder uses
the name in an Interest to determine where to forward the Interest.

NDN views a networked system as connected named entities
which have various trust relations among each other. Each entity
possesses security credentials and communicates with others via
named, secured data: it signs every data packet it produces, so
that Data packets can be cached and served by any device, and
authenticatible by any data consumers. NDN enforces data access
control via content encryption, and has developed name-based ac-
cess control (NAC [43, 45]) to automate the key management in
controlling data access. NAC differs from traditional access control
schemes in two important ways: (a) NAC keeps data encrypted
both in transit and in storage, achieving true end-to-end protection;
and (b) it supports data access control across a spectrum of gran-
ularity from an entire data repository to a single data packet by
utilizing NDN’s hierarchical semantic naming. Cryptographic keys
and security policies are also named contents, they can be fetched
as named, secured data in the same way as any other types of data.
NDN enables applications to define security policies and automates
key management and access control using semantically meaningful
data names, e.g. key names, device names, and user names [45].
These policies can be specified using defined turst schemas and
their execution can be automated using NDN security libraries [37].
The basic components in the NDN design, i.e., hierarchical naming
structure, data-centric security, and name-based data distribution,
enable innovative solutions to address the challenges in mHealth
data sharing in a systematic manner.

3 DESIGN

In this section, we first give an overview of mGuard, and then
present its naming scheme, trust model, access control scheme, and
pub-sub APL

3.1 Design Overview

Figure 1 shows the mGuard’s system design. There can be multiple
service instances, each serving the data from one mHealth data
repository (e.g., MD2K). On each service instance, a Data Adaptor
module! extracts data points from an mHealth data repository
and matches them with NDN names and data attributes. It then
passes the data and associated names and attributes to a Publisher
module which creates NDN data objects, encrypts them, and stores
them in an NDN Repo. In addition, the Publisher creates manifests
containing the new data names, stores the manifests in the NDN
Repo, and advertises their names to data requesters through a pub-
sub API (§3.5). Note that each mHealth study may produce multiple

This Data Adaptor is not needed if mHealth studies produce NDN data directly.

https://mhealth.md2k.org/images/datasets/mOral_dataset.zip
https://mhealth.md2k.org/images/datasets/mOral_dataset.zip

Building a Secure mHealth Data Sharing Infrastructure over NDN

:Server Instance (l4)

requests for manifest/data

ICN °22, September 19-21, 2022, Osaka, Japan

request for decryption keys

data data artnbue ::[;': |=
adaptor attributes | |ookup table

E NDN data/
: data, NDN manifest <
! raw/derived NDN dna“rqgt B “a“\e
: data names and attributes publisher -
.c\e’“‘)5
public params
ree for encryption
MD2K

data repository

controller [,olicy parser
"
access manager

manifest/data

subscription request for manifest

request for data
subscriber

data requestor

decryption keys
manifest
application data

Figure 1: mGuard System Design

datasets. Each dataset is converted to a data stream identified by
its name prefix, e.g., /org/md2k/mperf/dd40c/phone/accelerometer
(see our naming scheme in §3.2), and all the data objects in a data
stream share the same name prefix.

Each data requester runs a Subscriber module to subscribe to one
or more data streams of interest through our pub-sub API (§3.5).
When the pub-sub library gets notification about a new manifest
name for one of the subscribed data streams, it fetches the manifest
and verifies its authenticity. It then fetches the data objects using
the data names contained in the manifest and decrypts them.

Each mGuard data repository has a trust anchor representing the
organization that manages the repository. In order to authenticate
the data from an mHealth repository, data requesters should be
configured (either manually or through a bootstrapping process)
with the corresponding trust anchor and trust schema. Every data
object is encrypted using public parameters provided by the Ac-
cess Manager and one or more attributes specific to the object (i.e.,
attribute-based encryption). The data object can only be decrypted
by authorized requesters who are issued the corresponding decryp-
tion keys. A Policy Parser processes a policy configuration file to
extract the access control policies for authorized data requesters
and passes them to the Access Manager. Each data requester has
a name and an associated public key which must be certified by
trust anchor. After an Access Manager verifies the authenticity of a
requester, it checks the access policies, and issues a decryption key
to the requester if it has access right. More details about our trust
model and access control mechanism can be found in §3.3 and §3.4,
respectively.

3.2 Naming Scheme

Our first step in developing mGuard was to design an NDN nam-
ing scheme for mHealth data which can be used by both MD2K
and other mHealth repositories. The current MD2K data comes
from two sources: i) raw streams — data collected directly from
phones/devices used by study participants, and ii) derived streams
— data created by researchers and other users after processing the
raw streams. Although the current MD2K system does not have a
strict naming convention for these data streams, the existing prac-
tice loosely follows a common pattern: <sensor>-<namespace>—
<device-name>—<attachment>, where namespace represents the
scope of the collected data and helps organize data belonging to

the same group, e.g. /org/mdzk, and attachment refers to where the
device is attached, e.g., chest or wrist.

After examining hundreds of MD2K stream names, we devel-
oped an NDN naming scheme for MD2K’s raw and derived streams
following a hierarchical structure (Figure 2). A raw stream has the
name prefix /<data-prefix>/<study>/<participant>/<device>/
<sensor>/<attachment> (the attachment component is optional),
while a derived stream has the name prefix /<data-prefix>/<study>/
<participant>/<algorithm>/<package> (note that other name com-
ponents can also be added to this hierarchical structure as needs
arise). We ordered the name components based on their semantics
and physical properties. For example, each data repository hosts
datasets from multiple studies, so the study name (e.g. mperf and
mdot) follows the data repository name (/org/mdzk). Similarly, each
study can have one or more participants, and the participants collect
various data through different types of sensors embedded inside
wearable or portable devices.

Once a data point is extracted from an MD2K stream, we assign
a unique name to it. First, we take the corresponding data stream
name as the prefix and add a predefined keyword “DATA” compo-
nent to it. This keyword helps distinguish a data name from other
types of names. Then, we add the timestamp of the data point to the
end of the data name, so the final data name becomes /<datastream-
prefix>/DATA/< timestamp>, e.g., /org/md2k/mperf/dd40c/phone/
gyro/DATA/1492637493876.

Naming data consistently across protocol layers and securing
each piece of data independently provide a number of benefits
in supporting application development, data and network man-
agement, secure data distribution, and data provenance [2, 40].
However, different layers may prefer different naming schemes. For
example, NDN transport (e.g., Sync) may prefer sequential naming
whereas the application may not. In fact, mGuard solves the naming
inconsistency using manifests (§3.5.3) - mapping application names
to sequential manifest names allows the application and Sync to
use different naming schemes. We will explain other name types
in our naming scheme in the relevant sections, e.g., attribute name
and content key (CK) name in §3.4, and manifest name in §3.5.

3.3 Trust Model and Supporting Mechanisms

Trust in the mHealth data distributed by mGuard is derived from the
trust anchor of each mHealth repository. The trust anchor verifies

/org/md2k/mperf/dd40c/phone/accelerometer
/org/md2k/mperf/dd40c/phone/gyro/DATA/1492637493876
/org/md2k/mperf/dd40c/phone/gyro/DATA/1492637493876

ICN ’22, September 19-21, 2022, Osaka, Japan

<data-prefix>

attribute
naming (ATTRIBUTE|

-2 (location

Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

data stream

<participant>
| dddoc naming
L [work | e home
<device> <algorithm> -
phone [motion-sense] data-analysis |

<sensor> (P ackage? —
[locati] [. "] [J [. "] i| gps_episodes_and

ocation accelerometer gym?cope accelerometer i|_semantic_location

<attachment>| i
left-wrist

DATA

Added by NAC-ABE
library (internally)

Figure 2: mHealth Data Naming Scheme

the identity of the entities in the system and certifies them. For
example, the MD2K repository’s trust anchor is the self-signed
public key of the MD2K system operator, i.e., /org/md2k/KEY . This
trust anchor certifies the public key of the Publisher (/org/md2k/
publisher/KEY) and the public key of the Access Manager (/org/
md2k/manager/KEY). The Publisher further signs the manifests of
the data streams it produces (see §3.5), while the Access Manager
signs the encryption material distributed to the Publisher and the
decryption keys distributed to data requesters.

Data requesters in mGuard are named under participating organi-
zations’ prefixes (e.g., /edu/campus). During security bootstrapping,
a data requester securely obtains the trust anchor and trust schema
from the system operator. It then obtains a public-key certificate
from the trust anchor following the NDNCERT [42] protocol. Af-
terward, the data requester provides its public-key certificate to
the Access Manager which accepts the key after verifying that it
is signed by the trust anchor. The Access Manager then generates
a decryption key following the access control policy as defined
in §3.4.1. The data requester then verifies that the decryption key
is signed by the Access Manager, and received manifests are signed
by the Publisher.

3.4 Access Control

The main components of access control are specifying access con-
trol policies (§ 3.4.1) and enforcing the policies to limit data access
to only authorized users (§ 3.4.2).

3.4.1 Access Control Policies. mGuard supports defining fine-grained
access control policies for study participants, study coordinators,

and data administrators based on the terms of use and an under-
standing of privacy risks.

By default, no one should have access to the data except its
owner. This will allow data owners to explore their data, evaluate
privacy concerns, and define policies accordingly. Whenever a new
data access request is approved (e.g., through the signing of a Non-
Disclosure Agreement), the data owner can define a new policy by
specifying (a) the data requesters’ NDN names; and (b) data streams’
names which those requesters should or should not be allowed
access. Optionally, policies may include context-based attributes
such as location, activity, and time for fine-grained access control.2

As shown in Figure 3, policies are structured in two sections.
The first section specifies the unique policy ID and the NDN names
of the data requesters. If all the members of an organization, e.g.,
a research lab, are allowed to access the data, their name prefix
can be used here. The second section, attribute-filters, has two
fields (“allow” and “deny”) to provide the policy writer the ability to
specify attributes of the data that the requesters can/cannot access.
Requesters are allowed access to data defined in the “allow” field
excluding any data defined in the “deny” field.

We can use both stream names and derived attributes such
as location and activity in the “allow” field and the “deny” field.
A stream name can be a prefix which includes all the streams
under that prefix. We assume that the policy parser is config-
ured with all the legitimate stream names so it can calculate the

2If there is an existing policy that has the same terms, then the new data requesters’
names can be added to that policy.

3Policies may include more than one of these sections and may have names that differ
from "attribute-filters".

/org/md2k/KEY
/org/md2k/publisher/KEY
/org/md2k/publisher/KEY
/org/md2k/manager/KEY
/org/md2k/manager/KEY
/edu/campus

Building a Secure mHealth Data Sharing Infrastructure over NDN

ICN °22, September 19-21, 2022, Osaka, Japan

Policy Description Examples
policy-id <unique-id>| policy-id A policy-id B
requester-names <names> requester-names /edu/mit/alice requester-names /edu/harvard/bob
attribute-filters attribute-filters attribute-filters
{ { {
allow allow allow
{ { {
<attribute 1> /org/md2k/ /org/md2k/mperf/dd4oc/
<attribute 2> } /org/md2k/ATTRIBUTE/location/home
... deny /org/md2k/ATTRIBUTE/location/gym
} { /org/md2k/ATTRIBUTE/date > 20210901
deny /org/md2k/mperf/dd4@c/phone/gps| 1}
{ 3 deny
<attribute 1> } {
<attribute 2> /org/md2k/ATTRIBUTE/activity/sleeping
. }
} e /* brief: alice may access all /* brief: bob may access all streams
streams under /org/md2k except under /org/md2k/mperf/dd4ec if the data
dd40c's gps */ was collected at home or at the gym,
after Sept 1, 2021, but not when the
participant was sleeping */

Figure 3: Access Control Policy Structure

set of data streams that a requester is allowed to access using
the streams listed in the “allow” field and “deny” fields. The at-
tributes are split into groups based on their type. For example, a
data requester may want access to the mPerf study data gener-
ated by the participant dd40c (/org/md2k/mperf/dd40c) either at
home (/org/md2k/AT TRIBUTE/location/home) or in the gym (/org/
md2k/ATTRIBUTE/location/gym). Here, the data stream name
/org/md2k/mperf/dd40c belongs to one group, while the two loca-
tion attributes, /org/md2k/ATTRIBUTE/location/home and /org/
md2k/ATTRIBUTE/location/gym belong to a second group having
the same type (location). Time-based attributes can also be used, e.g.,
one can add the attribute /org/md2k/ATTRIBUTE/date>20210901
to further restrict access to only data produced after Sept. 1, 2021.
If we want to exclude data generated when the participant is sleep-
ing, then we can add the attribute /org/md2k/ATTRIBUTE/activity/
sleeping to the “deny” field.

Each policy is converted to a logic expression composed of stream
names and derived attributes, which is used by NAC-ABE [17, 43]
to generate a decryption key for each data requester listed in the
policy (see the next section). These keys are distributed to the
data requesters and are used to decrypt any data encrypted with
attributes that satisfy the logic expression (i.e., the policy).

3.4.2 NAC-ABE Policy Support. As application data is semantically
named and signed, it is natural to perform Named-based Access
Control (NAC) [44] over the dataset. However, the traditional NAC’s
public-key cryptography has high complexity in key management.
If the access manager is granting M granularities of access rights to
N users each owning a public/private key pair, it has to manage M
KEK/KDK (Key Encryption Key/Key Decryption Key) pairs for the
M access granularities and produce M X N packets to distribute the
KDKs to the N users. The overhead makes the system unscalable in
MD2K’s scenario where a large user group may request data access
for a highly diverse dataset. Therefore, we decide to use Attribute-
Based Encryption (ABE) techniques to aggregate the granularities.

(Run by Access Manager)

attribute authority ‘

requester policy

’CK encrypt m

/' T
i contentfd_decrypt ¥ content |

subscriber 6

! content—2NCVPLY [contentfa

publisher ‘

Figure 4: Use of NAC-ABE in mGuard

With ABE, each user has a set of attributes representing their access
rights which are encoded into the user’s decryption key. This key
needs to be distributed only once to each user, so the initial key
distribution overhead is only N packets.

NAC-ABE [17] is a name-based access control library that sup-
ports confidentiality and access control in NDN. It uses attribute-
based encryption (ABE) for data encryption, leverages specially
crafted NDN naming conventions to define and enforce access
control policies, and provides automated key management [43].
The original implementation of NAC-ABE supports only CP-ABE
(Ciphertext-Policy ABE) [5] which assigns user-centric attributes
to each data requester, e.g., the requester’s organization and role,
and encrypts data with the associated access control policy (i.e., a
logic expression of attributes). This approach requires knowing the
exact access control policy when the data is encrypted. Whenever
the policy changes, the data needs to be re-encrypted with the new
policy. In our use case, the data owner may give access to data re-
questers from new organizations with different roles over time, so
it is infeasible to determine the exact access control policy at data
encryption time. Unlike CP-ABE, KP-ABE (Key-Policy ABE) [9]
does not require the data owner to know the exact policy at data
encryption time, so we extended NAC-ABE to support KP-ABE.

/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/date > 20210901
/org/md2k/ATTRIBUTE/activity/sleeping
/org/md2k/ATTRIBUTE/activity/sleeping

ICN ’22, September 19-21, 2022, Osaka, Japan

In KP-ABE, each piece of data is encrypted with some public
parameters and a set of data-centric attributes, and the data can
be decrypted by a data requester only if the requester has the
correct policy in his/her decryption key. For example, if Alice has
the policy “/org/md2k/mperf/dd40c and /org/md2k/ATTRIBUTE/
location/gym” in her decryption key, then she can access only data
encrypted with both attributes. Note that, in NAC-ABE, attribute-
based encryption scheme is used to encrypt a content key (CK),
which is used to symmetrically encrypt and decrypt the data object
(see Figure 4). This design increases the lifetime of the decryption
key since attribute-based encryption is used on the content keys,
which are a smaller set than the data objects, thus reducing the
attack surface. This also improves the performance of encrypting
and decrypting larger data objects, since the data is encrypted
with a fast symmetric encryption scheme. Furthermore, this design
increases the flexibility of the decryption keys, since any update
on decryption keys will only require re-encryption of the content
keys, not the data objects.

In mGuard, the Access Manager runs the Attribute Authority
provided by NAC-ABE to distribute the public parameters used for
encryption to the Publisher (Figure 4). The Attribute Authority also
generates decryption keys according to requesters’ access rights and
distributes them to the requesters. Each decryption key is encrypted
with the data requester’s public key to ensure its confidentiality.

A data requester’s decryption key should ideally be bound to
a time window. This can be achieved by creating time-based poli-
cies so that each decryption key can only access encrypted data
produced within a time window. This approach limits the power
of each key and enhances the overall security. It also provides a
default way of key revocation: a revoked key cannot be used to
decrypt data generated outside its time window. If a data requester
no longer has access permissions, they cannot obtain a new key
anymore. There are scenarios where a key is compromised and
must be revoked immediately without waiting for the key renewal.
We can change the public parameters so that the revoked key can
no longer decrypt data encrypted using the new public parameters.
However, the Attribute Authority needs to generate a new key
for every legitimate data requester and they each need to fetch a
new decryption key, which can be expensive when there is a large
number of data requesters. This is an open issue for future research.

3.5 Pub-Sub API and Library

The goal of our Pub-Sub APT and library is to support applications
to publish data in NDN data streams and subscribe to data streams
as permitted by access control policies. This library helps to achieve
real-time* data dissemination by guaranteeing the reception of the
latest, verified data for each subscribed data stream.

3.5.1 API Design. An application can use the publish() function
to publish data by specifying the data name, attributes, and con-
tent (Figure 5). The module implementing this function hides all
the network-level abstractions such as Interest, Data, and security
details, and exposes a very high-level API to publish data. The
subscribe() and unsubscribe() functions allow an application

“4Note that, in mGuard, real-time data transfer happens only after the data is received
by an mHealth repository. NDN can also help reduce the delay in transferring data
from sensors to the repository, but this is out of scope for our current project.

Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

producer App publisher
publish(dataName, attributes, content)
- dataName: /org/md2k/mperf/dd40c/phone/gps/DATA/20220505103900
- attributes: {/org/md2k/ATTRIBUTES/location/home, ...}
- content: "2022-05-05 10:39:00,2022-05-05...."

insert encrypted data,

ub-sub publish manifest ¢ ¢
pub-s > CK, and manifest into the repo

sync

I
register sync preifx, e.g. /org/md2k/sync
send sync updates

4
NDN Network

send periodic sync interest (/ndn/md2k/sync)
fetch manifest, CK, and application data from the repo

subscriber

manifest

‘ pub-sub sync ‘

‘ subscribe/unsubscribe([dataStreams], callback)
callback - dataStream: /org/md2k/mguard/dd40c/phone/gps
- callback: "2022-05-05 10:39:00,2022-05-05...."

Figure 5: Application Workflow Showing All Layers In-
volved in the Pub/Sub Process

to subscribe to or unsubscribe from one or more data streams by
specifying the data stream name(s) and a callback function. The
module implementing these functions is configured with the data
requester’s access control policy and trust schema. Through the
callback function, it delivers decrypted and verified data belonging
to the subscribed data streams to the application (Figure 5). All data
fetching, decryption, and verification functions are implemented
internally in the module, so as to keep the API simple and intuitive.

3.5.2 Use of PSync. We built the pub-sub library on top of the
PSync protocol [41] which uses Sync Interests (NDN Interests) for
subscription and Sync Reply messages (NDN Data) for notification.
Every subscriber sends a Sync Interest towards the publisher both
periodically and after it receives a Sync Reply. When new data is
generated, the publisher sends a Sync Reply message containing
the new data name back to the subscriber. Note that PSync does not
fetch the new data. It is up to the application (the pub-sub library)
to decide whether to fetch the new data after getting a notification
from PSync. For efficiency and name mapping purposes, instead
of publishing individual data objects through PSync, our pub-sub
library uses PSync to publish Manifests each containing a set of
data names belonging to a data stream (see the next section).

3.5.3 Use of Manifest. Every NDN data object carries the pub-
lisher’s signature which ensures both integrity and authenticity.
However, when the data production rate is high, signing and verify-
ing every data object may incur significant computation overhead.
Publishing all the data object names through PSync may also lead to
excessive Sync message overhead as well as high delay and losses.

/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym

Building a Secure mHealth Data Sharing Infrastructure over NDN

data stream manifest
name: /org/md2k/mperf/dd40c/phone/accelerometer/MANIFEST/<seq-num>

content

/org/md2k/mperf/dd40c/phone/accelerometer/DATA/<timestamp (t1)>/<implicit-digest>
/org/md2k/mperf/dd40c/phone/accelerometer/DATA/<timestamp (tp)>/<implicit-digest>
/org/md2k/mperf/dd40c/phone/accelerometer/DATA/<timestamp (tz)>/<implicit-digest>

/org/md2k/mperf/dd40c/phone/accelerometer/DATA/<timestamp (t,)>/<implicit-digest>

publisher's signature

Figure 6: Manifest Data Format

To solve this problem, we use Manifests to carry meta information
about the data objects and verify the signatures of the manifests
only. The exact meta information may vary depending upon the
specific use cases [14, 34]. Our manifest design is inspired by [14],
as it is simple to use and closely fits our use case. As shown in
Figure 6, each manifest carries a list of full names (including the Im-
plicit Digest) [23] of the data objects in a data stream.? The manifest
name is the data stream name followed by the keyword MANIFEST
and a sequence number. We use a sequence number here because
a large set of data names need to be carried by multiple manifests
with unique names and PSync requires sequential names.

When packetizing mHealth data, the Data Adaptor does not
directly sign each data object using the data publisher’s public
key. Instead, it puts the digest (e.g., SHA-256) of the data into the
signature field and passes the data object to the Publisher which uses
the pub-sub API internally to publish the data. The pub-sub library
does the following: (a) add the full name of each data object to a
manifest, (b) insert the data object and its corresponding Content
Key (CK) into the repo, (c) after accumulating a certain number of
data object names in the manifest, or reaching a time limit since
the last data object was received, create and sign a manifest data
packet, (d) insert the manifest into the repo, and (e) publish the
manifest’s name through PSync. On the Subscriber side, the pub-sub
library does the following: (a) learn the name of the new manifest
through PSync, (b) send an Interest to fetch this manifest, and
verify its signature, (c) for each data name in the manifest, fetch the
corresponding data object, and verify its digest (this is much faster
than verifying a public-key signature), (d) fetch the CK for the data
object, (e) decrypt the data object, and (f) return it to the application
through the callback function. Figure 7 shows the message sequence
that takes place during the data publication and fetching.

4 IMPLEMENTATION

We implemented mGuard in C++. It uses the master branch of ndn-
cxx [21], NFD [25], ndn-tools [22], PSync [26], and NDN Python
Repo [19] as of August 20, 2022. In the original NDN Python Repo
implementation, when data objects are inserted via the TCP bulk
insertion protocol, the name of every data object is registered with
NFD. This can cause massive overhead if the number of data ob-
jects is large. If multiple data objects share the same name prefix,
registering the prefix should be sufficient. Thus, we made changes
to the Repo implementation to support registering name prefixes
with NFD. The prefixes and their granularity are specified via the
repo configuration file.

5This is similar to the torrent file in BitTorrent.

ICN °22, September 19-21, 2022, Osaka, Japan

publisher
| .
| sync interest
insert)

,
|
|

encrypted NDN data |
|
|

subscriber

e E—
CK data

! manifest data I

L 1
|

publish application, CK |
and manifest data :

|

|

|

|
fetch manifest data

sync data (contains latest update
of the manifest)

\

! manifest data I

T e

loop J [for each application data name in the manifest] T

: get encrypted NDN data |
| |
encryped NDN data !

J

‘get CK data |

| CKdata :
|

AN
decrypt content

\

/

Figure 7: Message Sequence Diagram

As mentioned previously, we use the NAC-ABE library [17] for
access control. Since the original implementation of NAC-ABE
supports only CP-ABE, we added KP-ABE key generation and dis-
tribution to NAC-ABE using the OpenABE library [28] which pro-
vides KP-ABE functionality. In addition, the original NAC-ABE
library generates a new Content Key (CK) for every data object.
We changed the library to use the same CK for multiple data ob-
jects with the same attributes up to a configured number of objects.
This reduces the overhead of generating and fetching CKs while
maintaining data security. More specifically, if a user is allowed to
access one data object, they should be able to access another data
object with the same attributes, therefore using the same CK for
both data objects will not allow unintended access. Additionally,
restricting the number of data objects encrypted with the same
CK limits exposure of the CK. In the data encryption function of
NAC-ABE, we use a cache to store the CKs that may be used later.

Our policy parser converts access control policies into logic
expressions of attributes (ABE Policies) corresponding to the data
that the requester(s) should be allowed to access. Attributes of the
same type are concatenated by OR, while those of different type are
concatenated by AND. For example, in Figure 3, the attributes in
Policy B’s “allow” field are converted to the expression “(/org/md2k/
mperf/dd40c) and (/org/md2k/AT TRIBUTE/location/home or /org/
md2k/ATTRIBUTE/location/gym) and (/org/md2k/ATTRIBUTE/
date>20210901)". If a policy includes more than one “attribute-
filters” section, ABE policies will be calculated individually for each

/org/md2k/mperf/dd40c
/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/date > 20210901
/org/md2k/ATTRIBUTE/date > 20210901

ICN ’22, September 19-21, 2022, Osaka, Japan

section and then concatenated with OR in the full ABE policy. The
current implementation supports context-based attributes such as
location and activity. Functionality for time-based attributes is a
work-in-progress.

Due to the absence of support for the NOT operator in Open-
ABE, we have to divide the derived attributes listed in the “deny”
field into sets according to their type (such as location, or activity)
and add the compliment of each set, with respect to the set of all
possible attributes for that type, to the ABE policy. For example, if
the available location-based attributes are /org/md2k/ATTRIBUTE/
location/gym, /org/md2k/ATTRIBUTE/location/home, and /org/
md2k/ATTRIBUTE/location/work, and the access policy denies
the /org/md2k/ATTRIBUTE/location/home attribute, the result
is to allow access to data encrypted with either the /org/md2k/
ATTRIBUTE/location/gym attribute or the /org/md2k/ATTRIBUTE/
location/work attribute. While the implementation for denied stream
names is different, the logic is the same. Given the policy in Figure 3
where /org/md2k/mperf/dd40c/ is an allowed stream name prefix
and /org/md2k/mperf/dd40c/phone/gps is denied, every stream
name under /org/md2k/mperf/dd40c/ will be allowed except for
/org/md2k/mperf/dd40c/phone/gps.

5 EVALUATION

We evaluated the performance of mGuard via emulation using Mini-
NDN [13], configured with the NDN testbed topology [24] of 37
nodes and 94 links.

5.1 Performance Metrics

We used the following metrics in our evaluation: (a) encryption
time is time spent by the publisher encrypting data in a data object;
(b) decryption time is time spent by the subscriber decrypting
an encrypted data object; (c) manifest propagation delay is time
between when the publisher starts to create a new manifest and
when the manifest name is received by the subscriber via sync;
(d) manifest, data, and CK retrieval delay are the times spent
by the subscriber fetching the respective data from the repo; (e)
end-to-end delay is the time between when a data object was
published by the publisher and when it was received by the sub-
scriber; (f) maximum packet overhead is the maximum number
of packets sent and received by a node assuming there is no Interest
aggregation or data caching; and (g) measured packet overhead
the actual number of packets sent and received by a node. The
overhead consists of Interest and Data packets for Sync, manifests,
mHealth data, and keys.

All delays except for encryption and decryption are normalized
by the round-trip time between the subscriber and the publisher to
account for different network delays from node to node. To get an
accurate representation of the data, we compute the average values
for packet overhead and median values for all other metrics across
three runs for each experiment.

5.2 Emulation Setup

In all experiments, we used one server instance and four data
consumers. The server instance, consisting of the MD2K data repos-
itory, NDN repo, Controller, and Publisher, was connected to the
Memphis node, while the consumers were connected to the UCLA,

Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

policy-id A

requester-names /edu/tu/alice, /edu/mit/bob, /edu/tu/
hira, /edu/mit/ganga

attribute-filters

{

allow

{
/ndn/org/md2k/mperf/dd40c
3

/*brief: Alice, Bob, Hira, and Ganga shall access the
streams under /ndn/org/md2k/mperf/dd4ec */

policy-id B

requester-names /edu/tu/alice, /edu/mit/bob, /edu/tu/
hira, /edu/mit/ganga

attribute-filters

{

allow

/ndn/org/md2k/mperf/dd40c/phone/battery
}

/*brief: Alice, Bob, Hira and Ganga shall only access
battery stream x/

Figure 8: Policies Used in Experiments

Washington University, Osaka, and Michigan nodes. For each ex-
periment, the server processes application data received from the
MD2K repository and the subscribers fetch this application data
in real time. Additionally, we publish a new manifest after 50 data
object names have been accumulated in it, or 100 milliseconds has
passed since the last data object name was received. For our ac-
cess control configuration, we used three streams under the name
prefix /org/md2k/mperf/dd40c, i.e., /org/md2k/mperf/dd40c/phone/
battery, /org/md2k/mperf/dd40c/phone/gps, and /org/md2k/mperf/
dd40c/data_analysis/gps_episodes_and_semantic_location, along
with Policy A and Policy B as shown in Figure 8.

5.3 Rate Experiments

In this set of experiments, each data stream takes turns to publish
a batch of data points and the aggregated data rate from the three
streams ranges from 1 to 8 data points per second in different
experiments. The publisher creates an NDN packet for each data
point. Requesters use Policy A to access all the streams under /org/
md2k/mperf/dd40c.

The results of the experiments in Figure 9 show that the nor-
malized delays increase with data generation rate. When processing
individual data points as single packets, repo insertion times in-
crease as the data generation rate increases, causing an increase in
the delay to retrieve data and CK packets. A higher manifest publi-
cation rate is also problematic for PSync to handle, as it requires a
round-trip time to publish a new manifest (each publication con-
sumes a pending Sync Interest at the producer and the next Sync
Interest is sent by the consumer only after receiving the Sync Data
packet carrying the name of the recently published manifest). Both
of these factors contributed to a higher end-to-end delay as the data
generation rate increased. Since packet sizes are unchanged, the
cryptographic delays are mostly unchanged. We also analyze the
packet overhead using the data from the rate experiment. Note that,
in our definition, packet overhead includes both sent and received
packets. The result, Figure 10, shows that the measured packet count

/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/work
/org/md2k/ATTRIBUTE/location/work
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/work
/org/md2k/ATTRIBUTE/location/work
/org/md2k/mperf/dd40c/
/org/md2k/mperf/dd40c/phone/gps
/org/md2k/mperf/dd40c/
/org/md2k/mperf/dd40c/phone/gps
/org/md2k/mperf/dd40c
/org/md2k/mperf/dd40c/phone/battery
/org/md2k/mperf/dd40c/phone/battery
/org/md2k/mperf/dd40c/phone/gps
/org/md2k/mperf/dd40c/data_analysis/gps_episodes_and_semantic_location
/org/md2k/mperf/dd40c/data_analysis/gps_episodes_and_semantic_location
/org/md2k/mperf/dd40c
/org/md2k/mperf/dd40c

Building a Secure mHealth Data Sharing Infrastructure over NDN

20

T T T T
manifest retrieval ——
CK retrieval &3
data retrieval ====3 N
15 | manifest propagation = B
end-to-end =—3

delay (normalized by RTT)

data generation rate (avg data points/second)

ICN °22, September 19-21, 2022, Osaka, Japan

1 3
I l enlcryptioﬁ time T
decryption time

0.8% . j 1 25
g g
I 12 %
E 067 1 E
E 115 g
3 04] B
g 11§
5] S

02‘% 05

0 I 1 | 1 1 I 0
1 2 3 4 5 6 7 8

data generation rate (avg data points/second)

Figure 9: Network, Processing, and Cryptographic Delays for Rate Experiments

140 35
measured packet overhead ——

maximum packet overhead —*—

measured packet overhead —+—
maximum packet overhead —*—

N}
=
w
=}
T

o
S

25

©
S

20

3
S

average number ot packets per second
B
o

average number of packets per second

20

0 L L L L L L 0 L L L L))
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

data generation rate (avg data points/second) data generation rate (avg data points/seconc

Figure 10: Maximum vs Measured Packet Overhead at Pro-
ducer (left) and Consumer (right)

is about 61% and 47% lower than the maximum packet count at the
producer and each consumer, respectively. This is a result of the
Interest aggregation and data caching features offered by NDN.

5.4 Packet Size Experiments

We publish data from the three data streams at a constant rate of
300 data points per minute. The publisher combines data points
with the same attributes into a single NDN packet. The maximum
amount of data points per packet ranges from 10 to 70, as 70 data
points almost exceeds the maximum NDN packet size (8KB). All
consumers in this experiment use Policy B, so they can access only
the battery stream /org/md2k/mperf/dd40c/phone/battery.

As we can see from Figure 11, the normalized delays are constant
or decreasing and are much improved compared to the rate experi-
ments. This is because a larger number of data points in a single
packet will decrease the overall rate of data and manifest gener-
ation, thereby reducing the overall processing and propagation
delays and reducing the number of packets consumers will fetch.
However, larger packet sizes resulted in slightly greater encryption
and decryption times.

6 LESSONS AND REMAINING ISSUES

We initially designed the access control policies using syntax similar
to database queries and firewall rules, as the MD2K data is stored
in a database and we are familiar with access control in firewall
configuration. After many revisions, we started using attribute
names directly in the “allow” and “deny” fields, which simplified
the policy specification and made the policies much more intuitive.

Our experimentation also revealed some implementation issues
in the NDN Python Repo and NAC-ABE library. In the Repo’s bulk
insertion client, data insertion was synchronous, which caused our
Publisher to wait for the insertion to complete. Moreover, a new TCP
connection was established and closed for each insertion, resulting
in unnecessary delay. These problems were fixed, considerably
reducing the repo insertion time. We also found that the OpenABE
library is not actively maintained. While we were able to make
several changes to OpenABE to make it work, NAC-ABE cannot
rely on it in the long term.

Moreover, the KP-ABE approach has a scalability issue when
policies are composed of a large number of attributes, as the corre-
sponding decryption keys may become very large. This can happen
when a user is allowed to access many data streams. We currently
use individual data stream names as attributes, but we plan to use
stream name prefixes as attributes to solve this problem. Finally,
our work does not address how study participants can verify how
their data is shared. We will address this issue in future work.

7 RELATED WORK

Due to space constraint, we cannot provide a comprehensive re-
view of mHealth systems. Instead, we point out the problems in a
few state-of-the-art representatives to show our proposed enhance-
ments can benefit them as well. The Fast Healthcare Interoperability
Resources (FHIR) Server for Microsoft Azure provides a foundation
to handle mHealth data [10]. FHIR is an Electronic Health Record
(EHR) system and may not be able to support high-frequency mobile
sensor data. To support mental health, the Non-Intrusive Individual
Monitoring Architecture (Niima) prototype was developed [3] to
handle data collection, storage, and privacy challenges related to
mHealth data. Initially, data is stored as is and data privacy rules
are only applied when exact data needs are defined. This may delay
the availability of the data. RADAR-base supports data aggregation,

/org/md2k/mperf/dd40c/phone/battery

ICN ’22, September 19-21, 2022, Osaka, Japan

Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

10 1
‘CK retlrieval — ‘ I ‘ I I encrypfion time J—— 1 10
— manifest retrieval &= decryption time —<
E st data retrieval == 4 08 4
o manifest propagation = m % 1 I
-y end-to-end =—1 E y E
3 g 06 \ 1 g
N = X 16 =
£ § 7 -
E % 04 r ¢ | 4 %
o 02 F E
0 1 1 1 Il 1 0
10 20 30 40 50 60 70
number of data points per packet number of data points per packet
Figure 11: Network, Processing, and Cryptographic Delays for Packet Size Experiments
Table 1: Comparison of mHealth Systems Based on Key Features (* = partially supported)
System High-Frequency Data | Real-time Data Distribution | Access Control | Contextual Access Control [11]
mGuard Y Y Y Y
Microsoft Azure FHIR [10] N Y* Y N
NIIMA [3] N N Y N
RADAR [30] N Y Y N
Adaptive MapReduce [38] Y Y N N

management of studies, and real-time visualizations of data col-
lected from wearable sensors [30]. Some of these platforms do not
support high-frequency data or real-time data distribution. More-
over, their data access control schemes do not support fine-grained
policies based on context [11]. Table 1 compares mGuard with some
existing mHealth systems in terms of key features.

Realizing that standardized interfaces and shared components
are critical for healthcare delivery and research, Estrin and Sim
proposed the Open mHealth architecture that uses data exchange
as the common layer of interoperability [6]. A crucial part of their
vision is data exchange being user-controlled and privacy-aware
across users, devices, applications, and vendor boundaries. However,
this vision is challenging to achieve over TCP/IP’s host-centric
communication paradigm. As we have demonstrated, NDN provides
the building blocks to realize the Open mHealth vision.

NDNFit [39] is an experimental NDN application for tracking
and sharing personal fitness activity. It served as a use case for
the initial development of NAC. In this work, we have developed
intuitive access control policies that use semantic attribute names.
We have also extended NAC to support context-based policies that
can change over time.

Reddick et. al. proposed an ABE-based access control scheme
for sharing genomics data over NDN [31]. There are two major
differences between our approach and theirs. First, they use CP-ABE
and user-centric attributes. In contrast, we use KP-ABE and data-
centric attributes so new policies can be added over time more easily
as explained in Section 3.4.2. Second, they directly encrypt data
using ABE. However, we use symmetric content keys to encrypt
data and then use ABE to encrypt content keys for efficiency and
security reasons, as explained in Section 4.

PSIRP/PURSUIT [8], an early ICN architecture, offers native
support for network-layer pub-sub mechanisms. In this architecture,
publishers create an RID and a scope of the publication, which are

forwarded to the rendezvous node. When subscribers first receive
information about RID and SID, they send subscription requests to
rendezvous nodes. Once the subscription succeeds, a forwarding
path is established between the subscriber and publisher. mGuard
is fundamentally different from this architecture. Our pub-sub API
is built on an application-layer data synchronization mechanism
(Sync) and it implements access control, data authentication, and
trust management so that the consumer and producer applications
do not need to perform these security functions on a packet-by-
packet basis. Nichols [27] also proposed a lightweight pub-sub API
based on the Sync protocol syncps. However, this API does not
support access control. In addition, syncps uses a time window
for synchronizing publications so data outside the time window
cannot be retrieved by the subscribers. Our API was inspired by Yu
et. al’s work [36] which proposed a pub-sub API for NDN-Lite with
built-in security. However, the latter is not built on a Sync protocol
and does not support contextual access control.

8 CONCLUSION AND FUTURE WORK

We have built mGuard, a prototype system for secure mHealth
data sharing over NDN, and demonstrated its feasibility using Mini-
NDN. While our design was motivated by sharing mHealth data in
realtime with automated access control, we believe that the build-
ing blocks we developed for mHealth, e.g., access control policies
and pub-sub API, can potentially be used by a variety of other ap-
plications. Next, we will address various issues identified in NDN
Python Repo, NAC-ABE, and mGuard, and conduct performance
evaluation over the NDN testbed. We will also perform a user study
to assess the usability of our access control policy design. In the
longer term, we plan to explore mechanisms to support automated
security bootstrapping, automated key management with revoca-
tion support, scalable attribute-based access control, and real-time
data transfer from sensors to mHealth repositories.

Building a Secure mHealth Data Sharing Infrastructure over NDN

ACKNOWLEDGMENT

This work was supported by the National Science Foundation award
2019085. We thank the anonymous reviewers and our shepherd
Karen Sollins for their insightful feedback.

REFERENCES

(1]
(2]
(3]

[9

=

[10]

(1]

[12]
[13]
[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[23]
[24]

[25

Wearables Market to Be Worth $25 Billion by 2019 (2015, September 1). https:
/Iwww.ccsinsight.com/, 2015.

AFANASYEV, A., REFAEL T., WANG, L., AND ZHANG, L. A brief introduction to
Named Data Networking. In IEEE MILCOM (2018).

ALeEpAvoOOD, T., Hovos, A. M. T., ALAKORKKO, T., Kaski, K., SARAMAKI, J.,
IsoMETSA, E., AND DARsT, R. K. Data collection for mental health studies through
digital platforms: requirements and design of a prototype. JMIR research protocols
6,6 (2017), e110.

ANASTASIADOU, D., FOLKVORD, F., BRUGNERA, A., CANAS VINADER, L., SERRAN-
oTRrRoNCOs0, E., CARRETERO JARDI, C., LINARES BERTOLIN, R., MUNOZ RODRIGUEZ,
R., MARTINEZ NUNEZ, B., GRAELL BERNA, M., ET AL. An mhealth intervention
for the treatment of patients with an eating disorder: a multicenter randomized
controlled trial. International Journal of Eating Disorders 53, 7 (2020), 1120-1131.
BETHENCOURT, J., SAHAL A., AND WATERS, B. Ciphertext-policy attribute-based
encryption. In 2007 IEEE symposium on security and privacy (SP’07) (2007), IEEE,
pp- 321-334.

CHEN, C., HApDAD, D, SELSKY, J., HOFFmAN, J. E., KravITZ, R. L., EsTRIN, D. E.,
AND SiM, I. Making sense of mobile health data: An open architecture to improve
individual-and population-level health. Journal of medical Internet research 14, 4
(2012).

DE MICHELE, R., AND FURINI, M. Iot healthcare: Benefits, issues and challenges. In
Proceedings of the 5th EAl international conference on smart objects and technologies
for social good (2019), pp. 160-164.

Fotiou, N., NIKANDER, P., TROSSEN, D., AND PoLyzos, G. C. Developing informa-
tion networking further: From psirp to pursuit. In International Conference on
Broadband Communications, Networks and Systems (2010), Springer, pp. 1-13.
GoYAL, V., PANDEY, O., SAHAL A., AND WATERS, B. Attribute-based encryption
for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security (2006), pp. 89-98.
HEATHER JORDAN CARTWRIGHT. FHIR Server for Azure: An open source project
for cloud-based health solutions. https://cloudblogs.microsoft.com/industry-
blog/health/2018/11/12/thir-server-for-azure-an-open-source-project-for-
cloud-based- health-solutions.

Kaves, A., KALARIA, R., SARKER, [. H., IsLam, M., WATTERS, P. A., NG, A., HAM-
MOUDEH, M., BADSHA, S., KUMARA, L, ET AL. A survey of context-aware access
control mechanisms for cloud and fog networks: Taxonomy and open research
issues. Sensors 20, 9 (2020), 2464.

MD2K: Center of excellence for mobile sensor data-to-knowledge. MD2K website,
http://md2k.org.

MiNI-NDN AuTHORs. Mini-NDN: A Mininet-based NDN emulator, 2021. accessed:
2021-05-10.

Morseenko, 1. Fetching content in named data networking with embedded
manifests. NDN, Tech. Rep. NDN-0025 (2014).

MoLr, P., PaTiL, V., WANG, L., AND ZHANG, L. SoK: The Evolution of Distributed
Dataset Synchronization Solutions in NDN. In Proceedings of the 9th ACM
Conference on Information-Centric Networking (2022).

MolL, P., SHANG, W., YU, Y., AFANASYEV, A., AND ZHANG, L. A survey of dis-
tributed dataset synchronization in named data networking. Tech. Rep. NDN-0053,
Revision 2, Named Data Networking (2021).

NAC-ABE Library GitHub Site. https://github.com/UCLA-IRL/NAC-ABE.
NAKAJIMA, M., LEMIEUX, A. M., FIECAS, M., CHATTERJEE, S., SARKER, H., SALEHEEN,
N., ERTIN, E., KUMAR, S., AND AL’ABsI, M. Using novel mobile sensors to assess
stress and smoking lapse. International Journal of Psychophysiology 158 (2020),
411-418.

NDN ProjecT TEAM. A Named Data Networking (NDN) Repo implementation
using python-ndn. https://github.com/UCLA-IRL/ndn-python-repo. (Accessed
on 06/10/2022).

NDN ProjecT TEAM. Mini-NDN GitHub. https://github.com/named-data/mini-
ndn. (Accessed on Accessed on 06/10/2022).

NDN Project TEAM. ndn-cxx: NDN C++ library with eXperimental eXtensions.
https://github.com/named-data/ndn-cxx. (Accessed on Accessed on 06/10/2022).
NDN Project TEAM. NDN Essential Tools. https://github.com/named-data/ndn-
tools. (Accessed on Accessed on 06/10/2022).

NDN Project TEAM. NDN Name Format. https://named-data.net/doc/NDN-
packet-spec/current/name.html. (Accessed on 06/10/2022).

NDN ProjecT TEAM. NDN Testbed Topology. http://ndndemo.arl.wustl.edu/.
(Accessed on 06/10/2022).

NDN ProjecT TEAM. NFD: Named Data Networking Forwarding Daemon. https:
//github.com/named-data/nfd. (Accessed on Accessed on 06/10/2022).

[31

[32

[33

&
=)

[35

[36]

(37]

(38]

[39

[40]

[41]

[42]
[43]

[44]

[45

ICN °22, September 19-21, 2022, Osaka, Japan

NDN ProjecT TEAM. PSync: Partial and Full Synchronization Library for NDN.
https://github.com/named-data/psync. (Accessed on 06/10/2022).

NicHoLs, K. Lessons learned building a secure network measurement framework
using basic NDN. In Proceedings of the 6th ACM Conference on Information-Centric
Networking (2019), pp. 112-122.

OpenABE Library GitHub Site. https://github.com/zeutro/openabe.

PARK, L. G., BEATTY, A., STAFFORD, Z., AND WHOOLEY, M. A. Mobile phone
interventions for the secondary prevention of cardiovascular disease. Progress in
cardiovascular diseases 58, 6 (2016), 639-650.

RaNjAN, Y., RasHID, Z., STEWART, C., CONDE, P., BEGALE, M., VERBEECK, D.,
BOETTCHER, S., DoBsON, R., FOLARIN, A., CONSORTIUM, R.-C., ET AL. Radar-base:
Open source mobile health platform for collecting, monitoring, and analyzing
data using sensors, wearables, and mobile devices. MIR mHealth and uHealth 7,
8(2019), e11734.

REDDICK, D., FELTUS, F. A., AND SHANNIGRAHL S. Case study of attribute based
access control for genomics data using named data networking. In 2022 IEEE
19th Annual Consumer Communications & Networking Conference (CCNC) (2022),
IEEE, pp. 715-716.

SALEHEEN, N, AL1, A. A, HossAIN, S. M., SARKER, H., CHATTERJEE, S., MARLIN, B.,
ERTIN, E., AL’ABSI, M., AND KUMAR, S. puffmarker: a multi-sensor approach for
pinpointing the timing of first lapse in smoking cessation. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(2015), pp. 999-1010.

Sim, I. Mobile devices and health. New England Journal of Medicine 381 (2019),
956-968.

TscHUDIN, C., Woop, C. A, Mosko, M., AND OraN, D. R. File-Like ICN Collections
(FLIC). Internet-Draft draft-irtf-icnrg-flic-03, Internet Engineering Task Force,
Nov. 2021. Work in Progress.

WANG, Y., Kung, L., AND BYrp, T. A. Big data analytics: Understanding its
capabilities and potential benefits for healthcare organizations. Technological
forecasting and social change 126 (2018), 3-13.

Yu, T., ZHANG, Z., MA, X., MoLL, P., AND ZHANG, L. A pub/sub API for NDN-Lite
with built-in security. Named Data Networking, Tech. Rep. NDN-0071, Revision 1
(2021).

Yu, Y., AFANASYEV, A., CLARK, D., JACOBSON, V., ZHANG, L., ET AL. Schematiz-
ing Trust in Named Data Networking. In Proceedings of the 2nd International
Conference on Information-Centric Networking (2015), ACM, pp. 177-186.
ZHANG, F., Cao, J., KnaN, S. U, L1, K., AND HWANG, K. A task-level adaptive
mapreduce framework for real-time streaming data in healthcare applications.
Future generation computer systems 43 (2015), 149-160.

ZHANG, H., WANG, Z., ET AL. Sharing mHealth Data via Named Data Networking.
In ICN (September 2016), pp. 142-147.

ZHANG, L., AFANASYEV, A., BURKE, J., JACOBSON, V., CLAFFY, K., CROWLEY, P.,
ParapoprouLos, C., WANG, L., AND ZHANG, B. Named Data Networking. ACM
SIGCOMM Computer Communication Review (CCR) 44, 3 (Jul 2014), 66-73.
ZHANG, M., LEHMAN, V., AND WANG, L. Scalable name-based data synchronization
for named data networking. In IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications (2017).

ZHANG, Z., YU, Y., AFANASYEV, A., AND ZHANG, L. Ndn certificate management
protocol (ndncert). NDN, Technical Report NDN-0054 (2017).

ZHANG, Z.,YU,Y.,RAMANI, S. K., AFANASYEV, A., AND ZHANG, L. NAC: Automating
access control via Named Data. In Proceedings of [EEE MILCOM 2018 (2018).
ZHANG, Z., YU, Y., RaAMANI, S. K., AFANASYEV, A., AND ZHANG, L. Nac: Au-
tomating access control via named data. In MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM) (2018), IEEE, pp. 626-633.

ZHANG, Z., YU, Y., ZHANG, H., NEWBERRY, E., MASTORAKIS, S., L1, Y., AFANASYEV,
A., AND ZHANG, L. An overview of security support in Named Data Networking.
IEEE Communications Magazine 56, 11 (2018), 62-68.

https://www.ccsinsight.com/
https://www.ccsinsight.com/
https://cloudblogs.microsoft.com/industry-blog/health/2018/11/12/fhir-server-for-azure-an-open-source-project-for-cloud-based-health-solutions
https://cloudblogs.microsoft.com/industry-blog/health/2018/11/12/fhir-server-for-azure-an-open-source-project-for-cloud-based-health-solutions
https://cloudblogs.microsoft.com/industry-blog/health/2018/11/12/fhir-server-for-azure-an-open-source-project-for-cloud-based-health-solutions
http://md2k.org
https://github.com/UCLA-IRL/NAC-ABE
https://github.com/UCLA-IRL/ndn-python-repo
https://github.com/named-data/mini-ndn
https://github.com/named-data/mini-ndn
https://github.com/named-data/ndn-cxx
https://github.com/named-data/ndn-tools
https://github.com/named-data/ndn-tools
https://named-data.net/doc/NDN-packet-spec/current/name.html
https://named-data.net/doc/NDN-packet-spec/current/name.html
http://ndndemo.arl.wustl.edu/
https://github.com/named-data/nfd
https://github.com/named-data/nfd
https://github.com/named-data/psync
https://github.com/zeutro/openabe

	Abstract
	1 Introduction
	2 Background
	2.1 mHealth Data
	2.2 NDN

	3 Design
	3.1 Design Overview
	3.2 Naming Scheme
	3.3 Trust Model and Supporting Mechanisms
	3.4 Access Control
	3.5 Pub-Sub API and Library

	4 Implementation
	5 Evaluation
	5.1 Performance Metrics
	5.2 Emulation Setup
	5.3 Rate Experiments
	5.4 Packet Size Experiments

	6 Lessons and Remaining Issues
	7 Related Work
	8 Conclusion and Future Work
	References

