
Building a Secure mHealth Data Sharing Infrastructure over
NDN

Saurab Dulal

University of Memphis

sdulal@memphis.edu

Nasir Ali

University of Memphis

cnali@memphis.edu

Adam Robert Thieme

University of Memphis

athieme@memphis.edu

Tianyuan Yu

UCLA

tianyuan@cs.ucla.edu

Siqi Liu

UCLA

tylerliu@g.ucla.edu

Suravi Regmi

University of Memphis

sregmi1@memphis.edu

Lixia Zhang

UCLA

lixia@cs.ucla.edu

Lan Wang

University of Memphis

lanwang@memphis.edu

ABSTRACT
Exploratory efforts in mobile health (mHealth) data collection and

sharing have achieved promising results. However, fine-grained
contextual access control and real-time data sharing are two of the

remaining challenges in enabling temporally-precise mHealth inter-

vention. We have developed an NDN-based system called mGuard
to address these challenges. mGuard provides a pub-sub API to

let users subscribe to real-time mHealth data streams, and uses

name-based access control policies and key-policy attribute-based en-
cryption to grant fine-grained data access to authorized users based

on contextual information. We evaluate mGuard’s performance

using sample data from the MD2K project.

CCS CONCEPTS
•Networks→Naming and addressing; • Security and privacy
→ Access control.

KEYWORDS
Named Data Networking (NDN), mHealth, Access Control, Real-

time Data Sharing

ACM Reference Format:
Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi

Regmi, Lixia Zhang, and Lan Wang. 2022. Building a Secure mHealth Data

Sharing Infrastructure over NDN. In 9th ACM Conference on Information-
Centric Networking (ICN ’22), September 19–21, 2022, Osaka, Japan. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3517212.3558091

1 INTRODUCTION
Wearable devices have seen a wide adoption in the consumer mar-

ket, and are expected to grow exponentially in the near future [1].

This growth is fueled by their increasing use in health and well-

ness [33], which are made possible by an increasing number of

mobile health (mHealth) biomarkers. The research community has

been engaged in the discovery and validation of novel biomarkers

and interventions using these wearables.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICN ’22, September 19–21, 2022, Osaka, Japan
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9257-0/22/09. . . $15.00

https://doi.org/10.1145/3517212.3558091

Our work aims to address two identified data access challenges

in sharing mHealth data among researchers. First, because wearable

sensor data may expose privacy-sensitive information about a user,

it should only be accessible by authorized users. Currently, this

access control is largely handled manually or through passwords, in-

curring high overhead while being subject to human error. Second,

supporting real-time intervention for certain medical conditions

requires retrieving and processing high-frequency sensor data in

real-time, a functionality not supported by existing systems. High

frequency data has proved useful to get insights from mHealth data

and produce better biomarkers [29, 35]. For example, eating disor-

ders [4] and smoking episodes [32] can be detected using data from

high-frequency sensors such as accelerometer and gyro. If the data

can be streamed and analyzed in real time, medical professionals

can intervene as soon as the problems are detected [18].

We tackle the above challenges by utilizing the functionalities

provided by NDN [2, 40], specifically name-based access control
(NAC [43, 45]) which automates cryptographic key management

for data access control and NDN Sync [15, 16] which enables real-

time notification of newly published data. NAC encrypts data as

soon as it is produced and shares the decryption keywith authorized

consumers. mGuard uses NAC-ABE [43] to grant contextual data

access to authorized users [11]. It also provides a Sync-based pub-

sub API to enable users to subscribe to mHealth data streams.

Our contributions can be summarized as follows: First, we de-
signed a naming scheme for mHealth data (§3.2). This hierarchi-

cal, semantic naming structure can be applicable to other studies

that collect sensing data from human subjects. Second, different
from existing NDN access control solutions [31, 43], we developed

an intuitive access control policy specification using name-based
data-centric attributes, which allows data owners to (1) specify fine-

grained policies based on time, location, or other context informa-

tion, and (2) add policies for new data requesters over time (§3.4.2).

Third, our pub-sub API publishesmanifests that contain sets of data
names, and uses Sync to notify data requesters of newly-published

manifests §3.5). This design achieves real-time data dissemination

while avoiding the overhead of signing, verifying, and sending noti-

fications for individual data objects. Lastly,we evaluated mGuard’s

performance using Mini-NDN [20] with the NDN testbed topology

and sample data from the MD2K project [12]. This experimentation

not only demonstrated the feasibility of our design, but also re-

vealed the design and implementation issues in NDN Python Repo

and NAC-ABE (§5 and §6). Addressing these issues will improve the

storage and access control support for future NDN applications.

https://doi.org/10.1145/3517212.3558091
https://doi.org/10.1145/3517212.3558091

ICN ’22, September 19–21, 2022, Osaka, Japan Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

2 BACKGROUND
Our work was motivated by challenges encountered by the MD2K

center [12] in their development of an mHealth research cyberin-

frastructure. In this section, we first provide a brief overview about

mHealth data collection and distribution and the MD2K cyberin-

frastructure. We then introduce some basic NDN concepts.

2.1 mHealth Data
Today’s sensors in wearables, hand-held devices, and environments

produce a massive amount of data that can be used for advanced

healthcare and wellness management. A single user’s wearable

device may produce GBs worth of data each day. Wearable devices

typically have limited onboard memory to store collected data, so

they usually upload their data to an external storage device, e.g., a

mobile phone, a local or a cloud server. The data is then processed

to compute biomarkers to predict physiological and behavioral

events. The server can also send computed results, e.g., activities

performed, and/or interventions, back to the wearable or handheld

devices. Once the data is uploaded to the server platform, data can

be accessed by study coordinators, data scientists, or researchers.

Unlikemost othermHealth systems,MD2K collects high-frequency
data that varies from 1hz to 128hz from various sensors. Real-time
data collection and dissemination of such high-frequency data can

help detect eating disorders [4] and smoking episodes [32] and

perform timely interventions. Currently, MD2K researchers can log

on to a server to access and process data there, but cannot receive

the data in real-time to perform timely intervention.

Data security and privacy becomes challenging [7], especially

when distributing data generated at a high rate. Data collected by

mHealth research, e.g., raw GPS data, and the computed biomarkers,

are sensitive in nature. Researchers who conduct research involving

identifiable human participant data streams are bound via federal

laws and oversight by the Institutional Review Boards (IRBs) to pre-

serve the rights and welfare of human research subjects. mHealth

data is typically shared with terms of use overseen by an inter-

nal oversight body and IRBs. Moreover, study participants must

be made aware and agree to the manner by which their data are

disclosed and used. Currently, researchers’ access to the MD2K

server is authenticated via a user name and password, but there

is no additional control based on the user’s roles or any other re-

strictions once the user is inside the server. In some cases, MD2K

staff members manually identify which data can be accessed by a

researcher based on their access rights, then send the encrypted

data to the researcher using a storage device. This process is slow

and prone to human error.

The above limitations in theMD2K cyberinfrastructure are shared

by other mHealth data collection systems. Most of these platforms

do not support real-time data distribution, and their data access

control do not support fine-grained contextual access control poli-
cies based on time, location, or other context information. More

information about existing mHealth systems can be found in §7.

2.2 NDN
Today’s Internet applications, by and large, are built on the web

semantics of requesting data by names. Applications seek to get the

named data, and do not care where they reside. However, because

today’s Internet protocol stack uses IP addresses to communicate,

the application data names, e.g., https://mhealth.md2k.org/images/

datasets/mOral_dataset.zip which identifies a dataset from an oral

health study curated by MD2K, must be first translated to the IP

addresses of a specific server, so that applications can fetch data

from that server.

In contrast, Named Data Networking (NDN) [40] adopts the

web’s request-reply communication model and uses application

data names in network layer data delivery. NDN’s requests and

responses work at a network packet granularity – each request,

carried in an NDN Interest, contains the name of the requested data

and fetches one NDN Data packet back. Each NDN forwarder uses

the name in an Interest to determine where to forward the Interest.

NDN views a networked system as connected named entities

which have various trust relations among each other. Each entity

possesses security credentials and communicates with others via

named, secured data: it signs every data packet it produces, so

that Data packets can be cached and served by any device, and

authenticatible by any data consumers. NDN enforces data access

control via content encryption, and has developed name-based ac-

cess control (NAC [43, 45]) to automate the key management in

controlling data access. NAC differs from traditional access control

schemes in two important ways: (a) NAC keeps data encrypted

both in transit and in storage, achieving true end-to-end protection;

and (b) it supports data access control across a spectrum of gran-

ularity from an entire data repository to a single data packet by

utilizing NDN’s hierarchical semantic naming. Cryptographic keys

and security policies are also named contents, they can be fetched

as named, secured data in the same way as any other types of data.

NDN enables applications to define security policies and automates

key management and access control using semantically meaningful

data names, e.g. key names, device names, and user names [45].

These policies can be specified using defined turst schemas and

their execution can be automated using NDN security libraries [37].

The basic components in the NDN design, i.e., hierarchical naming

structure, data-centric security, and name-based data distribution,

enable innovative solutions to address the challenges in mHealth

data sharing in a systematic manner.

3 DESIGN
In this section, we first give an overview of mGuard, and then

present its naming scheme, trust model, access control scheme, and

pub-sub API.

3.1 Design Overview
Figure 1 shows the mGuard’s system design. There can be multiple

service instances, each serving the data from one mHealth data

repository (e.g., MD2K). On each service instance, a Data Adaptor
module

1
extracts data points from an mHealth data repository

and matches them with NDN names and data attributes. It then

passes the data and associated names and attributes to a Publisher
module which creates NDN data objects, encrypts them, and stores

them in an NDN Repo. In addition, the Publisher creates manifests

containing the new data names, stores the manifests in the NDN

Repo, and advertises their names to data requesters through a pub-

sub API (§3.5). Note that each mHealth study may produce multiple

1
This Data Adaptor is not needed if mHealth studies produce NDN data directly.

https://mhealth.md2k.org/images/datasets/mOral_dataset.zip
https://mhealth.md2k.org/images/datasets/mOral_dataset.zip

Building a Secure mHealth Data Sharing Infrastructure over NDN ICN ’22, September 19–21, 2022, Osaka, Japan

Figure 1: mGuard System Design

datasets. Each dataset is converted to a data stream identified by

its name prefix, e.g., /org/md2k/mperf/dd40c/phone/accelerometer

(see our naming scheme in §3.2), and all the data objects in a data

stream share the same name prefix.

Each data requester runs a Subscriber module to subscribe to one

or more data streams of interest through our pub-sub API (§3.5).

When the pub-sub library gets notification about a new manifest

name for one of the subscribed data streams, it fetches the manifest

and verifies its authenticity. It then fetches the data objects using

the data names contained in the manifest and decrypts them.

Each mGuard data repository has a trust anchor representing the

organization that manages the repository. In order to authenticate

the data from an mHealth repository, data requesters should be

configured (either manually or through a bootstrapping process)

with the corresponding trust anchor and trust schema. Every data

object is encrypted using public parameters provided by the Ac-
cess Manager and one or more attributes specific to the object (i.e.,

attribute-based encryption). The data object can only be decrypted

by authorized requesters who are issued the corresponding decryp-

tion keys. A Policy Parser processes a policy configuration file to

extract the access control policies for authorized data requesters

and passes them to the Access Manager. Each data requester has

a name and an associated public key which must be certified by

trust anchor. After an Access Manager verifies the authenticity of a

requester, it checks the access policies, and issues a decryption key

to the requester if it has access right. More details about our trust

model and access control mechanism can be found in §3.3 and §3.4,

respectively.

3.2 Naming Scheme
Our first step in developing mGuard was to design an NDN nam-

ing scheme for mHealth data which can be used by both MD2K

and other mHealth repositories. The current MD2K data comes

from two sources: i) raw streams – data collected directly from

phones/devices used by study participants, and ii) derived streams

– data created by researchers and other users after processing the

raw streams. Although the current MD2K system does not have a

strict naming convention for these data streams, the existing prac-

tice loosely follows a common pattern: <sensor>–<namespace>–
<device-name>–<attachment>, where namespace represents the
scope of the collected data and helps organize data belonging to

the same group, e.g. /org/md2k, and attachment refers to where the

device is attached, e.g., chest or wrist.

After examining hundreds of MD2K stream names, we devel-

oped an NDN naming scheme for MD2K’s raw and derived streams

following a hierarchical structure (Figure 2). A raw stream has the

name prefix /<data-prefix>/<study>/<participant>/<device>/
<sensor>/<attachment> (the attachment component is optional),

while a derived streamhas the name prefix /<data-prefix>/<study>/
<participant>/<algorithm>/<package> (note that other name com-

ponents can also be added to this hierarchical structure as needs

arise). We ordered the name components based on their semantics

and physical properties. For example, each data repository hosts

datasets from multiple studies, so the study name (e.g. mperf and

mdot) follows the data repository name (/org/md2k). Similarly, each

study can have one or more participants, and the participants collect

various data through different types of sensors embedded inside

wearable or portable devices.

Once a data point is extracted from an MD2K stream, we assign

a unique name to it. First, we take the corresponding data stream

name as the prefix and add a predefined keyword “DATA” compo-

nent to it. This keyword helps distinguish a data name from other

types of names. Then, we add the timestamp of the data point to the

end of the data name, so the final data name becomes /<datastream-
prefix>/DATA/<timestamp>, e.g., /org/md2k/mperf/dd40c/phone/

gyro/DATA/1492637493876.

Naming data consistently across protocol layers and securing

each piece of data independently provide a number of benefits

in supporting application development, data and network man-

agement, secure data distribution, and data provenance [2, 40].

However, different layers may prefer different naming schemes. For

example, NDN transport (e.g., Sync) may prefer sequential naming

whereas the application may not. In fact, mGuard solves the naming

inconsistency using manifests (§3.5.3) – mapping application names

to sequential manifest names allows the application and Sync to

use different naming schemes. We will explain other name types

in our naming scheme in the relevant sections, e.g., attribute name

and content key (CK) name in §3.4, and manifest name in §3.5.

3.3 Trust Model and Supporting Mechanisms
Trust in themHealth data distributed bymGuard is derived from the

trust anchor of each mHealth repository. The trust anchor verifies

/org/md2k/mperf/dd40c/phone/accelerometer
/org/md2k/mperf/dd40c/phone/gyro/DATA/1492637493876
/org/md2k/mperf/dd40c/phone/gyro/DATA/1492637493876

ICN ’22, September 19–21, 2022, Osaka, Japan Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

Figure 2: mHealth Data Naming Scheme

the identity of the entities in the system and certifies them. For

example, the MD2K repository’s trust anchor is the self-signed

public key of the MD2K system operator, i.e., /org/md2k/KEY . This

trust anchor certifies the public key of the Publisher (/org/md2k/

publisher/KEY) and the public key of the Access Manager (/org/
md2k/manager/KEY). The Publisher further signs the manifests of

the data streams it produces (see §3.5), while the Access Manager
signs the encryption material distributed to the Publisher and the

decryption keys distributed to data requesters.

Data requesters inmGuard are named under participating organi-

zations’ prefixes (e.g., /edu/campus). During security bootstrapping,

a data requester securely obtains the trust anchor and trust schema

from the system operator. It then obtains a public-key certificate

from the trust anchor following the NDNCERT [42] protocol. Af-

terward, the data requester provides its public-key certificate to

the Access Manager which accepts the key after verifying that it

is signed by the trust anchor. The Access Manager then generates

a decryption key following the access control policy as defined

in §3.4.1. The data requester then verifies that the decryption key

is signed by the Access Manager, and received manifests are signed

by the Publisher.

3.4 Access Control
The main components of access control are specifying access con-

trol policies (§ 3.4.1) and enforcing the policies to limit data access

to only authorized users (§ 3.4.2).

3.4.1 Access Control Policies. mGuard supports defining fine-grained

access control policies for study participants, study coordinators,

and data administrators based on the terms of use and an under-

standing of privacy risks.

By default, no one should have access to the data except its

owner. This will allow data owners to explore their data, evaluate

privacy concerns, and define policies accordingly. Whenever a new

data access request is approved (e.g., through the signing of a Non-

Disclosure Agreement), the data owner can define a new policy by

specifying (a) the data requesters’ NDN names; and (b) data streams’

names which those requesters should or should not be allowed

access. Optionally, policies may include context-based attributes

such as location, activity, and time for fine-grained access control.
2

As shown in Figure 3, policies are structured in two sections.

The first section specifies the unique policy ID and the NDN names

of the data requesters. If all the members of an organization, e.g.,

a research lab, are allowed to access the data, their name prefix

can be used here. The second section, attribute-filters
3
, has two

fields (“allow” and “deny”) to provide the policy writer the ability to

specify attributes of the data that the requesters can/cannot access.

Requesters are allowed access to data defined in the “allow” field

excluding any data defined in the “deny” field.

We can use both stream names and derived attributes such

as location and activity in the “allow” field and the “deny” field.

A stream name can be a prefix which includes all the streams

under that prefix. We assume that the policy parser is config-

ured with all the legitimate stream names so it can calculate the

2
If there is an existing policy that has the same terms, then the new data requesters’

names can be added to that policy.

3
Policies may include more than one of these sections and may have names that differ

from "attribute-filters".

/org/md2k/KEY
/org/md2k/publisher/KEY
/org/md2k/publisher/KEY
/org/md2k/manager/KEY
/org/md2k/manager/KEY
/edu/campus

Building a Secure mHealth Data Sharing Infrastructure over NDN ICN ’22, September 19–21, 2022, Osaka, Japan

Figure 3: Access Control Policy Structure

set of data streams that a requester is allowed to access using

the streams listed in the “allow" field and “deny” fields. The at-

tributes are split into groups based on their type. For example, a

data requester may want access to the mPerf study data gener-

ated by the participant dd40c (/org/md2k/mperf/dd40c) either at

home (/org/md2k/ATTRIBUTE/location/home) or in the gym (/org/

md2k/ATTRIBUTE/location/gym). Here, the data stream name

/org/md2k/mperf/dd40c belongs to one group, while the two loca-

tion attributes, /org/md2k/ATTRIBUTE/location/home and /org/

md2k/ATTRIBUTE/location/gym belong to a second group having

the same type (location). Time-based attributes can also be used, e.g.,

one can add the attribute /org/md2k/ATTRIBUTE/date>20210901

to further restrict access to only data produced after Sept. 1, 2021.

If we want to exclude data generated when the participant is sleep-

ing, then we can add the attribute /org/md2k/ATTRIBUTE/activity/

sleeping to the “deny” field.

Each policy is converted to a logic expression composed of stream

names and derived attributes, which is used by NAC-ABE [17, 43]

to generate a decryption key for each data requester listed in the

policy (see the next section). These keys are distributed to the

data requesters and are used to decrypt any data encrypted with

attributes that satisfy the logic expression (i.e., the policy).

3.4.2 NAC-ABE Policy Support. As application data is semantically

named and signed, it is natural to perform Named-based Access

Control (NAC) [44] over the dataset. However, the traditional NAC’s

public-key cryptography has high complexity in key management.

If the access manager is grantingM granularities of access rights to

N users each owning a public/private key pair, it has to manage M
KEK/KDK (Key Encryption Key/Key Decryption Key) pairs for the

M access granularities and produce𝑀 ×𝑁 packets to distribute the

KDKs to the N users. The overhead makes the system unscalable in

MD2K’s scenario where a large user group may request data access

for a highly diverse dataset. Therefore, we decide to use Attribute-

Based Encryption (ABE) techniques to aggregate the granularities.

Figure 4: Use of NAC-ABE in mGuard

With ABE, each user has a set of attributes representing their access

rights which are encoded into the user’s decryption key. This key

needs to be distributed only once to each user, so the initial key

distribution overhead is only 𝑁 packets.

NAC-ABE [17] is a name-based access control library that sup-

ports confidentiality and access control in NDN. It uses attribute-

based encryption (ABE) for data encryption, leverages specially

crafted NDN naming conventions to define and enforce access

control policies, and provides automated key management [43].

The original implementation of NAC-ABE supports only CP-ABE

(Ciphertext-Policy ABE) [5] which assigns user-centric attributes

to each data requester, e.g., the requester’s organization and role,

and encrypts data with the associated access control policy (i.e., a

logic expression of attributes). This approach requires knowing the

exact access control policy when the data is encrypted. Whenever

the policy changes, the data needs to be re-encrypted with the new

policy. In our use case, the data owner may give access to data re-

questers from new organizations with different roles over time, so

it is infeasible to determine the exact access control policy at data

encryption time. Unlike CP-ABE, KP-ABE (Key-Policy ABE) [9]

does not require the data owner to know the exact policy at data

encryption time, so we extended NAC-ABE to support KP-ABE.

/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/date > 20210901
/org/md2k/ATTRIBUTE/activity/sleeping
/org/md2k/ATTRIBUTE/activity/sleeping

ICN ’22, September 19–21, 2022, Osaka, Japan Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

In KP-ABE, each piece of data is encrypted with some public

parameters and a set of data-centric attributes, and the data can

be decrypted by a data requester only if the requester has the

correct policy in his/her decryption key. For example, if Alice has

the policy “/org/md2k/mperf/dd40c and /org/md2k/ATTRIBUTE/

location/gym” in her decryption key, then she can access only data

encrypted with both attributes. Note that, in NAC-ABE, attribute-

based encryption scheme is used to encrypt a content key (CK),
which is used to symmetrically encrypt and decrypt the data object

(see Figure 4). This design increases the lifetime of the decryption

key since attribute-based encryption is used on the content keys,

which are a smaller set than the data objects, thus reducing the

attack surface. This also improves the performance of encrypting

and decrypting larger data objects, since the data is encrypted

with a fast symmetric encryption scheme. Furthermore, this design

increases the flexibility of the decryption keys, since any update

on decryption keys will only require re-encryption of the content

keys, not the data objects.

In mGuard, the Access Manager runs the Attribute Authority
provided by NAC-ABE to distribute the public parameters used for

encryption to the Publisher (Figure 4). The Attribute Authority also

generates decryption keys according to requesters’ access rights and

distributes them to the requesters. Each decryption key is encrypted

with the data requester’s public key to ensure its confidentiality.

A data requester’s decryption key should ideally be bound to

a time window. This can be achieved by creating time-based poli-

cies so that each decryption key can only access encrypted data

produced within a time window. This approach limits the power

of each key and enhances the overall security. It also provides a

default way of key revocation: a revoked key cannot be used to

decrypt data generated outside its time window. If a data requester

no longer has access permissions, they cannot obtain a new key

anymore. There are scenarios where a key is compromised and

must be revoked immediately without waiting for the key renewal.

We can change the public parameters so that the revoked key can

no longer decrypt data encrypted using the new public parameters.

However, the Attribute Authority needs to generate a new key

for every legitimate data requester and they each need to fetch a

new decryption key, which can be expensive when there is a large

number of data requesters. This is an open issue for future research.

3.5 Pub-Sub API and Library
The goal of our Pub-Sub API and library is to support applications

to publish data in NDN data streams and subscribe to data streams

as permitted by access control policies. This library helps to achieve

real-time
4
data dissemination by guaranteeing the reception of the

latest, verified data for each subscribed data stream.

3.5.1 API Design. An application can use the publish() function

to publish data by specifying the data name, attributes, and con-

tent (Figure 5). The module implementing this function hides all

the network-level abstractions such as Interest, Data, and security

details, and exposes a very high-level API to publish data. The

subscribe() and unsubscribe() functions allow an application

4
Note that, in mGuard, real-time data transfer happens only after the data is received

by an mHealth repository. NDN can also help reduce the delay in transferring data

from sensors to the repository, but this is out of scope for our current project.

Figure 5: Application Workflow Showing All Layers In-
volved in the Pub/Sub Process

to subscribe to or unsubscribe from one or more data streams by

specifying the data stream name(s) and a callback function. The

module implementing these functions is configured with the data

requester’s access control policy and trust schema. Through the

callback function, it delivers decrypted and verified data belonging

to the subscribed data streams to the application (Figure 5). All data

fetching, decryption, and verification functions are implemented

internally in the module, so as to keep the API simple and intuitive.

3.5.2 Use of PSync. We built the pub-sub library on top of the

PSync protocol [41] which uses Sync Interests (NDN Interests) for

subscription and Sync Reply messages (NDN Data) for notification.

Every subscriber sends a Sync Interest towards the publisher both

periodically and after it receives a Sync Reply. When new data is

generated, the publisher sends a Sync Reply message containing

the new data name back to the subscriber. Note that PSync does not

fetch the new data. It is up to the application (the pub-sub library)

to decide whether to fetch the new data after getting a notification

from PSync. For efficiency and name mapping purposes, instead

of publishing individual data objects through PSync, our pub-sub

library uses PSync to publish Manifests each containing a set of

data names belonging to a data stream (see the next section).

3.5.3 Use of Manifest. Every NDN data object carries the pub-

lisher’s signature which ensures both integrity and authenticity.

However, when the data production rate is high, signing and verify-

ing every data object may incur significant computation overhead.

Publishing all the data object names through PSync may also lead to

excessive Sync message overhead as well as high delay and losses.

/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym

Building a Secure mHealth Data Sharing Infrastructure over NDN ICN ’22, September 19–21, 2022, Osaka, Japan

Figure 6: Manifest Data Format

To solve this problem, we use Manifests to carry meta information

about the data objects and verify the signatures of the manifests

only. The exact meta information may vary depending upon the

specific use cases [14, 34]. Our manifest design is inspired by [14],

as it is simple to use and closely fits our use case. As shown in

Figure 6, each manifest carries a list of full names (including the Im-

plicit Digest) [23] of the data objects in a data stream.
5
The manifest

name is the data stream name followed by the keyword MANIFEST

and a sequence number. We use a sequence number here because

a large set of data names need to be carried by multiple manifests

with unique names and PSync requires sequential names.

When packetizing mHealth data, the Data Adaptor does not

directly sign each data object using the data publisher’s public

key. Instead, it puts the digest (e.g., SHA-256) of the data into the

signature field and passes the data object to the Publisher which uses
the pub-sub API internally to publish the data. The pub-sub library

does the following: (a) add the full name of each data object to a

manifest, (b) insert the data object and its corresponding Content

Key (CK) into the repo, (c) after accumulating a certain number of

data object names in the manifest, or reaching a time limit since

the last data object was received, create and sign a manifest data

packet, (d) insert the manifest into the repo, and (e) publish the

manifest’s name through PSync. On the Subscriber side, the pub-sub

library does the following: (a) learn the name of the new manifest

through PSync, (b) send an Interest to fetch this manifest, and

verify its signature, (c) for each data name in the manifest, fetch the

corresponding data object, and verify its digest (this is much faster

than verifying a public-key signature), (d) fetch the CK for the data

object, (e) decrypt the data object, and (f) return it to the application

through the callback function. Figure 7 shows the message sequence

that takes place during the data publication and fetching.

4 IMPLEMENTATION
We implemented mGuard in C++. It uses the master branch of ndn-

cxx [21], NFD [25], ndn-tools [22], PSync [26], and NDN Python

Repo [19] as of August 20, 2022. In the original NDN Python Repo

implementation, when data objects are inserted via the TCP bulk

insertion protocol, the name of every data object is registered with

NFD. This can cause massive overhead if the number of data ob-

jects is large. If multiple data objects share the same name prefix,

registering the prefix should be sufficient. Thus, we made changes

to the Repo implementation to support registering name prefixes

with NFD. The prefixes and their granularity are specified via the

repo configuration file.

5
This is similar to the torrent file in BitTorrent.

Figure 7: Message Sequence Diagram

As mentioned previously, we use the NAC-ABE library [17] for

access control. Since the original implementation of NAC-ABE

supports only CP-ABE, we added KP-ABE key generation and dis-

tribution to NAC-ABE using the OpenABE library [28] which pro-

vides KP-ABE functionality. In addition, the original NAC-ABE

library generates a new Content Key (CK) for every data object.

We changed the library to use the same CK for multiple data ob-

jects with the same attributes up to a configured number of objects.

This reduces the overhead of generating and fetching CKs while

maintaining data security. More specifically, if a user is allowed to

access one data object, they should be able to access another data

object with the same attributes, therefore using the same CK for

both data objects will not allow unintended access. Additionally,

restricting the number of data objects encrypted with the same

CK limits exposure of the CK. In the data encryption function of

NAC-ABE, we use a cache to store the CKs that may be used later.

Our policy parser converts access control policies into logic

expressions of attributes (ABE Policies) corresponding to the data

that the requester(s) should be allowed to access. Attributes of the

same type are concatenated by OR, while those of different type are

concatenated by AND. For example, in Figure 3, the attributes in

Policy B’s “allow” field are converted to the expression “(/org/md2k/

mperf/dd40c) and (/org/md2k/ATTRIBUTE/location/home or /org/

md2k/ATTRIBUTE/location/gym) and (/org/md2k/ATTRIBUTE/

date>20210901)”. If a policy includes more than one “attribute-

filters” section, ABE policies will be calculated individually for each

/org/md2k/mperf/dd40c
/org/md2k/mperf/dd40c
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/date > 20210901
/org/md2k/ATTRIBUTE/date > 20210901

ICN ’22, September 19–21, 2022, Osaka, Japan Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

section and then concatenated with OR in the full ABE policy. The

current implementation supports context-based attributes such as

location and activity. Functionality for time-based attributes is a

work-in-progress.

Due to the absence of support for the NOT operator in Open-

ABE, we have to divide the derived attributes listed in the “deny”

field into sets according to their type (such as location, or activity)

and add the compliment of each set, with respect to the set of all

possible attributes for that type, to the ABE policy. For example, if

the available location-based attributes are /org/md2k/ATTRIBUTE/

location/gym, /org/md2k/ATTRIBUTE/location/home, and /org/

md2k/ATTRIBUTE/location/work, and the access policy denies

the /org/md2k/ATTRIBUTE/location/home attribute, the result

is to allow access to data encrypted with either the /org/md2k/

ATTRIBUTE/location/gym attribute or the /org/md2k/ATTRIBUTE/

location/work attribute.While the implementation for denied stream

names is different, the logic is the same. Given the policy in Figure 3

where /org/md2k/mperf/dd40c/ is an allowed stream name prefix

and /org/md2k/mperf/dd40c/phone/gps is denied, every stream

name under /org/md2k/mperf/dd40c/ will be allowed except for

/org/md2k/mperf/dd40c/phone/gps.

5 EVALUATION
We evaluated the performance of mGuard via emulation using Mini-

NDN [13], configured with the NDN testbed topology [24] of 37

nodes and 94 links.

5.1 Performance Metrics
We used the following metrics in our evaluation: (a) encryption
time is time spent by the publisher encrypting data in a data object;

(b) decryption time is time spent by the subscriber decrypting

an encrypted data object; (c)manifest propagation delay is time

between when the publisher starts to create a new manifest and

when the manifest name is received by the subscriber via sync;

(d) manifest, data, and CK retrieval delay are the times spent

by the subscriber fetching the respective data from the repo; (e)

end-to-end delay is the time between when a data object was

published by the publisher and when it was received by the sub-

scriber; (f)maximum packet overhead is the maximum number

of packets sent and received by a node assuming there is no Interest

aggregation or data caching; and (g) measured packet overhead
the actual number of packets sent and received by a node. The

overhead consists of Interest and Data packets for Sync, manifests,

mHealth data, and keys.

All delays except for encryption and decryption are normalized

by the round-trip time between the subscriber and the publisher to

account for different network delays from node to node. To get an

accurate representation of the data, we compute the average values

for packet overhead and median values for all other metrics across

three runs for each experiment.

5.2 Emulation Setup
In all experiments, we used one server instance and four data

consumers. The server instance, consisting of the MD2K data repos-

itory, NDN repo, Controller, and Publisher, was connected to the

Memphis node, while the consumers were connected to the UCLA,

policy-id A
requester-names /edu/tu/alice, /edu/mit/bob, /edu/tu/

hira, /edu/mit/ganga
attribute-filters
{
allow
{
/ndn/org/md2k/mperf/dd40c
}
}
/*brief: Alice, Bob, Hira, and Ganga shall access the

streams under /ndn/org/md2k/mperf/dd40c */

policy-id B
requester-names /edu/tu/alice, /edu/mit/bob, /edu/tu/

hira, /edu/mit/ganga
attribute-filters
{
allow
{
/ndn/org/md2k/mperf/dd40c/phone/battery
}
}
/*brief: Alice, Bob, Hira and Ganga shall only access

battery stream */

Figure 8: Policies Used in Experiments

Washington University, Osaka, and Michigan nodes. For each ex-

periment, the server processes application data received from the

MD2K repository and the subscribers fetch this application data

in real time. Additionally, we publish a new manifest after 50 data

object names have been accumulated in it, or 100 milliseconds has

passed since the last data object name was received. For our ac-

cess control configuration, we used three streams under the name

prefix /org/md2k/mperf/dd40c, i.e., /org/md2k/mperf/dd40c/phone/

battery, /org/md2k/mperf/dd40c/phone/gps, and /org/md2k/mperf/

dd40c/data_analysis/gps_episodes_and_semantic_location, along

with Policy A and Policy B as shown in Figure 8.

5.3 Rate Experiments
In this set of experiments, each data stream takes turns to publish

a batch of data points and the aggregated data rate from the three

streams ranges from 1 to 8 data points per second in different

experiments. The publisher creates an NDN packet for each data

point. Requesters use Policy A to access all the streams under /org/

md2k/mperf/dd40c.

The results of the experiments in Figure 9 show that the nor-
malized delays increase with data generation rate. When processing

individual data points as single packets, repo insertion times in-

crease as the data generation rate increases, causing an increase in

the delay to retrieve data and CK packets. A higher manifest publi-

cation rate is also problematic for PSync to handle, as it requires a

round-trip time to publish a new manifest (each publication con-

sumes a pending Sync Interest at the producer and the next Sync

Interest is sent by the consumer only after receiving the Sync Data

packet carrying the name of the recently published manifest). Both

of these factors contributed to a higher end-to-end delay as the data

generation rate increased. Since packet sizes are unchanged, the

cryptographic delays are mostly unchanged. We also analyze the

packet overhead using the data from the rate experiment. Note that,

in our definition, packet overhead includes both sent and received

packets. The result, Figure 10, shows that the measured packet count

/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/work
/org/md2k/ATTRIBUTE/location/work
/org/md2k/ATTRIBUTE/location/home
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/gym
/org/md2k/ATTRIBUTE/location/work
/org/md2k/ATTRIBUTE/location/work
/org/md2k/mperf/dd40c/
/org/md2k/mperf/dd40c/phone/gps
/org/md2k/mperf/dd40c/
/org/md2k/mperf/dd40c/phone/gps
/org/md2k/mperf/dd40c
/org/md2k/mperf/dd40c/phone/battery
/org/md2k/mperf/dd40c/phone/battery
/org/md2k/mperf/dd40c/phone/gps
/org/md2k/mperf/dd40c/data_analysis/gps_episodes_and_semantic_location
/org/md2k/mperf/dd40c/data_analysis/gps_episodes_and_semantic_location
/org/md2k/mperf/dd40c
/org/md2k/mperf/dd40c

Building a Secure mHealth Data Sharing Infrastructure over NDN ICN ’22, September 19–21, 2022, Osaka, Japan

Figure 9: Network, Processing, and Cryptographic Delays for Rate Experiments

	0

	20

	40

	60

	80

	100

	120

	140

	1 	2 	3 	4 	5 	6 	7 	8

av
er
ag
e	
nu
m
be
r	
of
	p
ac
ke
ts
	p
er
	s
ec
on
d

data	generation	rate	(avg	data	points/second)

measured	packet	overhead
maximum	packet	overhead

	0

	5

	10

	15

	20

	25

	30

	35

	1 	2 	3 	4 	5 	6 	7 	8

av
er
ag
e	
nu
m
be
r	
of
	p
ac
ke
ts
	p
er
	s
ec
on
d

data	generation	rate	(avg	data	points/second)

measured	packet	overhead
maximum	packet	overhead

Figure 10: Maximum vs Measured Packet Overhead at Pro-
ducer (left) and Consumer (right)

is about 61% and 47% lower than the maximum packet count at the
producer and each consumer, respectively. This is a result of the

Interest aggregation and data caching features offered by NDN.

5.4 Packet Size Experiments
We publish data from the three data streams at a constant rate of

300 data points per minute. The publisher combines data points

with the same attributes into a single NDN packet. The maximum

amount of data points per packet ranges from 10 to 70, as 70 data

points almost exceeds the maximum NDN packet size (8KB). All

consumers in this experiment use Policy B, so they can access only

the battery stream /org/md2k/mperf/dd40c/phone/battery.

As we can see from Figure 11, the normalized delays are constant
or decreasing and are much improved compared to the rate experi-
ments. This is because a larger number of data points in a single

packet will decrease the overall rate of data and manifest gener-

ation, thereby reducing the overall processing and propagation

delays and reducing the number of packets consumers will fetch.

However, larger packet sizes resulted in slightly greater encryption
and decryption times.

6 LESSONS AND REMAINING ISSUES
We initially designed the access control policies using syntax similar

to database queries and firewall rules, as the MD2K data is stored

in a database and we are familiar with access control in firewall

configuration. After many revisions, we started using attribute

names directly in the “allow” and “deny” fields, which simplified

the policy specification and made the policies much more intuitive.

Our experimentation also revealed some implementation issues

in the NDN Python Repo and NAC-ABE library. In the Repo’s bulk

insertion client, data insertion was synchronous, which caused our

Publisher towait for the insertion to complete. Moreover, a newTCP

connection was established and closed for each insertion, resulting

in unnecessary delay. These problems were fixed, considerably

reducing the repo insertion time. We also found that the OpenABE

library is not actively maintained. While we were able to make

several changes to OpenABE to make it work, NAC-ABE cannot

rely on it in the long term.

Moreover, the KP-ABE approach has a scalability issue when

policies are composed of a large number of attributes, as the corre-

sponding decryption keys may become very large. This can happen

when a user is allowed to access many data streams. We currently

use individual data stream names as attributes, but we plan to use

stream name prefixes as attributes to solve this problem. Finally,

our work does not address how study participants can verify how

their data is shared. We will address this issue in future work.

7 RELATEDWORK
Due to space constraint, we cannot provide a comprehensive re-

view of mHealth systems. Instead, we point out the problems in a

few state-of-the-art representatives to show our proposed enhance-

ments can benefit them as well. The Fast Healthcare Interoperability

Resources (FHIR) Server for Microsoft Azure provides a foundation

to handle mHealth data [10]. FHIR is an Electronic Health Record

(EHR) system andmay not be able to support high-frequencymobile

sensor data. To support mental health, the Non-Intrusive Individual

Monitoring Architecture (Niima) prototype was developed [3] to

handle data collection, storage, and privacy challenges related to

mHealth data. Initially, data is stored as is and data privacy rules

are only applied when exact data needs are defined. This may delay

the availability of the data. RADAR-base supports data aggregation,

/org/md2k/mperf/dd40c/phone/battery

ICN ’22, September 19–21, 2022, Osaka, Japan Saurab Dulal, Nasir Ali, Adam Robert Thieme, Tianyuan Yu, Siqi Liu, Suravi Regmi, Lixia Zhang, and Lan Wang

Figure 11: Network, Processing, and Cryptographic Delays for Packet Size Experiments

Table 1: Comparison of mHealth Systems Based on Key Features (* = partially supported)

System High-Frequency Data Real-time Data Distribution Access Control Contextual Access Control [11]

mGuard Y Y Y Y

Microsoft Azure FHIR [10] N Y* Y N

NIIMA [3] N N Y N

RADAR [30] N Y* Y N

Adaptive MapReduce [38] Y Y N N

management of studies, and real-time visualizations of data col-

lected from wearable sensors [30]. Some of these platforms do not

support high-frequency data or real-time data distribution. More-

over, their data access control schemes do not support fine-grained

policies based on context [11]. Table 1 compares mGuard with some

existing mHealth systems in terms of key features.

Realizing that standardized interfaces and shared components

are critical for healthcare delivery and research, Estrin and Sim

proposed the Open mHealth architecture that uses data exchange

as the common layer of interoperability [6]. A crucial part of their

vision is data exchange being user-controlled and privacy-aware

across users, devices, applications, and vendor boundaries. However,

this vision is challenging to achieve over TCP/IP’s host-centric

communication paradigm. Aswe have demonstrated, NDN provides

the building blocks to realize the Open mHealth vision.

NDNFit [39] is an experimental NDN application for tracking

and sharing personal fitness activity. It served as a use case for

the initial development of NAC. In this work, we have developed

intuitive access control policies that use semantic attribute names.

We have also extended NAC to support context-based policies that

can change over time.

Reddick et. al. proposed an ABE-based access control scheme

for sharing genomics data over NDN [31]. There are two major

differences between our approach and theirs. First, they use CP-ABE

and user-centric attributes. In contrast, we use KP-ABE and data-

centric attributes so new policies can be added over timemore easily

as explained in Section 3.4.2. Second, they directly encrypt data

using ABE. However, we use symmetric content keys to encrypt

data and then use ABE to encrypt content keys for efficiency and

security reasons, as explained in Section 4.

PSIRP/PURSUIT [8], an early ICN architecture, offers native

support for network-layer pub-submechanisms. In this architecture,

publishers create an RID and a scope of the publication, which are

forwarded to the rendezvous node. When subscribers first receive

information about RID and SID, they send subscription requests to

rendezvous nodes. Once the subscription succeeds, a forwarding

path is established between the subscriber and publisher. mGuard

is fundamentally different from this architecture. Our pub-sub API

is built on an application-layer data synchronization mechanism

(Sync) and it implements access control, data authentication, and

trust management so that the consumer and producer applications

do not need to perform these security functions on a packet-by-

packet basis. Nichols [27] also proposed a lightweight pub-sub API

based on the Sync protocol syncps. However, this API does not

support access control. In addition, syncps uses a time window

for synchronizing publications so data outside the time window

cannot be retrieved by the subscribers. Our API was inspired by Yu

et. al.’s work [36] which proposed a pub-sub API for NDN-Lite with

built-in security. However, the latter is not built on a Sync protocol

and does not support contextual access control.

8 CONCLUSION AND FUTUREWORK
We have built mGuard, a prototype system for secure mHealth

data sharing over NDN, and demonstrated its feasibility using Mini-

NDN. While our design was motivated by sharing mHealth data in

realtime with automated access control, we believe that the build-

ing blocks we developed for mHealth, e.g., access control policies

and pub-sub API, can potentially be used by a variety of other ap-

plications. Next, we will address various issues identified in NDN

Python Repo, NAC-ABE, and mGuard, and conduct performance

evaluation over the NDN testbed. We will also perform a user study

to assess the usability of our access control policy design. In the

longer term, we plan to explore mechanisms to support automated

security bootstrapping, automated key management with revoca-

tion support, scalable attribute-based access control, and real-time

data transfer from sensors to mHealth repositories.

Building a Secure mHealth Data Sharing Infrastructure over NDN ICN ’22, September 19–21, 2022, Osaka, Japan

ACKNOWLEDGMENT
This work was supported by the National Science Foundation award

2019085. We thank the anonymous reviewers and our shepherd

Karen Sollins for their insightful feedback.

REFERENCES
[1] Wearables Market to Be Worth $25 Billion by 2019 (2015, September 1). https:

//www.ccsinsight.com/, 2015.

[2] Afanasyev, A., Refaei, T., Wang, L., and Zhang, L. A brief introduction to

Named Data Networking. In IEEE MILCOM (2018).

[3] Aledavood, T., Hoyos, A. M. T., Alakörkkö, T., Kaski, K., Saramäki, J.,

Isometsä, E., and Darst, R. K. Data collection for mental health studies through

digital platforms: requirements and design of a prototype. JMIR research protocols
6, 6 (2017), e110.

[4] Anastasiadou, D., Folkvord, F., Brugnera, A., Cañas Vinader, L., Serran-

oTroncoso, E., Carretero Jardi, C., Linares Bertolin, R., Muñoz Rodríguez,

R., Martínez Nuñez, B., Graell Berna, M., et al. An mhealth intervention

for the treatment of patients with an eating disorder: a multicenter randomized

controlled trial. International Journal of Eating Disorders 53, 7 (2020), 1120–1131.
[5] Bethencourt, J., Sahai, A., and Waters, B. Ciphertext-policy attribute-based

encryption. In 2007 IEEE symposium on security and privacy (SP’07) (2007), IEEE,
pp. 321–334.

[6] Chen, C., Haddad, D., Selsky, J., Hoffman, J. E., Kravitz, R. L., Estrin, D. E.,

and Sim, I. Making sense of mobile health data: An open architecture to improve

individual-and population-level health. Journal of medical Internet research 14, 4
(2012).

[7] DeMichele, R., and Furini, M. Iot healthcare: Benefits, issues and challenges. In

Proceedings of the 5th EAI international conference on smart objects and technologies
for social good (2019), pp. 160–164.

[8] Fotiou, N., Nikander, P., Trossen, D., and Polyzos, G. C. Developing informa-

tion networking further: From psirp to pursuit. In International Conference on
Broadband Communications, Networks and Systems (2010), Springer, pp. 1–13.

[9] Goyal, V., Pandey, O., Sahai, A., and Waters, B. Attribute-based encryption

for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security (2006), pp. 89–98.

[10] Heather Jordan Cartwright. FHIR Server for Azure: An open source project

for cloud-based health solutions. https://cloudblogs.microsoft.com/industry-

blog/health/2018/11/12/fhir-server-for-azure-an-open-source-project-for-

cloud-based-health-solutions.

[11] Kayes, A., Kalaria, R., Sarker, I. H., Islam, M., Watters, P. A., Ng, A., Ham-

moudeh, M., Badsha, S., Kumara, I., et al. A survey of context-aware access

control mechanisms for cloud and fog networks: Taxonomy and open research

issues. Sensors 20, 9 (2020), 2464.
[12] MD2K: Center of excellence for mobile sensor data-to-knowledge. MD2K website,

http://md2k.org.

[13] Mini-NDNAuthors. Mini-NDN: AMininet-basedNDN emulator, 2021. accessed:

2021-05-10.

[14] Moiseenko, I. Fetching content in named data networking with embedded

manifests. NDN, Tech. Rep. NDN-0025 (2014).
[15] Moll, P., Patil, V., Wang, L., and Zhang, L. SoK: The Evolution of Distributed

Dataset Synchronization Solutions in NDN. In Proceedings of the 9th ACM
Conference on Information-Centric Networking (2022).

[16] Moll, P., Shang, W., Yu, Y., Afanasyev, A., and Zhang, L. A survey of dis-

tributed dataset synchronization in named data networking. Tech. Rep. NDN-0053,
Revision 2, Named Data Networking (2021).

[17] NAC-ABE Library GitHub Site. https://github.com/UCLA-IRL/NAC-ABE.

[18] Nakajima, M., Lemieux, A. M., Fiecas, M., Chatterjee, S., Sarker, H., Saleheen,

N., Ertin, E., Kumar, S., and al’Absi, M. Using novel mobile sensors to assess

stress and smoking lapse. International Journal of Psychophysiology 158 (2020),
411–418.

[19] NDN Project Team. A Named Data Networking (NDN) Repo implementation

using python-ndn. https://github.com/UCLA-IRL/ndn-python-repo. (Accessed

on 06/10/2022).

[20] NDN Project Team. Mini-NDN GitHub. https://github.com/named-data/mini-

ndn. (Accessed on Accessed on 06/10/2022).

[21] NDN Project Team. ndn-cxx: NDN C++ library with eXperimental eXtensions.

https://github.com/named-data/ndn-cxx. (Accessed on Accessed on 06/10/2022).

[22] NDN Project Team. NDN Essential Tools. https://github.com/named-data/ndn-

tools. (Accessed on Accessed on 06/10/2022).

[23] NDN Project Team. NDN Name Format. https://named-data.net/doc/NDN-

packet-spec/current/name.html. (Accessed on 06/10/2022).

[24] NDN Project Team. NDN Testbed Topology. http://ndndemo.arl.wustl.edu/.

(Accessed on 06/10/2022).

[25] NDN Project Team. NFD: Named Data Networking Forwarding Daemon. https:

//github.com/named-data/nfd. (Accessed on Accessed on 06/10/2022).

[26] NDN Project Team. PSync: Partial and Full Synchronization Library for NDN.

https://github.com/named-data/psync. (Accessed on 06/10/2022).

[27] Nichols, K. Lessons learned building a secure network measurement framework

using basic NDN. In Proceedings of the 6th ACM Conference on Information-Centric
Networking (2019), pp. 112–122.

[28] OpenABE Library GitHub Site. https://github.com/zeutro/openabe.

[29] Park, L. G., Beatty, A., Stafford, Z., and Whooley, M. A. Mobile phone

interventions for the secondary prevention of cardiovascular disease. Progress in
cardiovascular diseases 58, 6 (2016), 639–650.

[30] Ranjan, Y., Rashid, Z., Stewart, C., Conde, P., Begale, M., Verbeeck, D.,

Boettcher, S., Dobson, R., Folarin, A., Consortium, R.-C., et al. Radar-base:

Open source mobile health platform for collecting, monitoring, and analyzing

data using sensors, wearables, and mobile devices. JMIR mHealth and uHealth 7,
8 (2019), e11734.

[31] Reddick, D., Feltus, F. A., and Shannigrahi, S. Case study of attribute based

access control for genomics data using named data networking. In 2022 IEEE
19th Annual Consumer Communications & Networking Conference (CCNC) (2022),
IEEE, pp. 715–716.

[32] Saleheen, N., Ali, A. A., Hossain, S. M., Sarker, H., Chatterjee, S., Marlin, B.,

Ertin, E., Al’Absi, M., and Kumar, S. puffmarker: a multi-sensor approach for

pinpointing the timing of first lapse in smoking cessation. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(2015), pp. 999–1010.

[33] Sim, I. Mobile devices and health. New England Journal of Medicine 381 (2019),
956–968.

[34] Tschudin, C.,Wood, C. A., Mosko,M., andOran, D. R. File-Like ICNCollections

(FLIC). Internet-Draft draft-irtf-icnrg-flic-03, Internet Engineering Task Force,

Nov. 2021. Work in Progress.

[35] Wang, Y., Kung, L., and Byrd, T. A. Big data analytics: Understanding its

capabilities and potential benefits for healthcare organizations. Technological
forecasting and social change 126 (2018), 3–13.

[36] Yu, T., Zhang, Z., Ma, X., Moll, P., and Zhang, L. A pub/sub API for NDN-Lite

with built-in security. Named Data Networking, Tech. Rep. NDN-0071, Revision 1
(2021).

[37] Yu, Y., Afanasyev, A., Clark, D., Jacobson, V., Zhang, L., et al. Schematiz-

ing Trust in Named Data Networking. In Proceedings of the 2nd International
Conference on Information-Centric Networking (2015), ACM, pp. 177–186.

[38] Zhang, F., Cao, J., Khan, S. U., Li, K., and Hwang, K. A task-level adaptive

mapreduce framework for real-time streaming data in healthcare applications.

Future generation computer systems 43 (2015), 149–160.
[39] Zhang, H., Wang, Z., et al. Sharing mHealth Data via Named Data Networking.

In ICN (September 2016), pp. 142–147.

[40] Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley, P.,

Papadopoulos, C., Wang, L., and Zhang, B. Named Data Networking. ACM
SIGCOMM Computer Communication Review (CCR) 44, 3 (Jul 2014), 66–73.

[41] Zhang, M., Lehman, V., andWang, L. Scalable name-based data synchronization

for named data networking. In IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications (2017).

[42] Zhang, Z., Yu, Y., Afanasyev, A., and Zhang, L. Ndn certificate management

protocol (ndncert). NDN, Technical Report NDN-0054 (2017).
[43] Zhang, Z., Yu, Y., Ramani, S. K., Afanasyev, A., andZhang, L. NAC:Automating

access control via Named Data. In Proceedings of IEEE MILCOM 2018 (2018).
[44] Zhang, Z., Yu, Y., Ramani, S. K., Afanasyev, A., and Zhang, L. Nac: Au-

tomating access control via named data. In MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM) (2018), IEEE, pp. 626–633.

[45] Zhang, Z., Yu, Y., Zhang, H., Newberry, E., Mastorakis, S., Li, Y., Afanasyev,

A., and Zhang, L. An overview of security support in Named Data Networking.

IEEE Communications Magazine 56, 11 (2018), 62–68.

https://www.ccsinsight.com/
https://www.ccsinsight.com/
https://cloudblogs.microsoft.com/industry-blog/health/2018/11/12/fhir-server-for-azure-an-open-source-project-for-cloud-based-health-solutions
https://cloudblogs.microsoft.com/industry-blog/health/2018/11/12/fhir-server-for-azure-an-open-source-project-for-cloud-based-health-solutions
https://cloudblogs.microsoft.com/industry-blog/health/2018/11/12/fhir-server-for-azure-an-open-source-project-for-cloud-based-health-solutions
http://md2k.org
https://github.com/UCLA-IRL/NAC-ABE
https://github.com/UCLA-IRL/ndn-python-repo
https://github.com/named-data/mini-ndn
https://github.com/named-data/mini-ndn
https://github.com/named-data/ndn-cxx
https://github.com/named-data/ndn-tools
https://github.com/named-data/ndn-tools
https://named-data.net/doc/NDN-packet-spec/current/name.html
https://named-data.net/doc/NDN-packet-spec/current/name.html
http://ndndemo.arl.wustl.edu/
https://github.com/named-data/nfd
https://github.com/named-data/nfd
https://github.com/named-data/psync
https://github.com/zeutro/openabe

	Abstract
	1 Introduction
	2 Background
	2.1 mHealth Data
	2.2 NDN

	3 Design
	3.1 Design Overview
	3.2 Naming Scheme
	3.3 Trust Model and Supporting Mechanisms
	3.4 Access Control
	3.5 Pub-Sub API and Library

	4 Implementation
	5 Evaluation
	5.1 Performance Metrics
	5.2 Emulation Setup
	5.3 Rate Experiments
	5.4 Packet Size Experiments

	6 Lessons and Remaining Issues
	7 Related Work
	8 Conclusion and Future Work
	References

