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ABSTRACT
Two-dimensional layered materials/flakes, also known as crystalline atom-thick layer nanosheets, have
recently been receiving great attention in electronics fabrication due to their unique and intriguing
properties. The k-layer coverage area (i.e., the area covered by k number of overlapping layers) of the
printed flake pattern significantly impacts on the properties of the printed electronics. In this work, we
constructed a statistical model to describe the k-layer coverage of randomly distributed two-dimensional
materials. A series of results are obtained to provide not only the expectation but also the variance of
the coverage area. The boundary effects on the random flakes coverage are also studied. In addition,
an approximated statistical testing approach is also developed in this work to detect abnormal coverage
patterns. The case studies based on simulated data and real flakes images obtained from the inkjet printing
process demonstrate the accuracy and effectiveness of the proposed model and analysis methods.
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1. Introduction

Two-dimensional layered materials, also known as crystalline
atom-thick layer nanosheets, have recently been receiving great
attention in electronics fabrication due to their unique and
intriguing properties. Graphene, for example, has high elec-
tronic and thermal conductivity, optical transparency, and
mechanical strength and flexibility (Li, Lemme, and Östling
2014). After the discovery of an exfoliation method of graphene
from graphite by Novoselov (2004), a large body of litera-
ture has been dealing with graphene and its variants, such
as graphene oxide, as well as other two-dimensional materi-
als, such as molybdenum disulfide (MoS2). The inkjet print-
ing technique has been gaining growing interests to fabri-
cate electronics with these two-dimensional materials (Sowade
et al. 2016). Inkjet printing is an additive patterning tech-
nique that deposits functional ink, which may contain two-
dimensional m aterials as a solute, through nozzles onto
the substrates. Inkjet-printed graphene and its variants have
shown promising opportunities in a wide range of applica-
tions (Li et al. 2014), including sensors (Dua et al. 2010;
Huang et al. 2011), wearable textiles (Li et al. 2012), anten-
nas (Shin, Hong, and Jang 2011), and memory (Huber et al.
2017).

This article ismotivated by the recently developed field-effect
transistor (FET) sensors, which are used to detect the heavy
metal ions in water (Chang et al. 2019). The sensor is illustrated
in Figure 1. In such a sensor, the flakes of two-dimensionalmate-
rials, namely rGO flakes, are inkjet-printed on the substrate.
Two electrodes, named drain and source, are put on the printed
pattern. As the gate voltage (denoted by Vg in the figure) is
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applied, the current between drain and source can be measured.
When the sensor is exposed to the water contaminated by heavy
metal ions, the current between the drain and sourcewill deviate
from its normal value.

The performance of the FET sensor is most significantly
influenced by the coverage and thickness (i.e., number of over-
lapping layers) of flakes on the area between two electrodes. The
FET sensor needs a high gap in the currents between on and
off states. This can be achieved when flakes cover more surface
with less flake overlap (Sui and Appenzeller 2009). In the inkjet
printing process, flakes distribute randomly between the elec-
trodes, and we cannot directly control them. It is highly desir-
able to have a model to describe and analyze the randomness
in the coverage and the overlapping of randomly distributed
two-dimensional materials. With such a model, we can link
the process parameters to the flake distribution and predict
the performance including both the sensitivity and repeata-
bility of the fabricated sensors. In addition, we can use the
model to identify if the flakes are uniformly distributed on the
substrate, which is important for the process quality control
purposes.

The existing literature on the random two-dimensional flakes
coverage cannot address the practical needs in the inkjet-
printing process. The study directly on the inkjet-printed pat-
tern is mostly done based on the first principles. Researchers
have investigated the drying process based on the physical
movements of particles (Deegan et al. 1997; Fischer 2002; Hu
andLarson 2006). The physics-based research gives insights into
flakes behaviors during the ink’s drying. However, the works
in this category do not deal with the statistical behavior of
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Figure 1. Field-effect transistor sensor for heavy metal detection in water.

flake coverage. The most widely known statistical model for
the random two-dimensional coverage is the boolean model.
The boolean model is based on the union set of every flake
set whose location and shape is random (Chiu et al. 2013).
The area covered by one or more layers is equally treated as
covered, and the complement set as uncovered. The boolean
model is popularly used in the literature on the coverage of
random wireless sensor networks (Liu and Towsley 2003, 2004;
Hsin and Liu 2004; Liu et al. 2005; Liu, Wu, and King 2005).
There are two significant limitations of this model in pur-
suit of our objective. (1) It cannot explain multi-layer cov-
erage. We need a more sophisticated model that can dis-
tinguish the thickness of the coverage because the perfor-
mance of the electronics differs with respect to different thick-
nesses. (2) Its main focus is on the expectation of the cov-
erage. To quantify the uncertainty in the manufacturing pro-
cess, the variance of coverage should also be modeled and
analyzed.

Some relevant literature can also be found in the application
of randomly deployed wireless sensor networks. Their main
interest is the detectability of special events such as wildfire by
randomly deployed sensors. Many researchers have studied this
field (Liu and Towsley 2003, 2004; Hsin and Liu 2004; Liu et al.
2005; Liu,Wu, andKing 2005).However, it is hard to adopt these
models because (1) fixed radius circular ranges are assumed, (2)
only expectation is studied, (3) many works used the boolean
model; therefore, they cannot distinguish different thicknesses.
In Wan and Yi (2006), the authors studied the problem of a
point/region being covered by at least k sensors. However, the
exact k-layer coverage problem is not investigated. Furthermore,
in their study, the coverage area of a single sensor is assumed
to be a circle with a fixed radius. However, in the problem we
are facing, flakes are randomly created from the ink fabrication
process with different sizes and shapes. As a result, their model
cannot address our needs.

In this article, to fill this research gap, we establish a statistical
model that describes the uncertainties in the flakes dispersion
and coverage with respect to different levels of thicknesses,
namely k-layer coverage fraction, of the printed pattern. The
flakes are defined by combining the uniformly distributed ran-
dom locations and random shapes. A series of analytic results
are obtained providing the expectation and variance of the cov-
erage fraction with different thicknesses. The boundary effects
on the random flakes coverage are also studied. Based on this

Table 1. Physical parameters.

Symbol Definition

cF Mass concentration of the two-dimensional material flakes in the
ink droplet

hF Height of the two-dimensional material flakes
ρF Density of the two-dimensional material flakes
VD Volume of the ink droplet
θc Contact angle of the ink droplet
RF Radius of the contact area of the ink droplet on the substrate

model, we further propose a statistical testing method that
detects the nonuniformprinted pattern. These proposedmodels
andmethods are tested and validated through extensive numer-
ical study and real flakes distribution images obtained from an
inkjet process.

The rest of the article is organized as follows. Section 2
introduces the inkjet printing process and the relevant process
parameters. Some basic assumptions on the flake distribution
based on the process physics are also introduced. Section 3
delineates the proposed random flakes model and the expecta-
tion and variance of the coverage fraction with different thick-
nesses. The statistical testing approach to detect abnormal flake
coverage is presented in Section 4. A numerical study that
validates the proposed model is presented in Section 5. The val-
idation based on the real flakes image is conducted in Section 6.
Finally, we draw a conclusion and discussion in Section 7.

2. Inkjet Printing and Basic Assumptions

The inkjet printing process consists of two separate steps: ink
preparation and inkjet printing. To provide the desired func-
tionality, the ink is customized in the ink preparation step
by controlling the mass concentration and size of the flakes
in the ink (Figure 2(a)). First, two-dimensional material (e.g.,
graphene) flakes are exfoliated from crystal (e.g., graphite) and
dissolved into the solvent up to the target mass concentration
of the flakes in the ink. Then, the flakes sizes in the ink are
reduced up to the target size by controlling the exposure time to
the ultrasonic milling. The prepared ink is printed through the
inkjet printer (Figure 2(b)). After the ink dries out, the dispersed
flakes are left with a pattern, providing functionality. The real
image of a flake pattern printed by an inkjet printer is presented
in Figure 2(c) that is produced in He and Derby (2017).

The critical parameters in the printing step are summarized
in Table 1. Among these parameters, hF and ρF are constant
material properties. The volume of the droplet ejected from an
inkjet printer, VD, can also be viewed as constant because VD
can be precisely controlled in a modern inkjet printing process
(Singh et al. 2010) at picoliter level. Once the droplet falls on
the substrate, it forms a spherical cap as shown in Figure 2(b).
The contact angle θc is determined by the combination of the
ambient temperature and thematerial properties of the substrate
and droplet. The relationship among the droplet volume VD,
contact angle θc, and radius of the contact area RF is given as
(Picknett and Bexon 1977)

VD = π

3
(1 − cos θc)2 (2 + cos θc)

(
RF

sin θc

)3
. (1)
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Figure 2. Two stages of two-dimensional material inkjet printing process are described: (a) ink preparation process and (b) inkjet printing process. (c) An image of the real
pattern printed by an inkjet printer produced in He and Derby (2017).

RF can be obtained given VD and θc from (1). The mass con-
centration of the flakes in a droplet, cF , is defined by the mass
of the flakes in the ink droplet divided by the volume of the
droplet. Due to the random dispersion of the flakes in the ink,
cF of different droplets are different. Thus, cF of a droplet should
be viewed as a random variable.

With E[cF], we can derive the expected number of flakes in
the droplet. Specifically, the mass of the flakes in the droplet is
equal to the total summed sizes of flakes

∑N
i=1 |Fi| multiplied

by the height and density of the flakes, where |Fi| denotes the
area of ith flake and N is the number of flakes in the droplet;
therefore,

∑N
i=1 |Fi| = (cFVD) / (hFρF). Because the flake size

|Fi| is an independent random variable from each other and N,
EN

[
E

[∑N
i=1 |Fi|

∣∣∣N]]
= EN [N E [|Fi||N]] = E [N]E [|Fi|].

Then, the expectation of the number of flakes, E [N], is

E [N] = E [cF]VD
E [|Fi|] hFρF . (2)

According to the physical principles of the inkjet printing
process, we can have the following three nonrestrictive assump-
tions:

• Flakes are uniformly distributed within the printed pattern:
from a large body of literature, it is widely known that flakes
are uniformly distributed when a coffee-ring does not form
(Fischer 2002; He 2016).

• The number of flakes in a printed pattern is an independent
Poisson random variable: the number of points drawn from
an area where the point event occurrence follows the con-
tinuous uniform distribution is known to follow the Poisson
distribution. This assumption has been widely used in the
literature. For example, the number of printed cells in a
printing process is known to follow the Poisson distribution
(Merrin, Leibler, and Chuang 2007; Kim et al. 2016).

• Flake shape and size are independent random variables from
the other process parameters: because the flake shape and size
are determined before the printing process, the flake shapes
and sizes are independent random variables from the other
process parameters in the inkjet printing step.

The relationship in (2) and the above assumptions will be
used in the following k-coverage model.

Figure 3. Random flakes are considered. The random flakes’ center locations are
uniformly distributed, and their shapes are defined by random compact sets.

3. k-Layer Random Coverage Fraction

3.1. Statistical Model of Flake Coverage

In this section, we propose a statistical flakes model that
accounts for the random coverage and thickness of flakes in
terms of the expectation and variance of the random coverage
fraction. We consider random flakes. A flake Fi (i = 1, . . . ,N)
has its center location φi uniformly distributed over SF ⊂ R

2,
and SF is the flake space or printed space within which flakes
are deposited. The number of flakes N is a Poisson random
variable with the parameter of mean E [N]; thus, the flakes
center locations (φ1,φ2, . . .) follow the Poisson process. The
shape of the flake Fi is defined by an independent and identically
distributed (iid) random compact set, and the size of the flake Fi
is denoted by |Fi|. A rigorous definition of the random flakes is
included in Appendix A.1 in the supplementary materials. The
definition of the random flakes is illustrated in Figure 3.

Our objective is to study the expectation and variation of
the coverage fraction that is covered by k layers of overlapping
flakes, hereafter called k-layer coverage fraction, deposited in
the space SF . The k-layer coverage fraction, denoted by Ck,
is evaluated by measuring the thickness at every point in SF
through the indicator Tk (z) (k = 0, 1, . . .); Tk (z) is a random
variable that is 1 if the point z ∈ SF is covered by k layers of
flakes or 0 otherwise. Conditioned on the point z, Tk (z) is a
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Bernoulli random variable. Tk (z) is statistically dependent on
Tk (w) for w ∈ SF . Two points with a closer distance have
a higher dependency because a near point w is also likely to
be covered by the same flake covering z. The k-layer coverage
fraction, Ck, can be calculated as

Ck =
∫
z∈SF Tk (z) dz∫

z∈SF dz
. (3)

We first introduce the expectation and variance of Ck under
the absence of the boundary effects in Sections 3.2.1 and 3.2.2.
In general, the flake distribution close to the boundary of the
printed area (i.e., the contact area of the droplet on the sub-
strate) is different from the distribution around the center of
the area. Such difference refers to the boundary effects. If the
printed area is much larger than the size of flakes, the boundary
effects can be ignored. Otherwise, the boundary effects may be
significant. The boundary effects on the mean and variance of
Ck are considered in Section 3.3. The method to calculate the
exact expectation and variance with the random circular flakes
is presented in Section 3.4. Tomake the flow smooth, the details
of the mathematical derivations of these results are deferred to
the supplementary materials.

3.2. k-Layer Coverage FractionWithout Boundary Effects

3.2.1. Expectation of k-Layer Coverage Fraction
The expectation of k-layer random coverage fraction is obtained
by evaluating the thickness at every point over the space SF .
The probability of any point z being covered by any k flakes is
the same over SF because every flake is uniformly distributed;
therefore, E [Ck] = E [Tk (z)]. Because Tk (z) is a binary ran-
dom variable, E [Tk (z)] = P [Tk (z)] where P [Tk (z)] is the
probability that a point z is covered by exact k flakes. Then,
E [Ck] is as follows.

E [Ck]=E [Tk (z)]=P [Tk (z)] = exp
{−E [N] p

} (
E [N] p

)k
k! ,

(4)
where N is the number of flakes in SF following the Poisson
distribution, and p is the expected probability that a point z in
SF is covered by a single random flake:

p = E

[ |Fi|
|SF|

]
. (5)

We denote pi = |Fi|/|SF| as the probability that the flake Fi
covers a point z (i.e., p = E

[
pi

]
). The result in (4) is obtained

through deriving the probability that the point z is covered by
any k among N flakes. The detailed derivation of (4) can be
found in Appendix B.1 in the supplementary materials.

Point z is covered by the flake Fi when the flake’s center
location φi is located within a specific region, flip (Fi, z) ⊂ R

2;
flip (Fi, z) is defined as the region where Fi is rotated by 180◦
and translated so that its center is on z (Figure 4(a)). Because φi
is uniformly distributed, the probability that φi is located within
flip (Fi, z) is |Fi| / |SF|, which does not rely on the flake center
location φi nor the point z. The rationale for using flip (Fi, z) is
illustrated in Figure 4(b). For the flake Fi to cover z, the distance
between φi and zmust be shorter than the distance between φi
and α that is the point where a line from φi crossing zmeets the
boundary of the flake. Equivalently, if φi falls in between α′ and
z, meaning φi is within flip (Fi, z), z is covered by the flake. The
mathematical definition of flip (Fi, z) can be found in Appendix
A.2 of the supplementary materials.

The expectation of Ck is in the formof the Poisson probability
mass functionwith its parameterE [N] p. It is notable thatE [Ck]
does not depend on the individual flake size or shape, but it
is determined by E [N] p = E

[∑N
i |Fi|

]
/ |SF|, which is the

relative total size of the flakes to the size of the printed pattern.
This relative size is proportional to the mass concentration of
the flakes in the ink. In other words,E [Ck] is determined by the
mass concentration.

3.2.2. Variance of k-Layer Coverage Fraction
The variance of Ck is obtained through the spatial correlation,
which is represented by the covariance or the correlation coeffi-
cient, of the thickness at every pair of two points in SF .

var [Ck] = 1
|SF|2

{∫
z∈SF

∫
w∈SF

cov [Tk (z) , Tk (w)] dw dz
}
,

(6)

= var [Tk (z)]
∫
z∈SF

∫
w∈SF corr [Tk (z) , Tk (w)] dw dz

|SF|2
≤ var [Tk (z)] , (7)

where cov is covariance and corr is correlation coefficient. The
detailed mathematical derivations of (6), (7), and the follow-
ing results regarding the variance can be found in Appendix

Figure 4. (a) The event that a point z is covered by the flake Fi is equivalent to the event that the center location φi is located within the dashed area, denoted by flip (Fi , z)
(point reflection of Fi whose center is on z). (b) Illustration of rationale for using flip (Fi , z).
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Figure 5. The event that two points are covered by k layers can be divided into k + 1 mutually exclusive collectively exhaustive subevents: points z and w are covered by
the same l flakes and by k − l layers of different flakes. The subevent when l = 2, k = 3 is illustrated in (a). Two points are covered by l layers with the same flakes in (b)
and by k − l layers with different flakes in (c).

B.2 in the supplementary materials. var [Ck] can be decom-
posed into two parts, var [Tk (z)] and the normalized integra-
tion of corr [Tk (z) , Tk (w)]. var [Tk (z)] can be found in terms
of E [Tk (z)] (presented in (4)): var [Tk (z)] = E [Tk (z)] −
E [Tk (z)]2, for any z in SF . Therefore, var [Tk (z)] does not
rely on the individual flake shapes or sizes but it relies on
the total size of the flakes. In contrast, smaller flakes will
produce smaller correlations of the thickness at two differ-
ent points (corr [Tk (z) , Tk (w)]), leading to a smaller variance
of Ck. The upper-bound of var [Ck] is var [Tk (z)] by setting
corr [Tk (z) , Tk (w)] = 1 for all z and w. However, this upper-
bound is generally not tight.

We can also obtain a more detailed expression of
cov [Tk (z) , Tk (w)] as

k∑
l=0

E [N]2k−l pII(z,w)l
{
p − pII(z,w)

}2(k−l)

l! {(k − l)!}2
× exp

{−E [N]
(
2p − pII(z,w)

)} − E [Ck]2, (8)

where pII(z,w) = E
[
pII i(z,w)

]
is the expected probability that

two points z and w are covered by a single random flake, and
pII i(z,w) = P [z ∈ Fi ∩ w ∈ Fi] is the probability that the both
points are covered by the same flake Fi, which can be written as

pII i(z,w) =
∣∣(flip (Fi, z)

) ∩ (
flip (Fi,w)

)∣∣
|SF| . (9)

The basic idea to obtain (8) is that cov [Tk (z) , Tk (w)] can be
calculated with the probability of an event that two points z and
w are both covered by kflakes (P [Tk (z) = 1, Tk (w) = 1]). This
event can be divided into k + 1 mutually exclusive collectively
exhaustive subevents: both points z and w are covered by the l
same flakes (l = 0, 1, . . . , k) and by (k − l) layers with different
flakes (Figure 5).

The covariance of two different levels of coverage fractions
cov [Ck, Ch] can be calculated in a similar manner.

cov [Ck, Ch]

= 1
|SF|2

∫
z

∫
w

min(k,h)∑
l=0

E [N]k+h−l pII(z,w)l
{
p−pII(z,w)

}(k+h−2l)

l! {(k − l)!}2
× exp

[−E [N]
{
2p − pII(z,w)

}] − E [Ck]E [Ch]dwdz,
(10)

where var [Ck] = cov [Ck, Ck].
Notice that pII i(z,w) in (9) depends on the shape of the flakes.

Consider, for example, two different shapes of flakes, circle and

Figure 6. With the boundary condition, the center point space Sφi , where the
center point of flake Fi can be located, depends on the size of the flake.

ellipse, that have the same size |Fi|. Then, because the sizes of the
flakes are given the same, the major axis of the elliptical flake is
longer than the diameter of the circular flake. Therefore, there
will exist somepoints z andw that the circular flake cannot cover
both points (pII i(z,w) = 0) whereas the wider elliptical flake can
cover the both points (pII i(z,w) > 0).

In the following section, the expectation and variance of Ck
with boundary effects are presented.

3.3. k-Layer Coverage Fraction Considering Boundary
Effects

The boundary effects can be ignoredwhen the size of the printed
region SF is significantly larger than the flakes sizes. However,
the boundary effect may not be ignored when SF is not large
compared to the sizes of the flakes.

The boundary of the ink droplet restricts whole flakes to be
located within it, which forces the flake center location φi to be
placed in a smaller space Sφi ⊂ SF . Themathematical definition
of Sφi can be found inAppendix A.3 in the supplementarymate-
rials. This restriction causes complications in the calculation
of the mean and variance of k-layer coverage fractions. This
restricted flake center space is illustrated in Figure 6.

With the boundary effects, the mean and variance of k-
layer coverage fraction presented in (4) and (10) still hold, but
the parameter p (z) and pII(z,w) need to be adjusted accord-
ingly. Although p (z) is constant over the space SF when the
boundary effects are considered, p (z) relies on point z with the
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consideration of boundary effects because of the restriction of
Sφi . Now, flake Fi covers point z if the flake’s center is located
within Sφi ∩

(
flip (Fi, z)

)
among its possible position Sφi . Thus,

p (z) is

p (z) = E

[∣∣Sφi ∩
(
flip (Fi, z)

)∣∣∣∣Sφi

∣∣
]
. (11)

Similarly, pII (z,w) is as follows.

pII (z,w) = E

[∣∣Sφi ∩
(
flip (Fi, z)

) ∩ (
flip (Fi,w)

)∣∣∣∣Sφi

∣∣
]
. (12)

3.4. k-Layer Coverage Fraction for Circular Flakes

3.4.1. k-Layer Coverage FractionWithout Boundary Effects
Calculation of var [Ck] involves pII(z,w), which relies on the
shape of the flakes. In this section, we show how to calculate
pII(z,w) based on the random sized circular flakes; the random
radius is denoted by ri, and its probability density function is
denoted by f (ri). The robustness of the outcome with respect to
different flake shapes are presented in the numerical study.

With circular flakes, now,
∣∣(flip (Fi, z)

) ∩ (
flip (Fi,w)

)∣∣
in (9) reduces to |D(z, ri) ∩ D(w, ri)| where D(z, ri) =
{x | ‖x − z‖ ≤ ri} is a circular disc whose radius is ri and
center is on z. Now, |D(z, ri) ∩ D(w, ri)| can be found in a
closed form (shaded area in Figure 7). Therefore, p = E

[
pi

]

Figure 7. A circular flake covers both points z and w if and only if the center of the
flake (square dot, φi) is located within the overlap ofD(z, ri) andD(w, ri) (shaded
area) whereD(z, ri) is a circular disc whose center is zwith radius ri .

and pII(z,w) = E
[
pII i(z,w)

]
can be obtained as follows.

p = r2

R2F
, (13)

pII(z,w) = 1
|SF|

∫ ∞

r= d
2

f (r)

{
2r2 cos−1 d

2r
− d

√
r2 − d2

4

}
dr.

(14)

3.4.2. k-Layer Coverage FractionWith Boundary Effects
With the boundary effects, to calculate p (z) and pII(z,w), a
complex geometrical relationship needs to be considered: Sφi ∩(
flip (Fi, z)

)
and Sφi ∩ (

flip (Fi, z)
) ∩ (flip (Fi,w)). To make the

problem tractable, we propose an approximation method to
estimate p (z) and pII(z,w) by reducing the space to be evaluated.

We want to study E [Ck] and var [Ck] over a reduced space
Se, namely evaluation space. In particular, we want to precisely
estimate p (z) and pII(z,w) for E [Ck] and var [Ck] while losing
the least amount of information on the coverage. We specify Se
as follows.

Se = {z|P (‖z‖ > RF − 2ri) ≤ ε} , (15)

where ε is a very small number, and ‖·‖ is the Euclidean distance
from the origin. We used 0.001 for ε for this work. Under Se,
pi (z) is approximated as follows.

pi (z) ≈ p̃i = |Fi|∣∣Sφi

∣∣ . (16)

Figure 8 shows pi values with respect to different ‖z‖. When
z falls in ‖z‖ ≤ Rci = RF − 2ri, pi is constant as p̃i, and as
‖z‖ surpasses Rci , pi diminishes to zero at RF . Therefore, all the
points z ∈ Se, will be exactly evaluated by the true value p̃i with
the probability of 1 − ε (Figure 8(a)). When the flake radius is
very large, some points z where Rci ≤ ‖z‖ ≤ Re have pi smaller
than p̃i with a small chance ε (Figure 8(b)). Therefore, p (z) will
be slightly overestimated. pII(z,w) is also calculated similarly.

Then, p (z) and pII(z,w) can be obtained as follows.

p (z) =
∫ RF/2

r=0

{
r2

(RF − r)2

}
f (r) dr +

∫ ∞

RF/2
f (r) dr, (17)

Figure 8. The probability that a point is covered by k layers of flakes is affected by the boundary effect.
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pII(z,w) =
∫ RF/2

r=0

{ |D(z, r) ∩ D(w, r)|
(RF − r)2

}
f (r) dr

+
∫ ∞

RF/2
f (r) dr, (18)

where D(z, r) is a circular disc whose center is on z with radius
r, and |D(z, r) ∩ D(w, r)| = 2r2 cos−1 (d/2r) − d

√
r2 − d2/4.

This method provides a quite accurate approximation of the
k-coverage fractions with the boundary effects. Its accuracy is
validated in the numerical studies.

4. Statistical Testing for Nonuniform Coverage
Patterns

The expectation and variance of coverage fraction we have
derived are based on the assumption that the flake center
points (φ1,φ2, . . .) are uniformly distributed. Therefore, when
the flakes are no longer distributed uniformly, the distribution
of Ck, along with E [Ck] and var [Ck], changes. Based on this
property, we provide a statistical testing method to detect the
nonuniform patterns based on the k-layer coverage fraction Ck
evaluated from the real image. In the inkjet printing process,
some combination of unfavorable process conditions may lead
to a “coffee-ring” effect: most of the flakes will be clustered
around the boundary of the printed region. Such an effect is
very detrimental to the sensor performance, and we want to
detect such a condition when it happens. Furthermore, due to
the overlapping of flakes, it is generally very difficult to measure
the center locations of the flakes from images. Thus, the flake
center locations are not available to assess the flake distribution.
Instead, Ck is generally obtainable from images. Therefore, the
proposed method of testing the flake distribution based on Ck is
very useful.

The hypothesis testing is based on the fact that Ck approx-
imately follows the normal distribution. Billingsley (1995)
showed that the summation of the associated Bernoulli random
variables in a sequence follows the normal distribution asymp-
totically as the number of the random variables goes to infinity
when the random variables far apart from each other in the
sequence are nearly independent. This condition corresponds to
the coverage fractions: Ck = ∫

z∈SF Tk (z) / |SF| is the integration
of the Bernoulli random variable Tk (z) that has a nonzero
correlation with Tk (w) if z andw are close, but has a nearly zero
correlationwhen z andw are distant due to the limitations in the
flake sizes. In particular, as the correlation between two points
lessens, the variances of the coverage fractions diminish, and the
distribution of the coverage fractions gets closer to the normal
distribution.

When the variance of Ck is large, however, its distribution
may be discrepant from the normal. According to the previ-
ous analysis, we know larger flakes induce a larger variance of
coverage fractions. Because flakes must be deposited through
the inkjet printer nozzle, there exists a limitation in the size of
printable flakes, relative to the size of the droplet. As a result,
we can examine the distribution of the Ck in the worst-case
scenario, when Ck has the largest variance. The largest printed
flakes givennozzle sizes are investigated inHe andDerby (2017).
According to their study, we simulated flakeswithE [r] = 17.95,
Sd [r] = 11.6, E [N] = 122.1, and RF = 180 for the worst-
case scenario with 1000 repetitions where Sd stands for the
standard deviation. The histogram of the zero- and single-layer
coverage fractions simulated based on the given parameters are
Figure 9, and they are well fitted to the normal distribution.
As the variances of the coverage fractions reduce, the coverage
fractions fit better to the normal distribution.

With the normal approximation of the distribution of Ck,
a χ2 test can be established. A vector of the multiple layer
coverage fractions from zero- to (m-1)-overlapping flakes is
defined by Cm = (C0, C1, . . . , Cm−1)

T with its mean E [Cm] =
(E [C0] ,E [C1] , . . . ,E [Cm−1])T , which are calculated through
(4). The covariance matrix,	Cm where its kth diagonal compo-
nent is var [Ck] and its (k, h) element is cov [Ck, Ch], is calculated
through (8) and (10). Then, the proposed statistic Qm is as
follows.

Qm = (Cm − E [Cm])T 	−1
Cm

(Cm − E [Cm]) ∼ χ2
m. (19)

Qm follows the chi-square distribution with the degree of free-
dom m. m can be selected based on how many layers are dis-
tinguishable in the image. Because many electronics require a
low number of overlapping layers, m may not need to be large.
We would like to mention that χ2

m distribution approximates
Qm very well. In the aforementioned worst-case, the false alarm
probability of the test from the simulated data with 5000 iter-
ations is 0.049 when we use χ2

1−0.05,m as the critical value of
the test. The actual false alarm probability is very close to the
nominal value of 0.05.

The statistical testing can be performed as follows. First,
E [Cm] and 	Cm are calculated from (4), (8), and (10) with
the printing parameters. Based on the image resolution, m, the
number of distinguished layers from the image is determined.
The upper control limit of the testing is set asχ2

1−α,m where 1−α

is the specified confidence level. Then, the coverage fractions
Ck, k = 0, . . . ,m − 1, are measured from the printed pattern.
When Qm is larger than the upper control limit, the printed
pattern is identified as nonuniform. Once Qm is larger than
the control limit, we know that the flakes are not uniformly
distributed (with a probability of 1−(p-value)). This is because if
the flakes were uniformly distributed, the mean and variance of

Figure 9. The histograms of C0 (left), C1 (center), and C2 (right) based on the simulated data suggest that they fit well to the normal distribution.
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Figure 10. Summary of the implementation procedure.

Table 2. Summary of the parameters used in the numerical study.

Parameter values Table index

Case Parameter Baseline Setting 1(H) Setting 2(L) No boundary Boundary

(i) E [|F|] 98.17 392.70 3.93 Table A.3 Table A.8Sd [|F|] 117.87 471.47 4.71
(ii) E [N] p 1 1.5 0.5 Table A.4 Table A.9
(iii) RF 150 200 100 Table A.5 Table A.10
(iv) Ratio(r) 0.5 0.7 0.3 Table A.6 Table A.11

the coverage fractions would be the same as the theoretical ones,
and Qm would not be significantly large under the chi-square
distribution.

Figure 10 illustrates the implementation procedure to facili-
tate using the results in this work. In Figure 10, the decisions that
users need to make are represented by the boxes with dashed-
line boundaries, and the other processes are represented by the
boxes with solid-line boundaries. The main outcome of our
work consists of two parts: the mean and covariance of the flake
coverage fractions and the uniformity statistical testing. The
process of obtaining the outcomes of the flake coveragemodel is
represented by thewhite boxes. The uniformity statistical testing
process is represented in the gray boxes.

5. Numerical Study

In this section, the robustness of our proposed method is val-
idated with different shapes of flakes (circle, ellipse, and rect-
angle) in various parameter settings. The parameter settings
for the cases are shown in Table 2. For each case, we change
one set of parameters (baseline case) to a higher level (Set-
ting 1) or a lower level (Setting 2) while the other parameters
are fixed.

Four parameters are selected to vary: (1) size of the flakes:
mean and standard deviation of flake sizes (E [|F|] and Sd [|F|])
are varied. The baseline is where E [|F|] = 98.17 and Sd [|F|] =
117.87 (which is when E [r] = 5 and Sd [r] = 2.5 of circular
flakes). They are changed into a high level (E [|F|] = 392.70
and Sd [|F|] = 471.47 where E [r] = 10 and Sd [r] = 5 of
circular flakes) and a low level (E [|F|] = 3.93 and Sd [|F|] =
4.71 where E [r] = 1 and Sd [r] = 0.5 of circular flakes). (2)
Flakes mass concentration: E[N]p, indicating the flakes mass
concentration, is increased to 1.5 and reduced to 0.5. (3) Radius
of the flake space: we considered a circular flake space with
radius of RF = 150, which is changed to 200 and 100. (4)
Ratio of radius: the shapes of elliptical and rectangular flakes
have varied. Ratio(r), the ratio between two axes of ellipse and
rectangle (ratio between minor and major axes in an ellipse and
ratio between width and length in a rectangle) is varied.

For each setting, we conducted the analysis both with and
without the boundary effects. The outcomes from the sim-
ulation with three different flakes shapes (circle, ellipse, and
rectangle) are presented along with the results calculated from
the equations proposed in Section 3.4. The simulations are
conducted with 1000 iterations. Because of the page limit, the
detailed results are presented as tables in Appendix C in the
supplementary materials. The table indexes can be found in
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Table 2. From the numerical study results, we can observe the
following characteristics:

1. The analytical results obtained in this article (based on Equa-
tions (4) and (8)) fit the simulation results very well. The
expectations of the coverage fractions show little discrep-
ancies among different shapes of flakes, and the outcomes
based on our proposed equations are consistent with the
simulated results. The flake shapes seldom affect the results.
The standard deviations of the coverage fractions show larger
differences than the expectations, but the discrepancies are
still small.We can conclude that the expectation and standard
deviation of the coverage fractions are robust to the flake
shapes.

2. Without boundary effects, E [C0] and E [C1] are only deter-
mined by E[N]p. A larger mass concentration (indicated by
large E[N]p) reduces the uncovered area. On the contrary,
Sd [C0] and Sd [C1] are mainly affected by the relative size
of the flakes to that of the printed pattern (E [|Fi|] / |SF|) as
shown in Figure 11.

3. The impact of the boundary effects on C0 can be observed.
E [C0]’s are smaller when the boundary effects are considered

Figure 11. Changes in Sd
[
Ck

]
, k = 0, 1.

in comparison to those without boundary effects. Especially,
larger flakes show a large difference of E [C0]. With the
boundary effects, larger flakes tend to gather inside the flake
space, leading to a reduction of E [C0]. Inversely, a larger
pattern size (larger radius of the printed pattern RF) narrows
the impacts of the boundary effects, meaning that a large
printing area reduces the effects of the boundary. In general,
as the flake sizes get smaller and as the size of the printed
pattern RF gets large, our proposed approximation method
that considers the boundary effects becomes more accurate.
Overall, E [C0] from the analytical equation (4) are smaller
than those from the simulations. This is because we slightly
overestimate the probability of a point being covered by a
random flake.

6. ValidationWith Real Inkjet-Printed Flake Images

In this section, we show that the proposed model well describes
the real flakes patterns produced by inkjet printing process, and
the statistical testing scheme can detect nonuniform patterns.
A flakes image is a surface topology image scanned by focused
electron beams in the micrometer scale (also known as an SEM
image). The original images are adopted from He and Derby
(2017) and He (2016) with permission.

Six real images are presented in Figure 12. These are complete
images of the dried droplets obtained from the inkjet printing
processes. The physical parameters obtained from the printing
process are summarized in Table 3 (He 2016). Figures 12(a)–(c)

Table 3. Physical parameters obtained from He (2016).

E[cF] hF ρF VD θc

0.5 mg/ml 1.0 nm 2200 mg/ml 0.77 nL 9.6 ◦

Figure 12. Real images of the patterns printed by inkjet printer.
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show three uniform patterns, and Figures 12(d)–(f) show three
nonuniform patterns that are widely known as the coffee-ring
effect. When the coffee-ring appears, flakes are pushed forward
and deposited near the boundary of the droplet; therefore, white
blanks form in the center of the dried pattern. The coffee-rings
in Figures 12(d) and (e) are quite subtle to observe without
careful attention; thus, we marked the center of the images
to highlight the coffee-ring effects. In Figures 12(d)–(f), large
portions of white blanks are clearly observed in the center of
the dried droplet. Additional information on these images is
presented in Appendix D.1 in the supplementary materials.

To conduct the statistical testing, the zero- and single-layer
coverage fractions, C0 and C1, are extracted from the real images
as follows. First, the brightness values of the pixels inside the
gray-scale image are plotted as a histogram (Figure 13). From
the histogram, we can decide the cut-off brightness dividing
each layer coverage. We used a heuristic method to determine
the cut-off thresholds in this work, and the procedure is pre-
sented in Appendix D.2 in the supplementary materials. The
proportions of zero- and single-layer coverage are obtained
accordingly.

The extracted zero- and single-layer coverage fractions are
presented in Table 4. In the table, E [r] and Sd [r] are the
expectation and standard deviation of the radius of the flakes,
which are provided in He and Derby (2017) and He (2016). The
reduced space Se is evaluated to deal with the boundary effects.
C0 and C1 are the coverage fractions measured from the images.
E [Ck] and Sd [Ck] are the expectation and standard deviation of
the k-layer coverage fraction Ck calculated by Equations (4) and
(8), and cov [C0, C1] is the covariance between C0 and C1 calcu-
lated by Equation (10). The chi-square statistics Q2 calculated
by Equation (19) are presented, followed by their p-values.

Based on the statistical testing, the images in Figures 12(a)–
(c) are identified uniformly distributed with p-values larger
than 0.1 while the images in Figures 12(d)–(f) are considered
as nonuniform patterns with p-values less than 0.01. The case
studies show that our proposedmethod can effectively catch the
subtle nonuniformities of the pattern images.

Figure 13. Histogram of the brightness of every pixel in the real inkjet-printed
pattern image shown in Figure 12(a). Cut-off values for zero- and single-layer
coverage are presented as vertical dashed lines.

The validation based on the real images suggests our pro-
posed statistical model and the testingmethods fit well with real
data and can identify the nonuniform flakes dispersion pattern.

We would like to mention that the physical size of the images
needs to be large enough to include a sufficient number of
printed flakes. If an image is too small and includes only a
limited number of flakes, the variance of the coverage fractions
would be significantly large, and it will lead to a lower ability to
identify the nonuniformpatterns (i.e., a lower hypothesis testing
power).

7. Conclusion

In this work, we constructed a statistical model to describe
the k-layer coverage of randomly distributed two-dimensional
materials. A series of results are obtained to provide not only the
expectation but also the variance of coverage area. Compared
with existing results, the proposedmodel considers the coverage
with multiple overlapping layers and also provides the variance
of the coverage area. Tomake our model more useful, boundary
effects are also studied. With the boundary effects, a method
to accurately evaluate the expectation and variance of k-layer
coverage within a certain region is proposed. In addition, an
approximated statistical testing approach is developed in this
work to detect abnormal coverage patterns. The case studies
based on the simulated data and real flake images obtained from
the inkjet printing process show the accuracy and effectiveness
of the proposed model and analysis methods. We expect the
proposed model to be used to predict the functionality of the
printed electronics and control the variability. The proposed
statistical model may also be used in different applications. For
example, our model can be used to describe the overlapping
random coverage for the random wireless sensor network. Our
proposed model can provide the prediction and quantifica-
tion of variation where the detection ranges of the sensors are
random.

We would like to mention that sometimes SEM image data
might be expensive so that we may not be able to use these
images for real-time quality control. However, even though the
SEM image data are expensive, SEM images (or similar imaging
data) are commonly available in modern microelectronic man-
ufacturing processes, and these images can certainly be used for
offline inspection and root cause analysis.

There are some interesting possible future directions. To cal-
culate the variance of the coverage fractions in the integration,
the circular shape of flakes was assumed in this work. However,
if the flake shapes are far from circles, the result may not be
sufficiently accurate.We can improve the accuracy of this model

Table 4. Case study outcome calculated by (4), (8), and (10) for the real images in Figure 12.

E [r] Sd [r] C0 C1 E [C0] E [C1] Sd [C0] Sd [C1] cov [C0,C1] Q2 p-value

17.95 11.6 0.0977 0.2268 0.0773 0.1979 0.0542 0.0732 0.0028 0.18 0.9161
10.85 7.9 0.1039 0.2739 0.1041 0.2355 0.0414 0.0480 0.0015 1.39 0.499
3.55 4.5 0.1962 0.352 0.1081 0.2405 0.0460 0.0528 0.0021 4.49 0.1058
1.85 1.9 0.1451 0.353 0.1556 0.2895 0.0144 0.0122 0.0001 91.92 1.1 × 10−20

0.9 2.15 0.125 0.659 0.1002 0.2305 0.0590 0.0712 0.0037 152.52 7.6 × 10−34

0.475 0.225 0.217 0.5922 0.1768 0.3063 0.0010 0.0008 0 132,603 0

NOTE: For each printed pattern, statistical proportion test is conducted.
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by using the observed flake shapes from the flake images directly
onto the flake size and pII(z,w) estimations. For a more accurate
estimate of the expected flake size, practitioners may use the
flake images of patterns printed with diluted inks so that every
flake is distinct and store the set of shapes of the flakes. Then,
the mean flake size can be estimated based on the exact shape of
the flakes, and accurate pII(z,w) may be estimated based on the
observed shapes of flakes. Another possible direction of study-
ing pII(z,w) would be the field of stochastic geometry, which
has studied many aspects of the random geometry behaviors,
including the boolean model. We plan to study these issues and
report them in the future.

Supplementary Materials

Appendix: The mathematical details are included in Appendices A–D.
Matlab code: The matlab code for calculating the expectation and vari-

ance based on the analytical results presented in this work.
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