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Abstract
Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools
in addition to vaccines in the world wide fight to eliminate national and local shutdowns. However,
currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive,
painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we
employ custom-formulated graphene inks and aerosol jet printing to create a rapid electrochemical
immunosensor for direct detection of SARS-CoV-2 spike receptor-binding domain (RBD) in saliva
samples acquired noninvasively. This sensor demonstrated limits of detection that are considerably
lower than most commercial SARS-CoV-2 antigen tests (22.91± 4.72 pg ml−1 for spike RBD and
110.38± 9.00 pg ml−1 for spike S1) as well as fast response time (∼30 min), which was facilitated
by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2
polyclonal antibody through the carbodiimide reaction without the need for nanoparticle
functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor
presents a wide linear sensing range from 1 to 1000 ng ml−1 and does not react with other
coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink
synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers
a promising alternative to current SARS-CoV-2 antigen tests.

1. Introduction

Since its first report in December 2019, the
coronavirus disease 2019 (COVID-19) pandemic
continues to cause enormous human, social, and
economic suffering across the globe as over 480 mil-
lion cases have been reported and over 6.1 million
people have died as of April 2022 [1]. The number
and severity of cases are a result of the virus’s fast rates
of human-to-human transmission, which primar-
ily occurs through aerosol droplets, a considerable
percentage of asymptomatic patients, and unpre-
dicted virus mutation [2, 3]. During the pandemic, a

number of strategies to combat the spread of COVID-
19 such as lockdowns, mask mandates, contact tra-
cing, vaccinations, and diagnostic testing have been
implemented with varying rates of success and side
effects. Lockdowns have enabled social distancing but
have upended the global economy, causing contrac-
tion by 3.5% in 2020, and have negatively impacted
the social well-being of communities [4–6]. Mask
mandates helped control COVID cases but are being
lifted in the US as they have been met with per-
sonal, political, and legal challenges that make them
increasingly difficult to enforce [7–9]. Vaccinations
have been key in reducing COVID transmission and
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severity of disease, but, for example, 9.0% of fully
vaccinated individuals in New York State still exper-
ienced breakthrough infections with the Omicron
variant [10]. Furthermore, in just over a year since
COVID-19 vaccines became available, global vac-
cine scarcity still prevails—only 15% of people in
low-income countries have received at least one dose,
while that number is about 80% in upper-middle-
and high-income countries—and issues of produc-
tion limitations, export bans, vaccine hoarding, and
vaccine hesitancy have caused vaccination rates to
plateau globally [11]. On the other hand, diagnostic
testing options and the demand for testing have con-
tinued to grow and be subsidized by governments in
an effort to curb transmission rates. The US launched
a service to distribute free rapid test kits in January
2022 [12]. In the face of a major COVID-19 out-
break and consequent lockdown in Shanghai, China
in March 2022, government officials implemented
mass testing to identify infected individuals that
needed to quarantine [13]. Additionally, as interna-
tional travel restrictions begin to ease, e.g. Australia
reopened to vaccinated tourists in February 2022,
many countries still require a negative COVID-19 test
24–72 h before entry [14]. Routine and frequent test-
ing also has the potential to lead to better prognosis
since those individuals who discover their illness early
could take anti-COVID drugs such as Molnupiravir
and Paxlovid to significantly reduce the effects of the
disease [15, 16]. Thus, there continues to be a need
for accessible COVID-19 diagnostic tests that are fast,
frequent, and easy-to-use at home without a pre-
scription to facilitate a safe return to pre-pandemic
activities.

Frequent at-home testing requires an accurate
test that is not only inexpensive and easy-to-use,
but also pain-free to avoid testing aversion. Painful
nasopharyngeal and oropharyngeal swab tests that
sometimes cause bleeding would most likely not be
self-administrated regularly [17]. Likewise, tests that
use painful finger pricks are suboptimal as they can
cause test hesitancy as experienced with the diabetic
finger prick test [15]. Several manufacturers have
created at-home SARS-CoV-2 tests that use a less
painful but still uncomfortable nasal swab to transfer
bodily fluid to a lateral flow assay (LFA) capable of
detecting nucleocapsid (N) protein antigens from the
SARS-CoV-2 virus [16]. Such LFA SARS-CoV-2 anti-
gen tests are too expensive for daily or even weekly
testing as they typically cost between $25 and $55
a test and can exhibit a high rate of false positives
(up to 52% in some cases) [18–20]. Manufacturers
have also designed molecular home tests, which util-
ize loop-mediated isothermal amplification (LAMP)
to amplify the RNA of SARS-CoV-2 virus found in
a test sample to quantify the viral load [21]. These
molecular tests are considered to be more sensitive
than the LFA antigen tests as their results rival the

accuracy of the gold-standard real-time quantitative
reverse transcription polymerase chain reaction (RT-
PCR) laboratory test for diagnosis of SARS-CoV-2
[22]. However, their accuracy seems to significantly
wane after the acute symptomatic phase of SARS-
CoV-2, and they are more expensive than antigen
tests (price ranges close to $90 per test) due, in part,
to the need for LAMP reagent kits and primer sets
[21, 22]. Hence, it is likely that molecular tests will
remain cost prohibitive for routine at-home test-
ing of SARS-CoV-2. It should be noted here that
other serological tests, or tests that monitor anti-
bodies in the blood that have been produced dur-
ing the immune response to COVID-19, have been
developed for home use. However, the U.S. Food and
Drug Administration has stated that such tests should
not be used to evaluate the level of immunity or pro-
tection from SARS-CoV-2 at any time due to their
unreliability [23].

To avoid the issues with incumbent COVID-19
surveillance, it would be ideal to develop a rapid,
accessible, sensitive, and pain-free at-home COVID-
19 test that only requires saliva samples. In this way,
users could easily spit inside a disposable test cup and
acquire measurements without the need to swab their
throat or nose or the need to prick their finger. Studies
comparing the detection of SARS-CoV-2 in saliva and
nasopharyngeal samples have shown concordance
between 94% [24] and 97.4% [25]. Moreover, the
presence of SARS-CoV-2 in saliva droplets has also
been demonstrated consistently for different stages of
the disease and has been used as a reliable SARS-CoV-
2 diagnostic tool [24–28]. However, it is imperative
that a saliva-based test provides a more quantitative
readout than LFAs, which only provide a qualitat-
ive, yes/no response that relies upon visual assessment
and is unable to quantify specific concentrations of
antigen [29]. Moreover, the sensitivity of an LFA
can be reduced by nonspecific surface adsorption of
reagents, protein denaturation, and steric hindrance
since biological molecules interact with the many
inorganic-biological surfaces within the porous cellu-
lose membranes as fluid moves from a target line to a
control line [30]. On the other hand, electrochemical
sensors offer a quantitative and label-free approach to
saliva-based diagnostic testing.While electrochemical
COVID-19 tests would require access to a portable
potentiostat, the cost of which represents the largest
threat to adoption in low-income areas, inexpens-
ive smartphone-controlled potentiostats capable of
both DC and ACmeasurements have been developed
by several groups in recent years [31–34]. Moreover,
the potentiostat would be a one-time investment that
could be shared amongst relatives, neighbors, and
communities, potentially further lowering the bar-
rier to adoption. Commercial electrochemical bio-
sensors for use in the homehave beenwidely deployed
(e.g. home glucose monitoring tests), which suggest
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that a suitable electrochemical SARS-CoV-2 home kit
would have a high technology adoption [35]. There-
fore, the focus of this work is on the development
of sensitive, accurate, and inexpensive functionalized
electrodes for electrochemical sensing of COVID-19
in saliva samples.

Several groups have recently demonstrated elec-
trochemical sensors for rapid quantification of SARS-
CoV-2 antigens in saliva and have focused on monit-
oring the spike S1 protein. It should be noted that the
spike S1 protein is a promising antigen candidate for
diagnostic purposes since it is the major transmem-
brane protein of SARS-CoV-2 and is highly immun-
ogenic. The trimeric spike S1 protein mediates the
viral entry in a human cell through the interaction
of one of its receptor binding domains (RBDs) with
the angiostensin-converting enzyme-2 [36, 37]. Fabi-
ani et al [38] developed an electrochemical immun-
osensor capable of detecting SARS-CoV-2 nucleo-
capsid (N) protein and spike S1 protein at concen-
trations as low as 8 ng ml−1 and 19 ng ml−1 in
saliva. This sensor requires a secondary antibody with
alkaline phosphatase as an immunological label along
with magnetic beads (MBs) to help draw the anti-
gen to a screen-printed carbon electrode surface upon
application of a magnetic field. Mahari et al [39]
developed an electrochemical immunosensor capable
of detecting spike S1 protein with detection limits as
low as 10 fM. This sensor also requires the spike anti-
gen to be labeled with Ag nanoparticles to enhance
the electrochemical signal output form a screen-
printed electrode functionalized with anti-spike pro-
tein antibodies. Other reports have focused on devel-
oping label-free electrochemical sensors for detect-
ing SARS-CoV-2 protein in saliva, but they require
the use of exotic nanotubes and nanoparticles (e.g.
titanium nanotubes and copper oxide nanocubes) to
enhance the electroactivity of the electrodes [40, 41].
Other researchers have also developed promising
and sensitive electrochemical label-free antigen tests
using biorecognition agents besides antibodies, such
as aptamers, but the production, stability, and reliab-
ility of these biorecognition agents are still too uncer-
tain for large-scale implementation [42, 43].

Central to the successful deployment of electro-
chemical immunosensors is the use of readily scal-
able materials and manufacturing techniques. In this
context, graphene is an excellent electrode mater-
ial candidate due to its high electrical conductivity,
biocompatibility, and large surface area for chemical
functionalization [44–46]. However, many graphene
sensors require more expensive techniques to syn-
thesize graphene such as chemical vapor deposition
(CVD), laser ablation, or epitaxial growth [47–49]
and multi-step lithographic patterning, substrate
etching, or exfoliation processes [50, 51] to pattern
and/or transfer the graphene to a substrate suitable
for biosensing. For example, Seo et al fabricated

a highly sensitive COVID-19 field-effect transistor
(FET) sensor based on a CVD-grown graphene film,
which required wet transfer from a Cu foil and
photolithographic patterning and etching to define
each device [36]. In contrast, solution processing
provides a route for obtaining graphene nanosheets
in a high throughput and inexpensive manner [52].
Many COVID sensor studies have opted to use
reduced graphene oxide (rGO)—produced by way
of graphene oxide, which is synthesized inexpens-
ively in large quantities through the modified Hum-
mer’s method. Though this method produces a more
reactive version of graphene, this material is not con-
ductive enough to serve as an electrode. Studies util-
izing rGO for COVID sensors have only deposited
rGO on more conductive electrode materials such as
Au [37, 53] or glassy carbon electrodes [54–56] to
measure electrochemical signals. On the other hand,
conductive graphene electrodes fabricated through
additive manufacturing techniques such as aerosol
jet printing (AJP) and laser scribing have been pre-
viously demonstrated for label-free immunosensing
of biogenic small molecules, proteins, and patho-
gens [57–60]. However, recent reports of COVID-19
sensors based on printed or laser-scribed graphene
have required more complex processing methods
such as sandwich assays [61, 62] or labeling or elec-
trochemical activation by adding Au nanoparticles
[63, 64] to enable high-sensitivity to SARS-CoV-2
proteins.

Herein, we report a label-free, high-sensitivity,
and rapid-response-time graphene-based electro-
chemical immunosensor for quantitatively detecting
the SARS-CoV-2 spike RBD as well as SARS-CoV-2
spike S1 protein. The AJP graphene immuno-
sensors detect SARS-CoV-2 spike RBD and spike
S1 in artificial saliva samples, presenting a limit
of detection (LOD) of 22.91 ± 4.72 pg ml−1 and
110.38± 9.00 pgml−1, respectively, after 33min. This
detection limit is considerably lower than commer-
cially available LFA antigen sensors that only exhibit
detection limits within the low ng ml−1 range [65].
As the first demonstration of custom-formulated
graphene inks for COVID-19 detection, a graphene-
ethyl cellulose (EC) ink was deposited by AJP onto a
polyimide substrate in a dipstick pattern composed of
a 3 mm diameter circular working area (figure 1(a)).
The printed graphene sensors are subsequently bio-
functionalized with a SARS-CoV-2 Rabbit poly-
clonal antibody via N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide (EDC): N-hydroxysuccinimide
(NHS) crosslinker (figures 1(b) and (c)). Notably,
the electroactivity of the electrode does not need to
be enhanced with metallic nanoparticles. In addi-
tion, immunological labels, such as a secondary anti-
body or metallic nanoparticles, are not required, res-
ulting in a COVID-19 testing paradigm in which
saliva samples are promptly incubated on the sensor
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Figure 1. Schematic representation of the fabrication, biofunctionalization, and proposed implementation of the
aerosol-jet-printed (AJP) graphene biosensor. (a) AJP of graphene ink in a dipstick pattern on a polyimide substrate.
(b) Immobilization of SARS-CoV-2 antibodies on the AJP graphene dipstick surface via carbodiimide cross-linking chemistry.
(c) Prevention of nonspecific adsorption onto the sensor in subsequent steps by treating the remaining unfunctionalized areas of
the AJP graphene dipstick with blocking agent (Superblock™). (d) Proposed sample collection paradigm in which the saliva
sample can be noninvasively obtained from a patient and promptly tested. (e) Incubation of the AJP graphene dipstick biosensor
with SARS-CoV-2 virions in a real saliva sample or with SARS-CoV-2 spike S1 or RBD in artificial saliva. (f) and (g) Graphical
representation of the resulting changes in the differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy
(EIS) signals, respectively, with background signal from artificial saliva (black) and output signal from SARS-CoV-2 spike
RBD (red).

after collection (figures 1(d) and (e)). Subsequently,
electrochemical sensing techniques, such as differen-
tial pulse voltammetry (DPV) and electrochemical
impedance spectroscopy (EIS), are performed for
quantitative measurement of antigen concentration
in the sample (figures 1(f) and (g)).

The materials and processing techniques util-
ized in this work were chosen for their manufac-
turing scalability and inexpensiveness. Specifically,
EC-coated graphene nanosheets are produced in an
automated, continuous-flow process for approxim-
ately $0.02 per gram of graphene (this cost can likely
be further reduced by taking advantages of economies
of scale at larger production levels). The AJP process
also minimizes graphene ink utilization and waste by
only depositing graphene into the targeted electrode
geometry at thicknesses of∼225 nm. In this manner,
this process uses significantly less graphene mater-
ial than more conventional printing techniques such
as inkjet printing [44, 66, 67], screen printing [68],
gravure printing [69]), and spin coating coupled with
inkjet maskless lithography [70, 71], which yield film
thicknesses ranging from a fewmicrons to several tens
of microns. Leveraging high-yield batch graphene
ink synthesis and high-yield automated printing, we
estimate the current cost of our sensors to be $3.39
each with further cost reductions possible with fur-
ther scale-up. Thus, the resulting AJP graphene-based
immunosensor is a simple, rapid, cost-effective, and

sensitive alternative to currently available COVID-19
antigen tests.

2. Results and discussion

2.1. AJP graphene-based electrode fabrication
The graphene ink used to fabricate the sensors was
prepared using a previously described pilot-scale pro-
cess [56]. Briefly, we performed liquid-phase shear
exfoliation of graphite flakes in ethanol using EC as
the dispersant and stabilizer polymer. The obtained
graphene/EC slurry was further processed to yield
a graphene/EC powder containing 40% wt. exfoli-
ated graphene nanosheets. Next, an AJP graphene ink
was formulated by redispersing the graphene/EC in
9:1 ethanol:terpineol. During printing, the ink was
ultrasonically atomized, and the aerosol droplets were
transported by a carrier gas to the deposition head,
where a sheath gas is introduced to focus the aero-
sol stream into a narrow diameter on the substrate
[72]. Using this approach, the graphene/EC ink was
printed into a dipstick electrode pattern (figure 1(a))
at print speed of 5 mm s−1. Once deposited, the
devices were annealed in a box furnace at 350 ◦C
for 30 min to remove any residual solvent trapped
in the inner layer of the graphene film [58, 73]. This
heat treatment was also used to promote the thermal
degradation of the EC into an sp2-rich carbonaceous
residue and expose the graphene sheets [44, 57, 74],
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Figure 2.Microscopic and spectroscopic characterization of AJP dipstick electrodes on a polyimide substrate. (a) Optical
micrograph at 6.3×magnification. (b) AFM height map across the cleaned region. (c) Height profile extracted from AFM
displaying an average thickness of∼225 nm. (d) SEM image revealing the surface topography at 15 000×magnification.
(e) Representative Raman spectrum with the characteristic D, G, and 2D modes of graphene. (f) Raman map (30× 30 µm
region) displaying ID/IG peak ratio with an average value of 0.33± 0.025. (g) XPS spectrum revealing surface functional groups.

resulting in a material with high electrical conductiv-
ity of 1.8× 104 ± 1.8× 103 S m−1 and a sheet resist-
ance of 240± 23 Ω sq−1 (n= 8).

2.2. Microscopy characterization
The AJP graphene electrode morphology was charac-
terized by optical microscopy, atomic force micro-
scopy (AFM), and scanning electron microscopy
(SEM) (figure 2). Optical microscopy confirms
the deposition of a continuous dipstick electrode
with well-defined edges and uniform thickness
(figure 2(a)). The electrode was designed as a 3 mm
diameter circle connected to a 3× 3mm2 contact pad
by a 20 mm long stem. The circular working area was
defined by applying a passivation layer of insulating
fast-drying nitrocellulose-based lacquer [59] on the
electrode stem, resulting in a geometric working area
of 7.07 mm2.

The printmorphologywas investigatedwithAFM
to quantify the film thickness and surface roughness.
First, a section of the printed and cured electrode
was gently removed with aid of isopropanol without
indenting the polyimide substrate. Then, AFM scans
were performed in this region to obtain a height
map of the pristine printed graphene film in com-
parison to the cleaned area (figures 2(b) and (c)).
The printed graphene film was measured to have a
thickness of approximately 225 nm. It is important
to note that a wide scanning window (90 µm) was

necessary to obtain accurate height values, as a nar-
rower window led to thickness underestimation due
to partial distortion of the printed film at the bor-
der of the pristine print and cleaned surface. Addi-
tionally, AFM scans of pristine portions of the AJP
electrode revealed a film roughness of approximately
35 nm, averaged over four scans. Similar film rough-
ness values (37 nm) were previously observed dur-
ing the fabrication of interdigitated electrodes using
nitrocellulose-based graphene inks through the same
technique [58], demonstrating consistency in the
printing process despite the use of different cellulose-
based binders.

SEM images revealed that the AJP graphene
film consists of a dense network of graphene
nanosheets and has a highly oriented microstructure
(figure 2(d)). The high degree of overlap between
graphene flakes enables efficient charge transport
across the electrode and improved electrical per-
formance, which are critical characteristics for elec-
trochemical biosensors [57, 58, 73].

2.3. Spectral characterization
The chemical properties of the AJP graphene-based
electrodes were characterized by Raman spectro-
scopy and x-ray photoelectron spectroscopy (XPS).
Figure 2(e) presents the Raman spectrum of the
AJP dipstick electrodes with the expected D, G, and
2D modes that are characteristic of graphene. The
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Figure 3. Electrochemical characterization of the AJP graphene dipstick electrodes. (a) Cyclic voltammetry (CV) at scan rates of
10, 25, 50, 75, 100 mV s−1. (b) Randles–Sevcik plot showing a linear variation of the peak anodic (Ipa) and cathodic (Ipc) currents
with square root of the scan rate with the resulting slope being used to calculate the ESA. (c), (d) Nyquist plot and DPV plot of the
electrode after each biosensor experimental step: as-prepared AJP graphene electrode (bare), functionalization with SARS-CoV-2
spike rabbit polyclonal antibody (Ab) and surface blocking using Superblock™, incubation with artificial saliva, and incubation
with 1000 and 10 000 ng ml−1 SARS-CoV-2 spike RBD, respectively.

first-order D peak, observed at 1341.14 cm−1, is asso-
ciatedwith the presence of lattice defects in the graph-
itic layers that results from breaks and bends in the
sigma bonds [59, 75, 76]. The G peak, observed at
1576.47 cm−1, occurs from in-plane vibrations of the
sp2-bonded carbon atoms [57, 59, 73, 76]. Mean-
while, the second order 2D peak (2684.4 cm−1) ori-
ginates from the double resonance electron-phonon
scattering characteristic of graphene [57, 58, 75]. The
I2D/IG ratio was 0.36 ± 0.03 and indicates the few-
layer nature of the graphene nanosheets [77, 78].
Additionally, the ID/IG peak intensity ratio, which is
commonly used as a measure of disorder [75], was
mapped across a 30 × 30 µm region of the electrode
active area (figure 2(f)). The observed low ID/IG ratio
(0.33± 0.025) indicates that the graphene nanosheets
and EC carbonaceous residues are rich in sp2 car-
bon and have a low defect density [73, 74]. Thus,
the solution processing techniques of shear mixing,
horn tip sonication, andAJP are capable of preserving
the structural and chemical properties of graphene
nanosheets.

The AJP graphene-based devices were further
characterized using XPS to determine the functional

groups present on the surface of the electrode. XPS
revealed a predominance (90.81%) of C–C sp2 bonds,
which are represented by the peak centered at a bind-
ing energy of 283.97 eV (figure 2(g)). Additionally,
the presence of oxygen-containing moieties in the
form of carbonyl groups (C=O) were observed at
290.57 eV (9.19%). The presence of oxygen functional
groups on the surface of the graphene is beneficial
for subsequent functionalization steps, since they are
used as active sites to covalently link antibodies onto
the electrode surface via the NHS-stabilized carbod-
iimide EDC reaction as discussed below [79].

2.4. Electrochemical characterization
Next, the AJP graphene-based electrodes were elec-
trochemically characterized to assess their suitability
for biosensor applications. Cyclic voltammetry (CV)
(figure 3(a))was performed at different scan rates (10,
25, 50, 75, and 100 mV s−1). The obtained curves
presented well-defined anodic and cathodic peaks,
which were observed between −0.05 and 0.47 V
and increased linearly with the square root of the
scan rate (figure 3(b)). The voltage peak separa-
tion also shifted with the scan rate, ranging from
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223 to 533 mV, indicating limitations in the elec-
tron transfer. Such behavior is indicative of an irre-
versible system (∆Ep > 200 mV) with slow electron
transfer rate compared to mass transport [80–82].
Limitations in the electron transfer can be attributed
to the low defect density and relatively planar sur-
face [83], as corroborated by the Raman and SEM
results, respectively (figures 2(d)–(f)). The electro-
active surface area (ESA) was estimated using the
Randles–Sevcik theorem as presented in equation S1
(see supplemental information (available online at
stacks.iop.org/TDM/9/035016/mmedia)). The calcu-
lated ESA for the AJP electrodes was 9.27± 0.64mm2
corresponding to an increase of 31% compared to the
geometric area (7.07 mm2). The larger ESA may be
explained by C=O defects on graphene nanosheets,
the film roughness, and the high concentration of
exposed graphene edge sites, all of which contrib-
ute to the surface area available for electrochemical
reactions.

After confirming the electrochemical properties
of the bare electrode, EIS (figure 3(c)) and DPV
(figure 3(d)) techniques were employed to elec-
trochemically characterize the stepwise process of
functionalizing the graphene electrode surface with
SARS-CoV-2 polyclonal antibodies (Ab) via carbod-
iimide cross-linking (Methods section) and incub-
ating the resultant sensor with the analyte SARS-
CoV-2 spike RBD, as illustrated in figure 1. As
various functionalization and analyte components
bind to the electrode surface, diffusion of the redox
probe from the bulk electrolyte to the electrode sur-
face is diminished. These changes to the electrode
surface can be quantitatively tracked through EIS
and DPV by monitoring the charge transfer res-
istance (Rct) and peak current (Ipeak), respectively.
In EIS, a frequency-dependent impedance response
is obtained by applying a DC potential, relative to
the reference electrode, with a fixed-amplitude AC
component. By plotting the impedance data on a
complex plane diagram, i.e. a Nyquist plot with axes
of real vs imaginary impedance, a kinetically con-
trolled semicircular region is visualized at high fre-
quencies (low Z′, low−Z′′) [70, 84]. The diameter
of this semicircle represents Rct, and the diameter
increases as the complexity of the electrode surface
increases and diffusion rate to the surface decreases
[84]. For DPV measurements, Ipeak is obtained by
applying a linear potential sweep superimposed with
short pulses of small amplitude to the electrode and
measuring the current immediately before and after
each potential change [85, 86]. The peak current
(Ipeak) decreases as the diffusion rate of the redox
probe to the electrode surface decreases due to bound
species [40, 61, 86, 87].

While both EIS and DPV are informative electro-
chemical techniques and can be successfully applied
to detect SARS-CoV-2 [61, 88–90], EIS presented
a higher signal change compared to DPV for our

biosensors. This higher signal change is consistent
with previous literature that has found EIS to bemore
sensitive to small changes in the surface composition
compared to DPV [84, 91–93]. Hence, we focused on
using EIS for electrochemical characterization during
the subsequent biosensing experiments.

2.5. SARS-CoV-2 sensing
For sensing experiments, the AJP dipstick elec-
trodes were first functionalized using EDC/NHS
crosslinker to bind SARS-CoV-2 polyclonal anti-
body (see Methods section). SARS-CoV-2 spike RBD
detection was then evaluated using EIS (figure 4).
Sensor calibration was performed by serially incub-
ating the dipstick electrodes in increasing concen-
trations of spike RBD in artificial saliva and per-
forming EIS after each incubation (figure 4(a)). A
normalized value of the change in charge trans-
fer resistance (∆Rct) was obtained for each EIS
measurement with respect to the baseline Rct
value for the same electrode before any incuba-
tion. Finally, a calibration curve was constructed
by plotting ∆Rct against the incubation concentra-
tion (figure 4(c)). The AJP-based biosensor presen-
ted a linear sensing range from 1 to 1000 ng ml−1

(R2= 83.97%, pmodel= 0.000, plack-of-fit= 0.888), a
sensitivity of 44.51± 16.66Ω/log(ngml−1), and LOD
of 22.91± 4.72 pg ml−1.

To evaluate the stability of the AJP biosensor in
artificial saliva and assess the possibility of false posit-
ives or changes to the electrode surface that were not
due to binding events of spike RBD, a baseline cal-
ibration study was performed. In particular, the AJP
graphene biosensor was serially incubated in artificial
saliva in 30min increments, and an EISmeasurement
was performed after each period (figure 4(b)). After
150 min (five incubations) the biosensor presented a
change in Rct of approximately 15%. This change is
considerably lower than the response to target ana-
lyte. Furthermore, since the electrode would only be
incubated twice in actual tests (i.e. blank and sample),
the baseline is only expected to change by ∼5.4% in
practice (figure 4(d)).

Next, the AJP graphene biosensor was also used
to detect the entire SARS-CoV-2 spike S1 protein
(figure 5(a)). The linear sensing range for SARS-
CoV-2 spike S1 in artificial saliva was similar to
that obtained for spike RBD—i.e. 1–1000 ng ml−1

(R2 = 95.81%, pmodel = 0.000, plack-of-fit = 0.413),
with a sensitivity of 36.92± 9.31Ω/log(ng ml−1) and
LODof 110.38± 9.00 pgml−1. Initially, SARS-CoV-2
spike S1 (molecular weight (MW) ∼ 75 kDa) was
expected to generate higher sensitivity than spike
RBD (MW∼ 25 kDa), considering its highermolecu-
lar weight, which suggests that it would more effi-
ciently block the electron transfer between the elec-
trode surface and the electrolyte. However, the results
indicated a higher sensitivity and lower LOD when
only the SARS-CoV-2 spike RBD protein was used
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Figure 4. SARS-CoV-2 spike RBD detection in artificial saliva using AJP graphene sensors. (a) Representative Nyquist plots for
each spike RBD concentration added to artificial saliva. (b) Representative Nyquist plot for the baseline over time—i.e.
subsequent incubations of a functionalized electrode in artificial saliva without addition of spike RBD. (c) Calibration plot
showing the percentage change of charge transfer resistance (∆Rct) with respect to spike RBD concentration ranging from
1 ng ml−1 to 10 µg ml−1 in artificial saliva. (d) Calibration plot showing the percentage change of charge transfer resistance
(∆Rct) for the subsequent incubations in artificial saliva. Error bars represent the standard deviation calculated from three
independently biofunctionalized electrodes (n= 3).

as the antigen. Possibly, the efficacy of the antigenic
interaction between the spike protein and the anti-
bodies present on the surface of the AJP graphene
biosensor depends on the conformation of the anti-
gen protein [94, 95]. In addition, steric hindrance
promoted by the neighboring high molecular weight
spike S1 proteins could create a shielding effect on the
antibody binding sites, compromising the strength of
the antigenic interaction [23]. Therefore, the spike
RBD is more accessible to interact with the recogni-
tion agent, effectively limiting the electron transfer
and increasing the charge transfer resistance.

The selectivity and cross-reactivity of the AJP
graphene biosensor was initially assessed by expos-
ing it to Middle East respiratory syndrome (MERS)-
CoV spike S1 protein. MERS-CoV is another type
of coronavirus that also compromises the respirat-
ory system. It was first reported in Saudi Arabia in
2012 and spread to 27 countries causing 888 deaths
by July 2021 [96–98]. Unlike SARS-CoV-2, MERS-
CoV presents a low human-to-human transmission
rate, but its fatality rate is notably high (34.4%),
especially when compared to the current rate repor-
ted for SARS-CoV-2 (1%–3%) [97, 98]. The AJP

graphene biosensor presented a considerable change
in Rct when incubated with MERS-CoV, reaching a
maximum percentage change of 67.91 ± 1.17%. In
spite of the significant change in Rct compared to the
AJP graphene biosensor baseline (p = 0.001) at an
antigen concentration of 10 000 ng ml−1, the ∆Rct
for MERS-CoV spike protein was still significantly
lower than the ∆Rct generated by both SARS-CoV-2
spike RBD (p = 0.001) and SARS-CoV-2 spike S1
(p = 0.007) at the same concentration. The moder-
ate selectivity of the AJP graphene biosensor towards
MERS-CoV is not highly concerning considering the
limited number of cases outside of Saudi Arabia [99].
According to the CDC, MERS-CoV presents a negli-
gibly low risk in the US, with only two positive cases
since 2014 [100]. Moreover, according to Torrente-
Rodríguez et al [61], the spike, envelope, and mem-
brane proteins of SARS-CoV-2 share between 30%
and 40% sequence identity with those of MERS-CoV,
which implies that cross-reactivity should be expec-
ted. Another important factor is the use of poly-
clonal antibodies in functionalizing ourAJP graphene
electrodes. Polyclonal antibodies are produced by the
natural immune response of multiple B-lymphocytes

8
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Figure 5. SARS-CoV-2 spike S1 and spike RBD detection in artificial saliva and against interferents using the AJP graphene sensor.
(a) Representative Nyquist plots for each spike S1 concentration added to artificial saliva using the same concentration range
tested previously for SARS-CoV-2 spike RBD. (b) Representative Nyquist plots for each concentration of Middle East respiratory
syndrome (MERS) spike S1 added to artificial saliva. (c) Representative Nyquist plot for each concentration of influenza H1N1
hemagglutinin (HA) protein added to artificial saliva. (d) Calibration plot showing the percentage change of charge transfer
resistance (∆Rct) observed at different concentrations of each protein tested, including spike RBD. Error bars represent the
standard deviation calculated from three independently biofunctionalized electrodes (n= 3).

and target multiple epitopes of the same antigen.
Hence, polyclonal antibodies aremore prone to cross-
react with antigens that present protein similarities
[101–104]. From a different perspective, the mod-
erate sensitivity of our AJP graphene SARS-CoV-2
biosensor to MERS-CoV indicates the multi-target
capability of our sensor platform and offers an oppor-
tunity for application of these biosensors to detect
MERS-CoV.

Next, the selectivity of theAJP graphene biosensor
was further tested with Influenza H1N1 hemagglu-
tinin (HA) protein. As some symptoms of COVID-
19 and the common flu are the same, molecular test-
ing is crucial to confirm a diagnosis [105]. Following
the same sensing protocol as used for SARS-CoV-2
andMERS-CoV, negligible cross-reactivity was detec-
ted for H1N1 HA protein, presenting a maximum
change in Rct of 14.97 ± 6.98% at 10 000 ng ml−1.
The change promoted by H1N1 was not significantly
different (p= 0.918) from the baseline drift presented
by the AJP biosensor when tested with pristine artifi-
cial saliva (figure 4(d)).

Several COVID-19 sensing devices have been
reported in the literature since the beginning of

the pandemic. A comparison of the AJP graphene
immunosensor developed in this work with other
SARS-CoV-2 electrochemical biosensors is summar-
ized in table 1. The performance of the AJP graphene
immunosensor is comparable to devices that presen-
ted a considerably more complex composition and
additional fabrication steps. For example, Fabiani et al
[38] reported an electrochemical immunosensor for
detection of spike S1 and nucleocapsid protein in
saliva samples using carbon black screen printed elec-
trodes. Despite the use of MBs to pre-concentrate
the sample before the DPVmeasurements, the device
presented an LOD of 19 ng ml−1 for spike S1. The
label-free AJP graphene immunosensor developed
here presented an LOD that is two orders of mag-
nitude lower for spike S1 in artificial saliva for a
similar incubation time (∼30 min). Other example
include Yakoh et al [106], who developed an innovat-
ive paper-based graphene oxide sensor to detect spike
RBD in saliva samples, and Vadlamani et al [40],
who developed a rapid amperometric sensor func-
tionalized with TiO2 nanotubes for the detection of
spike RBD in saliva samples. Besides the extremely
low response time and the need for decoration with
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TiO2 nanotubes, their device only presented an LOD
of 17.5 ng ml−1 for spike RBD.

Despite the fast response time, high sensitiv-
ity, and user-friendly characteristics of some of
the electrochemical sensors for SARS-CoV-2, their
high cost and upscaling limitations have prevented
their widespread use in the COVID-19 pandemic
[108]. In contrast, the AJP graphene immunosensors
developed in this work are economical, with an
estimated cost of $3.39 per unit (approximate cost
breakdown: polyimide = $0.44; EDC:NHS = $0.03;
Superblock = $0.01; SARS-CoV-2 polyclonal anti-
body = $2.90; AJP graphene-based ink = $0.01).
Limitations associated to the cross-reaction with
MERS-CoV can be overcome by using monoclonal
antibodies, which are specific to a single target ana-
lyte, during the functionalization step. Based on the
overall performance of the AJP graphene immun-
osensor, this platform represents a cost-effective,
sensitive, easy-to-use, and high-throughput approach
that can bemassively deployed for COVID-19 testing.

3. Conclusions

This work reports the successful development of
an AJP graphene-based SARS-CoV-2 electrochem-
ical immunosensor. The printed dipstick electrodes
were highly conductive with a printed film thick-
ness of 225 nm and an ESA that is 31% higher than
the geometric area. The graphene electrodes were
functionalized with SARS-CoV-2 Rabbit polyclonal
antibody via EDC:NHS carbodiimide reaction, and
detection of SARS-CoV-2 spike RBD was validated
in artificial saliva without any labeling or pretreat-
ment to resemble a real-life application of rapidly
acquiring and testing a saliva sample from a patient.
In just 33 min, the AJP graphene immunosensor
could quantitatively detect SARS-CoV-2 spike pro-
teins in artificial saliva within a wide linear sens-
ing range spanning four orders of magnitude of
the antigen concentration (1–1000 ng ml−1) and an
LOD of 22.91 ± 4.72 pg ml−1 for spike RBD and
110.38 ± 9.00 pg ml−1 for spike S1. Importantly,
the AJP graphene immunosensor did not show cross-
reactivity to H1N1 HA protein while presenting a
potential application as a multi-target device when
MERS-CoV spike sensing is needed. Thus, the prin-
ted AJP graphene immunosensor not only provides
a sensitive and rapid solution for COVID-19 testing,
but also has the potential for widespread accessibil-
ity due to its fabrication using inexpensive, high-yield
graphene production and high-throughput printing
techniques. Since a test-and-trace strategy has been
widely applied to fight the pandemic, this device can
be used for on-site screening of potential COVID-19
patients, considerably increasing the number of tested
cases, which is essential for the control of COVID-
19 spread, especially in underdeveloped and devel-
oping countries. Ultimately, this device platform can

be broadly tuned for a multitude of targets such as
COVID-19 variants, foodborne pathogens, biomark-
ers, and allergens, suggesting its widespread use in
future electrochemical sensing applications.

4. Methods

4.1. Materials
Graphite flakes, EC (4 × 10−3 Pa s−1), terpineol,
EDC, NHS, ethanolamine, 2-(N-morpholino) eth-
anesulfonic acid (MES) buffer, potassium hexacy-
anoferrate (II) trihydrate, and potassium ferricy-
anide, were purchased from MilliporeSigma (Saint
Louis, MO, USA). Potassium chloride was purchased
from Fisher Scientific (Hampton, NH, USA). Super-
block™ buffer and 200-proof ethanol were purchased
from Thermo Fisher (Waltham, MA, USA). Artifi-
cial saliva was purchased from Pickering Laborat-
ories (Mountain View, CA, USA). Phosphate buffer
saline was purchased from Alfa Aesar (Tewksbury,
MA, USA). SARS-CoV-2 spike rabbit polyclonal anti-
body (Cat. #40591-T62), SARS-CoV-2 spike RBD
protein (Cat. #40592-V08H), SARS-CoV-2 spike S1
protein (Cat. #40591-V08H), MERS spike S1 protein
(Cat. #40069-V08H), and influenza H1N1 HA pro-
tein (Cat. #40006-V08H) were purchased from Sino
Biological (Sino Biological US Inc.,Wayne, PA, USA).

4.2. Graphene synthesis
First, a graphene powder was prepared according to
a previously reported procedure [74]. Briefly, graph-
ite flakes, EC, and ∼20 l of ethanol were mixed in
a weight ratio of 30:1:20 and processed for 24 h in
a Silverson 200L high-shear in-line mixer at max-
imum power. The produced slurry was centrifuged,
flocculated, washed, and dried to obtain a powder
of exfoliated graphene nanosheets stabilized with EC.
This procedure yields a standard batch of 40–50 g of
graphene/EC powder containing ∼40 wt% graphene
for redispersion in organic solvents.

4.3. Graphene ink formulation
The graphene powder was redispersed in ethanol
(10 mg ml−1) by horn tip sonication at an amplitude
of 10% for 1 h. The dispersion was filtered through
a 3.1 µm syringe filter to remove large aggregates.
Finally, to formulate an aerosol-jet-printable ink,
the graphene dispersion was mixed with terpineol
at 9:1 (v/v) ratio and then again bath sonicated for
10 min prior to printing.

4.4. AJP
The graphene ink was aerosol jet printed using an
Optomec AJ200 printer (Albuquerque, NM, USA).
During printing, the ultrasonication bath was held at
30 ◦C and the printing bed was held at 60 ◦C. The
inkwas atomized by applying current between 0.3 and
0.35 mA onto the atomizer and was deposited with
aid of nitrogen sheath flow and a nitrogen carrier flow
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at rate between 40–60 sccm and 10–30 sccm, respect-
ively. The printing speed was fixed at 5 mm s−1,
and the flow rates were tuned throughout each print-
ing session to facilitate continuous deposition of
graphene lines withwidths of 40µm.To fabricate dip-
stick electrodes, the respective dipstick pattern was
designed in AutoCAD and then printed in a single
pass with a serpentine fill that had 30 µm spacing
between adjacent lines. After printing, the devices
were heated at 350 ◦C for 30 min in air in a box fur-
nace to evaporate residual solvent. Simultaneously,
the heat treatment promoted the decomposition of
EC to form a sp2-rich carbonaceous residue that
increases the conductivity of the graphene film [44].

4.5. AFM
To obtain topographic characterization of the prin-
ted graphene films, AFM was performed using
two systems: Asylum Cypher AFM (Oxford Instru-
ments, Abingdon, UK) and Bruker Dimension Icon
AFM (Bruker, Billerica, MA). Individual graphene
nanosheets were characterized with the Cypher AFM
in tapping mode using Si cantilevers with a reson-
ance frequency of ∼320 kHz. AJP graphene films
were characterized with the Bruker Dimension Icon
AFM equipped with an OLTESPA-R3 cantilever and
resonance frequency of 70 kHz in ScanAssyst tap-
ping mode. Wide window scans (90 µm) were
acquired to characterize film thickness across a
scratch imposed in the film. Scanning parameters
were fixed at 1024 pixels/line and a 0.8 Hz scan rate.
AFM scans were graphically processed with the use
of Gwyddion software equipped with tools like scars
removal, denoising, and background flattening. The
height profile and surface statistical analysis tools in
Gwyddion were also used to evaluate the roughness
and thickness of the printed graphene films. To obtain
statistical information for the graphene size distri-
bution, an in-house MATLAB (MathWorks, Natick,
MA,USA) image processing algorithmwas used. This
algorithm identifies the edges of nanosheets and cre-
ates a mask that individually labels each nanosheet.
The mask can be adjusted by the user. Then the
algorithm calculates the mean thickness, maximum
length, area, and volume of each nanosheet. These
data were used to create the histograms shown in
figures S1(c) and (d).

4.6. Functionalization
The working area of the AJP graphene-based dip-
stick electrodes was functionalized using 0.4 M EDC
and 0.1 M NHS prepared in 0.1 M MES buffer
(pH 6.0) for 1 h at room temperature, as previously
described by [57]. Then, the AJP electrodes were
incubated overnight with SARS-CoV-2 spike rabbit
polyclonal antibody solution (100 µg ml−1) in sterile
1× phosphate buffered saline (PBS). After the incub-
ation, the surface of the electrode was blocked with
Superblock™ buffer for 1 h at room temperature to

eliminate any non-specific binding of SARS-CoV-2
protein. The functionalized dipstick electrodes were
stored in 1× PBS at 4 ◦C until further testing.

4.7. SEM
The morphology of the AJP graphene-based elec-
trodes was evaluated using SEM. SEM images of the
electrodes were acquired using a FEI Quanta 250 FE-
SEM(ThermoFisher Scientific, OR,USA) at an accel-
erating potential of 10 kV, ∼10 mm of working dis-
tance, and spot size of 3.0. Prior to imaging, the
samples were coated with a 2 nm layer of Iridium
using a turbo pump sputter coater. Optical images
were obtained using a Zeiss Axio Zoom v16 (Carl
Zeiss, Oberkochen, Germany) at magnifications of
6.5× and 25×.

4.8. Raman spectroscopy
Raman spectra were obtained using a Horiba XploRa
PLUS microscope (Horiba, Kyoto, Japan) with a
532 nm laser and 1800 mm−1 grating. When meas-
uring graphene samples deposited on polyimide, the
FLAT correction was applied to remove the substrate
background signal. Each spectrum was obtained with
10% laser power and averaged over 60 accumulations,
eachwith an acquisition time of 1 s. To create a Raman
map, spectra were acquired from a 30 µm × 30 µm
region with 25 steps in each direction (1.25 µm
between each point). To extract an accurate D/G peak
intensity ratio, the D and G peaks were fit to Lorent-
zian curves.

4.9. XPS
Graphene films were characterized after thermal
curing using XPS performed on a Thermo Sci-
entific ESCALAB 250Xi (Thermo Fisher Scientific,
Waltham, MA) that has an Al Kα radiation source.
Spectra for the C1s peak (279.2–298.2 eV with step
size of 0.1 eV) was obtained in at least three spots per
sample with a spot size of 500 µm. Each XPS spec-
trum was fit in the Thermo Avantage software using
the Knowledge Base graphene data as a guiding ref-
erence. Several fit variations were tested before con-
cluding that the C1s spectrum was best fit with only
two peaks representing the asymmetric C–C sp2 sig-
nal and the C=O signal.

4.10. Electrochemical measurement
To verify the suitability of the AJP graphene electrode
as a platform for electrochemical measurements, CV,
DPV, and EIS were performed. The electrochem-
ical measurements were carried out using a three-
electrode set up with an Ag/AgCl reference electrode
and a counter Pt wire on a PalmSens4 potentiostat
(PalmSens, Utrecht, Netherlands). All measurements
were carried out in 5 mM Fe(CN)63−/Fe(CN)64−

ferri/ferrocyanide (1:1) redox probe with 0.1 M KCl
in 1× PBS. CV measurements were performed in a
sweep range from −0.4 to 0.6 V with scan rates of
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10, 25, 50, 75, and 100 mV. DPV measurements were
performed in a potential range from −0.4 to 0.6 V,
with 0.2 s of pulse width, 100 mV of pulse amp-
litude, and 4 mV incremental potential at a scan rate
of 10 mV s−1.

EIS measurements were carried out using a fre-
quency range from 0.1 Hz to 10 kHz with an AC
voltage amplitude of 5 mV and 0.2 V DC off-
set. The Nyquist plots were used to determine the
charge transfer resistance (Rct), series resistance (Rs),
double-layer capacitance (Cdl), and Warburg imped-
ance (Zw) by fitting the data sets to the Randles-
Ershler circuit model using the PSTrace 5.8 software.

4.11. SARS-CoV-2 sensing in artificial saliva
Sensing experiments were carried out to demonstrate
the efficiency of theAJP graphene-based biosensor for
the detection of SARS-CoV-2 spike protein. Stand-
ard solutions containing SARS-CoV-2 spike S1 RBD
and spike S1 were prepared in artificial saliva in con-
centrations ranging from 1 ng ml−1 to 10 µg ml−1

(40 pM–400 nM). AJP graphene-based electrodes
were incubated with 15 µl of each standard solu-
tion for 30 min to allow the interaction between the
SARS-CoV-2 spike S1 RBD protein and the antibody
immobilized on the surface of the electrode. Between
each measurement, the electrodes were thrice washed
with 100 µl of 1× PBS to remove the residual fer-
ro/ferricyanide. SARS-CoV-2 spike S1 RBD calibra-
tion plots were obtained by measuring the diameter
of the semicircle obtained in the Nyquist plot, which
corresponds to Rct for each successive concentra-
tion using the same EIS parameters as described in
section 4.10. To demonstrate the stability of the AJP
graphene-based biosensor under successive incuba-
tions with artificial saliva over time, EIS measure-
ments were performed under the same conditions
described above without the presence of SARS-CoV-2
spike RBD protein.

4.12. Selectivity test
Considering the possible presence of interferent
molecules in a saliva sample, the selectivity of this
biosensor towards SARS-CoV-2 spike RBD and spike
S1 was evaluated. MERS-CoV (spike S1) and influ-
enza H1N1 (HA) proteins were selected as potential
interferent molecules, considering similarities in pro-
tein structure and symptoms to SARS-CoV-2. The
AJP graphene-based biosensors were incubated with
different concentrations, ranging from 1 ng ml−1

to 10 µg ml−1, of each protein in artificial saliva
under the same conditions of the sensing experiments
(section 4.5), and the change in Rct generated by each
protein during EIS measurements was evaluated.

4.13. Data analysis
A completely randomized design was used in this
study with at least three replicates, and the results
were reported as mean ± standard deviation. Data

analysis was performed using JMP Pro statistical soft-
ware (version 15, SAS, Cary, NC). Qualitative com-
parisons were carried out using one-way ANOVA and
significantly different means (p < 0.05) were sep-
arated using Tukey’s Honest Significant Differences
test. Regression analysis with confidence level of 95%
was performed to determine the linear sensing range
and the functional correspondence among quantitat-
ive variables. Limits of detection for the biosensors
were calculated using the 3σ method [109].
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