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ABSTRACT: We report three new rhenium chalcohalide cluster compounds,
Re6S8I2, Re6S4Se4I2, and Re6Se8I2. The materials crystallize in the three-
dimensional (3D) Re6S8Cl2 structure type with the space group P21/n. They
can be synthesized with sufficiently large iodine gas pressures or using alkali metal
iodide salt fluxes with excess iodine. All three compounds are thermally stable
under vacuum up to 1000 °C, and density functional theory (DFT) calculation
results predict them to be direct-gap semiconductors. The measured work
functions, which are the valence band maxima with respect to vacuum, and the
measured band gaps are 5.49(5) and 1.69(5) eV, 5.24(5) and 1.54(5) eV, and
5.03(5) and 1.44(5) eV for Re6S8I2, Re6S4Se4I2, and Re6Se8I2, respectively. They exhibit red to near-IR photoluminescence ranging
from 1.38 eV (898 nm) to 1.93 eV (642 nm) centered at 1.67 eV (742 nm) for Re6S8I2 and ranging from 1.35 eV (918 nm) to 1.70
eV (726 nm) centered at 1.49 eV (832 nm) for Re6Se8I2 with average lifetimes of 5.15 and 1.83 ns, respectively.

■ INTRODUCTION

Rhenium chalcohalides are a family of optically active
multianionic hexanuclear rhenium cluster compounds that
were initially discovered with the report of Re6Se4Cl10 and
Re6Q4Br10 (Q = Se, Te) in 1971.1,2 The discovery of
KRe6Se5Cl9

3 in 1983 was found to be the first soluble rhenium
chalcohalide in 1987,4 which was later followed by the
discovery of compounds such as Cs5Re6S8Cl7 that contain
isolated [Re6Q8X6]

4− (Q = S, Se; X = Cl, Br, I) clusters.5,6

These soluble sources of [Re6Q8X6]
4− clusters have enabled a

wide variety of solution phase chemistry4−6 including ligand-
exchange reactions7 as well as the formation of dimers,8

dendrimers,9,10 supramolecular arrays,11,12 and extended
frameworks with these clusters.13−19 The development of
this solution phase chemistry combined with their physical
properties that include strong red to near-IR photolumines-
cence20−22 and magnetism23,24 has led to an interest in this
family for a variety of potential applications including use in
therapeutic agents for cancer treatments,25−29 use as a
catalyst,30,31 as well as interest as functionalized two-dimen-
sional (2D) semiconductors that can undergo reversible
electrochemical lithium-ion insertion.32−34 Gabriel et al.
further expanded on the chemistry and physical properties of
this family of materials.35

The structure and dimensionality of rhenium chalcohalides
can be well understood by examining the stepwise dimensional
reduction exhibited in the Cs/Re/S/Br system starting with
Re6S8Br2, which has three-dimensional (3D) connectivity and
is isostructural to Re6S8Cl2.

36,37 The Re6S8Br2 structure derives
from [Re6S8]

2+ cluster cores that pack like a body-centered

cubic lattice and covalently link to six neighboring clusters via
two different types of bonding schemes. The first bond type is
a pair of intercluster Re−S bonds. Each cluster exhibits this
type of bonding to two adjacent clusters extending in one
crystallographic dimension. The second bond type consists of
bridging Re−Br−Re bonds. Each cluster exhibits this type of
bonding to four different adjacent clusters, thereby connecting
the clusters in three dimensions. The covalent bonds providing
this connectivity to six neighboring clusters can be systemati-
cally broken through the controlled addition of CsBr
equivalents, with the added halide atom terminating the
clusters and the Cs atom charge balancing the structure and
filling space. The addition of one CsBr equivalent to Re6S8Br2
breaks two of the bridging Re−Br−Re bonds to yield the two-
dimensional (2D) CsRe6S8Br3.

38 A second equivalent breaks
the remaining two bridging halide bonds resulting in one-
dimensional (1D) cluster chains connected exclusively by Re−
S bonds in Cs2Re6S8Br4.

39 With a total of four salt equivalents,
the pair of intercluster Re−S bonds are also broken and the
cluster is left fully terminated by Br atoms yielding the zero-
dimensional (0D) Cs4Re6S8Br6

39 structure. It is this 0D
structure, which has negatively charged isolated clusters, that
enables the solubility of these 0D structures in polar solvents
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such as N,N-dimethylformamide.5,6,40−42 The only structurally
distinct iso-stoichiometric chalcohalide to Re6S8Cl2 is
Re6Se8Cl2, which is notable for having a 2D-layered
connectivity with the clusters connected exclusively by Re−
Se bonds with halide atoms terminating the layers of clusters
instead.36,37,43,44 Re6Se8Cl2 does ultimately undergo a similar
dimensional reduction with the addition of CsCl equiva-
lents.5,44

Herein, we describe the structural, thermal, optical, and
electronic properties of the rhenium chalcoiodides Re6S8I2,
Re6Se8I2, and the solid solution Re6S4Se4I2. Re6S8I2 and
Re6Se8I2 are the previously undiscovered parent structures
for rhenium chalcoiodides. All three crystallize in the
monoclinic space group P21/n with the 3D Re6S8Cl2 structure
type rather than the 2D Re6Se8Cl2 structure type.44,45

Synthesis of these materials requires either large iodine
pressures or the use of an alkali metal iodide salt flux to
overcome the lack of reactivity of gaseous iodine. The
compounds are semiconductors and exhibit red to near-IR
photoluminescence (PL) with PL lifetimes on the nanosecond
time scale, consistent with a direct-gap character.

■ EXPERIMENTAL METHODS
Reagents. NaI (99.8%, Alfa Aesar, Ward Hill, MA), Re (99.997%,

ProChem Inc., Alpharetta, GA), S (99.99%, 5N Plus Inc., Saint-
Laurent, QC, Canada), Se (99.99%, American Elements, Los Angeles,
CA), and I2 (99.8%, Sigma-Aldrich, St. Louis, MO) were used as
purchased without additional purification.
ReQ2 Synthesis. ReQ2 (Q = S, Se) was synthesized as a precursor.

For both precursors, Re and Q were mechanically mixed in an agate
mortar and pestle stoichiometrically in a 1:2 stoichiometry. The
amounts used to prepare ReS2 were Re (0.7438 g, 3.995 mmol) and S
(0.2562 g, 7.989 mmol). The amounts used to prepare ReSe2 were Re
(0.7438 g, 3.995 mmol) and S (0.2562 g, 7.989 mmol). After mixing
the reagents, a fused silica tube with an outer diameter of 10 mm and
an inner diameter of 8 mm was charged with the respective mixtures
while lined with aluminum foil. This prevents Re powder from
sticking to the glass, which can prevent the tube from flame sealing
properly. The tube was then evacuated to a pressure of 4.0 × 10−3

mbar and flame-sealed with a methane and oxygen torch. The tube
was then placed in a tube furnace and heated to 425 °C in 5 h,
dwelled for 12 h, then ramped to 850 °C in 5 h, dwelled for 24 h, and
then the furnace was turned off and allowed to cool to room
temperature. Black phase pure polycrystalline powders were obtained
for both precursors.
Re6Q8I2 Flux Crystal Growth. Single crystals of Re6Q8I2 (Q = S,

Se) were synthesized in a NaI flux. Re6S8I2 was synthesized using NaI
(0.4381 g, 2.923 mmol), Re (0.0726 g, 0.390 mmol), ReS2 (0.1951 g,
0.7794 mmol), and I2 (0.2473 g, 0.9742 mmol) in a 15:2:4:5 molar
ratio of NaI/Re/ReS2/I2. Re6Se8I2 was synthesized using NaI (0.3969
g, 2.648 mmol), Re (0.0657 g, 0.353 mmol), ReSe2 (0.2430 g, 0.7061
mmol), and I2 (0.2016 g, 0.7943 mmol) in a 15:2:4:5 molar ratio of
NaI/Re/ReSe2/I2. The synthesis of Re6S4Se4I2 as the target
stoichiometry was done using NaI (0.3969 g, 2.648 mmol), Re
(0.0657 g, 0.353 mmol), ReS2 (0.2430 g, 0.7061 mmol), ReSe2
(0.2430 g, 0.7061 mmol), and I2 (0.2016 g, 0.7943 mmol) in a
15:2:2:2:5 molar ratio of NaI/Re/ReS2/ReSe2/I2. These reagents
were loaded in a fused silica tube with a 15 mm outer diameter and a
12 mm inner diameter in air. The tubes were lined with aluminum foil
while charging to prevent Re powder from adhering to the glass. The
tube was then placed under vacuum until a pressure of 1.0 × 10−2

mbar was reached. The tube was then cooled with liquid nitrogen for
30 s to condense I2 and then flame-sealed at 4.0 × 10−3 mbar with an
inner tube length of 10 cm after sealing. To prevent vapor transport of
ReQ2, the sealed tube was positioned in a one-zone tube furnace such
that the reagents were adjacent to the thermocouple and the top of
the tube was positioned just below the center of the furnace, which is

the hottest region of the tube furnace. Improper placement of the
tube resulted in significant transport of ReQ2 out of the salt flux. The
furnace was then heated to 850 °C at a rate of 100 °C an hour, held
there for 7 days, and then the furnace was turned off and allowed to
cool to room temperature. The tube was then opened in a fumehood
due to the iodine, and then the product was then placed in methanol.
The methanol was then decanted, and the product was washed until
the methanol stopped turning purple due to dissolving iodine. The
remaining products were needles with surfaces that look dirty with
small black powder, which was unreacted Re and ReQ2. To remove
the remaining impurities, the product was placed in methanol and
sonicated for 5 min and the liquid and anything suspended were
decanted. This was repeated for four cycles until the product was
single phase by powder X-ray diffraction (PXRD). Re6S8I2 still had a
residual ReS2 impurity that was unable to be completely removed.
Nitrogen gas was then blown over the remaining crystals to dry them.
Crystals that were black needles up to 1 mm long were obtained.

Re6Q8I2 Synthesis under Iodine Pressure. Re6Q8I2 (Q = S, Se)
was synthesized in a pressurized iodine atmosphere. Re6S8I2 was
synthesized using Re (0.0726 g, 0.390 mmol) and ReS2 (0.1951 g,
0.7794 mmol), mechanically mixed in a mortar and pestle in a 1:2 Re/
ReS2 molar ratio. Re6Se8I2 was synthesized using Re (0.0657 g, 0.353
mmol) and ReSe2 (0.2430 g, 0.7061 mmol) in a 1:2 Re/ReSe2 molar
ratio. The amount of I2 used was varied for both materials to control
the maximum iodine pressure achieved for each reaction. For the 30
atm reactions, 0.1473 g (0.5804 mmol I2) was used. For the 45 atm
reactions, 0.2208 g (0.8700 mmol I2) was used. For the 60 atm
reactions, 0.2941 g (1.159 mmol I2) was used. For the 75 atm
reactions, 0.3700 g (1.458 mmol I2) was used. The tubes were lined
with aluminum foil while charging to prevent Re powder from
adhering to the glass. Fused silica tubes with an outer diameter of 10
mm and an inner diameter of 6 mm were used and then sealed with
an inner length of 10 cm and an outer length of 11.5 cm for a
consistent volume for each reaction. The tube was then placed under
vacuum until a pressure of 1.0 × 10−2 mbar was reached. The tube
was then cooled with liquid nitrogen for 30 s to condense I2 and then
flame-sealed at 4.0 × 10−3 mbar. For the 45, 60, and 75 atm reactions,
the sealed tube was then placed in a second fused silica tube along
with 0.2060 g (0.8116 mol) of I2 for the 45 and 60 atm reactions or
0.3169 g (1.249 mmol) of I2. The second tube had an outer diameter
of 15 mm, an inner diameter of 12 mm, and an internal length of 16
cm and flame-sealed with an identical liquid nitrogen process to
condense the iodine for an estimated maximum pressure of either 14
or 23 atm in the second outer tube. To prevent vapor transport of
ReQ2, the reaction tube was positioned in a one-zone tube furnace
such that the reagents were adjacent to the thermocouple and the top
of the reaction tube was positioned just below the center of the
furnace, which is the hottest region of the furnace. The furnace was
then heated to 850 °C at a rate of 100 °C an hour, held there for 4
days, and then the furnace was turned off and allowed to cool to room
temperature. To calculate an estimated maximum pressure of iodine
in each reaction vessel, a few assumptions were made in an effort to
ensure that the tubes did not explode upon heating a gas in a closed
container and to estimate how this parameter was varied. These
assumptions were that the iodine was the gas in the container, that the
pressure could be estimated by the ideal gas law, that the internal
volume could be approximated by a cylinder, that at 850 °C, 60% of I2
molecules dissociate into two iodine molecules based on the work of
DeVries and Rodebush,46 and that the volume occupied by the Re
and ReQ2 was negligible and could be ignored. To increase the range
of accessible pressures, the second tube was pressurized using I2 to
achieve a larger external pressure. The pressure in the outer tube was
then estimated with the same assumptions along with a volume
subtraction for the reaction vessel based on the outer diameter instead
of the inner diameter.

Single-Crystal X-ray Diffraction. Intensity data of black needle-
shaped single crystals grown from the flux method of Re6S8I2,
Re6S4Se4I2, and Re6Se8I2 were collected at 293 K. Suitable single
crystals with dimensions of 0.009 × 0.008 × 0.023 mm3, 0.006 ×
0.006 × 0.011 mm3, and 0.011 × 0.012 × 0.035 mm3, respectively,
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were mounted on a glass fiber with superglue on a STOE StadiVari
diffractometer equipped with an AXO Auxilia Microfocus Ag Kα (λ =
0.56083 Å)-sealed X-ray source and a Dectris Pilatus3 R CdTe 300K
Hybrid Photon Counting detector. Data reduction was performed
with the STOE X-Area version 1.90 software package using a
numerical absorption correction using STOE X-Red version 1.65.2
and STOE X-Shape version 2.21 followed by scaling and outlier
rejection with the STOE LANA version 1.83.8.47 The structure was
solved with the ShelXT48 structure solution program using the
intrinsic phasing solution method and using Olex249 as the graphical
interface. The model was refined with ShelXL50 using least-squares
minimization. The crystallographic information can be found in
Tables 1−4 and S1−S9.
Photoluminescence and Time-Resolved Photolumines-

cence (trPL). Spectroscopic measurements were performed using a
Ti:sapphire amplifier with a 2 kHz repetition rate and a 35 fs pulse
width. Samples were excited using 400 nm pump pulses generated via
a frequency-doubled 800 nm output produced using a BBO crystal. A
single-photon-sensitive streak camera with a 0.15 m spectrograph was
used to measure time-resolved photoluminescence.
Density Functional Theory (DFT) Calculations. All density

functional theory (DFT)51,52 calculations were carried out using the
Vienna ab initio simulation package (VASP)53,54 with the projector-
augmented wave (PAW)55 method. The Perdew−Burke−Ernzerhof
(PBE)56 generalized gradient approximation (GGA) was chosen as
the exchange−correlation functional. The plane-wave cutoff energy
was set to 520 eV, and the structures were fully relaxed until the total
energy converges to 10−8 eV and the force on each atom is less than
0.001 eV/Å. Γ-Centered k-point meshes were constructed with at
least 8000 k-points per reciprocal atom (KPPRA). Phonon
calculations were performed with the 2 × 2 × 2 supercell using the

PHONOPY package.57 The thermodynamic stabilities of Re6Q8I2
compounds were evaluated using the convex hull method58

implemented in the Open Quantum Materials Database
(OQMD).59,60

■ RESULTS AND DISCUSSION
Crystal Structure. All three Re6Q8I2 (Q = S, Se)

compounds are isostructural and crystallize in the 3D
Re6S8Cl2 structure type37 with the space group P21/n shown
in Figure 1. Each cluster contains six rhenium atoms in the +3
oxidation state whose coordination to each other forms an
octahedron where each Re atom occupies a corner. The eight

Table 1. Crystal Data and Structure Refinement at 293(2) Ka

empirical formula Re6S8I2 Re6S4Se4I2 Re6Se8I2

formula weight 1627.48 1815.08 2002.68
temperature (K) 293(2) 293(2) 293(2)
wavelength (Å) 0.56083 0.56083 0.56083
crystal system monoclinic monoclinic monoclinic
space group P21/n P21/n P21/n
unit cell dimensions a = 6.3649(13) Å a = 6.4555(13) Å a = 6.5735(13) Å

b = 11.607(2) Å b = 11.848(2) Å b = 12.029(2) Å
c = 10.177(2) Å c = 10.308(2) Å c = 10.402(2) Å
α = 90° α = 90° α = 90°
β = 98.77(3)° β = 99.20(3)° β = 99.63(3)°
γ = 90° γ = 90° γ = 90°

volume (Å3) 743.0(3) 778.3(3) 810.9(3)
Z 2 2 2
density (calculated) (g/cm3) 7.274 7.746 8.202
absorption coefficient (mm−1) 28.940 32.310 35.501
F(000) 1368 1512 1656
crystal size (mm3) 0.023 × 0.009 × 0.008 0.011 × 0.006 × 0.006 0.035 × 0.012 × 0.011
θ range for data collection (deg) 2.114−27.998 2.713−26.495 2.672−26.499
index ranges −10 ≤ h ≤ 10 −9 ≤ h ≤ 10 −9 ≤ h ≤ 10

−19 ≤ k ≤ 18 −18 ≤ k ≤ 18 −19 ≤ k ≤ 18
−17 ≤ l ≤ 16 −16 ≤ l ≤ 16 −16 ≤ l ≤ 16

reflections collected 10 313 8995 9869
independent reflections 3639 [Rint = 0.0346] 3264 [Rint = 0.0477] 3400 [Rint = 0.0437]
completeness to θ = 19.664° 99.4% 99.6% 98.7%
refinement method full-matrix least-squares on F2 full-matrix least-squares on F2 full-matrix least-squares on F2

data/restraints/parameters 3639/0/73 3264/1/77 3400/0/73
goodness-of-fit 1.091 1.031 1.101
final R indices [I > 2σ(I)] Robs = 0.0420, wRobs = 0.0977 Robs = 0.0478, wRobs = 0.1034 Robs = 0.0458, wRobs = 0.0961
R indices [all data] Rall = 0.0563, wRall = 0.1033 Rall = 0.0789, wRall = 0.1149 Rall = 0.0802, wRall = 0.1043
largest diff. peak and hole 3.191 and −3.672 e·Å−3 3.393 and −2.918 e·Å−3 4.285 and −4.033 e·Å−3

aR = ∑||Fo| − |Fc||/∑|Fo|, wR = ∑[w(|Fo|
2 − |Fc|

2)2]/∑[w(|Fo|
4)]1/2 and w =1/[σ2(Fo

2) + (0.1135P)2], where P = (Fo
2 + 2Fc

2)/3.

Table 2. Atomic Coordinates (×104) and Equivalent
Isotropic Displacement Parameters (Å2 × 103) for Re6S8I2
at 293(2) K with Estimated Standard Deviations in
Parentheses

label x y z occupancy Ueq
a

Re(1) 2485(1) 5269(1) 5607(1) 1 15(1)
Re(2) 5872(1) 6486(1) 5452(1) 1 15(1)
Re(3) 6177(1) 4476(1) 6657(1) 1 15(1)
S(1) 9183(4) 5701(2) 6525(3) 1 18(1)
S(2) 2398(4) 7085(2) 4481(3) 1 19(1)
S(3) 4543(4) 6121(2) 7503(3) 1 18(1)
S(4) 2957(4) 3433(2) 6687(3) 1 18(1)
I(1) 7863(2) 3773(1) 9194(1) 1 24(1)

aUeq is defined as one-third of the trace of the orthogonalized Uij
tensor.
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faces of the octahedra are capped by a chalcogenide atom
forming a [Re6Q8]

2+ cluster core. The cluster cores pack in a
body-centered cubic-type arrangement but are only covalently
bonded to six of the eight nearest clusters. The two types of
bridging interactions are Re−I−Re bonding that four rhenium
atoms per cluster participate in and Re−Q bonding that the
other two rhenium atoms participate in. The Re−Re bond
lengths in the cluster core are similar in length, with the
shortest bond lengths of 2.5880(9), 2.6014(10), and 2.6118(9)
Å in Re6S8I2, Re6S4Se4I2, and Re6Se8I2, respectively. These Re−
Re bond lengths are all shorter than the 2.7476(17) Å bond
observed in rhenium metal,61 longer than the 2.46 Å found in

Re3I9,
62 which has trinuclear 3+ rhenium clusters, and slightly

longer than the 2.5803(8) Å observed in Re6S8Cl2.
37

Each face of the rhenium octahedra is capped by a
chalcogenide atom that bonds to three of the rhenium
atoms, which is a μ3-type interaction. For six of the eight
chalcogenide atoms, this face capping μ3-type interaction is the
only bonding interaction they participate in. The Re−Q bond
lengths for this interaction are similar, with the shortest bond
lengths of 2.375(3), 2.464(2), and 2.4998(16) Å in Re6S8I2,

Table 3. Atomic Coordinates (×104) and Equivalent
Isotropic Displacement Parameters (Å2 × 103) for
Re6S4Se4I2 at 293(2) K with Estimated Standard Deviations
in Parentheses

label x y z occupancy Ueq
a

Re(1) 2514(1) 5245(1) 5610(1) 1 18(1)
Re(2) 5872(1) 6456(1) 5491(1) 1 18(1)
Re(3) 6194(1) 4448(1) 6629(1) 1 18(1)
S(1) 9252(3) 5702(2) 6611(2) 0.536(3) 28(1)
Se(1) 9252(3) 5702(2) 6611(2) 0.464(3) 28(1)
S(2) 2335(3) 7129(2) 4541(2) 0.509(3) 23(1)
Se(2) 2335(3) 7129(2) 4541(2) 0.491(3) 23(1)
S(3) 4586(3) 6070(2) 7601(2) 0.518(3) 23(1)
Se(3) 4586(3) 6070(2) 7601(2) 0.482(3) 23(1)
S(4) 2950(3) 3369(2) 6697(2) 0.437(3) 25(1)
Se(4) 2950(3) 3369(2) 6697(2) 0.563(3) 25(1)
I(1) 7929(2) 3712(1) 9118(1) 1 29(1)

aUeq is defined as one-third of the trace of the orthogonalized Uij
tensor.

Table 4. Atomic Coordinates (×104) and Equivalent
Isotropic Displacement Parameters (Å2 × 103) for Re6Se8I2
at 293(2) K with Estimated Standard Deviations in
Parentheses

label x y z occupancy Ueq
a

Re(1) 2551(1) 5226(1) 5608(1) 1 7(1)
Re(2) 5866(1) 6435(1) 5518(1) 1 7(1)
Re(3) 6201(1) 4427(1) 6614(1) 1 7(1)
Se(1) 9286(2) 5675(2) 6628(2) 1 9(1)
Se(2) 2333(2) 7120(2) 4580(2) 1 11(1)
Se(3) 4616(2) 6028(2) 7637(2) 1 10(1)
Se(4) 2969(2) 3343(2) 6660(2) 1 10(1)
I(1) 7038(2) 8664(1) 5930(1) 1 17(1)

aUeq is defined as one-third of the trace of the orthogonalized Uij
tensor.

Figure 1. Crystal structure of Re6Q8I2 looking down the a-axis on the
left and down the b-axis on the right.

Figure 2. PXRD patterns showing reaction progression as a function
of the estimated maximum iodine pressure for Re6S8I2 at (A) ∼30
atm, (B) ∼45 atm, (C) ∼75 atm, and (D) Re6Se8I2 at ∼60 atm. At
∼75 atm for Re6S8I2 and ∼60 atm for Re6Se8I2, the reaction is nearly
complete with a residual ReQ2 peak at around 14° 2θ.

Figure 3. (A) Optical absorption spectra, (B) photoemission yield
spectroscopy in air where the baseline and fit intercept signify the
energy position of the valence band maxima, (C) photoluminescence
spectra produced using a 400 nm excitation at room temperature, and
(D) time-resolved photoluminescence dynamics measured at the
emission maxima shown in (C) at room temperature.
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Re6S4Se4I2, and Re6Se8I2, respectively. These bond lengths are
reasonable when compared with the shortest Re−Q lengths
seen in ReQ2, 2.331(7) Å for Re−S63 and 2.3818(3) Å for Re−
Se63 and those seen in Re6S8Cl2 with a Re−S bond length of
2.374(3) Å.37 The remaining two chalcogenide atoms are on
opposite sides of the cluster, and each participates in an
intercluster Re−Q bridging bond in addition to the three Re−
Q bonds that cap one face of the rhenium octahedra adopting
a μ4 type. Of these four Re−Q bonds, two of the bonds are
about 0.1 Å shorter than the other two with bond lengths. In
Re6S8I2, the two shorter bond lengths are 2.400(3) and
2.404(3) Å compared to 2.478(3) and 2.530(3) Å for the two
longer bonds. The two shorter bonds are to two rhenium
atoms, which participate in Re−I−Re bridging μ2-type
interactions. The longest bond is to the third rhenium atom
on the same cluster, which has a bridging Re−S bond, while
the bridging Re−S bond to the rhenium on the adjacent cluster
has the second-longest bond length of 2.478(3) Å. This trend
is observed in both Re6S4Se4I2 and Re6Se8I2 as well as in
Re6S8Cl2, in which the sulfur with four Re−S bonds has two
2.398(4) Å bonds, a longer 2.536(3) Å bond, and a 2.480(4) Å
bridging bond.37

The four rhenium atoms that do not participate in bridging
Re−Q bonds instead each have bridging Re−I−Re μ2-type
interactions. The Re−I bond lengths on either side of a given
iodine atom are nearly identical, with the shortest lengths of
2.7639(11), 2.7717(13), and 2.7784(13) Å for Re6S8I2,
Re6S4Se4I2, and Re6Se8I2, respectively. This is very similar to
the Re−I bond length in ReI3 for the μ2 iodine atoms of 2.743
(5) Å as opposed to the longer terminal Re−I bond length of
2.947 Å in ReI3.

62 This is also longer than the Re−Cl−Re
bonds observed in Re6S8Cl2 of 2.444(4) and 2.468(4) Å.37

These bridging interactions connect the cluster cores in the
(1̅01) plane, which when combined with the bridging Re−Q
interactions results in the 3D connectivity of the clusters.
The chemical composition for all three materials was

corroborated using energy-dispersive spectroscopy (EDS) in
a scanning electron microscope (SEM) shown in the
Supporting Information. For the 1:1 sulfur-to-selenium solid
solution, the ratio of the chalcogenides was examined with
both EDS and through the crystallographic refinement. Both
found the crystal to be slightly sulfur-rich, with the EDS giving
elemental ratios of Re6.00S4.55Se3.99I2.13 while freely refining all
of the chalcogenide sites as fully occupied mixed sites gave a

composition of Re6S4.13Se3.87I2. Since the deviation from 1:1 is
not statistically significant for qualitative EDS, the structure
refinement value was nearly 1:1, and the material was prepared
from precursors with a 1:1 sulfur-to-selenium stoichiometry,
the total occupancy of the chalcogenides was then fixed to a
1:1 ratio for the final structure refinement. There are four
different chalcogenide sites in the asymmetric unit of the
structure, and the occupancy of the two chalcogenides in each
of the four sites was allowed to freely refine. One of the four
sites corresponds to the chalcogenide that bridges cluster units.
This site was found to have a mild preference for sulfur with a
53.6(3)% sulfur occupation to 46.4(3)% selenium occupation.
The three other sites are the nonbridging chalcogenide atoms
with occupancies of 50.9(3)% S/49.1(3)% Se, 51.8(3)% S/
48.2(3)% Se, and 43.7(3)% S/56.3(3)% Se.

Synthesis and Thermal Characterization. The synthesis
of pure Re6Q8I2 can be challenging and requires careful
consideration due to the limited reactivity of gaseous iodine. A
stoichiometric combination reaction of either the elements or
of Re, ReQ2, and I2 at 850 °C is unable to form the target
compounds. Two different approaches were used to overcome
this challenge: large iodine pressures and alkali metal iodide
fluxes. The use of large iodine pressures requires careful
control of the reaction conditions to prevent the fused silica
tube from exploding due to internal pressure. To prevent the
sealed tube from breaking (observed for the estimated
pressures of 60 and 75 atm), it was placed inside a second
larger silica tube along with additional iodine to reduce the
pressure differential inside the reaction vessel and outside the
reaction depicted in the Supporting Information. A full
description of the reaction parameters and the method used
to estimate the pressure inside the reaction vessel can be found
in the Experimental Methods section. How far the reaction
could proceed for identical heating profiles was determined as
a function of the estimated maximum pressure by PXRD of the
material. As shown in the X-ray diffraction pattern in Figure 2,
the Re6Q8I2 peak at 11.61° 2θ can be observed for the 30 atm
reaction as a minority phase and becomes the dominant peak
in the pattern in the 45 atm reaction, while the relative
intensity of the ReS2 Bragg peak at 14.59° (or the ReSe2 at
13.86°) 2θ63 has substantially dropped. For the 75 atm Re6S8I2
reaction and the 60 atm Re6Se8I2 shown in Figure 2C,D, the
reaction has nearly reached completion, with the ReQ2 peak
having almost completely disappeared. We conclude that the

Figure 4. Calculated electronic structure and partial density of states (PDOS) for (A) Re6S8I2 and (B) Re6Se8I2.
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selenide reaction requires less iodine pressure to progress than
the sulfide as evidenced by this difference in the required
pressure to reach near completion. The excess iodine can be
removed from the product in a variety of ways including

methanol washes, using a gentle flame while the tube is still
sealed to transport the iodine to the other end of the tube,
gently heating the product on a hot plate or even allowing the
product to sit in a fumehood for several hours and returning to
the product later. It is strongly recommended that the tube is
opened in a fumehood upon completion to prevent irritation
from the iodine.
The synthesis of Re6Q8I2 crystals up to 1 mm long was

achieved via sodium iodide fluxes. It is important to note when
using this method that the selection of an alkali metal that is
too large will result in a dimensionally reduced cluster. Sodium
was found to be sufficiently small to provide a nonreactive flux
medium for the synthesis of these phases for both the sulfide
and the selenide, with no trace of Na in the EDS. Crystal
growth was achieved using NaI and excess I2 with Re and ReQ2
in a 1:2 ratio. The estimated maximum iodine pressure used
was 10 atm, which is below the pressure where the formation
of Re6Q8I2 was observed without the flux. It is likely that the
molten salt enables some of the iodine to dissolve into solution
(possible via the equilibrium reaction I2 + I− → I3

−), which
would imply that the real pressure in the tube is actually lower
than the estimated pressure and instead enables the iodine to
react with Re and ReS2 from a more reactive liquid state
without the larger iodine pressure needed to otherwise drive
the reaction. The crystals grown from this flux method were
largest for the sulfide and smallest for the selenide, with the
solid solution crystals generally in between. ReQ2 grows as
black platelets, which look like black needles when they are
sufficiently small and are nearly indistinguishable by eye
preventing mechanical separation. The crystal size distribution
shown in Figure S2 was representative after the washing
procedure. Most crystals of Re6S8I2 were 100−500 μm in
length, Re6S4Se4I2 were 50−200 μm in length, and Re6Se8I2
were around 50−100 μm in length. Select crystals for Re6Se8I2
and Re6S4Se4I2 were found to reach lengths up to 1 mm, but
far fewer were observed for Re6Se8I2 than for the solid solution.
In the case of Re6S8I2 crystals, up to 2 mm in length were
obtained using this flux method. The crystals grown by this
method were also found to frequently grow as twinned crystals.
This was often difficult to tell by eye but easily observed when
performing indexation when testing crystals for single-crystal
diffraction for crystals 100 μm or longer.
Differential thermal analysis (DTA) was used to determine

the thermal stability and is shown in Figure S5. All compounds
had no thermal events up to 1000 °C under vacuum, and the
PXRD shown in the Supporting Information before and after
DTA was unchanged indicating thermal stability under vacuum
up to 1000 °C. The theoretical thermodynamic stabilities of
both Re6S8I2 and Re6Se8I2 were also evaluated through the
Open Quantum Materials Database (OQMD) and both of
them are calculated as stable. They are 97 and 111 meV/atom
deep in the convex hull, respectively, showing additional
evidence of being thermodynamically stable.

Optical and Electronic Properties. To study the optical
properties and to determine the energy levels of the valence
band maximum (VBM) and conduction band minimum
(CBM), UV−vis diffuse reflectance spectroscopy and photo-
emission yield spectroscopy in air64,65 (PYSA) measurements
were performed on samples synthesized via the flux synthesis
method. The diffuse reflectance data was transformed with the
Kubelka−Munk equation66 into absorbance data shown in
Figure 3A, where the absorption edge was determined by
extrapolating the linear region. For Re6S8I2, a small feature

Figure 5. Electrical resistivity measurements of (A) Re6S8I2, (B)
Re6Se8I2, and (C) on/off light response of Re6Se8I2 for two cycles of
30 s intervals of dark and then light response.
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below the absorption edge was fit to the absorption spectra of
the ReS2 impurity, which is shown in Figure S10 and also
observed in the PXRD.
The band gaps of the three phases were found to be 1.69(5)

eV (734 nm) for Re6S8I2, 1.54(5) eV (805 nm) for Re6S4Se4I2,
and 1.44(5) eV (861 nm) for Re6Se8I2. A linear extrapolation
of the PYSA data shown in Figure 3B was used to determine
the work function, which is also the VBM. This was found to
be 5.49(5) eV (226 nm) for Re6S8I2 and 5.24(5) eV (237 nm)
and 5.03(5) eV (246 nm) for Re6Se8I2 with respect to vacuum.
Using these values in combination with the absorption edges
yields CBM values of 3.80(7) eV (326 nm) for Re6S8I2,
3.70(7) eV (335 nm) for Re6S4Se4I2, and 3.59(7) eV (345 nm)
for Re6Se8I2 with respect to vacuum.
The room-temperature photoluminescence (PL) and the

time-resolved photoluminescence (trPL) for all three materials
are shown in Figure 3C,3D, respectively. Red to near-IR
emission was observed for all three materials with a range of
1.38 eV (898 nm)−1.93 eV (642 nm) centered at 1.67 eV
(742 nm) for Re6S8I2 and 1.35 eV (918 nm)−1.70 eV (729
nm) centered at 1.49 eV (832 nm) for Re6Se8I2. The solid
solution Re6S4Se4I2 exhibited emission more similar to
Re6Se8I2 than to Re6S8I2 ranging from 1.38 eV (898 nm) to
1.75 eV (708 nm) centered at 1.52 eV (816 nm). The trPL for
all three materials were fit to a biexponential function (see the
Supporting Information). The average lifetime was longest for
Re6S8I2 at 5.15 ± 0.23 ns and decreased across the series with
4.34 ± 0.39 ns for Re6S4Se4I2 and 1.83 ± 0.09 ns for Re6Se8I2.
The observed photoluminescence features are comparable to
the tetra-n-butylammonium (n-Bu4N) salt derivative, (n-
Bu4N)4Re6S8I6,

20−22 which contains the isolated [Re6Q8X6]
4−

cluster unit and has demonstrated similar PL properties. For
such 0D iodide-containing clusters, the PL maximum is at 1.55
eV (800 nm). Additionally, we see that the dimensional
reduction of the clusters increases the room-temperature PL
lifetimes.
The calculated band structure and partial density of states

(PDOS) for Re6S8I2 and Re6Se8I2, shown in Figure 4, predict
that both materials are direct-gap semiconductors where the
VBM and CBM occur at the Γ point. The calculated band gaps
are 1.42 and 1.03 eV for Re6S8I2 and Re6Se8I2, respectively.
These values are slightly smaller than the measured values,
which is reasonable since DFT is known to underestimate the
band gaps of semiconductors.67 For Re6Se8I2, the conduction
band is more dispersive than the valence band at the Γ point.
The carrier effective masses at the Γ point calculated in the
direction of X for the electrons are 1.956 m0 compared to an
effective mass of the holes of −2.576 m0. The bands for Re6S8I2
are more dispersive than those for Re6Se8I2, and the valence
band is more dispersive than the conduction band. Both
carriers are also lighter in Re6S8I2, with an effective mass of
1.574 m0 and −0.556 m0 for the electron and the hole in the
same direction of Γ to X. The difference occurs as a result of
how much the chalcogenide contributes to the top of the
valence band, as seen in the PDOS. In the selenide, there are
Se 4p orbital contributions to the top of the VBM that are
slightly higher in energy than the I 5p orbital contribution,
while in the sulfide, the S 3p contributions start contributing
significantly at about the same energy as the I 5p orbitals. This
is attributed to the lower electronegativity of selenium
compared to those of iodide and sulfide atoms. The orbital
state contributions to the CBM meanwhile are similar in both
materials, coming primarily from either S 3s and 3p or Se 4s

and 4p, Re 5p, and I 5p orbitals. The calculated phonon
structure and PDOS show slightly lower-energy vibrations for
Re6Se8I2 than for Re6S8I2, with the lowest-energy modes
primarily having contributions from Re and I with a bit more
of a contribution from Se than from S around 50 cm−1 (Figure
S9).
The electrical photoconductivity response in ambient light is

shown in Figure 5, measured using crystals grown from the flux
method for Re6S8I2 (0.0016 cm

2 cross section, 0.20 cm length)
and Re6Se8I2 (0.00010 cm2 cross section, 0.10 cm length).
Both materials exhibited ohmic behavior with no hysteresis for
two cycles in both the light and the dark. For Re6S8I2, the dark
resistance was 2.37 × 106 Ω with a dark resistivity of 1.9 × 104

Ω·cm, while the light resistance was 2.44 × 106 Ω with a light
resistivity of 2.0 × 104 Ω·m. For Re6Se8I2, the dark resistance
was 1.63 × 105 Ω with a dark resistivity of 1.6 × 102 Ω·cm,
while the light resistance was 1.58 × 105 Ω with a light
resistivity of 1.6 × 102 Ω·cm. The light response was also
measured for Re6Se8I2 for two cycles of 30 s in the dark and
then in the light with a 1.2% current change of 40 nA.

■ CONCLUSIONS
The new members of the rhenium chalcohalide family, Re6S8I2,
Re6S4Se4I2, and Re6Se8I2, adopt the R6S8Cl2 3D structure type.
Sufficiently large iodine pressures must be used to increase the
reactivity of the iodine and drive the formation of the cluster or
the use of an alkali metal iodide salt flux can be used to grow
crystals. Re6S8I2 and Re6Se8I2 are both direct-gap semi-
conductors at the Γ point with band gaps of 1.69(5) and
1.44(5) eV. The energies of the valence band maxima for
Re6S8I2, Re6S4Se4I2, and Re6Se8I2 were measured at 5.49(5),
5.24(5), and 5.03(5) eV, respectively. The compounds exhibit
broad red to near-IR photoluminescence (PL) centered at 1.67
eV (742 nm) for Re6S8I2, 1.52 eV (816 nm) for Re6S4Se4I2,
and 1.49 eV (832 nm) for Re6Se8I2. The PL average lifetimes
were found to be 5.15 ± 0.23, 4.34 ± 0.39, and 1.83 ± 0.09 ns
for Re6S8I2, Re6S4Se4I2, and Re6Se8I2, respectively.
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