

PROCEEDINGS OF SPIE

[SPIEDigitallibrary.org/conference-proceedings-of-spie](https://www.spiedigitallibrary.org/conference-proceedings-of-spie)

Validation of excitation-scan hyperspectral multi-faceted mirror array prototype system advancements to hyperspectral imaging applications

Parker, Marina, Mayes, Sam, Browning, Craig, Deal, Joshua, Gunn-Mayes, Samantha, et al.

Marina Parker, Sam A. Mayes, Craig M. Browning, Joshua Deal, Samantha Gunn-Mayes, Thomas C. Rich, Silas J. Leavesley, "Validation of excitation-scan hyperspectral multi-faceted mirror array prototype system advancements to hyperspectral imaging applications," Proc. SPIE 11966, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXIX, 1196606 (2 March 2022); doi: 10.1117/12.2607659

SPIE.

Event: SPIE BiOS, 2022, San Francisco, California, United States

Validation of Excitation-Scan Hyperspectral Multi-faceted Mirror Array Prototype System Advancements to Hyperspectral Imaging Applications

Marina Parker^{1,4}, Sam A. Mayes^{1,4}, Craig M. Browning^{1,4}, Joshua Deal^{2,3}, Samantha Gunn-Mayes¹, Thomas C. Rich^{2,3}, Silas J. Leavesley^{1,2,3,4}

¹Chemical and Biomolecular Engineering, University of South Alabama, AL 36688

²Pharmacology, University of South Alabama, AL 36688

³Center for Lung Biology, University of South Alabama, AL 36688

⁴Department of Systems Engineering, University of South Alabama, AL 36688

ABSTRACT

Hyperspectral imaging technologies (HSI) have undergone rapid development since their beginning stages. While original applications were in remote sensing, other uses include agriculture, food safety and medicine. HSI has shown great utility in fluorescence microscopy for detecting signatures from many fluorescent molecules; however, acquisitions speeds have been slow due to light losses associated with spectral filtering. Therefore, we designed a novel light emitting diode (LED)-based rapid excitation scanning hyperspectral imaging platform allowing users to obtain simultaneous measurements of fluorescent labels without compromising acquisition speeds. Previously, we reported our results of the optical ray trace simulations and the geometrical capability of designing a multifaceted mirror imaging system as an initial approach to combine light at many wavelengths. The design utilized LEDs and a multifaceted mirror array to combine light sources into a liquid light guide. The computational model was constructed using Monte Carlo optical ray software (TracePro, Lambda Research Corp.). Recent prototype validation results show that when compared to a commercial emission scanning spectral confocal microscope (Zeiss-LSM-980), the novel LED-based excitation scanning HSI prototype successfully detected and separated six fluorescent labels from a custom 6-label African green monkey kidney epithelial cells. We report on the prototype's ability to overcome limitations of acquisition speeds, sensitivity, and specificity present in conventional systems. Future work will evaluate prototype's light losses to determine latent design modifications needed to demonstrate the system's feasibility as a promising solution for overcoming HSI acquisition speeds. This work was supported by NSF award MRI1725937.

Keywords: Systems Design, LED, Tissue imaging, HSI, Spectroscopy, Microscopy, Transmission, Spectral, Fluorescence, Molecules, Cells

1. INTRODUCTION

Since its original development by NASA for remote sensing¹, HSI technologies have made an impact as an effective tool in a wide range of fields^{2,3,4} for detecting certain targets and materials^{3,5}. Specifically, in the medical field, HSI has shown great promise in tissue discrimination due to its ability to separate signatures from various fluorescent molecules⁶⁻¹⁰. A key aim in HSI medical applications is detection of cancerous cells and effectively identifying characteristic components of cells and tissues^{11,12}. The standard approach is to utilize fluorescence emission-scanning HSI, where the fluorescence emission is filtered over a broad wavelength range while exciting at a single band⁹. However, emission scanning approaches present limitations such as reduced sensitivity due to light attenuation from spectral filtering thus, result in increased acquisition times and/or limited signal-to-noise ratios. Increased acquisition times limit the ability to resolve features of temporally-changing/dynamic cell signaling events. We have previously shown that excitation scanning HSI offers promising solution for overcoming limitations presented by emission scanning due to its ability to filter the fluoresce excitation instead of the fluorescence emission and thus providing 30-100X increased sensitivity when compared to current emission scanning systems^{12,14,15}. The goal of this work is to validate a novel LED-based excitation scanning HSI prototype which we have previously reported on, using computational modeling^{15,16}. Here, we report validation results of the excitation scanning HSI prototype when implemented so as to detect the entire fluorescence emission in a single channel, while simultaneously providing spectral discrimination by quickly scanning through a range of excitation wavelength bands. The prototype utilizes LEDs and a multifaceted mirror array to combine single-band light sources into a liquid light guide (LLG). We present results of comparing the LED-based excitation

scanning HSI platform to a commercial emission scanning spectral confocal microscope (Zeiss-LSM-980). Hyperspectral imaging technologies (HSI) have undergone rapid development since their beginning stages. While original applications were in remote sensing, other uses include agriculture, food safety and medicine. HSI has shown great utility in fluorescence microscopy for detecting signatures from many fluorescent molecules; however, acquisitions speeds have been slow due to light losses associated with spectral filtering. Therefore, we designed a novel light emitting diode (LED)-based rapid excitation scanning hyperspectral imaging platform allowing users to obtain simultaneous measurements of fluorescent labels without compromising acquisition speeds. Previously, we reported our results of the optical ray trace simulations and the geometrical capability of designing a multifaceted mirror imaging system as an initial approach to combine light at many wavelengths. The design utilized LEDs and a multifaceted mirror array to combine light sources into a liquid light guide. The computational model was constructed using Monte Carlo optical ray software (TracePro, Lambda Research Corp.). Recent prototype validation results show that when compared to a commercial emission scanning spectral confocal microscope (Zeiss-LSM-980), the novel LED-based excitation scanning HSI prototype successfully detected and separated six fluorescent labels from a custom 6-label African green monkey kidney epithelial cells. We report on the prototype's ability to overcome limitations of acquisition speeds, sensitivity, and specificity present in conventional systems. Future work will evaluate prototype's light losses to determine latent design modifications needed to demonstrate the system's feasibility as a promising solution for overcoming HSI acquisition speeds.

2. MATERIALS AND METHODS

2.1 Cell preparation

African green monkey kidney epithelial cells were utilized to prepare custom slides with 6 fluorescent labels by Abberior GmbH. To evaluate the performance of the LED-based excitation-scanning HSI system for spectral separation capabilities, labels were selected to cover a wide spectral range (Table.1). An additional unlabeled slide was prepared to measure cellular autofluorescence. All cells were fixed and stained by Abberior in accordance with Wurm et al.¹⁷ and cell specimens were embedded in Abberior Mount Solid Antifade (item number: MM-2013-2X15ML)

Table.1 Slide number and staining conditions

Slide #	Stain
1	Fixed and unstained cell slide
2	F-actin – Abberior STAR GREEN phalloidin
3	Mitochondria – Abberior STAR520SXP goat anti-rabbit IgG
4	Double stranded DNA – Abberior LIVE 560 DNA
5	Vimentin – Abberior STAR ORANGE goat anti-chicken IgY
6	Golgi apparatus – Abberior STAR RED goat anti-guinea pig IgG
7&8	Multi-labeled slides with labels of slides 1 – 6

2.2 Hyperspectral imaging excitation scanning microscope set-up

Excitation light from the custom spectral source was coupled into an inverted epifluorescence microscope (TE2000-U, Nikon Instruments, Melville, NY) using a 3 mm LLG. Images were acquired using a 60X water immersion objective (Plan Apo VC 60x/1.2 WI, Nikon Instruments, Melville, NY), and a high sensitivity sCMOS camera (Prime 95B, Teledyne Photometrics, Tucson, AZ).

2.3 Image acquisition

Images were acquired for each sample (6-label slide, single-label control slides, and unlabeled autofluorescence control slide) on each spectral microscope systems (LED-based system, & Zeiss LSM 980). Imaging parameters were set accordingly based on the system used (Table.2)¹⁸.

Table 2 Image acquisition parameters and microscope configuration

Microscope	Light Source	Objective Lens Parameter(s)	Detector
Inverted epifluorescence widefield microscope (TE2000-U, Nikon Instruments, Melville, NY)	<p>LED-based Platform</p> <p>LED wavelengths: 365, 375, 385, 405, 415, 420, 430, 450, 470, 490, 515, 520</p> <p>Power: 100%</p>	<p>Plan Apo VC 60x/1.2 WI (Nikon Instruments)</p>	<p>Prime 95B sCMOS camera (Teledyne Photometrics, Tucson, AZ)</p> <p>4 averaging</p> <p>1s per wavelength-band integration time</p> <p>2x2 binning</p> <p>no gain or offset</p> <p>40 MHz readout speed</p>
Zeiss LSM 980 commercial emission-scanning spectral confocal microscope system (Carl Zeiss Microscopy, LLC, White Plains, NY)	<p>Laser</p> <p>405 nm at 10% power</p> <p>488 nm at 2% power</p> <p>561 nm at 0.2% power</p> <p>639 nm at 2% power</p>	<p>C-Apochromat 40x/1.2W</p> <p>Autocorrect UV VIS IR (Zeiss Microscopy)</p>	<p>32 channel GaAsP-PMT</p> <p>4 averaging</p> <p>2 min 22 sec exposure/dwell time</p> <p>0 offset, 0 binning</p> <p>Digital gain 1</p> <p>Gain 650 V</p>

2.4 Image analysis

To account for wavelength-dependent attenuation, excitation intensity was corrected to a flat spectral response as described in *Fink et. al.*⁵. In summary, a spectral correction coefficient was calculated for each wavelength band to account for wavelength dependent illumination intensity. Spectral correction was performed by sequentially illuminating each LED (at maximum power output) and measuring the optical power output available at the microscope stage. Spectral image stacks were then corrected by first identifying a blank (background) region in each image and extracting the mean spectrum from that region. The mean background spectrum was then subtracted from each spectral image stack and the stack was subsequently multiplied by the spectral correction factor to correct the image to a flat spectral response (Eq. (1)).

$$I_{corrected} = (I_{raw} - I_{dark} \cdot CC), \quad (1)$$

where I_{raw} is the original spectral image, I_{dark} is the background spectrum, and CC is the spectral correction coefficient. Spectral image data from the Zeiss LSM 980 was not corrected, as the spectral detector is factory calibrated to provide a flat spectral response. All corrections were performed using a custom MATLAB script (MathWorks, Inc., Natick, MA.).

Corrected spectral images were then processed to build a spectral library (Figure 1.) from single-label control samples, as described previously^{1,5,6}. In brief, regions of high signal strength were selected within spectral images from each single-label control sample, as well as the unlabeled autofluorescence control. The mean spectrum from each region was extracted and saved within a library for spectral unmixing. Due to high cellular autofluorescence, for a subset of samples, a fraction of the autofluorescence spectrum was subtracted from the single-label spectrum before saving the single-label spectrum within the spectral library. The test image of the 6-label sample was then linearly unmixed using a non-negatively constrained linear unmixing algorithm. Unmixed images were linearly scaled, false colored, and overlayed for visualization.

Example spectral unmixing code is available at <https://www.southalabama.edu/centers/bioimaging/resources.html>

3. RESULTS AND DISCUSSION

3.1 Spectral library

Spectral images from each single label control sample were used to build a spectral library using the LED-based excitation scanning HSI system and corrected to a flat spectral response. Spectral images were also acquired from the Zeiss LSM 980 commercial emission-scanning spectral confocal microscope system that is factory calibrated to achieve a flat spectral response. Regions of interest (ROIs) were selected, and the mean spectrum of each ROI was measured. A separate spectral library was created for each spectral microscope system: LED-based excitation scanning platform, & Zeiss LSM 980 (Figure 1) and later imported into MATLAB for linear unmixing.

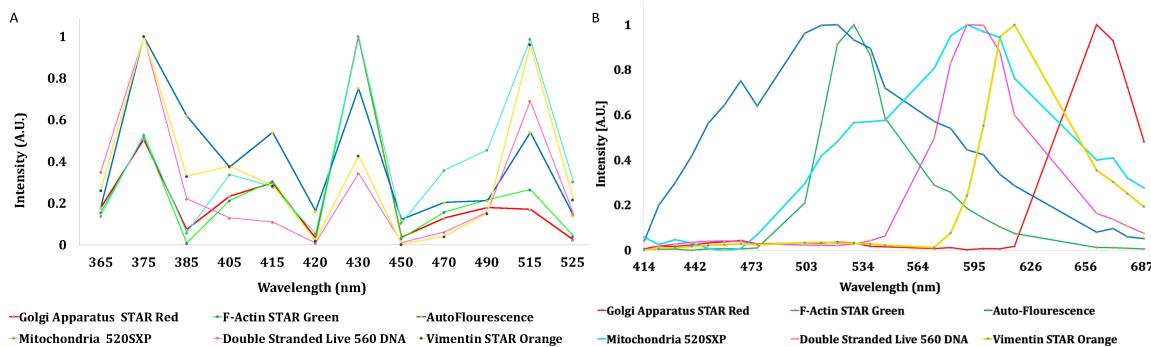


Figure 1. Spectral libraries were comprised for two spectral microscopy systems: A) excitation-scanning system using LEDs for spectral excitation and implemented on an inverted widefield microscope platform (novel LED-based excitation scanning HSI prototype), and B) commercial emission scanning spectral confocal microscope (Zeiss LSM 980).

3.2 Image analysis results

Spectral images of the mixed label sample that were acquired using each spectral microscope platform were linearly unmixing, false colored, and merged for visualization (Figure 2.). Most labels were easily identified on all three systems. When compared to the Zeiss LSM 980 (emission scanning), the LED-based excitation scanning HSI system better detected *golgi*, autofluorescence, mitochondria, double stranded DNA, and vimentin. However, f-actin was more clearly identified through the Zeiss LSM. The clear delineation of f-actin is primarily due to the optical sectioning capabilities provided by the Zeiss LSM 980, being a confocal microscope as opposed to the other system which is built on a widefield microscope platform. In future studies, it is possible that a higher labeling density of f-Actin may result in improved detection through the excitation-based scanning system.

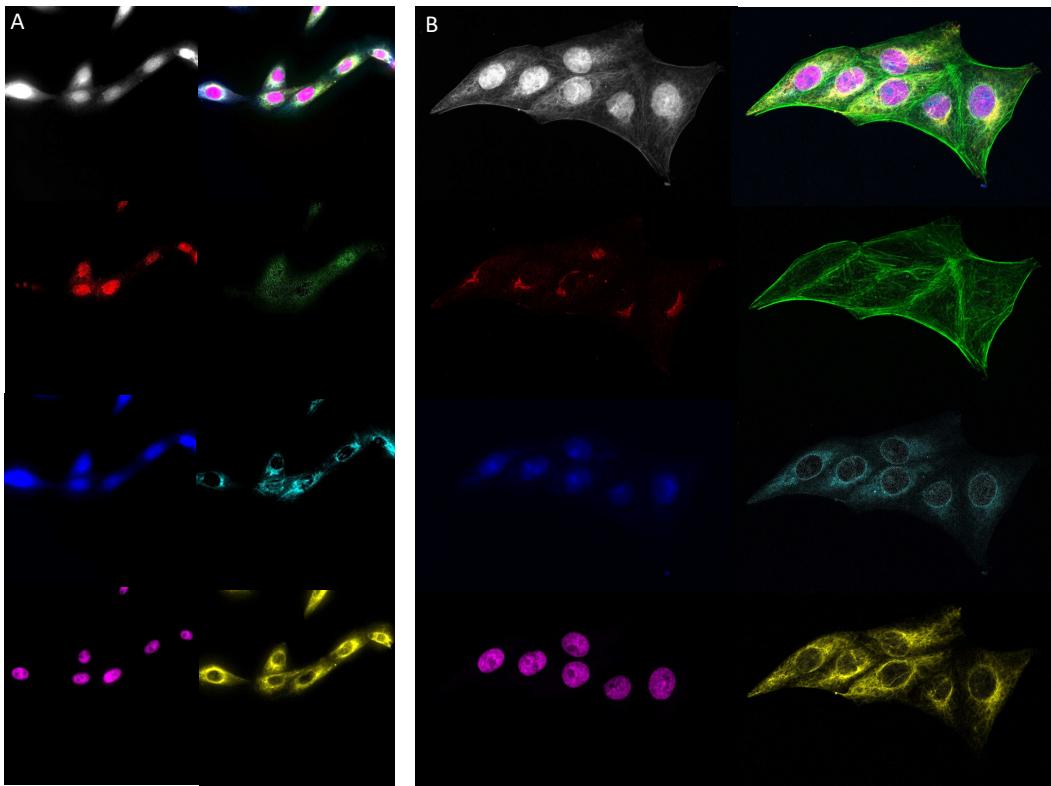


Figure 2. Comparison of image data acquired from *two* spectral imaging microscopy systems: A) *LED-based prototype* – a novel excitation-scanning spectral widefield system that uses an array of LEDs and multifurcated mirror for spectral illumination, and B) a commercial emission-scanning spectral confocal microscope (Zeiss LSM 980). For each image panel, the upper left image displays the sum of all wavelength bands for the spectral image stack while the upper right image displays the results of linear unmixing, as a merged and false-colored composite image. The individual components identified through linear unmixing are displayed in the bottom six images have been visualized with a color lookup table to match the colors shown in the false-colored and merged image, and are described from left-to-right and top-to-bottom: red – golgi apparatus labeled with STAR Red, green – f-Actin labeled with STAR Green, blue – cellular autofluorescence, cyan – mitochondria labeled with 520SXP, magenta – double-stranded DNA labeled with Live 560, and yellow – vimentin labeled with STAR Orange.

4. CONCLUSION AND FUTURE WORK

Hyperspectral imaging is a powerful tool for fluorescence microscopy applications for separating signatures from many fluorescent molecules. In this work, we have applied the first step in a prototype system validation for the high-speed excitation scanning system – an initial benchtop testing experiment to assess spectral discrimination capabilities using rapid hyperspectral imaging excitation scanning approach. The prototype consisting of LEDs, a multifaceted mirror array and a LLG showed promising results when compared to a commercial emission-scanning spectral confocal microscope (Zeiss LSM 980). By implementing LEDs, our system has decreased wavelength mechanical switching times from 250 milliseconds per wavelength to 10 microseconds. Future work will focus on improving imaging acquisition times as these were longer than desired for the LED-based excitation scanning HSI prototype due to optical transmission losses present in the prototype.

ACKNOWLEDGEMENTS

The authors would like to acknowledge support from NIH grant P01 HL066299, NSF grant 1725937. Drs. Leavesley and Rich disclose financial interest in a start-up company, SpectraCyte LLC, formed to commercialize spectral imaging technologies.

REFERENCES

- [1] Guolan, L., and Baowei, Fei, "Medical Hyperspectral imaging: a review," *Journal of Biomedical Optics* 19(1), 24 (2014).
- [2] Sun, D.-W., [Hyperspectral Imaging for Food Quality Analysis and Control], Elsevier (2010).
- [3] Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., and Sousa, J.J., "Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry," *Remote Sensing* 9(11), 1110 (2017).
- [4] Goltz, D., Attas, M., Young, G., Cloutis, E., and Bedynski, M., "Assessing stains on historical documents using hyperspectral imaging," *Journal of Cultural Heritage* 11(1), 19–26 (2010).
- [5] Fink, D.J., "Monitoring Earth's Resources from Space," *Technology Review*(June 1973), 10 (1973).
- [6] Leavesley, S.J., Annaddevula, N., Boni, J., Stocker, S., Grant, K., Troyanovsky, B., Rich, T.C., and Alvarez, D.F., "Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue," *Journal of Biophotonics* 5(1), 67–84 (2012).
- [7] Leavesley, S.J., Deal, J., Martin, W.A., Lall, M., Lopez, C., Rich, T.C., Boudreaux, C.W., Rider, P.F., and Hill, S., "Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning," in *Opt. Biopsy XVI Real-Time Spectrosc. Imaging Diagn.*, R. R. Alfano and S. G. Demos, Eds., 19 (2018).
- [8] Favreau, P.F., Hernandez, C., Heaster, T., Alvarez, D.F., Rich, T.C., Prabhat, P., and Leavesley, S.J., "Excitation-scanning hyperspectral imaging microscope," *Journal of Biomedical Optics* 19(4), 046010 (2014).
- [9] Leavesley, S.J., L. Britain, A., Cichon, L.K., Nikolaev, V.O., and Rich, T.C., "Assessing FRET using spectral techniques: Spectral FRET Measurements," *Cytometry Part A* (2013).
- [10] Favreau, P., Hernandez, C., Lindsey, A.S., Alvarez, D.F., Rich, T., Prabhat, P., and Leavesley, S.J., "Thin-film tunable filters for hyperspectral fluorescence microscopy," *Journal of Biomedical Optics* 19(1), 011017 (2013).
- [11] Leavesley, S.J., Walters, M., Lopez, C., Baker, T., Favreau, P.F., Rich, T.C., Rider, P.F., and Boudreaux, C.W., "Hyperspectral imaging fluorescence excitation scanning for colon cancer detection," *Journal of Biomedical Optics* 21(10), 104003 (2016).
- [12] Dontu, S., Miclos, S., Savastru, D., and Tautan, M., "Full Length Article: Combined spectral-domain optical coherence tomography and hyperspectral imaging applied for tissue analysis: Preliminary results," *Applied Surface Science* 417, 119–123 (2017).
- [13] Deal, J., Britain, A., Rich, T., and Leavesley, S., "Excitation-Scanning Hyperspectral Imaging Microscopy to Efficiently Discriminate Fluorescence Signals," *Journal of Visualized Experiments* (150), 59448 (2019).
- [14] Deal, J., Harris, B., Martin, W., Lall, M., Lopez, C., Boudreaux, C., Rich, T., Leavesley, S., and Rider, P., "Demystifying autofluorescence with excitation scanning hyperspectral imaging," in *Imaging Manip. Anal. Biomol. Cells Tissues XVI*, D. L. Farkas, D. V. Nicolau, and R. C. Leif, Eds., 40 (2018).
- [15] Parker, M., Browning, C., Rich, T.C., and Leavesley, S.J., "Optimization of light transmission through an excitation-scan hyperspectral mirror array system," in *Imaging Manip. Anal. Biomol. Cells Tissues XVII*, D. L. Farkas, J. F. Leary, and A. Tarnok, Eds., 23 (2019).
- [16] Parker, M., Browning, C.M., Mayes, S.A., Deal, J., Gunn Mayes, S., Rich, T.C., and Leavesley, S.J., "Excitation-scan mirror array system advancements to hyperspectral imaging applications," in *Three-Dimens. Multidimens. Microsc. Image Acquis. Process. XXVII*, T. G. Brown, T. Wilson, and L. Waller, Eds., 31 (2020).
- [17] Wurm, C.A., Neumann, D., Schmidt, R., Egner, A., and Jakobs, S., [Sample Preparation for STED Microscopy], in *Live Cell Imaging 591*, D. B. Papkovsky, Ed., Humana Press, Totowa, NJ, 185–199 (2010).
- [18] Heddleston, J.M., Aaron, J.S., Khuon, S., and Chew, T.-L., "A guide to accurate reporting in digital image acquisition – can anyone replicate your microscopy data?," *Journal of Cell Science* 134(6), jcs254144 (2021).