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Abstract— Moving averages are widely used to estimate time-
varying parameters, especially when the underlying dynamic
model is unknown or uncertain. However, the selection of the
optimal window length over which to evaluate the moving
averages remains an unresolved issue in the field. In this
paper, we demonstrate the use of Allan variance to identify the
characteristic timescales of a noisy random walk from historical
measurements. Further, we provide a closed-form, analytical
result to show that the Allan variance-informed averaging
window length is indeed the optimal averaging window length
in the context of moving average estimation of noisy random
walks. We complement the analytical proof with numerical
results that support the solution, which is also reflected in
the authors’ related works. This systematic methodology for
selecting the optimal averaging window length using Allan
variance is expected to widely benefit practitioners in a diverse
array of fields that utilize the moving average estimation
technique for noisy random walk signals.

I. INTRODUCTION

Despite the vast investigation in advanced data filtering
techniques, Simple Moving Average Estimations (SMAE)
are still among the widely used filtering solutions in many
fields of research such as trend forecasting [1] commu-
nication systems [2], econometrics [3], circuit design [4],
cardiac signal analysis [5] and, general data monitoring [6].
Its widespread adoption is primarily driven by its ease of
use (as a linear low-pass filter with a constant computational
complexity), and often by the inability to use model-based
techniques such as the Kalman filtering which need prior
knowledge of the signal and noise characteristics as well
as a reliable, high-fidelity dynamical model in the specific
domain [7]. Moreover, simple moving average filters are easy
to interpret which makes them an excellent candidate for
visualizing noisy data.

While the concepts of moving averages and MA estimation
have been around since the early twentieth century, the chal-
lenge of systematically selecting an appropriate timescale
or window length over which to average measurements
persists to this day. While considering longer windows
deliver smoother results, it introduces a significant amount
of lag between the input data and the estimate. Conversely,
choosing a short window, despite delivering a low-lag signal,
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may not be effective enough for noise-cancellation purposes.
We previously addressed this trade-off by introducing the
characteristic timescale as the window length that includes
the most relevant measurements or information for a given
estimation task, where the concept of data relevancy is
determined by its positive/negative effect on the expected
estimation error at the very recent timestep. We also showed
this timescale can be estimated by finding the timescale that
minimizes the Allan Variance (AVAR) [8].

In this work, we focus on estimating noisy random walk
signals which are typical building blocks for stochastic drift
models across a wide spectrum of scientific disciplines.
For example, financial markets use random walks to model
changes in stock prices according to the random walk
theory [9]. Random walk models are also vastly used in
modeling diffusion processes [10] [11] that in turn has many
applications in biology [12] geology [13], and hydrology
[14]. In this paper, we first derive a closed-form solution
for the optimal window length that should be used to filter
noisy random walk signals using simple moving average
estimation (SMAE). We then propose the use of Allan
variance to estimate this window length without having any
prior knowledge about the signal or noise properties. We
also prove the timescale suggested by AVAR is indeed an
unbiased estimate of the optimal timescale (i.e. averaging
window length).

II. SIMPLE MOVING AVERAGE ESTIMATION OF RANDOM
WALKS

As a first step towards discussing the optimal moving
average estimation, we formulate the simple moving average
estimation problem. In this context, the goal is to estimate
the value of a time-varying parameter based on historical
measurements or an incoming data stream. First, the time-
varying dynamics of the target parameter may be modeled
as a random walk stochastic process {Xk}. For practical
purposes of this approach, we may assume that the incremen-
tal evolution of the random walk is obtained via numerical
integration of Gaussian white noise process {Wk} with zero
mean and variance σ2

w. The dynamics of the time-varying
parameter are thus modeled as:

xk = xk−1 + wk (1)

where wk are realized from {Wk}, i.e. wk ∼ N (0, σ2
w).

Second, the measurements of the time-varying parameter
are themselves assumed to be corrupted by Gaussian white
noise N (0, σ2

v), i.e. with mean zero and variance σ2
v , and is
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independent of the process {Wk}. Thus, the measurements
of the random walk signal are given by:

yk = xk + vk (2)

where vk are realized from a white noise process {Vk} with
the variance σ2

v .
The Simple Moving Average Estimation (SMAE) attempts

to recover the value of the parameter xn, given historical
measurements from the time series data y = {y1, y2, ..., yn}.
We may note that it is not a requirement that the data
be varying over the time dimension, the same approach is
equally applicable for estimating noisy random walk signals
that vary across space or any other valid underlying attribute
of interest [13]. The simple moving average estimate of the
time-varying parameter is given by:

x̂(m)
n =

1

m

m∑
i=1

yn−m+i (3)

where x̂(m)
n is the estimate of parameter x obtained at time

step n using the past m measurements, i.e. m ∈ Z+ :
m ≤ n is the window length (or timescale) over which
the historical measurements are averaged. We assume that
information is available sequentially (ordered in time, space,
or other valid attributes) and that the parameter x is estimated
for subsequent time steps as well when new measurements
arrive. In the work presented below, we focus only on causal
moving average estimators which do not rely on future
measurements to estimate the current value of the parameter.
In principle, however, the approach presented below can
easily be used with limited modification for the purpose of
non-causal filtering as well.

III. OPTIMAL SIMPLE MOVING AVERAGE ESTIMATION

The estimation approach of SMAE is straightforward and
has been used in the past for real-time data-driven estimation,
especially in the absence of a viable dynamical model. How-
ever, there is a lack of clarity on how to choose the optimal
averaging window length in a manner that minimizes the
error in the estimate. Here we refer to the optimal averaging
window length as the characteristic timescale) and denote
it by mc. Specifically, we may determine the characteristic
timescale by minimizing the mean-square estimation error:

mc = argmin
m∈Z+

E
[
(x̂(m)

n − xn)2
]

(4)

We drop the Z+ notation with the understanding that m is an
integer-valued positive number with m ≤ n. The analytical
expression for mc is obtained as shown in Thm. 1.

Theorem 1. If the drift signal xk is realized from a random
walk process {Xk} (shown in (1)) and the measurement
signal is realized according to {Xk + Vk} (shown in (2)),
then the characteristic timescale mc is given by:

mc =

⌊√
3
σ2
v

σ2
w

+
1

2

⌋
(5)

where b.c denotes rounding to the adjacent integer with the
smaller estimation error in (11).

Proof. We first substitute x̂(m)
n from (3) into (4). For sim-

plicity, we will omit the superscript (m) in x̂
(m)
n from

here onwards. Thus, the minimization problem to find the
characteristic timescale (optimal averaging window length)
may now be written as:

mc = argmin
m

E

{( 1

m

m∑
i=1

yn−m+i

)
− xn

}2
 (6)

Using the random walk model in (1) and assuming x1 = 0
(without loss of generality), we can rewrite xn as the sum of
the individual wi terms until time step n, i.e. xn =

∑n
i=1 wi.

Together with the measurement equation given by (2), we can
expand the summation term on the right-hand side of (6) and
write the following expression for the expectation term:

E

( 1

m

m∑
i=1

xn−m+i +
1

m

m∑
i=1

vn−m+i −
n∑

i=1

wi

)2


We may reasonably assume that the vk terms realized
from the white noise process {Vk} are independently and
identically distributed, and are also independent of the
stochastic processes {Wk} (and consequently {Xk}). Thus,
by considering that E[((1/m)

∑m
i=1 vn−m+i)

2] = (1/m)σ2
v ,

the expression for the expectation term can be simplified to:

E

( 1

m

m∑
i=1

xn−m+i −
n∑

i=1

wi

)2
+

σ2
v

m
(7)

Furthermore, accounting for the fact that the wi terms (i ∈
[1, n−m]) occur in all subsequent xi terms (i ∈ [n−m+
1, n]), the mean of the most recent m parameter values can
be re-written as follows:

1

m

m∑
i=1

xn−m+i =

n−m∑
i=1

wi +

n∑
i=n−m+1

n− i+ 1

m
wi (8)

The expression on the right-hand side of (8) can be
substituted into the expression in (7) to yield:

E

(n−m∑
1

wi +
n∑

i=n−m+1

n− i+ 1

m
wi −

n∑
i=1

wi

)2
+

σ2
v

m

(9)
which, upon simplification, leads to the following:

mc = argmin
m

E

( m∑
i=1

m− i
m

wi

)2
+

σ2
v

m
(10)

Since wi are independently and identically distributed,
E[wiwj ] = 0 for i 6= j. Consequently, using the expression
for sum of squares of first (m − 1) natural numbers, the
above term can be calculated as:

E
[
(x̂n − xn)2

]
=

2m2 − 3m+ 1

6m
σ2
w +

1

m
σ2
v (11)
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To minimize (11), we let ∂
∂m E[(x̂k−xk)2] = 0. Although

this is a discrete optimization problem to be solved for
positive integer values of m, equation (11) is convex for
m > 0. As a result, we can practically solve this for
continuous values of m and choose either the left or the
right integer that yields the smaller error. Differentiating the
right-hand side of (11) with respect to m, we obtain:

(2m2 − 1)

6m2
σ2
w −

1

m2
σ2
v = 0 (12)

which upon additional algebraic manipulation leads to the
expression for the optimal characteristic timescale:

mc = argmin
m∈Z+

E
[
(x̂(m)

n − xn)2
]

=

⌊√
3
σ2
v

σ2
w

+
1

2

⌋
(13)

Thus, averaging at the characteristic timescale mc, i.e.,
the optimal averaging window length, minimizes the mean-
square error between the estimated and actual values of the
time-varying parameter xn at the current time instant n.

From equation (13) as well as Figure 1, it is evident
that the magnitude of the measurement noise (σ2

v) and the
magnitude of the white noise used to generate the random
walk (σ2

w) both have linear relationships with the size of
the optimal averaging window, but with opposite effects.
Specifically, if σ2

v increases compared to σ2
w, the incom-

ing data stream looks increasingly like white noise, with
measurements failing to accurately reflect the underlying
random walk process. In the extreme, this corresponds to
σ2
v/σ

2
w →∞, indicating that the optimal averaging window

length mc → ∞ as well. Thus, if the measurement noise
dominates the random walk signal, the moving average
estimator is more accurate if averaging is performed over
long windows, i.e. the characteristic timescale is large.

On the other hand, if σ2
v decreases compared to σ2

w, the in-
coming data stream increasingly takes on the characteristics
of a random walk, with minimal impact of the measurement
noise. This corresponds to σ2

v/σ
2
w → 0, indicating that the

optimal averaging window length mc → 1. Thus, for a
‘pure’ random walk with no measurement noise, the optimal
window size is 1, i.e. the current measurement is trivially
the optimal estimate of the current state of the stochastic
process.

IV. ALLAN VARIANCE-BASED OPTIMAL MOVING
AVERAGE ESTIMATION

As is evident from the discussion in Section III, to find the
optimal window length mc we need to know the ratio σv/σw.
However, this information is not always readily available,
which leaves the only possible recourse of using (a) heuristic
estimates, or (b) knowledge from domain experts. Moreover,
it is challenging to obtain this ratio from the raw measure-
ments themselves since the effects of the stochastic processes
{Wk} and {Vk} are confounded in the output measurements
{Xk + Vk}. In this section, we present analytical results for
a new method to systematically estimate the characteristic

Fig. 1. The characteristic timescale mc indicates the optimal window
length to use for moving average estimation. The value of mc increases as
the ratio σv/σw increases. For very noisy measurements, longer window
lengths provide optimal moving average estimation.

timescale mc (i.e. the optimal averaging window length) by
finding the timescale that minimizes the Allan Variance of
the signal [8].

A. Allan Variance

Allan Variance (AVAR) was originally developed to ad-
dress the issue of frequency stability and time synchro-
nization between atomic clocks [15] but it has quickly
become a useful tool for modeling and de-noising inertial
sensors [16][17]. Allan Variance measures the signal bias
at a certain timescale. We recently showed the timescale
minimizing AVAR can be effectively used as an estimate
of the characteristic timescale in moving average estimators
[8] which will be discussed in more detail in the next
subsection. A more detailed analysis on noise modeling and
characterization using Allan Variance can be found in [18].

The non-overlapping Allan Variance σ2
A, also known as

two-sample variance, for a time series y = {y1, y2, ..., yn}
is defined as a function of timescale m as follows:

σ2
A(m) =

1

2
E
[
(ȳk − ȳk−m)2

]
(14)

where ȳk is the average of measurements in the window of
size m calculated at the time step k. We omit the symbol m
when writing the window averages ȳk to make the notation
simpler:

ȳk =
1

m

m∑
i=1

yk−i+1 (15)

The expectation operator in (14) may be evaluated, so that
the Allan Variance can be numerically estimated as:

σ̂2
A(m) =

1

2(n− 2m)

n∑
k=2m+1

(ȳk − ȳk−m)
2 (16)

where n is the number of measurements or data points in the
entire time series y and m denotes the timescale at which
AVAR is being evaluated. Alternatively, as shown in [19],
the expressions in (14) can be also written as:

σ̂2
A(m) =

1

2m2
E
[
(zk+2m − 2zk+m + zk)2

]
(17)
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Fig. 2. (a-b) A Gaussian white noise realization and its corresponding
AVAR. (c-d) A random walk realization and its corresponding AVAR. (e-f)
Measurement signal composed from the previous signals and its AVAR that
is minimized at a timescale of m = 12. The AVAR values are estimated
using equation (18).

where zk =
∑k

i=1 yi is the accumulated signal value at the
time step k. Thus, the value of the Allan variance in (14) can
be estimated with the computational complexity of O(n) as
follows:

σ̂2
A(m) =

1

2m2(n− 2m)

n−2m∑
k=1

(zk+2m − 2zk+m + zk)
2

(18)
where n denotes the length of the signal being analyzed, and
m is the window length in units of time steps.

Figure 2 shows three signals and their corresponding Allan
variance as a function of window length. Fig. 2(a-b) shows
a white noise signal (which is uncorrelated in time) and
its corresponding AVAR as a function of window length.
Visualizing this in a log-log scale, we observe that the Allan
variance of the white noise decreases for increasing window
lengths, indicating that measurement bias reduces as we
include more data points (longer windows) in the averaging
process (see [18] for more details). Fig. 2(c-d) show a
random walk signal and its AVAR that is increasing as a
function of window length. Fig. 2(e-f) shows a measurement
signal that is composed of the random walk and the white
noise time series data in the other plots. In this example, the
Allan variance curve has a minimum at m = 12, indicating
the minimum measurement bias occurs at this particular
timescale.

B. Optimality of Moving Average Estimator using AVAR-
informed timescale

In this subsection, we prove that the Allan Variance
is also minimized at the same characteristic timescale as
derived in (5). A significant implication of this result is
that we can estimate the characteristic timescale mc (i.e.
the optimal moving average window length) by directly
estimating AVAR, without requiring any explicit information
about σv or σw. Consequently, AVAR enables a practical
way to perform optimal moving average estimation in noisy
random walks, without any knowledge of the underlying
noise characteristics.

Theorem 2. If the drift signal xk is realized from a random
walk process as shown in (1), and the measurement signal is
realized according to (2), then the optimal averaging window
length mc minimizes the Allan Variance as defined in (14).

Proof. We begin by expanding the expression for evaluating
the non-overlapping Allan variance in (14) as follows:

σ2
A(m) =

1

2
E

( 1

m

m∑
i=1

yk−i+1 −
1

m

m∑
i=1

yk−m−i+1

)2


Replacing yi with xi + vi, and decomposing the summa-
tions into three independent terms, we obtain:

(19)

σ2
A(m) =

1

2m2
E

( m∑
i=1

xk−i+1 − xk−m−i+1

+
m∑
i=1

vk−i+1 −
m∑
i=1

vk−m−i+1

)2


Since summation terms of the random walk process and
measurement noise are assumed to be independent of each
other and white noise is uncorrelated, the cross terms in the
expectation term are zero (i.e. E[xivj ] = 0 for all i, j, and
E[vivj ] = 0 for all i 6= j). Consequently, noise terms vi can
be extracted out from the expectation operator as follows:

σ2
A(m) =

1

2m2
E

( m∑
i=1

xk−i+1 − xk−m−i+1

)2
+

σ2
v

m

Further, using the fact that xb − xa =
∑b

i=a+1 wi for any
a < b ∈ Z+, we can simplify the above expression for the
Allan variance to yield:

σ2
A(m) =

1

2m2
E


 m∑

i=1

k−i+1∑
j=k−m−i+2

wj

2
+

σ2
v

m
(20)

which can be rewritten in expanded form as:

σ2
A(m) =

1

2m2
E
[{
wk−2m+2 + 2wk−2m+3 + ...

+ (m− 1)wk−m +mwk−m+1 + (m− 1)wk−m+2+

...+ 2wk−1 + wk

}2
]

+
σ2
v

m
(21)
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(a) (b)

(c) (d)

Fig. 3. Two examples of Optimal Simple Moving Average Estimation (O-SMAE) of noisy random walks using Allan Variance-informed window lengths.
Value of σw = 1 for both cases. For the first example (a-b), σv = 2, whereas in the second one (c-d), σv = 10. The optimal averaging window length
is estimated by finding the timescale that minimizes AVAR (blue square). For a better perspective, the gray lines in (a) and (c) show the corresponding
AVAR curves of several other random realizations of noisy random walks.

Again, we know that E[wiwj ] = 0 for i 6= j, since the
random walk is generated by uncorrelated Gaussian white
noise. After some arithmetic operations (including summing
the squares of first m natural numbers), the expression for
Allan variance in (21) simplifies to:

σ2
A(m) =

2m2 + 1

6m
σ2
w +

1

m
σ2
v (22)

To minimize the Allan variance, we differentiate the right-
hand side of (22), i.e. letting ∂

∂mσ
2
A(m) = 0 results in:

(2m2 − 1)

6m2
σ2
w −

1

m2
σ2
v = 0 (23)

which is the same equation as (12) and yields the optimal
timescale mc in (5), reproduced here for clarity:

mc = argmin
m∈Z+

E
[
(x̂(m)

n − xn)2
]

=

⌊√
3
σ2
v

σ2
w

+
1

2

⌋
(24)

As an immediate result of the above theorem, and in
the absence of any information about the underlying noise
characteristics, we propose to generate an estimate of the
characteristic timescale, i.e. m̂c, as follows:

m̂c = argmin σ̂2
A(m) (25)

where σ̂2
A(m) can be evaluated using (18).

A consequence of this result is that we can optimally per-
form moving average estimation by systematically selecting
an Allan variance-informed window length, without the need
to rely on heuristics. It may also be noted that AVAR can
be estimated via other estimators proposed in the literature.
While the AVAR estimator in (18) yields a precise estimate,
there are other AVAR estimators that are computationally
faster such as the one proposed in [20], which estimates the
AVAR recursively using a hierarchical structure.

Fig. 4. Numerical estimation of the Allan Variance (solid lines) using (18)
and analytically calculated Allan Variance (dashed lines) using (22). Note
that AVAR curves are minimized at the exact optimal window length mc

illustrated on Fig. 1.

V. RESULTS AND CONCLUDING REMARKS

In this section, we provide numerical support to demon-
strate that the proposed SMAE method that utilizes the
Allan variance-informed characteristic timescale does indeed
provide optimal estimates. Fig. 3 shows an optimal simple
moving average estimation of a noisy random walk with
two different noise properties. As shown in Fig. 3 (a-c),
the AVAR (estimated using (18)) is minimized at different
timescales for each example. In Fig. 3(a-b), there is only
a small amount of noise added to the random walk, hence
measurements are tightly correlated and a short averaging
window yields better results. On the other hand, Fig. 3(c-
d) indicates the presence of a significant amount of white
noise which makes measurements less correlated in time, so
averaging over longer window length gives better estimates.

Additionally, as shown in Fig. 4, AVAR estimation yields
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an unbiased estimation of the characteristic timescale. The
numerical (solid lines) AVAR values have been evaluated
according to (18) and have been averaged over 100 Monte
Carlo simulations. The shaded bounds represent the standard
deviation associated with the Monte Carlo simulations. The
dashed lines represent the actual AVAR values assuming the
variances σ2

v and σ2
w are known which is represented by (22).

In all the cases, the value of the σw is set to 1 while σv varies
from 1 to 4.

Finally, we analyze the difference between the charac-
teristic timescale obtained numerically from Allan variance
estimates, i.e. m̂c in (25), and the optimal averaging window
length obtained from analytical solution associated with the
mean-square error, i.e. mc in (13). The results show that
while there may be a small error in the size of the optimal
window length determined via Allan variance, the error
|m̂c −mc|→ 0 as the number of available measurements in
the data stream increases. Even with a moderate number of
historical measurements, the difference between the optimal
and the Allan-variance informed window length is negligibly
small. Another point of interest is that the variance of the
error |m̂c−mc| (shown with the lightly shaded region) also
tends to zero for a moderately large number of historical
measurements.

A consequence of these results is that we can now opti-
mally perform moving average estimation of noisy random
walks by systematically selecting an Allan variance-informed
window length, without the need to rely on heuristics or
any prior knowledge of signal and noise characteristics. The
proposed method can be deployed for a vectorial formulation
of the state space as long as the white noise processes are
uncorrelated across all dimensions. As a result, several appli-
cation areas can benefit from this approach. The closed-form
solution and knowledge that the Allan variance-informed
characteristic timescale is indeed the optimal averaging win-
dow length lends additional confidence to practitioners for
using this method in real-world applications.

Fig. 5. Characteristic timescale estimation error, i.e., the difference between
the timescale minimizing AVAR in (18), m̂c, and the one minimizing the
estimation error in (11), mc, versus length of the measurement signal n.
For this particular result we set σw = 1 and σv = 2. Also at each signal
length, the results have been averaged over 100 Monte Carlo realizations.
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