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Abstract: This work develops algorithms demonstrating fast implementations of Allan variance
(AVAR) for regularly and irregularly sampled signals. AVAR is a technique first developed to
study the frequency stability of atomic clocks. Typical AVAR algorithms calculate changes in
means between differently-sized groupings of data and thus are useful in many data aggregation
processes: to select the appropriate window length or timescales for estimating a signal’s moving
average, to find the minimum variance of a signal, or to estimate the change in variance of a
signal with complex noise contributions as a function of the number of collected data points.
Unfortunately, AVAR typically involves very large signal lengths, yet the typical time required to
compute AVAR increases quickly with the length of the time-series data. This paper presents a
recursive algorithm inspired by the Fast Fourier Transform (FFT), specifically data organization
into power-of-two groupings. This enables a fast AVAR implementation, called FAVAR, shown
first for regularly sampled data. The results show a computational speed increase of three orders
of magnitude versus typical AVAR calculations for data lengths often used with AVAR. Next, the
FAVAR algorithm is extended to compute AVAR of irregularly sampled data by modeling these
data as weighted but regularly sampled data clusters. Finally, this work analyzes Dynamic Allan
variance implementations of FAVAR, called D-FAVAR, wherein AVAR is calculated at every
timestep to capture window-varying statistical properties of the data stream. The recursion
methods used in FAVAR, when extended to compute D-FAVAR, further increase computational
speed by an additional factor of ten compared to computing the FAVAR at every timestep.
They result in approximately four orders of magnitude speed improvements versus repeated
calculation of AVAR with typical methods. These fast algorithms are demonstrated on signals
that illustrate classical Allan variance curves, and the results agree with the classical AVAR
formulations within computational accuracy.
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1. INTRODUCTION

variance of a signal, or to estimate the change in variance
of a signal with complex noise contributions as a function
of the number of collected data points. The motivation
of this work is to minimize AVAR computational times,
particularly for signals with a large number of data points.

Allan variance (AVAR) is a technique first developed to
study the frequency stability of atomic clocks, see Allan
(1966). Typical AVAR algorithms calculate changes in
means between differently-sized groupings of data and

thus are useful in many data aggregation processes: to
select the appropriate window length or timescales for
estimating a signal’s moving average, to find the minimum

* This material is based upon work supported by the National
Science Foundation under grant no. CNS-1932509 “CPS: Medium:
Collaborative Research: Automated Discovery of Data Validity for
Safety-Critical Feedback Control in a Population of Connected
Vehicles.”

There are many variations in AVAR calculations. For
example, AVAR for missing and irregularly sampled data
is described in Sesia and Tavella (2008); Haeri et al. (2021).
A detailed study on noise modeling and characterization
of several noise types using AVAR was presented in Jerath
et al. (2018). In some signals, the statistical properties of
the noise change with time, and so Dynamic Allan variance
(DAVAR) was developed; for example, DAVAR is used to
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represent the time-varying stability of a clock, see Galleani
and Tavella (2003). In simple terms, DAVAR is the AVAR
evaluated at every time-instant over a moving window,
as in Galleani and Tavella (2009). DAVAR allows, for
example, a dynamically-changing window to be calculated
for data whose variance is a function of an operating
condition such as in Haeri et al. (2021).

Evaluation of AVAR and DAVAR involves calculating
means over different correlation intervals or window
lengths. So the time to evaluate AVAR and DAVAR in-
crease with data length. A recursive algorithm for assessing
DAVAR of regularly sampled data was presented in Gal-
leani (2010). It was observed that the recursive DAVAR
is about 400 times faster than the standard computation
for a data length of 10,000. There is little work on efficient
computation of AVAR or DAVAR, especially for irregu-
larly sampled data. This work fills this gap by presenting
fast algorithms that compute AVAR and DAVAR of both
regularly sampled and irregularly sampled data.

The work herein exploits the significant similarities be-
tween the calculation of the fast Fourier transform and
Allan variance. Specifically, the results of this paper utilize
the power-of-2 structure of the Fast Fourier Transform
(FFT) to identify improvements in AVAR calculations. To
illustrate the similarities, note that the FFT evaluates the
Fourier transform using a recursive process of multiplica-
tion followed by addition, thereby considerably decreasing
the computation time (Cooley and Tukey (1965); Brigham
and Morrow (1967)). The results of this paper show that
AVAR calculations can employ a similar recursive pattern
of addition followed by division/multiplication across win-
dow lengths.

This paper is motivated by a project requiring real-time
signal analysis for autonomous vehicles aggregating infor-
mation in space and time via 2-dimensional AVAR. The
2-d application of AVAR is nearly identical to 1-d AVAR.
For simplicity, this article focuses on 1-d implementation
using example signals with a random walk and white noise
properties that are pervasive in real systems. This article is
organized as follows: Section 2 presents fast algorithms to
calculate AVAR and DAVAR of both regularly and irreg-
ularly sampled data. In Section 3, the fast algorithms are
compared with classical AVAR methods to demonstrate
the significant improvements in computational speed and
accuracy.

2. ALGORITHMS
Four fast algorithms to evaluate AVAR and DAVAR of

both regularly and irregularly sampled data are presented
in this section.

2.1 Fast AVAR of reqularly sampled data
AVAR of regularly sampled data {y;} (i =1,2,...,n) as

a function of correlation interval or window length, m, is
given by equation (1) (Allan (1966)).

oA lm] = SEl(@k ~ )] 1)

where g, is given by equation (2).

?kZ%lz Yi (2)

The expectation operator in equation (1) may be approxi-
mated, so that the AVAR can be evaluated using equation
(3) (Allan (1987)).

N
o4[m] = m k:;ﬂ(gk — Tk-m)’ (3)

where N is the data length.

Algorithm 1, FAVAR, is a fast algorithm to evaluate the
AVAR of regularly sampled data. It is implemented by
utilizing 7 for a window length, m, to calculate g; for
a window length, 2m, thereby reducing the total number
of computations. It is implemented at eighth line of the
FAVAR algorithm. The recursion across window lengths
for a data length of seven is shown in Fig. 1.

Algorithm 1 FAVAR
1: Truncate the data {y;} (i=1,2,...
than the nearest integer power of 2 to yield data length
N=2+1(peZ").

,n) to one greater

2: Set the initial window length m = 2.

3: Initialize the vector v and its length [,:

4 V= [Yn—N41 Yn-N+2 --- yn—ﬂT

5: I, =N —1

6: while m < 2P~1 do

7 Update v and [,:

8: v<0.5- ([’Ul Vg ... ’Ulv_%}T—‘r
i1 vgae oo ]T)

9: ly <1, — %

10: Update the vectors v/ and v’:

11: v = [vmi1 Va2 - v

12: vl= (v vg ..o

13: Calculate AVAR for a window length m:
ly—m

= 2(Ni2m) > (”jf —v})?

15: Update window length:

16: m < 2m

17: end while

14: 0?4 [m]

Fig. 1. FAVAR algorithm: Recursion across window
lengths.

2.2 Fast AVAR of irreqularly sampled data
AVAR of irregularly sampled data can be evaluated using
equation (4) (Haeri et al. (2021)).

2

oalr] = 2215% %:Wt(?t — G—r)? (4)
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where the summation is performed on a finite set of
instances t € S. g and w; are given by equation (5a) and
(5b) respectively.

B | Z ytn |Ct‘ # 0
U = yf eC, (5a)
0, |C:] =0
= |G| |C—7| (5b)

where Cp = {y;, : t — 7 < t; < ¢} and |Cy| is cardinal
number of the set C;.

It can be shown that irregularly sampled data can be mod-
eled as weighted regularly sampled data. Let us consider
that the interval [t—7,t) contains p evenly spaced intervals
and the 4, interval contain w; data points. Then equation
(5a) can be rewritten as equation (6) and |Cy| = Y7 w;.

P w; 1 p B
=5 Zwiei (6)
=1Wi o

U= 5 2 DY =
where y; is the j;, data point in the iy, interval and

i=1 Wi ;= j=1
{0;,w;} represents processed irregularly sampled data.

And 6, is given by equation (7).

1 =
- yl'a wj 7& 0
w2 ()
O, w; = 0
Algorithm 2, FAVAR-I, is an extension of FAVAR to

calculate AVAR of irregularly sampled data by modeling
the data as regularly sampled weighted data.

2.8 Fast DAVAR of regularly sampled data

DAVAR for regularly sampled data can be evaluated using
equation (8) (Galleani and Tavella (2009)).

1 n
TN o Tk = Gr—m)?®  (8)
2(N - 2m) k:n—%—i:-?m-&-l (

where n is the instant at which DAVAR is evaluated, and
N is the horizon length or data length for calculating
AVAR.

Change in DAVAR between two successive instances is
given by equation (9).

0’?4 [n,m] =

o4ln,m] = o%[n —1,m]+
ﬁ((gn - gnfm)2 - (ganJr?m - Zjan+m)2) (9>

Algorithm 3, D-FAVAR, shows the computation of DAVAR
of regularly sampled data. DAVAR is initialized using
FAVAR and the recursion across window lengths is im-
plemented using equations (10a), (10b).

1

gn,Zm = i(gn,m + gn—m,m) (10&)
_ 1 _
Yn—N+2m,2m = i(yn7N+2m,m + yaner,m) (]-Ob)

where yi , is y for a window length m.

Algorithm 2 FAVAR-I

1: Truncate the processed data {0;,w;} (i = 1,2,...,n)
to one greater than the nearest integer power of 2 to
yield data length N =27 +1 (p € ZT).

2: Set the initial window length m = 2.

3: Initialize the vectors v, w and their length [,:

4: v = [Hn N+1 9n N+42 --- 9n 1]T

5 W = [Wy_Ni1 Wy Ni2 -+ W 1)L

6: l,=N—1

7. while m < 2P~1 do

8: Update w, [,, and v :

9: s = [wivy wave ... wlv_%vl“_%]TJr
[w%Hv%H w%+2v%+2 e 'LUZV'UZU}T

10: W [wy wy ..owy,—m] T4
[w%+1 ’w%_;,_g N wlv}T

11: ly <1, —F

12: v:[%%...%}T

13: Update the vectors v/, w/, v®, and w?:

14: v = [vma1 Va2 - v )T

15: w! = [Wni1 Wmao .. wy,]T

16: vl =1[vyve ... v, )T

17: wl = [w; wy ... wy,_m]T

18: Calculate total weights and AVAR for a window
length m:

19: w[m]= Zé” 3" w;u}b

200 ohm] = ot Z I wlwd(v] —ob)?
21: Update window 1ength

22: m < 2m

23: end while

2.4 Fast DAVAR of irreqularly sampled data

Algorithm 4, D-FAVAR-I, shows the evaluation of DAVAR
of irregularly sampled data. DAVAR is initialized using
FAVAR-I, and the recursion across window lengths is
implemented similar to D-FAVAR.

3. RESULTS

A summary analysis showing the accuracy and computa-
tional speed of all the four fast algorithms is presented
below. FAVAR and D-FAVAR algorithms are tested on
both regularly and irregularly sampled signals each of
length 2'® +- 1. A regularly sampled parent signal in Fig. 2
is generated, at a higher frequency of 10 times faster, by
corrupting random walk signal with white noise. The first
half of the signal has different noise properties compared
to the second half of the signal. Random walk and white
noise are generated as presented in Jerath et al. (2018).
A regularly sampled signal to test FAVAR and D-FAVAR
algorithms is obtained by down-sampling the parent sig-
nal at regular intervals. An irregularly sampled signal to
test FAVAR-I and D-FAVAR-I algorithms is generated by
down-sampling the parent signal at irregular intervals.
FAVAR algorithms are tested on the random walk and
white noise but are applicable for other types of noise like
flicker noise, quantization noise, and rate random walk.
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Algorithm 3 D-FAVAR

1:

3: Set the initial window length m = 2.
4: Initialize the vectors v° and v°©:

Initialize AVAR using FAVAR algorithm for data
length equal to the horizon length N. The horizon
length is of the form 27 + 1 (p € ZT).

Truncate the data {y;} (i = 1,2,...,n) to one greater
than the horizon length N + 1.

Algorithm 4 D-FAVAR-I
1: Initialize AVAR using FAVAR-I algorithm for data
length equal to the horizon length N. The horizon
length is of the form 2P +1 (p € ZT).
2: Truncate the processed data {0;,w;} (i = 1,2,...,n)

to one greater than the horizon length N + 1.
3: Set the initial window length m = 2.

5 v=05- N Yn—N+1 --- _2T+ L
(-~ yn—n+ Yn T] 4: Initialize the vectors v°, w°, v®, and w¢:
[yn—N+1 Yn—N+2 --- yn—l] ) - T
o T 5 W = [Wp—N Wn_N+1 --- Wp—a]" +
6: v°=[v; v3 ... UN_2] T
e __ T [wn—N-&-l Wp—N+2 --- wn—l]
nVe=lovo o o) 6: s = [w 0 w 0 W20, o] T+
8: while m < 2p_1 do : - n—N n—iN n—N+1 n—Nj—l n—2 n—27 ,
oo [(Wr—N4+10n—N+1 Wn—N4+20n-N+2 -« Wyp—10p_1]
9: if 2==m then 5 s Sno11T
10: b = ’Uf nv= [wil wy T wN—l]T
11: vl =g 8 v =[v1v3 ... UN_2]
12: oIt = Uf 9: wo = [w1 w3 ... ’LUN_Q]T
13 ot = US 10: v¢ = ['UN—l UN—-3 ... ’UQ]T
. e _ T
14: else 11: Wh] [wn -1 ;Ul\lf—j Coe w2
: i < 2P~
15: 0P~ 0.5(uf~ +vb7) 12:w ffe2m =2 N o
16: pI= = LS e 13: if 2 ==m then
0.5m Jj=%+1"J 14: wb_ — w°
17: vt 050!t + o) s b ot
. b-‘r _ 1 m e : v - Ul
18: VT = G e m 1 Y 16 wf— = we
19: end if o P 02
. : vl =w
20: Update DAVAR for a window length m: s it 2@
2 2 : we =Wy
21: o4n,m] =o4[n — 1, m]+ . e
sy (07 = oP)? — (0= = b7)2) Y
2(N—2m) 20: wbt = we
22: Update window length: bt 2
21: v’ = 0§
23: m 4 2m
. 22: else
24: end while b Feo e b b
23: s =w! v Fww
24: wb™ — wf™ Fwb
b
25: vhT = 2
. f— — m o
26: wl T = Z’j:%_i_l w§
o, WIS
P IS ok
28: sft = wfToft 4 wbtdt
E 29: w/t — w/t bt
20 I+
1} 30: vft = i),ur
. b+ _ M
Y
Ztm wivg
32: ot ==
33: end if
80 : : : : ‘ ‘ 34: Update total weights and DAVAR for a window
0 2000 4000 6000 8000 10000 12000 14000 1ength me
Time, [s] :
35: wn,m] =wn —1,m] +w/twtt —wf—wb=
Fig. 2. Regularly sampled parent signal corrupted with 3. o%[n,m] = [1 ](w[n —1,m]o}[n — 1, m]+
wln,m

white noise. 0.5(w/twbt (v/+ —0P)2—w/ Wb~ (v~ —vb7)?))

The absolute difference between AVAR of a regularly . Update window length:

sampled signal evaluated using standard and FAVAR al-

38: m < 2m

gorithms is within the computational accuracy as in Fig.

3(b). A similar trend in computational accuracy is observed

39: end while

with FAVAR-I, D-FAVAR, and D-FAVAR-I algorithms,
each showing absolute errors less than 10~ relative to
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signals larger than 10~'. The AVAR plots for both reg-
ularly and irregularly sampled signals are shown in Fig.
3(a) and Fig. 4 respectively.
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Fig. 3. (a) AVAR of regularly sampled data calculated
using standard and FAVAR algorithms. (b) Absolute
difference between AVAR calculated using standard
and FAVAR algorithms.
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Fig. 4. AVAR of irregularly sampled data calculated using
standard and FAVAR-I algorithms.

In computational speed, FAVAR is about 1000 times faster
than the standard AVAR algorithm (eq. (3)) for a data
length greater than 10,000, as shown in Fig. 5(a). And
FAVAR-I is about 3500 times faster, as shown in Fig.
5(b). Irregularly sampled data need to be processed before
using FAVAR-I. Even with the pre-processing, FAVAR-I
performs markedly faster than the standard algorithm for
long data lengths. However, the additional FAVAR steps
and pre-processing for FAVAR-I creates overhead that
penalized very short signals; it is found that the standard
AVAR algorithms actually perform better than FAVAR
algorithms for data with a length less than 50, especially
for irregularly sampled data.

The AVAR of the first and second halves of the sig-
nal, when performed separately, reveals more information
about noise properties than the AVAR of the complete
signal, as shown in Fig. 6, 7. D-FAVAR is able to estimate
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Fig. 5. Ratio of wall time is the time taken for calculating
AVAR using standard algorithms divided by the time
taken by FAVAR algorithms. (a) Regularly sampled
data. (b) Irregularly sampled data.

this change in noise behavior; this stresses the importance
of DAVAR and the need for fast algorithms to evaluate
DAVAR, such as D-FAVAR and D-FAVAR-I.
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Fig. 6. The circles and asterisks represent the AVAR of the
first half of the signal whereas diamonds and points
represent the AVAR of the second half of the signal.
The dashed line represents the AVAR of the complete
signal.

Both D-FAVAR and D-FAVAR-I were found to be 10
times faster than evaluating AVAR using FAVAR /FAVAR-
I at every time-instant; the results are shown in 8.
FAVAR algorithms do perform better than D-FAVAR al-
gorithms for small data lengths, for horizon lengths less
than 1000. FAVAR algorithms estimate AVAR/DAVAR
for both regularly and irregularly sampled data faster
with the same memory used by the standard algo-
rithms. All four fast algorithms were implemented in
MATLAB R2019b on Windows 10. The computer con-
figuration was an i7-1065G7 processor with a 1.3GHz
clock and 8.00 GB RAM. MATLAB implementation
of all the four algorithms presented above is avail-
able at https://github.com/ForgetfulDatabases/FDB_
AVAR_Based_Algorithms.git.
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Fig. 7. The circles and asterisks represent the AVAR of the
first half of the signal whereas diamonds and points
represent the AVAR of the second half of the signal.
The dashed line represents the AVAR of the complete
signal.
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Fig. 8. Ratio of wall time is the time taken for calculating
DAVAR using FAVAR algorithms divided by the time
taken by D-FAVAR algorithms. (a) Regularly sampled
data. (b) Irregularly sampled data.

4. CONCLUSIONS

The computational cost for evaluating AVAR and DAVAR
typically increases significantly with data length. Four fast
algorithms are presented in this work to evaluate AVAR
and DAVAR of both regularly and irregularly sampled
data. These fast algorithms are three to four orders faster
than the classical formulations of AVAR/DAVAR for data
lengths of about four orders or more. And the absolute
errors between fast and standard algorithms are within
the computational accuracy. For an illustration of the sig-
nificant impacts of algorithm improvement, the standard
AVAR algorithm applied to irregularly sampled data of
length 2'% 4 1 took 2.68 hours, whereas FAVAR methods
took 0.53 seconds.
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