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Abstract

Estimates of species’ ranges can inform many aspects of biodiversity
research and conservation-management decisions. Many practical
applications need high-precision range estimates that are sufficiently
reliable to use as input data in downstream applications. One solution
has involved expert-generated maps that reflect on-the-ground field
information and implicitly capture various processes that may limit
a species’ geographic distribution. However, expert maps are often
subjective and rarely reproducible. In contrast, species distribution
models (SDMs) typically have finer resolution and are reproducible
because of explicit links to data. Yet, SDMs can have higher uncertainty
when data are sparse, which is an issue for most species. Also, SDMs
often capture only a subset of the factors that determine species
distributions (e.g., climate) and hence can require significant post-
processing to better estimate species’ current realized distributions.
Here, we demonstrate how expert knowledge, diverse data types, and
SDM s can be used together in a transparent and reproducible modeling
workflow. Specifically, we show how expert knowledge regarding
species’ habitat use, elevation, biotic interactions, and environmental
tolerances can be used to make and refine range estimates using
SDMs and various data sources, including high-resolution remotely
sensed products. This range-refinement approach is primed to use
various data sources, including many with continuously improving
spatial or temporal resolution. To facilitate such analyses, we compile
a comprehensive suite of tools in a new R package, maskRangeR, and
provide worked examples. These tools can facilitate a wide variety
of basic and applied research that requires high-resolution maps of
species’ current ranges, including quantifications of biodiversity and
its change over time.

Highlights

e Species distribution models (SDMs) are widely used
to estimate species’ distributions; however, there are
drawbacks when data are sparse, with implications
for rare and threatened species.

e Expert knowledge—which we define broadly to include
understanding of species’ habitat use, dispersal barriers,
biotic interactions, and other factors that limit their
distributions—is a mostly untapped resource for post-
processing statistically modeled range predictions to
increase spatial and temporal accuracy.

e We formalize a framework to incorporate expert knowledge
to reproducibly generate species’ realized distribution
estimates. Additionally, we operationalize a workflow with
a new R package, maskRangeR.

e maskRangeR facilitates improved transparency and
reproducibility of integrating diverse expert knowledge
into refined estimates of species’ ranges at high spatial
and temporal resolutions to better describe geographic
distributions for poorly sampled species, estimate
biodiversity, and inform conservation decisions.
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Merow et al.

Operationalizing expert knowledge in SDMs

Introduction

Many important biological and biogeographical
applications require reliable information on species’
current geographic distributions (Whittaker et al. 2005).
Ideally, data regarding species ranges would cover the
entire geographic extent of the realized distribution at a
fine spatial resolution and include a temporal resolution
useful for detecting changes. However, the majority
of species are known from very few localities (e.g.,
(Soberdn et al. 2000)), a common problem termed the
‘Wallacean shortfall’ that can make constructing data-
intensive species distribution models (SDMs) prohibitive
for many species (Di Marco et al. 2017). This highlights
the need for tools that can improve spatial and temporal
characterizations of species’ distributions. Such advances
will enable more comprehensive and precise biodiversity
assessments, particularly for conservation planning. For
example, as low-data species are concentrated in some
of the most biodiverse places in the world, the ability to
improve taxonomic coverage of distribution knowledge
and increase its spatial and temporal resolution is
critical to understanding, predicting, and conserving
biodiversity globally (Heberling et al. 2021, Jetz et al.
2019, Jung et al. 2020).

Expert knowledge may be essential to estimate
distributions for species with only limited occurrence and
ecological data available. We define expert knowledge
broadly to include information regarding species’
habitat use, dispersal barriers/accessible areas, biotic
interactions, and other factors limiting their ranges. Expert
knowledge could be reflected in something as simple as
a hand-drawn map of accessible areas to reflect known
dispersal barriers. Or it could be reflected in remotely
sensed land use/land cover data that identify obligate
habitat types (e.g., forests), or in conjunction with a
threshold that indicates minimum/maximum suitable
values of such a layer (e.g., minimum percent of forest
cover). Alternatively, expert knowledge might constitute
a known physiological threshold (e.g., thermal or freeze
tolerance) based on lab experiments that can be used in
conjunction with environmental layers to identify suitable
locations. Such information is a largely untapped resource
for post-processing statistically modeled range predictions
to increase spatial and temporal accuracy.

Expert knowledge can include information on the
focal species’ environmental constraints: elevational
limits, associated habitat types and land use/land
cover, necessary levels of habitat quality, tolerance
for anthropogenic influence, required distance from
resources, key competitors or other biotic interactors,
dispersal limitations, and historical contingencies
(Anderson 2012, Araujo and Peterson 2012, Ocampo-
Pefiuela and Pimm 2014, Barve et al. 2011, Anderson
and Raza 2010). Expert knowledge for a single
species is often based on informal observations of
field biologists that have not been entered into any
database. Consequently, such information is a useful
complement to the large online data aggregators that
provide spatially precise observations from natural
history museums and citizen scientist networks
(Anderson et al. 2020). For data-limited species, we
address the use of expert knowledge for determining:

a) which abiotic, biotic, and/or spatial variables are
important for estimating species’ distributions either
in the absence of —or ideally in conjunction with—a
statistical model; and b), which values of those
variables indicate that a given area is suitable and/or
occupied. Here, we employ such information in a
variety of approaches to refine SDMs.

Whether species distributions are initially estimated
using expert-drawn maps, delimiting polygons (e.g.,
convex hulls), SDMs (Ocampo-Pefiuela et al. 2016,
Brooks et al. 2019, Peterson et al. 2018), or some
combination of these (Merow et al. 2016, Merow et al.
2017), all benefit from some form of post-processing to
improve the estimation of currently occupied locations.
Indeed, recent work has shown that overestimation of
range size from SDMs remains a problem in conservation
applications (Velazco et al. 2020). The process of refining
species range maps with expert-derived filters can be
interpreted as moving from potential distributions
towards realized distributions. Information derived
from expert knowledge is often useful for determining
unsuitable and unoccupied locations, and thus can
help refine estimates (Veldsquez-Tibata et al. 2019,
Calixto-Pérez et al. 2018, Skroblin et al. 2021). Generally,
the initial maps (especially SDM predictions) are best
interpreted as potential distributions, since other factors
restrict species’ distributions besides abiotic conditions.
Such factors include dispersal limitations, historical
contingencies, competitive interactions, social dynamics,
and human modification of habitat. Realized distributions
constitute those locations that are actually occupied
by the species and are usually smaller than potential
distributions. Importantly, relevant expert knowledge
is typically related to non-climatic factors, making it
complementary to SDMs commonly fit with climatic
variables (Guisan and Zimmermann 2000, Guisan and
Thuiller 2005, Elith and Leathwick 2009). Beginning with
an expert-drawn map or SDM, we can use a series of
filters to refine estimates of realized distributions based
on expert knowledge (Anderson and Martinez-Meyer
2004), enabling the calculation of range sizes and other
useful metrics of biodiversity and its change.

An example of documented, reproducible expert
knowledge in action is a recent innovation by the
Colombia Biodiversity Observation Network (BON)
through the tool BioModelos (Velasquez-Tibata et al.
2019). The BioModelos user community of scientists
employs expert opinion to clean occurrence data and
then refine resulting SDM predictions by identifying
regions where the model either over- or underpredicts
the realized distribution. This template, developed on
a national scale, is primed to be applied more broadly
using the principles and tools we develop below.
We build upon these efforts in partnership with the
Colombia BON by operationalizing tools to refine range
maps in various transparent and reproducible ways.
These tools can form the basis for supporting many
applied conservation and management uses, including
biodiversity assessments, reintroduction plans, land-use
planning, and assessing progress toward global targets
and biodiversity offset manuals (Veldsquez-Tibata et al.
2019, Aradjo et al. 2019, Khoury et al. 2019).
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Here, we formalize a conceptual framework and
workflow to integrate expert knowledge into estimates
of species’ current distributions and develop code
to make this process transparent and reproducible
according to modern open science standards
(Wolkovich et al. 2012). We focus on methods that
begin with range predictions from either expert-drawn
maps or SDMs, and then employ expert knowledge
to refine these predictions using a series of filters
(or geographic ‘masks’) to better estimate current
realized distributions. Our approach aims to define
methods for operationalizing expert knowledge, often
by harnessing available in situ and ex situ biological

and environmental data regarding factors identified
as important by experts. We provide an R package,
maskRangeR, that automates processes within this
workflow, thus improving the transparency and
reproducibility of integrating such knowledge into
refined estimates of species’ ranges at high spatial
and temporal resolutions.

Operationalizing expert knowledge

Our approach incorporates expert knowledge
as either a complement or alternative to statistical
models (Fig. 1). We advocate that statistical models

1. Input map 2. Expert / : 3. Layers ‘
Chooseinitial range estimate qualitative info ! Obtain focal spedies’ ocarrence
e bk rirtiie andervironmental layers
focal species :

4. Threshold
Determine thresholds defining
suitableor ooapied habitats

6. Sensitivity
Baminesenstivity of steps 1-5
and repeat as needed.
= 4
- i -
."-...'
-". &

Figure 1. An overview of the steps in the maskRangeR workflow. 1) Input map: For example, choose a map from a previously built
species distribution model (SDM) prediction as an initial range estimate. 2) Expert information: Gather information (such as habitat
associations) on the species’ distribution to inform Steps 3 and 4. 3) Filtering layers: Obtain/generate environmental layers of abiotic
or biotic factors that influence the species’ distribution but were not considered in building the SDM, as well as (optionally) occurrence
records for associating with the environmental layers. 4) Generate a mask: Determine thresholds for those layers (not the SDM) defining
suitable or occupied habitat using either expert opinion, environmental values at known localities, or both. 5) Mask: Generate a binary
filter by indicating values of layers above/below (as appropriate) the threshold in Step 3. 6) Sensitivity Analysis: Sensitivity of Steps 2-5
should be examined with respect to each expert decision to either synthesize across competing plausible scenarios or to determine
the most plausible scenario and assess its dependence on key assumptions. After the sensitivity analysis, any previous step can be
repeated with additional layers, thresholds, and masks as needed. The output from one procedure (Steps 1-5) can be used as the input
for another. Images shown are for the first use case described in the text (the olinguito; Bassaricyon neblina).
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are preferable when sufficient occurrence data are
available, as they should reconstruct expert-derived
relationships if the data support them. For example,
forest cover may be a limiting factor for a species’
distribution; therefore, a measure of it should ideally
be incorporated as an SDM predictor variable along
with aspects of climate when the desired final result
is a map of the species’ current range. However,
when sufficient occurrence data are not available to
appropriately characterize a limiting factor, expert
knowledge can be crucial for identifying the bounds
of the species’ tolerances for such variables. Below,
we describe common scenarios in which sufficient
occurrence data are lacking or statistical models would
be inappropriate or excessively complex, and in each
case outline how expert knowledge can instead be
combined with existing data to refine range estimates.

We partition the process into a series of ‘expert
filters’ applied to an initial range estimate, which we
term an ‘input map’ (see Methods, below). These filters
define various attributes of suitable environmental
conditions, habitat requirements, and other limiting
factors (e.g., dispersal barriers); when combined
together, they result in what we term an ‘expert-refined
map.” For example, one filter may define a reasonable
geographic domain (thereby filtering out the rest of
the globe from consideration), a second may define
suitable elevational limits, and a third may define
minimum forest-cover requirements. Any locations
that pass through all three filters are considered
amenable for the species and are collectively denoted
as the expert-refined map. In this way, using a series
of filters can be considered analogous to the strictest
implementation of ensemble modeling (Thuiller et al.
2009), where complete agreement is required between
all component models (i.e., the filters) to denote a
location as suitable/occupied.

This range-refinement approach is primed to use
various data sources, including many with continuously
improving spatial or temporal resolution. Products
derived from remote sensing are increasingly
available at high spatial resolutions. They can provide
environmental information key to improving species’
distribution knowledge and quantifying how species’
distributions respond to environmental change over
space and time. For example, new environmental data
are coming online (e.g., soil moisture from NASA’s
SMAP project?), while others are increasingly resolved
at finer resolution (e.g., forest structure based on
NASA’s GEDI mission?). Habitat characterization (e.g.,
classification, metrics, and continuous fields/fraction
cover) is particularly critical because it tends to vary
more rapidly over a fine spatial resolution than the
climatic data often used to characterize distributions.
Habitat information may help improve rare species’
predictions, as their distributions are more likely to be
limited by habitat type than by climate (Brooks et al.
2019). Expert knowledge of how these data sources
caninform species’ distributions is critical for improving

1 https://smap.jpl.nasa.gov/
2 https://gedi.umd.edu/

range estimates, particularly for poorly sampled species
for which statistical models are not viable.

Below, we present three use cases that represent
common scenarios for such a workflow, and for
each of them demonstrate how expert knowledge
can be operationalized to refine or define range
predictions. Although we provide a specific worked
example for each of the use cases using an SDM or an
expert-drawn map, either could be used as the input
map. The first use case refines an SDM prediction
based on environmental tolerances characterized
through remote-sensing data (e.g., forest cover). The
second refines expert-drawn maps using inferred
environmental tolerances via a sequential filtering
approach. The third removes biotically unsuitable
areas (i.e., within the range of a competitor) from SDM
predictions of congeneric, parapatric species. While
the masking procedures for all three use cases have
been used in various specific circumstances to generate
or refine maps (Peterson et al. 2018, Brooks et al.
2019, Anderson and Martinez-Meyer 2004, Kass et al.
2021), we offer a generalized operational framework
to conform these processes to modern open science
standards.

Materials and Methods

Distribution maps can be generated or refined by
a variety of mechanisms depending on the level of
detail of the expert’s knowledge and data available.
Each of the following examples refines an initial
range estimate using expert knowledge (without
statistical inference) to determine which biotic or
abiotic variables limit a species’ distribution and/or
what ranges of these variables constitute suitable
conditions. In the literature, the term ‘expert map’
generally refers to a map composed of polygons that
have been drawn by hand or with GIS software; for
clarity, we refer to these with the term ‘expert-drawn
map’ (e.g., one option of the input into the filtering
steps). As mentioned above, we generalize the concept
of harnessing expert information by terming the output
an ‘expert-refined map’: a map that incorporates any
type of expert knowledge, as in post-processing via the
three use cases described below. This generalization
anticipates the many types of expert knowledge that
are challenging or impossible to incorporate into a
statistical model or to readily draw on a map.

Step I:An input map

The first step consists of selecting or building a
preliminary input map to refine in subsequent steps.
We focus on two cases where input maps are most
readily available: expert-drawn maps and SDMs.
However, this approach can generally be applied to
range maps derived from any type of previous model
which is (ideally) independent of the information used
for expert filtering (including convex hulls (Busby
1991), phenological models (Chapman et al. 2014), or
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demographic models (Merow et al. 2014, Merow et al.
2017), among others).

For many rare and endangered species, there may
be limited observations available to use as inputs for an
SDM. Rather, IUCN openly serves expert-drawn polygon
maps for most vertebrate species and other taxa as they
become available. In these cases, expert maps may be
the only estimates of a species’ range. However, these
are often not reproducible, are difficult to update as
new data become available, and have a precision that
is too coarse to be meaningful for many conservation
activities (Ocampo-Pefiuela et al. 2016, Hurlbert and
Jetz 2007, Rotenberry and Balasubramaniam 2020,
Di Marco et al. 2017). Nevertheless, expert-drawn
maps are still valuable, as they often reflect a range
of processes, including habitat selection, dispersal
limitation, and biotic interactions that must be
considered to estimate a species’ realized distribution.
Expert maps are often successful at delimiting areas
beyond polygon boundaries as outside the species’
distribution, but because they are typically drawn at
a coarse spatial resolution, they tend to suffer from
inferred false presences within polygon boundaries
(e.g., (Mainali et al. 2020)). Hence, they are prime
candidates for further refinement based on high-
resolution data filters guided by expert knowledge.

In the absence of an expert-drawn map (particularly
for a very poorly sampled or rare species), one might
coarsely define a relevant geographic domain where
the focal species is hypothesized to occur. This domain
might constitute a biome (within a conscripted
geographic region) or an ecoregion to impose rough
boundaries based on the types of communities in
which the species is expected to occur, a political
unit where interest lies in refining range knowledge,
or a buffered area around known occurrences. In
such cases, our expert-based workflow describes a
formalized protocol for generating a map based strictly
on expert knowledge and harnessing relevant available
data (i.e., without statistical inference).

SDMs constitute the third common type of input
map. They can inform a wide range of applications for
biodiversity and conservation, including prioritizing
target species and high-diversity areas as well as
guiding surveys, reintroductions, and monitoring
efforts (e.g., Raxworthy et al. 2003). However,
many challenges remain to maximize SDM utility
for conservation and other applications (reviewed
in (Urbina-Cardona et al. 2019, Villero et al. 2017)),
including issues of small sample sizes, sampling
bias, and interpolation/extrapolation to unsampled
locations. Nevertheless, SDMs may be available as
part of published studies from large data aggregators
such as the Botanical Information and Ecology Network
(BIEN; >300,000 plant species*), or from users building
their own SDMs with the intention of further refining
them with expert knowledge. SDMs excel at predicting
species’ potential distributions and hence are ripe

for refinement via expert knowledge to make better
estimates of realized distributions.

Generally, SDMs are preferable to expert-drawn
maps as an input in our workflow. They directly use
observations in a reproducible and largely objective
way and often reflect the experience of many people
(data collectors), in contrast to expert-drawn maps that
often involve the subjective discretion of a single or
few individuals. However, occurrence data may exhibit
sampling bias, which can have considerable effects on
inferred ranges (Phillips et al. 2009, Yackulic et al. 2013).
In contrast, the implicit assumption associated with
expert maps is that bias related to variation in knowledge
across the region is low. Further, sufficient sample sizes
for fitting SDMs may not be available, leaving expert
maps as a better option. Nevertheless, if SDMs are
feasible, they can provide additional information on
variation in suitability (whereas expert maps are typically
binary), make predictions to unsampled areas, and be
used to quantify uncertainty in range estimates.

Step 2: Expert knowledge and estimating thresholds

Expert knowledge can often be represented as a
conceptual model for binary classification, usually
relating to a single variable (e.g., forest cover,
occurrence of competing species, dispersal) that
indicates species’ presence or absence. For example,
a montane species may be known to occur only above
3000 m elevation, an invasive species may occur only
in locations with anthropogenic disturbance, a plant
may require serpentine soil, or a forest specialist may
occur only in locations above a critical threshold of
forest cover. Hence, generating a binary filter consists
of identifying relevant filtering layers in Step 3 below
and selecting a suitable threshold that can be used
to omit portions of the study region that are either
unsuitable or unoccupied. In GIS terminology, the
operation of applying such binary filters to a map is
referred to as ‘masking’—thus, implementing these
expert mapping tools corresponds to generating a
collection of masking layers.

We consider two approaches to generating
thresholds that delimit suitable/occupied locations
from unsuitable/unoccupied ones. We refer to the
first approach as ‘expert-driven thresholding’, in which
an expert has a priori knowledge of requirements for
a given filter to distinguish suitable conditions from
unsuitable ones. For example, the elevation limits
often found in field guides for montane species can be
combined with a digital elevation model to refine which
locations are above or below the expert’s threshold
(Ocampo-Pefiuela et al. 2016). Similarly, the expert
may estimate that a grid cell must contain at least
50% forest to be suitable for a forest-obligate species.

A second approach, ‘data-driven thresholding’,
helps an expert determine an appropriate threshold
by overlaying observed presence data on filter layers
(Gavrutenko et al. 2021). This approach involves
first extracting values of the filter layer at presence

3 https://www.iucnredlist.org/resources/spatial-data-download

4 https://biendata.org
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locations, then either choosing a threshold (based on
expert opinion) or suitable quantile from these values
such that the level of omission is acceptable for the
given application. An expert may have knowledge of
habitat requirements but only possess a rough estimate
of the quality of habitat required to distinguish suitable
from unsuitable areas, e.g., the critical threshold of the
percentage of forest cover in a particular area (grid cell)
necessary to qualify as suitable. In this case, known
presence locations of the species can be used to guide
the expert’s estimate of this threshold by using forest
cover data available in those pixels (time-matched to
correspond to the species’ observation). Reliability of
the data-driven thresholding will depend in part on
how well occurrences match environmental data, in
terms of resolution (georeferencing error vs. spatial
resolution) and timing.

Step 3: Filtering layers

In this step, we focus on obtaining relevant layers
(Table 1) for filtering out unsuitable or unoccupied
portions of the initial map from Step 1. Filtering layers
can be either binary or continuous, and this choice
determines how they can be used with the input map,
which we discuss further in Step 5: Masking Methods.

Common data sources on environmental conditions
for post-processing an input map include land use/land
cover (Hurtt et al. 2011), elevation (Robinson et al.
2014) and its heterogeneity (Amatulli et al. 2018)
(https://www.earthenv.org/), habitat type (Tuanmu
and Jetz 2014) and its heterogeneity (Tuanmu and
Jetz 2015), soil type (soilgrids.org), and ecoregion
(Dinerstein et al. 2017). Such information is often
available on a continuous scale of measurement
(e.g., describing the proportion of a grid cell classified
in a given category, such as forest cover, which
can be interpreted to represent habitat quality).
Alternatively, at low spatial resolution such layers

Table 1. Examples of useful large-extent data sources for masking.

Spatial Temporal

Data type Summary Resolution  Resolution Citation
Ecoregion 846 terrestrial ecoregions updated from Various Present (Dinerstein et al.
(Olson et al. 2001) 2017)
Elevation Based on a variety of fused data sets to 90 m Present (Robinson et al.
provide near global coverage 2014)
Land Use/ Fractional land use change used in the 0.5 degrees Annual (Chini et al.
Landcover IPCC assessment 2014)
Forest Cover Forest extent, loss, and gain 30m Annual (Hansen et al.
2013)
Habitat 14 metrics quantifying spatial 1km, 5 km, Present (Tuanmu and
Heterogeneity heterogeneity of global habitat based 25 km Jetz 2015)
on the textural features of the Enhanced
Vegetation Index
Cloud Cover Mean cloud frequency with near global 1km Present (Wilson and
coverage Jetz 2016)
MODIS Active Timing and spatial distribution of fires 1 km/500 m 8 days (Giglio et al.
Fire/Burned Area and their characteristics 2016,
Giglio et al.
2018)
SoilGrids Physical and chemical soil properties 250 m Present (Hengl et al.
estimated for each horizon 2017)
Human Footprint Globally standardized measure of the 1km Annual (Venter et al.
cumulative human footprint based on 2016)
infrastructure, land cover and human
access into natural areas
Human 13 anthropogenic stressors and their 1km Present (Kennedy et al.
modification estimated impacts 2019)
Freshwater Near-global, spatially continuous, and 1km Present (Domisch et al.
metrics freshwater-specific environmental 2015)
variables
Surface water History of annual water detection (1984 30m Present (Pekel et al.
-2019) 2016)
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may simply indicate a majority classification for a cell,
which can be interpreted as a binary map indicating
whether or not a given class (e.g. soil type or land
use) is present (Tuanmu and Jetz 2014). Aggregated
anthropogenic factors, such as measures of human
footprint (Venter et al. 2016) or human modification
(Kennedy et al. 2019), can also be useful for omitting
regions that would otherwise be inferred as suitable
based on environmental conditions.

Biotic interactions often further restrict species
distributions markedly within the environmental
conditions that are suitable (Wisz et al. 2013).
Therefore, knowledge of key interactions between
species is relevant, and the distributions of interacting
species can help to further refine range estimates
of the focal species (Gutiérrez et al. 2014, Anderson
2017, Freeman and Mason 2015). For example, if
a species has obligate pollinators, dispersers, or
other mutualisms, one can use range estimates of
these mutualistic species as a filter (retaining only
the areas where the needed interactor exists). As
another example, an expert may have knowledge of
parapatric boundaries between closely related species
(e.g., competitors) based on an observed lack of co-
occurrence, different habitat requirements, or other
factors leading to mutual exclusion. Based on this
expert expectation of parapatry, one can partition a
region with overlapping range estimates for two or
more species into spatially distinct ranges for each
species (Anderson et al. 2002). This can be particularly
helpful near range boundaries, where the climatic
conditions might be mutually suitable, yet the species
do not co-occur. Rules for partitioning geographic space
among species in such circumstances are described
below with a recently developed spatial approach
based on support vector machines (Kass et al. 2021).

Step 4: Generate a mask from a filter layer and
threshold

A mask is generated by converting a continuous
layer identified in Step 3 to a binary layer by identifying
values above/below the threshold identified in Step
2. Alternatively, in the absence of knowledge of the
specific factor driving occurrence in particular locations
(e.g., Steps 2 and 3 are not possible), experts often
refine the input map by drawing polygons to include/
exclude regions from a species’ range estimate based
on their knowledge (e.g., for areas with high hunting
pressure). This will often be done at a comparatively
coarse spatial resolution. For example, BioModelos
applies this approach to advance distribution
knowledge in Colombia by providing graphical tools
to experts, who then make modifications to existing
maps (Veldsquez-Tibata et al. 2019).

Step 5: Masking methods

We consider three use cases for different
combinations of input maps and ways to apply the
thresholds for filter layers:

1. Binaryinput map and binary filter. In the simplest
case, using a binary filter to mask a binary input map

results in a binary expert-refined range estimate.
For example, an expert-drawn map could be masked
by elevational limits obtained from a field guide.
Alternatively, a binary (thresholded) SDM could be
masked by currently forested areas.

2. Continuous input map and binary filter. Using
a binary filter to mask a continuous input map
(e.g., describing probability of presence or relative
abundance) results in a continuous, expert-refined
range estimate. For example, a continuous input
map, such as an SDM prediction, could be masked
with a binary filter generated from the expert-
defined lower limit of the species’ tolerance for a
human footprint layer.

3. Binary input map and continuous filter. Binary
range estimates (e.g., expert-drawn maps or
thresholded SDM predictions) can be refined
based on continuous filters that describe either
the proportion of a cell that is suitable/occupied or
the corresponding habitat quality. For example, ifa
species is an obligate forest-dweller, a continuous
filter describing the proportion of forest in a cell
can be interpreted as the proportion of the cell
that is suitable. Operationally, it is simplest to use
the input binary map as a mask on the continuous
filter to compute the expert-refined map.

It is usually not advisable to combine both a
continuous input map and a continuous filter in their
raw form (rather, one or the other should be converted
to binary as in Cases 2 and 3 above). Typically, input
maps or filter layers with continuous values represent
probabilities or proportions, but it is often unclear how
these values interact within a cell (i.e., the probabilities
are not independent and their joint distribution is
unknown). Careful applications of fundamental rules
of probability must be considered in order to use these
continuous values effectively; however, the information
needed to know how to apply these rules is often
lacking. For example, if the probability of presence
in a cell is 0.6 and the proportion of forest is 0.5, we
cannot simply assume that the probability of presence
should be reduced to 0.6 * 0.5 = 0.3 using the logic that
only half the cell is actually viable. If the species is an
obligate forest-dweller (i.e., the occurrence probability
is not independent of forest cover), this would imply
that the occurrence probability of 0.6 applies only to
the forested portion of the cell. Yet another possibility
is that the occupied proportion may be between these
values, due to the species’ exclusive preference for
forest. Mathematically, the assumption here is that the
probability of presence and the proportion of forest
are independent, which is biologically unrealistic.
While special cases surely exist that clearly define the
relationships between continuous layers, we do not
consider them further here.

A few special cases of masking techniques can
extend the utility of our proposed framework. Thus
far we have considered a single snapshot of a species’
range. However, time-series of filters may be available in
some cases, which can allow one to estimate temporal
trends in suitable areas. For example, land use/land
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cover products such as forest cover (Hansen et al.
2013) can be available at an annual resolution. In the
examples below, we demonstrate a case where a binary
input map was estimated from a SDM and annual forest
cover layers were then used to estimate changes in
range size over the last two decades.

Step 6: Sensitivity analysis

While many of the approaches presented above
have appeared as applications in various studies,
sensitivity of expert refinements and characterizing
uncertainty in predictions has largely been ignored.
In our expert-refined mapping framework, sensitivity
analyses to modeling decisions involve up to four
types of comparisons, following the steps outlined
above. First, one can compare outputs using different
combinations of biotic or abiotic filter layers. Second,
one can compare different masking approaches: e.g.,
an expert-determined threshold compared with a data-
driven one. Third, one can compare different plausible
values of thresholds used to create a binary mask
(Fig. 2). Fourth, one could compare maps developed by
different experts and either average them or use them
as a platform to achieve consensus, as in BioModelos
(Velasquez-Tibata et al. 2019). These analyses can be
used to make decisions that are relatively insensitive
to perturbations for creating a single model, or
to consider an ensemble of plausible models that
characterize uncertainty. Furthermore, reporting this
uncertainty (e.g., via maps or in estimates of range
size) helps to convey the level of confidence in the
final expert-refined map.

Mask Threshold Area Sensitivity

Area (square km)

Ny

N

Mask values

Figure 2. Areal range estimates based on masking the species
distribution model for the olinguito (Bassaricyon neblina) at regular
threshold intervals between 50-100% forest cover. While expert
knowledge can be used to determine the appropriate threshold,
itisimportant to note the considerable variation in range size that
is associated with different thresholds. For more, see ‘Example 1:
Masking by forest cover’ under ‘Use Case examples’.

It may be particularly informative to compare maps
from different expert- or data-driven threshold values,
as expert knowledge or estimation of the precise
guantitative threshold is often approximate. As a
first step, one can visually inspect maps for ecological
realism (Guevara et al. 2018). Additionally, it can be
useful to plot summary statistics of the range, such as
measures of range size or range geometry, as a function
of different threshold values (Fig. 2). Ideally, one can
select a threshold value from within the plausible
range where changes in threshold do not resultin large
changes to areal predictions, indicating low sensitivity
to that decision (defined as the first derivative of a plot
of the range metric vs. the threshold). Whether one
selects a threshold from the upper, middle, or lower
value of such a low-sensitivity region will depend on the
relative importance of omission versus commissionina
given study, as well as on the biological interpretation
of the filter involved.

Step 7: Repeat

Steps 2-6 can be repeated with as many filters as
are available, and the resulting expert-refined maps
will only include areas that have passed through all
the filters.

Use Case examples

Each of the following is a summary of a worked
example, with further details and associated R code
available in the vignette of the newly developed
maskRangeR package (Appendix S1). Each example
uses key functions from maskRangeR to complete
the analyses, which are detailed in the vignette,
accessible at https://cmerow.github.io/maskRangeR/
maskRangeR_Tutorial.html. Note that package
plans, updates, and training materials are available
on the package website (https://cmerow.github.io/
maskRangeR/).

Example 1: Masking by forest cover (Fig. 3a-c).
Determining thresholds for masking SDM
predictions using recent records represents a
simple methodology that can be used for the many
species with limited recent records. Time-series of
filters may be available in some cases, which can
allow one to estimate temporal trends in suitable
areas. For example, land use/land cover products
such as forest cover (Hansen et al. 2013) can be
available at an annual resolution. The olinguito
(Bassaricyon neblina) is a recently described
carnivoran discovered from previously misidentified
museum specimens (Helgen et al., 2013). It lives
in Northern Andean cloud forests in Colombia and
Ecuador; according to experts, it likely has strict
tolerances for forest cover (Helgen et al. 2013).
The species’ range was updated and estimated
via an SDM (Gerstner et al. 2018) but without
consideration of recent deforestation. Remotely
sensed percent forest cover data now can be used
to perform simple data-driven masking based
on information corresponding to recent records
(Gavrutenko et al. 2021), with percent forest cover
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Figure 3: Use-case examples. (a-c) SDM predictions can be refined based on available forest habitat. Panel a shows the binary SDM
prediction in Colombia and Ecuador for the olinguito (gray), and panel b shows suitable forest cover levels (blue). Panel c shows the
same olinguito SDM prediction within areas with suitable forest cover (red, the expert-refined map) after areas with insufficient forest
cover are removed through masking (gray). (d-f) The use of multiple masks can considerably refine coarsely estimated ranges. The
initial map for the swamp forest crab in Singapore (d) can be processed by intersecting three masks (e) to compose the “full’ mask (blue,
amenable based on all three), which is used to generate the expert-refined map (f). (g-i) Support Vector Machine (SVM) masks can be
used to resolve overlapping SDM predictions of parapatric species. (g) Initial SDM prediction made with bioclimatic predictor variables
and occurrence localities for Bradypus tridactylus, one of three parapatric sloth species in South America. The SVM (h) classifier layer
was created using occurrence localities and SDMs (spatial-environmental SVM) for each of the three species. (i) Expert-refined SDM
of B. tridactylus masked by the SVM classifier to remove areas more likely to be part of the ranges of its parapatric relatives.

extracted (e.g. MODIS Vegetation Continuous Fields
(Daac 2018); (250 m) from the years matching the
most recent occurrence records: 2006-2016). There
are only limited occurrence records available for this
species (N =30) (and this is common for species of
conservation concern (Di Marco et al. 2017)). Half

of these are from museum specimens, with 80%
of those from years where high-resolution forest
cover estimates are not available. Only N = 18 recent
(post-2000) occurrences can be matched to the
corresponding year of MODIS forest cover data to
calculate a forest-cover threshold appropriate for
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the species (here determined as 77% forest cover
in a cell). This threshold can then be used to mask
the SDM output for the most recent year of MODIS
data for an upper estimate of the current species’
range. Such a methodology should also prove
useful for processing expert range maps or other
pre-existing range estimates that do not take into
account human modifications of the environment.

Example 2: Masking by multiple expert inferred
tolerances (Fig. 3d-f). Some species may not have
sufficient occurrence records with which to define
environmental associations using an SDM. In
these cases, for a given geographic area, multiple
environmental layers can be thresholded to the
estimated tolerances for the species based on
expert knowledge, providing a series of masks.
The swamp forest crab (Parathelphusa reticulata),
a freshwater crab endemic to Singapore’s last
remaining patch of freshwater swamp forest, is
currently listed as Critically Endangered by the IUCN
and is documented by only a single occurrence
record. Here, we perform an expert-driven species
range estimate using three masks. We identified
areas of overlap between canopy cover, mean
annual temperature, and elevation that are
considered by experts (Chua et al. 2015) as within
the bounds of tolerance for this species, and then
used these areas to constrain a relevant geographic
region (also described by expert opinion) to an area
of suitable environmental conditions.

Example 3: Masking by biotic factors (Fig. 3g-i). In
addition to abiotic factors, species’ distributions
are also affected by biotic interactions, especially
when species distributions are mutually exclusive
(Wisz et al. 2012, Anderson 2017). For example,
closely related species commonly show parapatric
distributions (abutting but non-overlapping
ranges); yet, including biotic interactors as
predictors should be avoided in standard SDMs if
both species affect each other; Anderson 2017).
While it is straightforward to mask a focal species’
distribution by the known range of a competing
species that fully excludes it, the solution is less
clear when the distributions of both species—
and their effects on each other—are imperfectly
known (which is likely the case for poorly sampled
species) (Anderson et al. 2002, Kass et al. 2021).
Some studies have addressed this by identifying the
species with the highest suitability value predicted
by an SDM fit with abiotic variables (Anderson
and Martinez-Meyer 2004, Gutiérrez et al. 2014).
However, high abiotic suitability predictions for
one species can be made far from the contact zone
between both species. Such areas may be abiotically
suitable but nonetheless unoccupied due to biotic
and/or dispersal limitations. Therefore, considering
the spatial positions of occurrence records, in
addition to the SDM predictions, can help remedy
this issue. Kass et al. (2021) used support vector
machines (SVMs) (Drake et al. 2006) to classify grid
cells by the species most likely to be present based

on either the spatial patterns of the records alone
(spatial), or those in addition to SDM predictions
(which they termed spatial-environmental). These
approaches can be used to delimit ranges for two or
more parapatric species by using the classification
output as filters on the focal species’ respective
input maps.

The three-toed sloths (Bradypus spp.) comprise four
species distributed across Central and South America.
With the exception of the microendemic B. pygmaeus,
the other three species range across mainland Central
and South America: B. variegatus is widely distributed
from eastern Honduras to northern Argentina, B.
tridactylus is found in the Guianan shield region, and
B. torquatus occurs only in the Brazilian Atlantic Forest
(Anderson and Handley 2001). Bradypus variegatus
and B. tridactylus exhibit parapatry (with a few sites of
inferred contact), which is likely caused by competition
for resources and/or suitable habitat (de Moraes-
Barros et al. 2010). On the other hand, B. variegatus
and B. torquatus show overlapping ranges in some
portions of the Brazilian Atlantic Forest, where they
exhibit more localized geographic separations (Hirsch
and Chiarello 2012). Using support vector machines
(Drake et al. 2006), we delimited the distributions of
these three species by masking out regions classified
as more likely to be within the range of one or more
congeners based on spatial and (optionally) also non-
spatial predictors. This methodology fits SVMs with
two kinds of data: spatial, based on the occurrence
coordinates of each species, or spatial-environmental,
based on a combination of the coordinates and the
predicted suitabilities from SDMs (Kass et al. 2021).
The SVM classifications are then used to mask the
SDM predictions of each species to those regions
not predicted to be occupied by the other congeners.

The maskRangeR package

To facilitate the use of our proposed framework for
expert refinement of range maps, we developed the R
package maskRangeR (website: https://cmerow.github.
io/maskRangeR/; download from CRAN at https://
cran.r-project.org/web/packages/maskRangeR/index.
html or the development version at https://github.
com/cmerow/maskRangeR). This package fills key gaps
in existing tools needed for the workflow presented
above, and additionally provides a convenient and
unified approach to the variety of masking strategies
discussed. The package also includes tools to visualize
the consequences of various expert decisions as
part of sensitivity analyses. Notably, in developing
maskRangeR we leveraged a number of existing,
high-quality tools for components of our workflow
and focused on (1) adding tools missing from existing
R packages and (2) providing all of these tools in a
unified framework, accompanied by an extensive
vignette with worked examples aimed at practitioners
(Appendix S1).

A workflow with maskRangeR follows the steps
described in Methods and Materials using all the core
maskRangeR functions as follows:
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e Step 1: The user provides an input map in raster
format.

e Step 2: Users can define their own thresholds a
priori or use maskRangeR'’s annotate() function to
extract environmental values from timestamped
occurrence locations and a time series of
environmental layers. For static (single) layers,
the raster package’s extract() function is sufficient
(Hijmans 2021). The user then chooses a threshold
based on the distribution of these extracted values.

e Step 3: The user can provide filtering layers in raster
format. Users can take advantage of data-download
functionality from other R packages such as dismo
(Hijmans et al. 2010) for elevation or WorldClim
climate layers (Hijmans et al. 2005), forestChange
for forest change indices (Lara and Gutierrez-Velez
2019), or MODIStsp for forest cover (Busetto and
Ranghetti 2016). A wide variety of layers are openly
available if users can download and process themin
R (e.g., alternative bioclimatic layers from CHELSA
(Karger et al. 2016). The function focalCompare()
makes it easy to aggregate these layers with
moving-window choices (using raster::focal()), so
that users can compare the results of different
decisions. This can be useful when aligning layers
originally at different resolutions.

e Step 4 and 5: maskRangeR provides a number of
functions to perform different types of masking.
The core function, maskRanger(), generates binary
masks by thresholding filter layers, and then applies
them to the input map. The function lotsOfMasks()
readily implements multiple masks at once, while
continuousMask() uses a continuous filter to mask
a binary input map. Finally, rangeSVM() runs an
iterative cross-validation procedure to fit a support
vector machine with optimal complexity, and
rangeSVM_predict() uses this model to output
masks for delimiting the ranges of multiple species
that biotically constrain each other’s ranges.

e Step 6: Sensitivity analysis can be performed
with thresholdSensitivity(), which generates plots
showing how range size depends on threshold
choice.

Discussion

By refining range maps based on expert knowledge,
we illustrate how to improve spatial and/or temporal
precision by incorporating different types of information
that would often be omitted from species distribution
models. This results in a transparent and reproducible
workflow and illustrates the complementarity of expert
knowledge and SDMs. With these improvements to
range estimates, we can better describe geographic
distributions for poorly sampled species, estimate
biodiversity, and inform conservation decisions.
While formal frameworks exist for elicitation of expert
knowledge (McBride et al. 2012), as well as formal
methods to incorporate this knowledge into SDMs
(Choy et al. 2009, Merow et al. 2017), our focus here is

to offer a highly practical workflow to elicit and utilize
expert knowledge for species’ range estimates for a
wide range of situations and applications.

Although practicality has driven the development
of our workflow, it is useful to note that our approach
is also consistent with theoretical constructs of
the ecological niche that help to define a species’
geographic distribution (Soberdn 2007). In particular,
Drake (2014) argued that the niche is better
represented by hulls which delimit niche boundaries
rather than the probabilities associated with species
distribution (niche) models. Drake (2014) emphasized
that “the niche is the range of environments in
which the species can persist” and that this range
is the “interval between two extremes”. As such it
is well represented by thresholds and manifests as
a binary map in geographic space. The binary filters
we generate here can be interpreted as convex hulls
in environmental space, or the intervals between
extremes (thresholds), and a collection of such filters
represents a niche hypervolume, at least along the
dimensions considered by the filters. Hence, our
filtering approach is fully consistent with at least one
interpretation of the niche concept.

Expert-refined range maps have the potential to
advance the spatial and temporal resolution of range
estimates in multiple ways. In the spatial domain, our
masking workflow may allow larger sample sizes when
fitting coarse-grain SDMs to be used as input maps,
because spatially imprecise data can be included
for a coarse-grain SDM (which might otherwise be
discarded for a fine grain SDM (Moudry and Simova
2012, Mitchell et al. 2017, Naimi et al. 2014)). Improved
spatial resolution could be achieved with a fine-
resolution filter applied to such a coarse-grain input
map, allowing for the use of all available data. In the
temporal domain, itis uncommon for range estimates
to be updated frequently (e.g., every year), but this is
feasible when filtering layers are available as a time
series. Such filter layers might include annual climate
layers, as are now available from CHELSA or ERAS5, or
remote sensing layers describing land use/land cover.
Range estimates with higher temporal resolution are
valuable for examining the timing of various threats
to species persistence (Trisos et al. 2020).

Our presentation has thus far assumed that the
expert-driven filters are a better representation of
reality than the input map, though this may not always
be the case. For example, an experts’ expectation of
absence due to dispersal limitation may be informed by
biased sampling; in this case, an unmasked SDM that
adequately accounts for sampling bias (Phillips et al.
2009, Warton et al. 2013) may better reflect the
species’ true distribution. As another example,
when using remotely sensed layers for masking (e.g.,
forest cover), extremely fine-scale variation may be
undetectable from available satellite resolution, leading
to a mask that inappropriately filters out suitable yet
small locations. In practice, researchers are unlikely
to know a priori whether one data source is more
reliable than the other; hence, such disagreements
should be characterized as uncertainty in range
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estimates. Perhaps the most conservative option is for
downstream analyses (such as range size estimates) to
consider all range estimates supported by at least one
data source. Alternatively, one could use an ensemble
approach, where each candidate range estimate
contributes one ‘vote’ toward determining whether
a cell is likely occupied. The number of votes a cell
receives can be interpreted as the degree of evidence
supporting the range estimate at that location. The
BioModelos network takes this ensemble approach
one step further and allows multiple experts to weigh
in, each casting votes that contribute to an ensemble
range estimate (Veldsquez-Tibata et al. 2019).

A relevant question is: Why would one choose to
use data-driven masking rather than including the
presence records in a statistical model with the filter
layer as a covariate? We consider a variety of scenarios,
although other applications will undoubtedly emerge:

1. Additional map updates: If maps originate from a
previous study, either expert-drawn or based on an
SDM, one could refine them based on additional
information beyond what was originally used.
Relatedly, it may not be necessary to refit statistical
models if an expert already knows that the species
is fundamentally restricted to particular features
of the study region (e.g. land use/land cover).

2. Finer resolution filter: If the filtering layer
represents variation at a finer resolution than the
precision of the occurrence observations, one
could use a filter to obtain a higher-resolution
range estimate. For example, presence data could
be accurate to within a few hundred meters while
habitat type is available at 30 m resolution.

3. Change over time: Although there may be sufficient
data to build a single, static SDM, sparse sampling
over time may limit the ability to infer change in a
distribution. In Example 1, this is demonstrated with
annually varying forest cover data used to filter a
static SDM. Relatedly, temporal mismatch between
covariates may preclude using them in a single
model. For example, commonly used WorldClim
data represents the mean conditions between
1970-2000 (Fick and Hijmans 2017) whereas data
derived from MODIS satellites, such as fire products
(Table 1), are available only after 2000.

4. Low number of records with filter data: Filter
layer values may be available only at a subset
of the presences used to make the input model.
For example, in Example 1 we considered a case
where forest-cover filter layers were available
only beginning in the year 2001, after which 9
observations of the species were recorded.

5. Failure to meet assumptions of SDM: If an expert
has good evidence that two species distributions
are mutually exclusive (e.g., due to competition),
using the distribution of one as a predictor variable
for the other does not meet SDM assumptions (it is
not a scenopoetic variable, sensu (Soberén 2007,
Anderson 2017)). Instead, masking one estimated

potential distribution by the other may be an
effective option as in Example 3 (Kass et al. 2021).

Ongoing uptake of tools from maskRangeR
by Colombia’s Biodiversity Observation network
BioModelos (http://biomodelos.humboldt.org.co;
see Introduction), exemplifies how this workflow can
inform conservation (Veldsquez-Tibata et al. 2019).
Importantly, a series of formal end-user consultation
workshops with Colombian conservation practitioners
and other biodiversity experts informed maskRangeR’s
development, which was expanded through use
cases (see the Vignette, Appendix S1) to be broadly
applicable. maskRangeR now provides the capability
for real-time model updates by the BioModelos
community. A next step in the collaboration will
be integrating maskRangeR as new modules in the
Wallace ecological modeling application (Kass et al.
2018), a modular, R-based software for reproducible
modeling of species niches and distributions. Adding
maskRangeR functionalities to Wallace should facilitate
its use by conservation practitioners and researchers.
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