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Abstract— We consider a system consisting of multiple in-
terdependent assets, and a set of defenders, each responsible
for securing a subset of the assets against an attacker. The
interdependencies between assets are captured by an attack
graph, where an edge from one asset to another indicates that
if the former asset is compromised, an attack can be launched
on the latter asset. Each edge has an associated probability of
successful attack, which can be reduced via security investments
by the defender responsible for that edge. While prior work
has studied the security investments in such scenarios, in this
work we consider what happens when the defenders exhibit
characteristics of boundedly-rational human decision-making
that have been identified by behavioral economics. In partic-
ular, humans have been shown to perceive probabilities in a
nonlinear manner, typically overweighting low probabilities and
underweighting high probabilities. We show that such nonlinear
probability weighting can affect the security investments in
interdependent systems, and suboptimal investments can arise
under such weighting in certain network topologies. We also
show that the presence of a defender who exhibits behavioral
probability weighting can be beneficial for the other defenders
in the network, in terms of making their assets more secure.

I. INTRODUCTION

Large-scale cyber-physical systems (CPS) consist of mul-
tiple interdependent subsystems managed by different stake-
holders (or operators). Such systems are increasingly under
threat from sophisticated adversaries who seek to compro-
mise various assets in the system. As a result, there has been
a significant amount of research dedicated to understanding
how to improve the security of such systems [1], [2]. In
particular, game theory has played a key role in reasoning
about security problems, due to its ability to systematically
capture the potentially conflicting goals of the various actors
(e.g., defenders and attackers) in the system [3]–[5].

In the context of large-scale interdependent systems, ad-
versaries can often use stepping-stone attacks to exploit
vulnerabilities within the network in order to compromise
a particular target. Such threats can be captured via the
notion of attack graphs that represent all possible paths that
attackers may have to reach their targets within the CPS
[6]. The defenders in such systems are each responsible for
defending some subset of the assets [3], [7], and usually
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have limited resources (i.e., budget) that they can use to
mitigate vulnerabilities in the network. These settings have
been explored under various assumptions on the strategies
available to the defenders and attackers [7]–[9].

A common thread in the existing literature is that the
defenders are assumed to behave according to classical
models of fully rational decision-making, taking actions to
minimize their expected loss. However, a large body of work
in behavioral economics and psychology has shown that
humans consistently deviate from such classical models of
decision-making. For example, prospect theory (introduced
by Kahneman and Tversky in their seminal paper [10])
showed that humans perceive gains, losses and probabilities
in a skewed (nonlinear) manner, typically overweighting low
probabilities and underweighting high probabilities. While
a large literature on prospect theory exists in economics
and psychology, relatively little research has investigated the
effect of such behavioral decision-making on CPS security
and robustness (exceptions include [11]–[13]).

In this paper, we introduce prospect theory into a
game-theoretic framework involving attack graph models of
large-scale interdependent systems with multiple defenders.
Specifically, we consider the scenario where each (human)
defender misperceives the probabilities of successful attack
in the attack graph. We characterize the impacts of such
misperceptions on the security investments made by each
defender. In contrast to [11], we consider a more general case
in which each defender is responsible for a subnetwork (i.e.,
set of assets) rather than just a single node, and where the
attacker exploits paths through the network to reach certain
target nodes.

We introduce a setting for behavioral decision-making,
described in further detail in the next two sections. We first
establish the convexity of the objective function of each
defender, and we use this to prove the existence of a pure
strategy Nash equilibrium (PNE). We then characterize the
impacts of probability weighting on the investment decisions
made by the defenders; in particular, we show that nonlinear
perceptions of probability can induce defenders to invest in
a manner that increases the vulnerability of their assets to
attack. We characterize classes of graphs where such effects
arise. Furthermore, we illustrate the impacts of having a
mix of defenders (with heterogeneous levels of probability
weighting bias) in the system, and show that the presence of
defenders with skewed perceptions of probability can in fact
benefit the non-behavioral defenders in the system.
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II. THE SECURITY GAME FRAMEWORK

In this section, we describe our general security game
framework, including the attack graph and the characteristics
of defenders and attackers.

A. Attack Graph

We represent the assets in a CPS as nodes of a directed
graph G = (V, E) where each node vi ∈ V represents an
asset. A directed edge (vi, vj) ∈ E means that if node vi
is successfully attacked, it can be used to launch an attack
on node vj . We assume that the success of attacks across
different edges in the network are captured by independent
random variables. Each edge (vi, vj) ∈ E has an associated
weight p0i,j ∈ (0, 1], denoting the probability of successfully
attacking asset vj starting at vi (in the absence of any security
investments). The graph contains a designated source node
vs, which is used by the attacker to begin her attack on
the network. For a general asset vt ∈ V , we define Pt
to be the set of directed paths from the source vs to
vt on the graph, where a path P ∈ Pt is a collection
of edges {(vs, v1), (v1, v2), ..., (vk, vt)}. Therefore, in the
absence of any security investments, the probability that
vt is compromised due to an attacker exploiting a given
path P ∈ Pt is

∏
(vm,vn)∈P

p0m,n, by our aforementioned

independence assumption. The attacker can choose any path
from the multiple attack paths in Pt to attack vt.

B. Strategic Defenders

Let D be the set of all defenders of the network. Each
defender Dk ∈ D is responsible for defending a set Vk ⊆
V \{vs} of assets. For each compromised asset vm ∈ Vk, the
defender Dk will incur a financial loss Lm ∈ R≥0. To reduce
the attack success probabilities on edges interconnecting
assets inside the network, a defender can allocate security
resources on these edges, subject to the constraints described
below.

Let Ek ⊆ E be the subset of edges that defender Dk can
allocate security resources on, with nk = |Ek| . We assume
that each defender Dk has a security budget Bk ∈ R≥0.
Thus, we define the defense strategy space of each defender
Dk ∈ D by

Xk , {xki,j ∈ R≥0, (vi, vj) ∈ Ek :
∑

(vi,vj)∈Ek

xki,j ≤ Bk}. (1)

In words, the defense strategy space for defender Dk consists
of all nonnegative investments on edges under her control,
with the sum of all investments not exceeding the budget Bk.
We denote any particular vector of investments by defender
Dk by xk ∈ Xk.

Let x =
[
x1, x2, . . . , x|D|

]
be a joint defense strategy

of all defenders, where xk ∈ Xk for every defender Dk.
Under a joint defense strategy x, the total investment on
edge (vi, vj) is xi,j := {

∑
Dk∈D x

k
i,j : (vi, vj) ∈ Ek}.

Let pi,j : R≥0 → [0, 1] be a function mapping the total
investment xi,j to an attack success probability, and with
pi,j(0) = p0i,j .

The goal of each defender Dk is to choose her investment
vector xk in order to best protect her assets from being
attacked. In this paper, we consider the scenario where each
defender minimizes the highest probability path to each of
her assets; this captures settings where the specific path taken
by the attacker is not known to the defender a priori, and thus
the defender seeks to make the most vulnerable path to each
of her assets as secure as possible. Mathematically, this is
captured via the cost function

Ck(x) =
∑

vm∈Vk

Lm

(
max
P∈Pm

∏
(vi,vj)∈P

pi,j(xi,j)
)

(2)

subject to xk ∈ Xk. Note that Ck(x) is a function of the
investments of all defenders, and thus we denote the cost
by Ck(xk,x−k) where x−k is the vector of investments by
defenders other than Dk. Each defender chooses her invest-
ment vector xk ∈ Xk to minimize the cost Ck(xk,x−k),
given the investments x−k by the other defenders.

The recent work [9] studies the above security game
setting assuming rational defenders, and provides a method
to calculate the optimal investments by the defenders with
respect to the cost function (2). However, as mentioned in the
introduction, humans have been shown to systematically mis-
perceive probabilities, which can impact the decisions that
they make in the presence of risk. In the next section, we will
review certain classes of probability weighting functions that
capture this phenomenon, and then subsequently introduce
such functions into the above security game formulation. We
will then characterize how such behavioral decision-making
affects the security investments made by the defenders in this
game.

III. NONLINEAR PROBABILITY WEIGHTING AND THE
BEHAVIORAL SECURITY GAME

A. Nonlinear Probability Weighting

The behavioral economics and psychology literature has
shown that humans consistently misperceive probabilities
by overweighting low probabilities and underweighting high
probabilities [10], [14]. More specifically, humans perceive
a “true” probability p ∈ [0, 1] as w(p) ∈ [0, 1], where w(·)
is a probability weighting function. A commonly studied
probability weighting function was proposed by Prelec in
[14], and is given by

w(p) = exp
[
− (− log(p))α

]
, p ∈ [0, 1], (3)

where α ∈ (0, 1] is a parameter that controls the extent
of overweighting and underweighting. When α = 1, we
have w(p) = p for all p ∈ [0, 1], which corresponds to the
situation where probabilities are perceived correctly. Smaller
values of α lead to a greater amount of overweighting and
underweighting, as illustrated in Fig. 1. Next, we incorporate
this probability weighting function into the security game
defined in the last section, and define the Behavioral Security
Game that is the focus of this paper.
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Fig. 1: Prelec Probability weighting function (3) which transforms
true probabilities p into perceived probabilities w(p). The parameter
α controls the extent of overweighting and underweighting.

B. The Behavioral Security Game

Recall that each defender seeks to protect a set of assets,
and the probability of each asset being successfully attacked
is determined by the corresponding probabilities on the
edges that constitute the paths from the source node to that
asset. This motivates a broad class of games that incorporate
probability weighting, as defined below.

Definition 1: We define a Behavioral Security Game as
a game between different defenders in an interdependent
network, where each defender misperceives the attack prob-
ability on each edge according to the probability weighting
function defined in (3). Specifically, the perceived attack
probability by a defender Dk on an edge (vi, vj) is given
by

wk(pi,j(xi,j)) = exp
[
− (− log(pi,j(xi,j)))

αk
]
,

where pi,j(xi,j) ∈ [0, 1] and αk ∈ (0, 1].
Remark 1: The subscript k in αk and wk(·) allows each

player in the Behavioral Security Game to have a different
level of misperception.

Incorporating this into the cost function (2), each defender
Dk seeks to minimize her perceived loss via the cost function

Ck(xk,x−k)=
∑

vm∈Vk

Lm

max
P∈Pm

∏
(vi,vj)∈P

wk (pi,j(xi,j))

 .

(4)

IV. EXISTENCE OF A PURE NASH EQUILIBRIUM

We start by establishing the existence of a pure strategy
Nash Equilibrium (PNE) for the class of behavioral games
defined in the previous section. A profile of security invest-
ments by the defenders is said to be a PNE if no defender
can decrease her cost by unilaterally changing her security
investment. We first prove the convexity of the defenders’
cost function, and subsequently show the existence of a
PNE for the Behavioral Security Game. Throughout, let the
function pi,j(xi,j) represent the probability of successful
attack on an edge when the total investment on that edge
is xi,j .

Assumption 1: For every edge (vi, vj), the probability of
successful attack pi,j(xi,j) is a twice continuously differen-
tiable, log-convex1, and decreasing function.

Lemma 1: For every edge (vi, vj), the perceived probabil-
ity w(pi,j(xi,j)) is convex ∀xi,j ∈ R≥0 under Assumption
1.

Proof: First note that since 0 ≤ pi,j(xi,j) ≤ 1, we have
0 ≤ − log(pi,j(xi,j)) ≤ ∞ for all xi,j ∈ R≥0. We drop the
subscript i, j in the following analysis for better readability.
Substituting into the probability weighting function defined
in (3), we have

w(p(x)) = exp
[
− (− log(p(x)))α

]
= (g ◦ h)(x),

where g(x) = exp(−x) and h(x) = (− log(p(x)))α. Next,
we prove that h(x) is concave:

h′(x) = −α(− log(p(x)))α−1
p′(x)

p(x)

h′′(x) = α(α− 1)(− log(p(x)))α−2
(p′(x))2

(p(x))2

+ α(− log(p(x)))α−1
[
(p′(x))2 − p(x)p′′(x)

(p(x))2

]
.

Since 0 < α ≤ 1, the first term on the R.H.S. of h′′(x) is
non-positive. Also, since p(x) is twice-differentiable and log-
convex with a convex feasible defense strategy domain R≥0,
(p′(x))2 ≤ p(x)p′′(x) [17], which ensures that the second
term is also non-positive. Therefore, h(x) is concave.

Finally, since g(x) is convex and non-increasing while
h(x) is concave, w(p(x)) is convex.

Using the above result, we now prove that the defender
cost function in the Behavioral Security Game is convex.

Lemma 2: Under Assumption 1, the cost function (4) of
the Behavioral Security Game is convex for any 0 < αk ≤ 1.

Proof: Beginning with the cost function defined in
(4), wk(pi,j(xi,j)) is convex as shown in Lemma 1. Since
the product of convex functions is convex if all of them
are non-increasing (or non-decreasing) and positive on an
interval [17] and wk(pi,j(xi,j)) is monotone (composition of
two monotonic functions),

∏
(vi,vj)∈P

wk(pi,j(xi,j)) is convex.

Moreover, the maximum of a set of convex functions is also
convex [18]. Finally, since the cost function Ck(x) is a linear
combination of convex functions, Ck(x) is convex.

This brings us to the following result, establishing the
existence of a PNE in the Behavioral Security Game.

Theorem 1: The Behavioral Security Game possesses a
pure strategy Nash equilibrium (PNE) when αk ∈ (0, 1] for
each defender Dk, and under Assumption 1.

Proof: The feasible defense strategy space Xk in (1)
is nonempty, compact and convex for each defender Dk.
Furthermore, as shown in Lemma 2, the cost function of

1This is a common assumption in the literature. In particular, [15] shows
that log-convexity of the attack probability functions is a necessary and
sufficient condition for the optimal security investment result of the seminal
paper [16] to hold.
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each defender is convex under the given assumptions. As
a result, the Behavioral Security Game is an instance of
concave games, which always have a PNE [19].

In the following sections, we will provide further insights
into the investments in the PNE of such games. In order to
maintain analytical tractability, we will assume henceforth
that the probabilities of successful attack on each edge are
given by

pi,j(xi,j) = p0i,j exp
(
−
∑
Dk∈D

xki,j

)
. (5)

In other words, the probability of successful attack on an
edge decreases exponentially with the sum of the investments
by all players on that edge. Such probability functions fall
within the class commonly considered in security economics
(e.g., [16]), and satisfy the conditions in Lemma 1.

Consequently, the attack success probability of any given
path P from the source to a target vt is given by

Q(x) =
∏

(vm,vn)∈P

pm,n(xm,n)

=
( ∏

(vm,vn)∈P

p0m,n

)
exp

(
−

∑
(vm,vn)∈P

∑
Dk∈D

xkm,n

)
.

(6)

Thus, the probability of successful attack on a given path
decreases exponentially with the sum of the investments on
all edges on that path by all players.

V. PROPERTIES OF THE OPTIMAL INVESTMENT
DECISIONS

In this section, we characterize properties of the optimal
investment decisions under behavioral (i.e., α < 1) and non-
behavioral (i.e., α = 1) decision-making. This setting will
help in understanding the actions (i.e., best responses) of
each behavioral defender in the Behavioral Security Games
and their decisions under the PNE (note that a PNE always
exists as proven in Section IV). We will subsequently return
to the multiple defender game in the next section. In this
section, we will refer to the defender as D (i.e., we will
drop the index k throughout the section). We will identify
how probability weighting affects the investments a defender
makes to secure her assets against attacks.

A. Locations of Optimal Investments for Behavioral and
Non-Behavioral Players

We first characterize the optimal investments by a non-
behavioral player who is protecting a single asset, and
subsequently compare that to the investments made by a
behavioral player. In the following result, we use the notion
of a min-cut in the graph. Specifically, given two nodes s
and t in the graph, an edge-cut is a set of edges Ec ⊂ E such
that removing Ec from the graph also removes all paths from
s to t. A min-cut is an edge-cut of smallest cardinality over
all possible edge-cuts [20].

Theorem 2: Consider an attack graph G = (V, E) where
the initial attack success probabilities on all edges are
equal to 1 (i.e., p0i,j = 1, ∀(vi, vj) ∈ E). Let the attack

vs v1

v2

v3

v4 v5

L5 = 1

Fig. 2: An attack graph where a behavioral player makes
suboptimal investment decisions.

success probability under security investments be given by
pi,j(xi,j) = e−xi,j , where xi,j ∈ R≥0 is the investment on
edge (vi, vj). Suppose there is a single target asset vt (i.e.,
all other assets have loss 0). Let Ec ⊆ E be a minimum edge
cut set between the source node vs and the target vt. Then,
it is optimal for a non-behavioral defender D to distribute
all her investments equally only on the edge set Ec in order
to minimize (2).

Proof: Let Ec be a minimum edge cut between the
source entry node vs and the target node vt. Also, let N =
|Ec| represent the number of edges in the minimum cut set
Ec. Let B be the defender’s budget.

Consider any optimal investment of that budget. Recall
from (6) that the probability of a successful attack of the
target along a certain path P is a decreasing function of the
sum of the investments on the edges on that path. Using
Menger’s theorem [20], there are N edge-disjoint paths
between vs and vt in G. At least one of those paths has
total investment at most B

N . Therefore, the path with highest
probability of attack from vs to vt has total investment at
most B

N .
Now consider investing B

N on each edge in the edge cut.
Since every path from vs to vt goes through at least one
edge in Ec, every path has at least B

N in total investment.
Thus, it is optimal to only invest on edges in Ec.

Finally, consider investing non-equally on edges in Ec
where an edge ei,j ∈ Ec has investment xi,j < B

N . Under
this investment and since there are N edge-disjoint paths
from vs to vt in G, ∃ a path P from vs to vt that has
total investment less than B

N . Thus, the path with highest
probability of attack P has a probability of attack larger than
exp
(
−B
N

)
(which arises when investing B

N equally on each
edge in Ec). Therefore, the cost function in (2) is higher with
this non-equal investment. Thus, the optimal investment on
Ec must contain B

N investment on each edge in Ec.
The above result of Theorem 2 no longer holds when we

consider the investments by a behavioral player (i.e., with
α < 1), as illustrated by the following example.

Example 1: Consider the attack graph shown in Fig. 2,
with a single defender D and a single target asset v5 (with a
loss of L5 = 1 if successfully attacked). Let the defender’s
budget be B, and let the probability of successful attack on
each edge (vi, vj) be given by pi,j(xi,j) = e−xi,j , where
xi,j is the investment on that edge.

This graph has two possible min-cuts, both of size 1: the
edge (vs, v1), and the edge (v4, v5). Thus, by Theorem 2,
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it is optimal for a non-behavioral player to put all of her
budget on either one of these edges.

Now consider a behavioral player with α < 1. With the
above expression for pi,j(xi,j) and using the Prelec function
(3), we have w(pi,j(xi,j)) = e−x

α
i,j . Thus, the cost function

(4) for the Behavioral Security Game is given by

C(x) = max
(
e−x

α
s,1−x

α
1,2−x

α
2,4−x

α
4,5 ,

e−x
α
s,1−x

α
1,3−x

α
3,4−x

α
4,5

)
,

corresponding to the two paths from the source vs to the
target vt. One can verify (using the KKT conditions) that
the optimal investments are given by

x1,2 = x2,4 = x1,3 = x3,4 = 2
1

α−1xs,1 ,

x4,5 = xs,1 =
B − 4x1,2

2
=

B

2 + 4(2
1

α−1 )
.

Thus, for the cost function (2), the optimal investments
(corresponding to the non-behavioral player) yield a cost of
e−B , whereas the investments of the behavioral player yield

a cost of e−2
α
α−1

e
− B

1+2
α
α−1 , which is larger than that of the

non-behavioral player for any B > 2.
The above example illustrates a key phenomenon: as the

defender’s perception of probabilities becomes increasingly
skewed (captured by α becoming smaller), she shifts more
of her investments from the min-cut edges to the edges on
the parallel paths between v1 and v4. This is in contrast to
the optimal investments (made by the non-behavioral player)
which lie entirely on the min-cut edges. Indeed, by taking
the limit as α ↑ 1, we have

xi,j = lim
α↑1

2
1

α−1 xs,1 = 2−∞ xs,1 = 0

for edges (vi, vj) on the two parallel portions of the graph.
We now use this insight to identify graphs where a

behavioral player makes suboptimal security investments.
Proposition 1: Consider an attack graph G with a source

vs and a target vt. Let Ec be a minimum edge cut between
vs and vt, with size |Ec| = N . Suppose the graph contains
another edge cut E′c such that E′c∩Ec = ∅, |E′c| > |Ec|, and
for each edge in E′c, there is a path from vs to vt that goes
through that edge but none of the other edges in E′c. Let the
probability of successful attack on each edge (vi, vj) ∈ E
be given by pi,j(xi,j) = e−xi,j , where xi,j is the investment
on that edge. Let B be the budget of the defender. Then, if
0 < α < 1, investing solely on the min-edge-cut set Ec is
not optimal from the perspective of a behavioral player.

Proof: Denote M = |E′c| > |Ec| = N . By Theorem 2,
it is optimal to invest the entire budget only on edges in Ec
in order to minimize the cost function (2). We will show that
this investment is not optimal with respect to the behavioral
player’s cost function (4).

Starting with the optimal investments on the min edge cut
Ec where each edge in Ec has nonzero investment (as given
by Theorem 2), remove a small investment ε from each of
those N edges, and add an investment of Nε

M to each of

the edges in E′c. We show that when ε is sufficiently small,
this will lead to a net reduction in perceived probability of
successful attack on each path from vs to vt.

Consider any arbitrary path P from vs to vt. Starting
with the investments only on the minimum edge cut Ec,
the perceived probability of successful attack on path P will
be

f1(x) = exp
(
−

∑
(vi,vj)∈Ec,
(vi,vj)∈P

xαi,j

)
.

After removing ε investment from each of the N edges in
Ec, and adding an investment of Nε

M to each of the edges in
E′c, the perceived probability on path P will be:

f2(x) = exp
(
−

∑
(vi,vj)∈E′c,
(vi,vj)∈P

(Nε
M

)α
−

∑
(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j−ε)α
)
.

The net reduction in perceived probability on path P will be
positive if f2(x) < f1(x), i.e.,∑
(vi,vj)∈E′c,
(vi,vj)∈P

(
Nε

M

)α
+

∑
(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j−ε)α >
∑

(vi,vj)∈Ec,
(vi,vj)∈P

xαi,j .

(7)
If we define

f(ε) =
∑

(vi,vj)∈E′c,
(vi,vj)∈P

(Nε
M

)α
+

∑
(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j − ε)α,

we see that inequality (7) is equivalent to showing that
f(ε) > f(0). We have

df

dε
=
αN

M

∑
(vi,vj)∈E′c,
(vi,vj)∈P

(Nε
M

)α−1
−α

∑
(vi,vj)∈Ec,
(vi,vj)∈P

(xi,j−ε)α−1.

Note that limε↓0
df
dε =∞ which shows that f(ε) is increasing

in ε for sufficiently small ε. Therefore, f2(x) < f1(x) for
sufficiently small ε. Since this analysis holds for every path
from vs to vt, this investment profile outperforms investing
purely on the minimum edge cut.

VI. BENEFITS OF A BEHAVIORAL PLAYER IN
MULTIPLE-DEFENDER GAMES

We now return to the setting with multiple defenders, and
consider the scenario where one of the defenders in a multi-
defender network exhibits behavioral decision-making while
the other defenders are non-behavioral. Through the follow-
ing example, we show that the non-behavioral defenders
can, in fact, benefit from the behavioral player’s suboptimal
decision-making.

Example 2: We consider the attack graph of Figs. 3 and
4. There are two players, D1 and D2. Player D1 wishes to
protect node 5, and player D2 wishes to protect node 6. Note
that D1’s asset (node 5) is directly on the attack path to D2’s
asset (node 6). We let the total budget BT for defending the
network be BT = 24, and assume that the budget distribution
is asymmetric, so that player D1 has a budget B1 = BT
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L1 = 200
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0
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0

0.4254

0
0.4254

0

0

19.2

Fig. 3: Let α1 = 1, α2 = 1. The numbers above (below) each edge
represent investments by player D1 (D2). Here, the non-behavioral
player D1 does not receive any investment contributions from the
the other non-behavioral player D2.

1

2 3

4

5 6

L1 = 200

L2 = 2002.719

0

2.081

0

0

7.592

0

1.516
0

1.516

0

8.576

Fig. 4: Let α1 = 1, α2 = 0.6. The numbers above (below)
each edge represent investments by player D1 (D2). Here, the non-
behavioral player D1 benefits from the investment contributions of
the behavioral player D2.

while player D2 has a budget B2 = 4BT
5 . All of the optimal

investments were calculated using CVX [21].
Fig. 3 shows that if both players are non-behavioral, player

D2 will not spend any money in the subnetwork of player
D1 (this could also be inferred from Theorem 2). On the
other hand, Fig. 4 shows that if player D2 is a behavioral
player, she will put some investment on edges outside of
her minimum edge cut (see Proposition 1), which in this
example, corresponds to player D1’s edges. Therefore, player
D1’s subnetwork will benefit due the behavioral decision-
making of player D2.

It is also worth considering the total expected loss of the
game at equilibrium, given by ET = E1 + E2. For this
example, when both players are non-behavioral ET = 18.14,
while ET = 0.36 if player 2 is behavioral (with α1 =
1, α2 = 0.6). This considerable drop in the total expected
loss shows that the behavioral player’s contributions to the
non-behavioral player’s subnetwork may also be beneficial to
the overall welfare of the network, especially under budget
asymmetries or if player D1’s asset is more valuable.

VII. DISCUSSION AND CONCLUSION

This paper presents a game-theoretic framework that ac-
counts for behavioral attitudes of defenders in the security of
cyber-physical systems. Specifically, we proved the existence
of a PNE for such Behavioral Security Games between multi-
ple defenders. We also showed how nonlinear perceptions of
attack probabilities affect the security investments made by
defenders to protect their assets. In particular, non-behavioral
players find it optimal to invest only on a minimum edge cut,
whereas behavioral players do not. In the case of multiple
defenders, we illustrated that a non-behavioral player can
benefit from the presence of a behavioral player, as the latter

may make (sub-optimal) investments that lead to increased
protection of certain edges in the former’s network. In our de-
fense resource allocation game, the most relevant behavioral
decision aspect is the probability weighting of outcomes.
However, there are also various behavioral characteristics
that can affect the perceived values of gains and losses [10],
which we leave for future work. Moreover, it would be
interesting to explore settings with strategic attackers.

REFERENCES

[1] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems
security - A survey,” CoRR, vol. abs/1701.04525, 2017. [Online].
Available: http://arxiv.org/abs/1701.04525

[2] V. Shandilya and S. Shiva, “On a generic security game model,” Inter-
national Journal of Communications, Network and System Sciences,
vol. 10, no. 07, p. 142, 2017.

[3] A. Laszka, M. Felegyhazi, and L. Buttyan, “A survey of interdepen-
dent information security games,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, p. 23, 2015.
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