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Abstract— We consider a security game in a setting consisting
of two players (an attacker and a defender), each with
a given budget to allocate towards attack and defense,
respectively, of a set of nodes. Each node has a certain value
to the attacker and the defender, along with a probability
of being successfully compromised, which is a function of
the investments in that node by both players. For such
games, we characterize the optimal investment strategies by
the players at the (unique) Nash Equilibrium. We then
investigate the impacts of behavioral probability weighting on
the investment strategies; such probability weighting, where
humans overweight low probabilities and underweight high
probabilities, has been identified by behavioral economists to
be a common feature of human decision-making. We show via
numerical experiments that behavioral decision-making by the
defender causes the Nash Equilibrium investments in each node
to change (where the defender overinvests in the high-value
nodes and underinvests in the low-value nodes).

I. INTRODUCTION

Today’s cyber-physical systems (CPS) are increasingly
facing attacks by sophisticated adversaries, who are able
to evaluate the susceptibility of different goal targets in the
system and strategically allocate their efforts to compromise
the security of the CPS [1], [2]. In response to such
intelligent adversaries, the operators (or defenders) of CPS
need to allocate their (limited) security budget across many
assets to best mitigate their vulnerabilities. This motivates
the need to capture such interactions between attackers and
defenders and study their effects on system security. In
this context, significant research has been conducted for
understanding how to better secure these systems, with
game-theoretical models receiving increasing attention due to
their power in capturing the interactions of players (strategic
attackers and defenders) in different settings [3]-[6].

A particular class of simultaneous move games involving
attackers and defenders (where the players have to choose
their strategies at the same time, without first observing
what the other player has done) have been studied in
various contexts. For example, the Colonel Blotto game
[7] 1s a useful framework to model the allocation of a
given amount of resources on different potential targets
(i.e., battlefields) between the attacker and the defender.
Specifically, [8] proposed a solution of the heterogeneous
Colonel Blotto game with asymmetric players (i.e., with
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different resources) and with a number of battlefields that can
have different values. While Colonel Blotto games typically
involve deterministic success functions (where the player
with the higher investment on a node wins that node), other
work has studied cases where the win probability for each
player is a probabilistic (and continuous) function of the
investments by each player [5].

In these works, following -classical game-theoretical
models of human decision-making, defenders and attackers
are considered to be fully rational decision-makers who
choose their actions to maximize their expected utilities.
However, a seminal model called prospect theory (introduced
by Kahneman and Tversky in [9]) offers a descriptive
theory of how people actually make decisions showing
that humans perceive gains, losses, and probabilities in
a skewed (nonlinear) manner, typically overweighting
low probabilities and underweighting high probabilities.
While a large literature on prospect theory exists in
economics, relatively little research has investigated such
behavioral decision-making by defenders and/or attackers,
and its effects on CPS security (exceptions include
[10]-[13]). These exceptions have focused on the impact of
probability weighting on a single defender’s decisions via
decision-theoretic analysis (with no strategic attacker) [10],
on multiple defenders’ investments in networks (with the
emphasis being on understanding the role of the network
structure) [11], [13], or on behavioral decision-making by
both players for settings with a single target [12]. In
contrast to these works, we consider the effects of behavioral
decision-making in a setting with multiple targets with
different values to players, i.e., the defender and the attacker.

In this paper, we introduce prospect theory into a
game-theoretic framework involving an attacker and a
defender. Specifically, we consider a CPS consisting of
many assets, and assume that the defender misperceives the
probabilities of successful compromise of each asset. We
first establish the convexity of the objective function of each
player (i.e., attacker and defender), and we use this to prove
the existence of a pure strategy Nash equilibrium (PNE) for
the Behavioral Multi-Target Security Game. We then show
the uniqueness of that PNE in our game. We then characterize
the optimal investment strategies by the (rational) players.
We then show that the defender and the attacker invest
more in higher value assets (under appropriate conditions).
Subsequently, we show via numerical simulations that
nonlinear perceptions of probability can induce defenders to
shift more of their investments to the more valuable assets,
thereby potentially increasing their (true) expected loss.
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II. THE MULTI-TARGET SECURITY GAME FRAMEWORK

In this section, we introduce the defender model, the
adversary model, and the players’ utilities.

A. Strategic Defender

Let D be a defender who is responsible for defending a
set V.= {v1,v9,...,v,} of assets. For each compromised
asset v,, € V, defender D will incur a financial loss L., €
R~(. To reduce the attack success probabilities on assets,
the defender can allocate security resources on these assets,
subject to the constraints described below.

Let n = |V|. We assume that defender D has a security
budget B € R>(. Thus, we define the defense strategy space
of the defender by

X&{xeRL:> 2, < B}
v, €V

(D

In other words, the defense strategy space for defender D
consists of all non-negative investments on assets such that
the sum of all investments does not exceed the budget B.
We denote any particular vector of investments by defender
Dby xeX.

B. Strategic Attacker

Let A be an attacker who is attempting to compromise
the set V' of assets.For each compromised asset v,,, € V, the
attacker .4 will incur a financial gain G,,, € R~. To increase
the attack success probabilities on assets, the attacker can
allocate attack resources on these assets, subject to a budget
constraint P € Rx>. Thus, we define the attack strategy
space of the attacker by

Y £ {y e RY, :Zyi < P}.
v, eV

2)

We denote the attacker’s investment vector by y € Y.

C. Defender’s and Attacker’s Utilities

The investments made by the defender and the attacker
on each asset changes the probability that the asset can be
successfully compromised by the attacker. Specifically, let
pi : RZ; — [0,1] be a function mapping the total defense
investment z; and the total attack investment y; on the asset
v; to an attack success probability.

The goal of defender D is to choose her investment vector
x in order to best protect her assets from being attacked.
Mathematically, this is captured via the cost function

Cp(x,y) = Z L; pi(wi,yi)

v; EV

3)

subject to x € X. For any given y € Y, defender D chooses
her investment x € X to minimize C'p(x,y).

The goal of the attacker A is to choose her attack
investment vector y in order to compromise her target assets.
Mathematically, this is captured via the utility function

Uax,y) =Y Gipi(i, )

v; €V

“4)

934

°)

(wi
o o
S 8

°
>

o o
w s @

N

Perceived Probability

o =

0.2 0.4 0.6

True Probability (p)

0.8

Fig. 1: Prelec Probability weighting function which
transforms true probabilities p into perceived probabilities
w(p). The parameter o controls the extent of overweighting
and underweighting.

subject to y € Y. For any given x € X, attacker A chooses
y €Y to maximize U 4(X,y).

Note that C'p(x,y) and U 4(x,y) are functions of both
the defense investments x of the defender and the attack
investments y by the attacker.

The recent work [5] studies this setting and provides a
method to calculate the optimal investments (with respect to
the cost (3) and utility (4) functions, respectively). However,
as mentioned in the introduction, humans have been shown
to systematically misperceive probabilities, which can impact
the decisions that defenders and attackers make in the
presence of risk. In the next section, we will review certain
classes of probability weighting functions that capture this
phenomenon, and then subsequently introduce such functions
into the above Multi-Target Security Game formulation.

III. THE BEHAVIORAL MULTI-TARGET SECURITY GAME

In this section, we incorporate behavioral biases into the
two player simultaneous move game formulation between
the defender D, and the attacker A.

A. Nonlinear Probability Weighting

The behavioral economics and psychology literature has
shown that humans consistently misperceive probabilities
by overweighting low probabilities and underweighting high
probabilities [9], [14]. More specifically, humans perceive a
“true” probability p € [0,1] as w(p) € [0, 1], where w(-)
is a probability weighting function. A commonly studied
probability weighting function was proposed by Prelec in
[14], and is given by

w(p) = exp | (~log(p)* ], pe.1,  ©

where « € (0,1] controls the extent of overweighting and
underweighting. When o = 1, we have w(p) = p for all p €
[0, 1], which corresponds to the situation where probabilities
are perceived correctly (i.e., rational defender). Smaller
values of « lead to a greater amount of overweighting and
underweighting, as illustrated in Fig. 1.

Recall that the defender seeks to protect a set of assets,
while the attacker is seeking to compromise them. The
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probability of each asset being successfully compromised is
itself determined by the corresponding investments on that
asset by both the attacker and the defender. This motivates a
broad class of games that incorporate probability weighting,
as defined below.

B. Behavioral Multi-Target Security Game Formulation

Definition 1: We define a Behavioral Multi-Target
Security Game as a game between an attacker and a
defender for a set of targets, where both defender and
attacker misperceive the attack probability on each asset
according to the probability weighting function defined in
(5). Specifically, the perceived attack probability on an asset
v; € V by player k € {A, D} is given by:

wi(pi(s, i) = exp | — (= log(pi s, yi)))™* |.

where p;(x;,y:) € [0,1], ax. € (0,1].

Now, we present the optimization problem perceived by the

behavioral defender and the behavioral attacker, respectively.
1) Defender Cost Function Minimization Problem:

n

mi}r(liergl(ize Cp(x,y) = ; L; wp(pi(xi,yi))- (6)
2) Attacker Utility Function Maximization Problem:
maximize Un(x,y) = Z Gi walpi(zi, vi))- (N

ey
y i=1

In a Behavioral Multi-Target Security Game, a collection
of best response strategies (x*,y*) is a Pure-strategy Nash
Equilibrium (PNE) if and only if both equations (8) and (9)
below are satisfied simultaneously:

x* € argmin Cp(x,y") (8)
xeX
y* € argmax Ugy(x*,y). 9

yey

We will start by proving the existence of a PNE
in the Behavioral Multi-Target Security Game, and then
subsequently characterize properties of the investments by
the players. In particular, we focus on the simultaneous
move game in this paper (e.g., as considered in [5] and the
literature on Colonel Blotto games [7]), and leave a similar
investigation of sequential games for future work.'

IV. EXISTENCE OF PURE STRATEGY NASH EQUILIBRIUM

We now prove the existence of a PNE for the Behavioral
Multi-Target Security Game. Throughout, let the function
pi(x;,y;) represent the true probability of successful attack
on an asset v; € V when the total defense and attack
investments on that asset are x; and y;, respectively. We
make the following assumption on p;(z;, ;).

Assumption 1: The probability of successful attack on
asset v; € V, p;(x;,y;), has the following properties.

IThe recent work [15] studied such sequential game, however with only
two assets. Studying the general case with many assets would be of interest.

935

pi(x,y;) is twice differentiable with p;(z;,0) = 0 and
lim p(zi,y:) =0 Vy; € Rxo.
T;—00
pi(x;,y;) is decreasing and log-convex” in x;.
pi(x;,y;) is increasing and concave in y;.
(2 _)azp(xi»yi) Ipi(wi, yi) Opi(wi, y:)
PilTi, Yi 02,0, oz, oy
In other words, the larger the defensive security investment
on a target, the less likely that the target will be successfully
attacked. On the other hand, the larger the attack resources
used to attack a target, the higher the chance that the target
is compromised successfully. The assumptions of concavity
and twice-differentiability are common in literature [5], [10].
A particular success function which we will focus on
throughout this work is

2
.

<

pi(@i, yi) = exp(—z; — a;)(1 — exp(—y;)),  (10)
where a; € R>g in (10) represents the pre-existing (or
inherent) security investments on a node, which decrease
the successful attack probability even under no additional
defense investment. Such probability functions fall within
the class commonly considered in security economics [16],
[17], and satisfy the conditions in Assumption 1.

Lemma 1: For every asset v; € V, the perceived
probability of attack w(p;(x;,y;)) is convex in the defense
investment x; under Assumption 1.

Lemma 2: Under Assumption 1, if p;(x;,y;) €
[0, 2)Va;,y; € R>o, then
i) The perceived probability w(p;(z;,y;)) will be

concave in the attack investment y;.
Pw(p(xi, yi))
90y,
The proof of Lemmas 1 and 2 follow by using the second
partial derivative formula and Assumption 1, and can be

found on the extended version of this paper [18].

Note that for attack success probabilities given by (10), the
condition p;(z;,y;) € [0, 1) is guaranteed when the inherent
defenses of the asset (given by parameter a;) satisfy a; > 1.

This brings us to establishing the existence of a PNE in
the Behavioral Multi-Target Security Games.

Theorem 1: Under Assumption 1, if p;(z;,y;) €
[0, %)Vz,;, y; € Rsp, a PNE exists in the Behavioral
Multi-Target Security Game.

Proof: From (1) and (2), the strategy spaces X and
Y are compact and convex. Let the Hessian matrices of
Cp(x,y) (in (6)) and Ux(x,y) (in (7)) be Hp and H 4,
respectively. Both Hp and H 4 are diagonal by definition
since p;(x;,y;) for each asset only depends on x; and
y;. Moreover, from Lemma 1, each diagonal element in
Hp is non-negative and therefore Cp(x,y) is continuous
and convex in x. Similarly, Lemma 2 shows that each
diagonal element in H 4 is non-positive and thus U 4(x,y) is
continuous and concave in y. Therefore, a pure-strategy Nash
equilibrium exists for our Behavioral Multi-Target Security
Game [19]. |

ii) The partial derivative is negative.

2This is a common assumption in the literature [16], [17].
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After establishing the existence of a PNE in our Behavioral
Multi-Target Security Game, we study the characteristics of
the investments of the players (the defender and the attacker)
in the game.

V. PROPERTIES OF THE OPTIMAL INVESTMENT
DECISIONS

In this section, we characterize properties of the optimal
investment decisions by the players.

A. Uniqueness of PNE

We first show the uniqueness of the PNE for
the Behavioral Multi-Target Security Game (defined in
Section III).

Theorem 2: Suppose that the asset values for the defender
and attacker share a common ordering (i.e., Ly > Lo >
««»> Ly and G; > G3 > --- > G,,). Under Assumption 1,
if pi(zi,y:) € [0,1)Vay,y; € Rso, then the PNE of the
Behavioral Multi-Target Security Game is unique.

Proof: To prove the uniqueness of the PNE, we follow
the argument of Rosen [19] by proving that the weighted
non-negative sum of our payoff functions is diagonally
strictly concave.

Let us denote the payoff functions of the defender and
attacker as ¢1(x,y) and ¢2(x,y), respectively. Note that
$1(x) = —Cp(x,y) and ¢2(x) = Ux(x,y). Now, define
r = [r; ro], and let us define o(x,y,r) as the weighted
non-negative sum of the two payoff functions ¢;(x,y) and
¢2(x,y) as follows:

2
U(xayvr) = Zri QSZ(X,y)
i=1

=" Z Li wp(pi(xi, yi)) + 12 Z Gi wa(pi(zi, i)

i=1 i=1
Now, let us define the function g(x,y,r) as follows:
_7"1 vx ¢1 (X7 y):| |:—’I"1 vx CD(X7 Y):|

72 Vy 92(%,Y) r2 Vy Ua(x,y)
[y [, 2woi(ziy) ]

Oz
—ry Lo 3(wD(pazgfzzz,yz)))

g(x,y,r) =

= |- Ln a(wé(p'rt(”myn)))

TQGI%W

e G, 3(111A(pgy(fn,yn))) |
To show that o(x,y,r) is diagonally strictly concave, it
is sufficient to show that the symmetric matrix [G(x,y,r)+
GT(x,y,r)] is negative definite for some r > 0O where
x € R" and y € R", where G(x,y,r) is the Jacobian with
respect to x and y of g(x,y,r) [19].
Now, we can write G(x,y,r) as

— Gl(xvyvr) G2(x’y7r)
G(x,y,r) = Gs(x,y,r) Gu(x,y,r

;r)|’
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where G1(x,y,r), Ga(x,y,r), G3(X,y,r), and G4(x,y,r)
each have dimension n x n and are given by:

Fwp(p(tn,yn)) |
0z? T 7

Gi(x,y,r) = r diag(—Ly =Ly a2

Pwp(p(r1,y1)

0z10y1 T ’

_Ln
oz rLayn

Ga(x,y,r) = ry diag(—L,

PPwa (p(Tn,yn))
aynawn

ayl 81’1 ) ) G'n,

GS(X7 Y, I‘) =T2 dldg(Gl

)

Pwalp(ar, 1))

62wA(p(:En, Yn)) )
Wi |

) G'n, ay%

Gi(x,y,r) = ro diag(Gy
Now, define the symmetric real matrix M (x,y,r) as
M(x,y,r) = [G(x,y,r) + GT(x,y,1)].

Now, we prove that M(x,y,r) is negative definite by
showing that u” M (x,y,r)u < 0 for all non-zero vectors
u=— [ul Ug ugn]T as follows:

n 2 4 '
u" M(x,y,r)u=—2r (Z quiawD(p(x“y’))>

=1 3xf
+ 2§uiun+i (—rlLiW
+7’2G1W>. (11)
In (11), we have ZWRleleess)) ~ gyj — 1,... n (since

pi(zi,y;) € [0,1), it follows directly from the proof of
Lemma 1), L; > 0 (from defender’s financial loss definition),
and u? > 0. Moreover, since % < OVi =
1,...,n (from Lemma 2), G; > 0 (from attacker’s financial
gain definition), the summation of the first and second term
is always negative. Moreover, from Lemma 2(ii), we have

Qwpp(rivi)) () and W < 0. Thus, choosing

Jz;0y;
1
= ;
L 0%wp (p(z4,yi))
- 2 s
9x:9y; (:rf,yi*)Eargminr%,yi g wgiiéz?yl))
1
To =

Pwalp(@i,yi))

2w A (p(2q,v4))

(ii,'yi)eargmaxzi,yi Dy, 02,

where (z},y’) denote the investments on asset v; with
O’ wop (p(ws,y:))

minimum B2y, across the n assets and (Z;,¥;)
dg:note the investments on asset v; with maximum
W across the n assets. Note that this choice

minimizes r; by choosing the maximum possible value of its
2 s .. . .

denominator since %{W < 0. Similarly, this choice

maximizes 7o by choosing the minimum possible value of

2 P .
its denominator since W < 0. Therefore, this

ensures that the third term is ﬁon—positive. Therefore, we
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have u” M (x,y,r)u < 0 and thus o(x,y,r) is diagonally
strictly concave for some r > 0.

From Theorem 2 in [19], since o(x,y,r) is diagonally
strictly concave for some r > 0, the equilibrium point of the
Behavioral Multi-Target Security Game is unique. [ ]

B. Locations of Optimal Investments

We next characterize the optimal investments by the
defender for a given set of investments by the attacker, and
then do the same for the attacker. In particular, we denote the
optimal investments by x*(ap) and y*(a4) to indicate that
such investments will depend on the probability weighting
parameters ap and a4, respectively.

Proposition 1: Consider a defender D. Let the true
probability of successful attack on each asset be given by
(10). Consider a set of n assets whose losses can be put
in the descending order Ly > Ly > --- > L,. Suppose
Y1 > Y2 > --- > yp, > 0, and that the pre-existing defense
investments on each asset satisfy a1 = a9 = --- = a,,. Then,
the optimal defense allocation of (6), denoted x*(ap) =
[z5(ap)  a5(ap) % (ap)|”, has the property that
zi(ap) > a5(ap) 2 -+ > a7 (ap).

The above result showed that the defender will invest more
in higher-valued assets if the attacker has invested more in
higher valued assets. We now show that a non-behavioral
attacker will indeed prefer to invest more in higher-valued
assets (even if the defender invested more on those assets)
under certain conditions, namely when there are significant
differences in the values of the assets to the attacker.

Proposition 2: Consider a non-behavioral attacker A (i.e.,
a4 = 1) and a non-behavioral defender D (i.e., ap = 1).
Let the true probability of successful attack on each asset
be given by (10). Consider a set of n assets whose gains
can be put in descending order G; > G > -+ > G, such
that i > L Vi < j. Suppose that the pre- ex1st1ng defense
1nvestments on each asset satisfy a1 = as = = a,. Then,

L

i) The attacker’s investment at the PNE is given by y; =
yi + log(g—;) log( Vi,j € {1,...,ka} where
k4 is the number of nodes that have nonzero attack
investment at PNE. Formally, k4 is the largest k£ such
that P — log(L> + log(nk > 0.

The defender’s investment at the PNE is given by z}
T+ log( )Vz j € {1,...,kp} where kp is the
number of nodes that have nonzero defense investment
at PNE. Formally, kp is the largest k£ such that B —
1og<H‘L71 > 0.

The proofs of Propositions 1 and 2 can be found in the
extended version of this paper [18].

The above results shows that if the asset values for the
defender and attacker share a common ordering and if the
values to the attacker are significantly different between
the assets, then, in the PNE, both players invest more in
their higher valued assets (noting that the attacker would
invest the same in all assets if the ratio of gains are exactly
the ratio of losses for any two assets within the CPS, i.e.,
G %Vz < 7). We will show an example of such a PNE

ii)

Gj

937

later (emphasizing the CPS defender’s investments and the
attacker’s efforts) in our numerical simulations in Section VI.

VI.

In this section, we provide numerical simulations results
to validate our findings in Section V and to show the effect
of behavioral decision-making.

NUMERICAL SIMULATIONS

A. Experimental Setup

We emulated four critical assets (or targets). For the
defender, the first asset has very high loss (i.e., L; = 1000)
while the second and third assets have lower losses (with
Lo = 200, L3 = 40) and the fourth asset has the least loss
(L4 = 8). For the attacker, we employ symmetric gains for
successful attack (i.e., G1 = 1000, G5 = 200, G35 = 40, and
G4 = 8). We let the total defense budget for defending the
three critical assets and the total attack budget to compromise
them be B = 10 and P = 10, respectively. The probability
of successful attack on each of the assets is given by

play)=e " (1-e7)

where x and y are the defense and attack investment on
that asset, respectively. The above function satisfies the
conditions in Assumption 1. We followed the best response
dynamics notion to calculate the optimal investments of each
player at the PNE. All of these optimal investments were
calculated using Matlab Optimization toolbox.

B. Effect of Perception on Investments

In this subsection, we show the effect of probability
misperception on the defense and attack investment decisions
in the Behavioral Multi-Target Security Game. We note the
ordering of defense investments on the assets (which is
consistent with Proposition 1). Fig. 2 shows the difference
in the defense investments for each of the assets as
ap changes for the defender while keeping the attacker
non-behavioral (with vy = 1). We observe that the asset
with the highest financial loss takes a higher portion of
the defense investments as the defender becomes more
behavioral (i.e., ap decreases). Fig. 3 illustrates the effect
of defender’s behavioral level on attacker’s investment
decision. The non-behavioral attacker’s investments facing
a non-behavioral defender is consistent with Proposition 2.
Note also that when both players are non-behavioral, the
PNE investments satisfy the condition for number of nodes
with non-zero investments in Proposition 2 (Here, we have
kp = ka = 4). We also observe that a non-behavioral
attacker would put less resources on the first asset, with
the highest gain, when facing behavioral defender who
“over-protects” this asset. The insight here that the attacker
would not waste attack resources on the highly-defended
asset (Asset 1) but it tries to attack the remaining assets.

C. Effect of Behavioral Investments on CPS Defender’s Loss

It is also worth considering the total expected system
loss Er of the defender in equilibrium, given by the sum
of the real losses of all assets. We consider different loss
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Fig. 2: Effect of behavioral probability
weighting on the defense investments.
The asset with the highest financial
loss takes higher portion of the defense
investments as the defender becomes
more behavioral (i.e., « decreases)
while the attacker is non-behavioral.

~

2 I Asset 1 (G, = 1000)
E 6 [ Asset 2 (G, = 200)
3 5 |:|Asset3 (G, =40)
E Il Asset 4 (G, = 8)
%4

E

3

kel

z2

5

g1

<

o

a=02 a=04 a=06 a=08 a=1
Defender's Behavioral Level (a)

Fig. 3: Effect of defender’s behavioral
probability weighting on the attack
investments. The asset with the highest
financial gain takes much lower portion
of the attack investments as the defender
becomes more behavioral while the
attacker is non-behavioral.
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Fig. 4: Effect of behavioral probability
weighting on the true expected loss of
the defender for different loss values
for the assets. The cost of the defender
is worse if the defender becomes
more behavioral while the attacker is
non-behavioral.

valuations scenarios (including our previously considered
loss valuations). Fig. 4 shows that when the defender is
non-behavioral £ = 26.96, while £+ = 100.12 when o =
0.2 with a non-behavioral attacker in both scenarios. This
considerable increase in the total real loss of the behavioral
defender shows that probability weighting induces defender
to invest in a sub-optimal manner, when some assets are
more valuable to the defender. Moreover, as the behavioral
level increases (i.e., ap decreases), the effect of suboptimal
investments is more pronounced in terms of the defender’s
total expected (true) loss.

VII. CONCLUSION

This paper presented a game-theoretic framework that
takes account of behavioral attitudes of defender and attacker
in Multi-Target Security Game where the attacker and the
defender place their investments to compromise and protect
the target assets respectively. Specifically, we considered
the scenario where the (human) defender misperceives the
probabilities of successful attack in each asset. We then
established the existence and uniqueness of PNE for our
Behavioral Multi-Target Security Game. We then provided
the optimal solutions for non-behavioral players for that
game. Finally, we provided numerical simulations that
validated our results and showed that nonlinear perceptions
of probability can induce the defender to invest more on
the assets with higher losses. An avenue for future research
would be studying the setup of a behavioral attacker and
its resulting properties. Moreover, validating our findings via
human subject experiments (similar to [20] on attack graphs)
would be another avenue for future research.
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