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Abstract—Millimeter wave (mmWave) systems rely on com-
munication in narrow beams for directional and spatial multi-
plexing gains. A key challenge in realizing these systems is beam
tracking, particularly in environments with high mobility and
blockage. Additionally, in wide-area mmWave cellular systems,
user equipment (UE) devices must often simultaneously track
signals from multiple cells, since links to individual cells can be
unreliable. Models of the channel dynamics across multiple cells
and multiple beams are difficult to derive from first principles.
In this work, we propose a fully data-driven approach based on a
novel auto-encoder integrated long short term memory (LSTM)
network, which predicts multiple beams from multiple cells, one
time step in the future. The key innovation is to use an auto-
encoder pre-processing step, which reduces the dimensionality
of the input — the main challenge in multi-cell, multi-beam
tracking. The prediction capability of the proposed network is
verified and compared to common baseline predictors as well as
popular machine learning (ML) based neural network predictors
in realistic system-level simulations using a commercial ray-
tracer. We observe that predictions from the proposed network,
which utilizes auto-encoders for dimensionality reduction, offers
significantly better best beam accuracy and lower beam misalign-
ment loss than common baseline approaches. We also discuss
outage prediction and proactive beam switching as applications
of the multi-cell multi-beam prediction.

Index Terms—Millimeter wave (mmWave) communications,
LSTM, machine learning, cellular wireless, 5G, NR, dimensional-
ity reduction, ray tracing, channel prediction, multi-connectivity,
beamforming.

I. INTRODUCTION
A. Motivation

Millimeter wave (mmWave) wireless systems have
emerged as a key component of fifth generation (5G) cellular
standards [2]. The abundance of available bandwidths at these
frequencies can enable both massive broadband and ultra-low
latency communications for use cases including vehicle to ev-
erything (V2X) communications, robotics, drones, healthcare,
augmented reality and virtual reality.

A well-known challenge of mobile communication at these
frequencies is beam tracking. To overcome the high isotropic
path loss in the mmWave frequencies, both the transmit-
ter (TX) and receiver (RX) must typically communicate in
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narrow, steerable directional beams. Tracking these beams
at a high angular resolution is challenging, particularly in
high mobility environments. In addition, mmWave signals are
highly susceptible to blockage from humans, hands and many
everyday building materials [3]-[6]. Thus, small changes in the
orientation of the device or appearance of blockers can result
in a rapid degradation of link quality in any given direction.
As a result, mmWave systems often need to track and predict
link quality along multiple directions to guarantee reliable
communication. Moreover, most mmWave systems rely on
dense cell deployments combined with multi-connectivity to
provide macro-diversity resistance to blockage [7]. Multi-
connectivity can be supported via carrier aggregation [8] where
a mobile (UE) can be simultaneously connected to multiple
cells. Hence, the mobile needs to track and predict link quality
not only from multiple directions (beamforming) but also
multiple directions from multiple cells (beamforming coupled
with macro-diversity).

The broad goal of this work is to understand the problem
of tracking multiple beams from multiple cells. We will refer
to the signal path from one cell to a UE along a particular
TX and RX direction pair as a /ink. Each link has a time-
varying quality. The problem is to use past measurements
to estimate a set of future link qualities as well as the best
link indices (that have the best quality) with high accuracy.
These future estimates can help mobile mmWave wireless
systems accurately track links and proactively switch them
when needed.

Traditional statistical prediction approaches are difficult,
since link statistics are complex and difficult to model from
first principles. The link qualities in particular can have
intricate statistical relationships between different angles and
base stations. We thus propose a machine learning approach
where the prediction algorithms can be trained from data.
Specifically, we formulate the multi-beam multi-cell prediction
problem as a vector-valued sequence-to-sequence problem and
solve it using recurrent neural networks (RNNs) and auto-
encoders. In our work, we use a well-known RNN called
long short term memory (LSTM), which has worked for
similar problems [9], [10]. LSTMs can capture long-term
dependencies and have been successful in a range of problems,
particularly in natural language processing (NLP), speech
recognition and robotics. Auto-encoders are used to reduce
input dimensions of LSTM. Our contributions in this paper
are:

(a) Novel neural network architecture with an auto-encoding
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precoder: We propose an auto-encoder integrated LSTM
network capable of predicting all link qualities with
correct indices, one time step ahead in the future (e.g.,
20ms, the typical period for reference signals in 5G NR
[11]). A key challenge in these architectures is the large
raw signal dimension, particularly when the number of
base stations and directions is high, as discussed later
in Section I-B. The high dimension can result in poor
generalization and a high computational cost. We thus
propose a novel auto-encoder based pre-coder for initial
dimensionality reduction. We demonstrate in simulations
that the auto-encoder based LSTM can offer a reduction
of approximately 260% in the number of parameters
with improved performance compared to standard dimen-
sionality reduction methods such as principal component
analysis (PCA).

Ray tracing evaluation: To validate the method, we
generate traces of link quality — signal to noise ratio
(SNR) - using a commercial ray-tracer at mmWave
frequencies. The traces mimic a car with a multiple
antenna receiver moving in downtown Rosslyn, which is
connected to multiple cells with multiple antennas. These
traces capture most of the major channel characteristics
like multi-path, mobility and blockages from buildings.
To make the scenario more realistic, we also implement
a measurement-based hand blockage model on top of the
ray-tracer generated SNRs. The generated data set is also
useful for ML-based wireless research, as discussed in
Section I-B. After data generation, we test the prediction
performances of the methods mentioned in (a) on the
traces. Over multiple test trajectories of the generated
data, the average test error in best link prediction from
the proposed predictor is 90% of the time less than 2 dB,
outperforming optimally tuned baseline linear predictors
(ML predictors) by at least 78% (10%) at the same
percentile. Similarly, for the top 10 links, the average
error is less than 2 dB for 94% of the time, which is 86%
(8%) better than the linear baseline predictors (ML-based
predictors). Furthermore, the error due to misalignment
of best predicted beams is less than 2dB for 98% of the
time using the proposed predictor, outperforming baseline
linear predictors by at least 86%.

Site-specific training: An important implication of the
work is that we offer a method for site-specific training,
where the prediction of links from a particular collection
of base stations can be optimized. Site-specific models
can be run in the network (where the UE reports measure-
ments to the network) or in the UE (where the network
provides the UE parameters). This site-specific training,
using an edge server, is demonstrated in Fig. 1.
Applications for beam management procedures: We also
discuss outage prediction and proactive beam-switching
as applications of the proposed predictors. Although the
desired predictors are not optimized for these applica-
tions, we observe that predictors still deliver adequate
accuracy. The proposed auto-encoder integrated LSTM
predictor can successfully predict outages 96% (80% for
the best baseline linear predictor) of the time with a

false alarm prediction lower than 5% (same for the best
baseline linear predictor). Similarly, the proposed predic-
tor can proactively switch beams with a 91% accuracy
(81% for the best baseline linear predictor), while keeping
the false beam-switching rate lower than 2% (10% for
baseline predictor).

B. Related Work

There is now a growing body of work on deep learning
methods for various forms of link prediction and channel
estimation. For example, previous work on single link quality
predictions have been done at sub-6 GHz frequency for a
vehicular scenario in [13]. Work on link prediction based on
LTE and WiMax measurements has been done in [14]. CSI
estimation using deep learning has also been addressed in
[15] and tested on sub-6 GHz measurements. The work [16]
uses RNNs for a very simple LTE-MIMO system (only four
links) with no blockages, and [17] uses LSTMs to predict
RSSIs (one link) for different sub-6 GHz interfaces, while
[18] has developed neural network models for single beam
estimation from non-coherent measurements and validated
these in experiments. Our work however, tackles multi-beam
multi-cell prediction at the mmWave frontier, which is more
complicated because of the channel impediments like narrow
beams, severe blockages, complex interactions with the envi-
ronment, etc. Importantly, since we consider tracking a much
larger number of links, the role of the dimensionality reduction
is key. As shown in [19], the number of beams increases as
carrier frequency f. increases (< f2)!. Increasing f, results in
severe blockage [20] and penetration loss [21], which neces-
sitates more macro-diversity (multi-cell connectivity), thereby
increasing the input dimensions even more. As we move to
next generation wireless networks (higher f.) with even higher

For example, if f. is increased from 28 to 140 GHz (sub-THz, 6G), the
number of directions to track increase by a factor of 32 [19], which equals
increase in input dimension size in our case.

Edge server

Fig. 1: Demonstration of site-specifc training. The blue arrows
indicate gNBs sending data to the edge server. The edge server
collects the data and trains the neural network. Once trained, the
parameters of the network are broadcast to all gNBs and UEs,
indicated by orange arrows. Similar architecture is proposed in [12].
The channel between the edge sever and UE/gNBs is not part of
training the ML network.
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dimensional inputs, the dimensionality reduction will become
more crucial for ML-aided wireless communications. To the
best of our knowledge, this is the first work that tackles the
increased dimensionality problem (because of increased beams
and multi-cells) for mmWave wireless systems using auto-
encoders.

A related line of work [22]-[24] tackles beam and block-
age predictions at mmWave, leveraging sub-6 GHz links (non-
standalone mode of operation). In our work, we solve the
multi-cell multi-beam prediction problem solely based on
mmWave links (standalone mode of operation). Also, [25]
and [26] use ML for mmWave link blockage classification
and prediction, while [27] uses gated recurrent unit (GRU) for
blockage prediction and proactive hand-over in a simplistic
environment. However, these works do not address the link
quality (SNR) and link index prediction problem. Our work
confronts the link SNR and index prediction problem in a
realistic environment based on 3GPP parameters, measurement
campaigns and proved works. These prediction capabilities
will help in processes like proactive beam switching, han-
dovers [27] and adaptive rate prediction. V2X, robotics and
drone communications can also benefit from these proactive
applications. To the best of our knowledge, this work is unique
in solving the multi-beam, multi-cell magnitude and index
prediction problem for mmWave systems.

Finally, a key challenge in ML methods is the need for
large quantities of training data. A common theme in many
prior works, such as [17], [24], [28], has been the use of ray
tracing, which enables large quantities of training points to
be generated via electromagnetic simulations. Ray tracing has
also been vital in training deep generative models [29], [30].
This work also uses ray tracing combined with hand blockage
models to capture local effects not included in a conventional
ray tracer. Since the ray tracing scenario conforms with the
3GPP NR standard at mmWave frequencies, the generated
data set is essential to foster research in ML-assisted wireless
communications (similar to the DeepMIMO data [28])32.

C. Organization

Section II defines some system parameters for link mea-
surements based on 3GPP standards, which will help us align
our work with the standard. We formulate the single-step ahead
prediction problem in Section III and define some performance
metrics, which are useful from a wireless communications per-
spective. Section IV presents proposed LSTM-based predictors
and an argument about the need for dimensionality reduction,
which will be achieved using auto-encoders and PCA. We
also introduce some other ML-based neural network (NN)
predictors for comparison in this section. In Section IV-D, we
present some baseline linear predictors to which performance
of NN-based predictors will be compared. Discussion on a
detailed and realistic simulation setup based on a commercial
ray tracer is included in Section V. In Section VI, training

2The data set can be found at
https://github.com/shastpi/mmWave-ray- tracer-dataset

and tuning of hyper-parameters of the proposed predictors as
well as the baseline predictors are given. In Section VII-A, we
compare prediction performance of all predictors and observe
how the proposed predictor outperforms the baseline linear
predictors as well as other NN predictors. We discuss predic-
tion performances of all the predictors for various applications
in Section VII-B. Finally, Section VIII concludes the paper
with a summary.

II. SYSTEM PARAMETERS

Although our methodology is general, to make the analysis
concrete we will focus on tracking and predicting the links for
3GPP NR-like systems, which can be reviewed below?.

gNB and UE codebooks: In 5G NR terminology, the
base station cell is called the gNB and the mobile is called
the UE [31]. To simplify the analysis, we assume the gNB
transmits from a codebook of Ntx possible directions, and
the UE receives from a codebook of Nrx directions. Hence,
for each gNB-UE pair there are Npx Nrx direction pairs. In
general, we will assume that Ntx is equal to the number of
TX antennas at the gNB, and Ngrx is equal to the number
of receive antennas at the UE. Hence, there is one codebook
vector for each spatial degree of freedom. However, most of
the framework can also be applied to over-sampled codebooks.

Reference signals (RS) for beam measurements: Beam
tracking in 5G NR is done using reference signals such
as synchronization signal blocks (SSBs) or channel state
information reference signals (CSI-RS). SSBs are periodically
broadcast on relatively wider beams from each 5G NR gNB
for the purpose of base station discovery and downlink beam
detection (usually in idle mode) [31]. CSI-RS on the other
hand are sent on narrower beams during data transmission
from gNB and enable beam tracking in mobile environments.
The beamsweep is generally done in a hierarchical manner
i.e., the SSBs with wider beams are first used to determine a
coarse direction of transmission, which is then refined using
reference signals like CSI-RS. However, in this work, we
only consider narrow beams, which are referred to as refined
beams after beam refinement. This brings us to our first
assumption that reference signals only use narrow beams for
beam quality measurements (SNR). Measurements over narrow
beams eliminate the hierarchical aspect of beam tracking and
make beam tracking more challenging.

These RSs are transmitted in bursts with some periodicity
Trs. We set this interval to 20 ms, which is consistent with
SSB and CSI-RS periodicity in the 3GPP NR standards
for carrier frequency of 28 GHz with a sub-carrier spacing
(SCS) of 120kHz [32]. In each RS burst, Ngs beams can
be measured (typically with one TX direction for each RS).
The parameters Nrg and Trg are configurable. In simulations
below, we will set Ngg = Nrx allowing one RS in each
downlink direction. The values of these and other important
parameters are given in Table I.

3 An excellent description of the NR protocol can be found in [31]
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Parameter Value Remarks
Carrier frequency, f. 28 GHz Standard mmWave NR frequency for FR2
Occupied bandwidth, BW (MHz) 400 Maximum bandwidth for mmWave NR systems

Subcarrier spacing (SCS), kHz 120

SCS = 120 kHz and BW = 400 MHz are common for early 5G deployments at
28 GHz [32].

OFDM symbol duration, Tyym (us) 8.92 Derived from SCS [33].
Number of UE (gNB) antennas, Ngrx (N1x) 8 (64) The array sizes at 28 GHz are similar to previous capacity analyses [34], [35].
. ] . For SSB it is 4 OFDM symbols i.e., 4Tsym [33]. For CSI-RS, it can be {1, 2, 4}Tsym
Duration of one RS, Tirs (4:s) Varies | jepending on OFDM symbols used[33].
RS burst period, Trs (ms) 20 From NR configuration [33].
g’;?gémj‘\',“RZ“mber of RS during an SSB burst 64 Nrs has a maximum value of 64 for 5G NR systems for the default 120 KHz SCS [33].

TABLE I: 3GPP NR-based system parameters.

Network Model with Carrier Aggregation: Resilience
to blockage at mmWave frequencies necessitates macro-
diversity, i.e., the UE must be connected to multiple cells
[7], [8]. To this end, we assume that the UE is connected to
Ny~ gNBs via carrier aggregation, a key feature in 3GPP
systems that enables simultaneous connections to multiple
cells [8]. The cells either operate in different component
carriers or within the same component carrier* — the analysis
for this paper is identical. The above process does not require
synchronization across cells.

The notions of RSs and carrier aggregation are introduced
to justify an important assumption for our prediction method
— the UE/gNB are able to measure all the beams at each
discrete time interval. This discrete time interval in our case
is TRS»

Our analysis can apply to both fully digital and analog
beamforming at the UE. With fully digital beamforming, the
UE can measure all Ngx directions every RS measurement pe-
riod. Hence, after one RS burst of Nrx transmissions, all RX-
TX pairs will have been measured. For analog beamforming
during an RS burst allocated period, the UE can send uplink
measurement signals (like sounding reference signals — SRS)
to gNB from one of its beams, and a gNB with fully digital
beamforming can measure all the beam-pairs for that particular
beam’. In this manner, the complete beam sweep for all pairs
will take Ngx such instances. In either beamforming case,
since we assume carrier aggregation, the UE can measure the
signal from all cells in each measurement burst. Henceforth,
for simplicity, we will assume that beam sweeping is done
at a fully digital beamformed UE via RS bursts. Therefore,
the UE measures each synchronization resource individually.
The other signals will appear as interference. Since mmWave
systems are wideband and generally power limited, we have
neglected this interference.

III. PROBLEM FORMULATION

We index the discrete time steps (RS bursts) by ¢ =
0,1,...T. Let v(i, j,,t) denote the measured channel quality
(i.e., SNR) from cell i = 1,...Ngnp , in TX direction

4According to [36], the UE can track up to 21 inter and intra-carrier
frequency cells.

SRSs may be broadcast to all UEs whereas SRSs are gNB specific, so this
method will affect scheduling efficiency of the gNB, because it has to get
ready to measure all the uplink measurements. Furthermore, this assumption
is only valid if the channel is reciprocal.

j = 1,...Ntx, and RX direction [ = 1,...,Ngx at
measurement period . We merge the first three dimensions of
the SNR tensor so it becomes v(k,t), where k = 1,--- | K =
Nrx Nrx Ngng. We call each k a link. The matrix y(k, t) thus
describes the variation of the link qualities over time. The vari-
ations will in general depend on UE motion, blocking, small-
scale fading, hand blockage and other channel characteristics.
The SNR measurement can be a wideband average SNR or
effective SNR when there is frequency-selective fading.

We will often train on multiple trajectories where each tra-
jectory is some route of the UE experiencing some blockage.
In this case, we denote the SNR tensor for n-th trajectory as
vn(k,t). A trajectory consists of traces of SNRs on all beam-
pairs at all gNBs for 7' time steps (refer to Section V-B for
the exact definition). We consider predictors of the form,

’yp(:?t) :,Ph/(:vt_M :t)]v (1)

where P[] is the prediction function, and we have used the
python-like® notation to indicate that the predictor depends on
all K links from the previous M time samples. The output is a
prediction of all K links. The predictor can be a simple linear
one such as moving average, or it can be more complex such
as LSTM or GRU. Given training data of the n-th training
trajectory, v,(k,t), n = 1,..., N, the predictors will be
trained with the standard mean squared error (MSE) loss as
defined in [37],
;] N E T
— P _ 2
Lo= s 20 ) Ak —m(k ) (@)

n=1k=1t=1
1 » 9
= NTK ||’YTL - rY”HF'

The proposed ML-based technique of minimizing loss in (2)
has no theoretical guarantees, which tends to be the case in
most ML works. Therefore, we opt the methodology followed
by other ML-aided wireless works [18], [38] and instead rely
on developing good training and testing data sets. Moreover,
even for classic algorithms, theoretical guarantees are typically
only given for simplified versions of the problems [18].
For complex problems, validation on data is done to prove
effectiveness of the proposed scheme, which is consistent with

®In python, indexing of a vector v using v(a : b) means that we would
like to obtain the values of the vector from index range [a, b). Note that the
index b is not included in the final values. So in (1), we are trying to predict
the SNR values at time ¢ based on the previous M SNR values on all links.
Another notation we use from python is the : . If A is an m X n matrix,
A[l, :] means that we want the data from row 1 and all columns of A. This
idea can be similarly extended to the tensor .
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our approach of testing. For our work, we will use several
metrics in test. For example, given a test trajectory, y(k,t),
we can evaluate the root mean squared error (RMSE) loss :

K T
1
€ERMSE ‘= ﬁ;t;/[(fyp(kat) 77(k7t))2'

However, the RMSE loss, while good for training, is not
necessarily representative of performance. We thus consider
two other test metrics: the Top C' link(s) prediction error and
beam misalignment error.

Top C link(s) prediction error, e, captures the difference
between the true C links with maximum SNR(s) and C
predicted links with maximum SNR(s) at time ¢. Specifically,
consider a test trajectory, y(k, t). At time ¢, let 7(u, t) denote
the values of y(k, t) sorted over k in descending order. Hence,
~(u, t) represents the link qualities in sorted order. Similarly,
for the predictions 7 (k,t), we define 47 (k,t). The rop C
RMSE is then defined as,

1 T C R R
€c = ﬁZZ(’Yp(lht) _’7(u7t))2' (3)
t=1u=1

We will use C' = {1,10} in this work. This metric captures
how well a predictor can predict best C' links from the
available links. This metric is similar to Top-1 and Top-3
metrics discussed in [22]. The motivation for introducing this
metric for C = 1 is that if a UE/gNB is tracking multiple
links, it will always choose the link with the best quality (SNR
in our case) to transmit/receive on so it can yield maximum
gains during communication. One of the use cases that can
be derived from this metric is proactive link rate adaption
where UE/gNB will adapt its transmission rate according to
predicted SNR. Likewise, a use case for C' = 10 is proactive
beam switching i.e., if the best beam/link is predicted to be
blocked, the UE/gNB could switch to any of the predicted
unblocked links. Hence, e will indicate the accuracy of the
best C' link predictions.

Beam misalignment error £: The predictor must estimate
not only the future best link quality but also the index of the
best link. An instance might occur when a predictor predicts
the best link quality accurately but mispredicts the index of the
best link, which will result in misalignment loss in real time’.
So in order to capture how precise best link index predictions
are, we introduce &, which can be written as :

1 T

E=\l7 ;(v(kp(t), t) — maxy(k, 1)), )

7Qualitatively, this loss occurs to the predictors predicting wrong best beam
indices. For example, let us consider a case with only 2 beams: beam a and
beam b. The true SNRs on these beams are 10 and 15 dB, respectively. The
network predicts the SNRs to be 13 dB and 12 dB, respectively. If we were to
trust the predictions by network, we would choose the beam with maximum
predicted SNR for communication, which is beam a. However, beam b is
actually better than beam a, hence our choice to choose beam a over beam b
will result in some degradation of performance. This degradation in the above
example is 5 dB, so our beam misalignment error comes out to be 5 dB.

where kP(t) is the best predicted index from the estimated
SNRs and can be written as:

kP(t) = arg ;nax P (k,t). )

A similar metric was used in [18]. The beam misalignment
error is the difference between true SNR on the true best
beam index (maximum true SNR) and true SNR on the best
predicted beam index. The beam misalignment error we define
in (4) is measured in dB — not to be confused with degrees,
which is another measure of beam misalignment. Measuring
loss in degrees might have different circumstances depending
on the communication architecture e.g., a sub-6 GHz system
might be able to provide a decent throughput even with a
large misalignment loss in degrees, while the same is not true
for mmWave systems. Due to this inconsistency of measuring
misalignment loss in degrees, we opt to measure it in dB
instead. Another advantage of measuring loss in dB is that
it can be translated directly into other system performance
metrics like throughput.

IV. PROPOSED AUTO-ENCODER INTEGRATED LSTM
NETWORK

A. LSTM

In this work, we consider an LSTM [9], which is widely
used for sequence-to-sequence prediction problems. LSTM
is a natural choice for wireless tracking problems due to
its ability to capture short-term dependencies (e.g., multi-
path fading) and long-term dependencies (e.g., shadowing
and blocking). LSTM networks from a research viewpoint —
although relatively old — have been successful in ML-aided
wireless communications [1], [39]-[41]. Moreover, LSTM
based predictors are less complex in terms of architecture
design as compared state of art sequence predictors like self-
attention based transformers (e.g., BERT, which themselves
have underlying RNNs). LSTM networks are designed to
circumvent the vanishing gradient problem, which is promi-
nent in RNNs. The aforementioned success and comparatively
reduced complexity makes LSTM networks a suitable choice
for next generation ML-aided wireless communications. The
standard LSTM operation with ¢ hidden units and d dimen-
sional input is governed by the following set of equations:

g(t) = tanh(W9%x(t) + U"h(t — 1) + b,), (6a)
i(t) = o(W?x(t) + UPh(t — 1) + by), (6b)

f(t) = o(W/2x(t) + U h(t — 1) + bs),  (6¢c)
o(t) = o(W"x(t) + U°"h(t — 1) + b,) (6d)
s(t) =g(t) 0i(t) +s(t—1) o f(t), (6e)

h(t) = ¢(s(t)) © o(t), (69)

z(t) = ReLU(W?*"h(t) + b.), (62)
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where x(t) € R? is the input vector to the LSTM unit,
i(t) € RY is the input gate, f(¢) € R? is the forget
gate, o(t) € RY is the output gate, h(t) € RY is the
hidden state vector, s(t) € R? is the cell state vector and
g(t) € RY is the cell input activation vector. {W9%, Wiz,
Wiz Werl ¢ Rexd, {U9h, U™, U UMY € RI*? and
{bg. bi, bs, b,} € R? are the weights and biases of respective
gates that need to be learned during the LSTM training.
The input gate decides whether the current incoming data is
contributing new information to the network. The forget gate
flushes out unwanted data from the memory. The output gate
dictates what to show at the network output [10], [42]. The cell
state keeps track of the memory of the unit, which includes
both short-term and long-term memories. The hidden state
vector is eventually used to predict the output variable. The
hidden state can extract short-term, long-term or both types
of memory stored in the cell state to make the prediction.
The last equation (6g) represents a fully connected NN that
takes the predicted hidden state vector from LSTM as an
input and maps it to a d dimensional output z(¢). Hence
during training, the network also needs to learn weight matrix
W=t ¢ RYX9 and bias vector b, € R¢ In the above
equations, ® represents element-wise multiplication, ¢ and
ReLU represent sigmoid and rectified linear unit activation
functions, respectively. These are given by:

1
U(x) = HT])(—Q?Y (7)
ReLU(z) = max{0,x}. (8)

A visualization of an LSTM cell unrolling in time with all the
aforementioned parameters can be found in [10].

B. Dimensionality reduction via auto-encoding

The LSTM outputs will be the predicted link qualities one
time step in the future:

Z(t) :{Vp(kvt)a k= 137K} (9)
For the inputs, we could use the raw measured SNR values®:
x(t) =~v(,t =M : t).

Now, the total number of parameters L1 gy that are needed to
train an LSTM network with ¢ hidden units and d dimensional
input is:

Listv = 4(gd + ¢ + q) + qd + d. (10)

Using the raw SNR values (9) as inputs, the input and output
dimensions would be d = K = NpxNrx/NgnB. As we will
see in Section VI-B, this number can be prohibitively large,
therefore requiring a large number of LSTM parameters. The
large number of parameters increases the generalization error
and inference complexity. Thus, we also consider employing
a dimensionality reduction of the form:

x(t—M :t)=®(y(:,t — M : t)),Encoding,
X(t—M:t) =T (x(t — M :t)),Decoding,

(1)
(12)

8We use python-like notation here as well.

which transforms the K-dimensional SNR data at each time
window M to some lower dimension d’ < K before it is sent
to the LSTM. We call ®(.) and ¥(.) encoder and decoder,
respectively. The LSTM predicts x”(t) one time step ahead
and the decoder converts the predictions back to SNRs. The
classic dimensionality reduction method is PCA, which can
be trained on the set of SNR values ~,(k, t) over the training
trajectories n and times ¢. The LSTM predicts xP(t) and a
decoder provides us with predicted SNRs ~?(k,¢). We call
this method LSTM-PCA. We will quantify the performance of
dimensionality reduction methods using the following RMSE
metric v:

1 N K
v= WZZ

t=1n=1k=1

T
(W (@ (k1) = (K, 1)), (13)

We define the dimensionality reduction factor x as:
d d’

R S— (14)
K NtxNrxNgnB

Both metrics above [(14),(13)] characterize the performance of
a dimensionality reduction technique. The limitation of PCA
is that it only performs linear dimensionality reduction — it
is essentially a projection from the d-dimensional space to a
lower d’-dimensional space. We thus consider auto-encoder
based approach.

Choice of auto-encoders: To address the dimension-
ality reduction, we need to choose an auto-encoder that best
serves our purpose. We choose undercomplete auto-encoders
[43], which compress (encodes) large dimensional input data
into lower dimensional signals (bottleneck). These signals are
then used to recreate the original data’. We use undercom-
plete auto-encoders consisting of convolutional neural network
(CNN) layers and hence are termed as convolutional auto-
encoders (CAEs). In CAEs, the encoding function ®(-) is
realized as a CNN. In addition, we train a decoder network
U that maps the low-dimensional x(¢) back to the original
space. Several loss functions are possible, and in this case, we
use the standard MSE loss between the original ~, (k,t) and
their reconstruction. See [44] for an example. We integrate
the designed auto-encoder with LSTM and call this scheme
LSTM-AC. The dimensionality of the hidden states d’ as well
as the encoder and decoder architectures are parameters in
the network. We discuss their selection and design in Section
VI-A.

Regardless of the dimensionality reduction method used,
the network is trained on the one-step ahead MSE prediction
loss (2). In training, we use M time steps of input, x(t —
M),...,x(t — 1), to generate each z(t). The parameter M,
indicating the memory of the network, dictates the number
of time steps over which the LSTM network unfolds. M is
another parameter that needs to be tuned, and its value can be
found in Section VI-B. Final design of the proposed LSTM-
AC architecture is shown in Fig. 2.

9 Another option maybe is de-noising auto-encoders (DAEs). Since we do
not assume any noise in measuring SNRs, DAEs are not the best choice.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3183632

Decoder

Fig. 2: Flowchart of the proposed LSTM-AC predictor. Ellipses represent
input/output data while boxes represent neural networks (which are to be
trained). The dimensions of respective inputs/outputs are shown on the top
of ellipses. Dimensions M X K mean the data consists of M previous time
samples of dimensions K.

C. Other ML-based NN predictors

In addition to LSTM-PCA and LSTM-AC, we also test
the performance of some additional ML-based NN predictors
to investigate how ML-based solutions perform for the given
problem. These predictors are Vanilla RNN, Transformer and
CNN. Vanilla RNN, which is a simple predecessor of LSTM,
is tested to see how much gain LSTM provides over simple
RNNSs. Transformer-based predictor (used extensively in NLP)
is much more complex than LSTM, because it uses self-
attention'” and is probed to observe how complex predictors
perform. CNNs are explored to note how generic NN archi-
tectures perform, which are not designed for time series. All
the aforementioned predictors will use auto-encoder in their
architecture, since networks with large dimensional inputs are
hard to train and provide poor generalization performance. The
complexity, design and training of these ML-based predictors
is discussed in Section VI-B.

D. Baseline linear predictors

We will also compare the prediction performance of the
LSTM-based predictors to simple baseline linear predictors.
The first is a simple moving average,

M

’Vp(k:at) = % Z 7(k7t - m),

m=1

15)

which takes the average of the previous M time steps. The
parameter M can be optimized in the training phase. A more
general estimator is a linear estimator,

K M

VP (k,t) = Z Z WiwmY, t —m),

v=1m=1

(16)

which takes a linear combination of the links in previous times.
We allow dependencies from the predicted link & from all
measured links v. The weights in the model, Wy, ,, ,,,, can be
learned from minimizing the mean squared loss. Similar to
moving average, M is a parameter that needs to be optimized
for the linear estimator.

0Transformers themselves consist of RNNs in their architectures.

V. SIMULATION SETUP

A. Scenario/Layout

A vital step in testing the prediction capabilities of dif-
ferent predictors is to generate a realistic data set of SNRs.
The data should ideally come from real-life measurements.
However, measurements which include exhaustive beamsweep
of all the links between UE and multiple gNBs are hard to
obtain and are not currently available. We therefore adopt a
ray-tracer based approach, which enables much larger volumes
of data. The ray tracing is accurate in that it captures paths
from all propagation phenomena like diffraction, reflections
and transmissions. We use the commercial ray tracer from
Remcom called Wireless Insite [45], which has been widely
used in research communities [24], [46] and has been verified
through mmWave measurements [47], [48]. This ray-tracing
package has also been widely used in many ML experiments
[22], [28], [49], [50].

The first step in setting up the ray-tracer is to import
the scenario layout. In our case, the scenario is downtown
Rosslyn, Virginia''. The layout consists of building locations
and dimensions in the area. The layout also includes materials
from which these buildings are made so that the propagation
mechanics like reflection, refraction and penetration of the
scenario are accurately captured. Once the layout is imported
into the ray-tracer, we place four gNBs (labeled BS in Fig.
3a) at some of the intersections in the city. The gNBs are
approximately 200m apart, translating to a cell radius of
roughly 100m, which is consistent with the 3GPP Urban
Micro “UMi” scenario [51]. These gNBs need to be assigned
certain parameters like f., transmit bandwidth BW, etc. The
ray tracer also needs to consider the total number of paths
i.e., the number of paths to consider from each gNB to
each receiver point. We set this property equal to 20 in
accordance with the 3GPP UMi NLOS scenario [51]. The ray
tracer is configured to show the paths with a maximum of 2
reflections, 1 transmission and O diffractions. As described in
[52], [53], mmWave systems will mostly rely on reflections for
multi-path propagation, justifying the choice to mostly focus
on reflections. Similarly, the 1 transmission means we only
consider penetration of a signal through one obstacle'?. The
main mode of signal propagation in our work is line of sight
(LOS) paths and non-line of sight (NLOS) reflected paths.
The main sources of reflections are the buildings and terrain
(ground). Once all the aforementioned parameters (listed in
Table I) have been set, we place receiver points over the
entire layout grid spaced 0.5m apart both in x and y axes.
We deploy isotropic antennas at gNB and receiver points.
Adding beamforming on top of these traces will be discussed
in Section V-D. We now execute the ray-tracing. The ray-
tracer output provides us with propagation information: (1)
Received power on all the paths at each receiver point for

'This layout is also provided by Remcom inside Wireless Insite.

2Transmissions at mmWave are quite attenuated because of high penetra-
tion loss [21]. Hence, there is a very small chance that a signal transmitted
through two different obstacles is received, so we only choose one transmis-
sion.
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each gNB, (2) The spatial information (e.g., path lengths, angle
of arrivals and departures) of all these paths at each receiver
point for each gNB and (3) The temporal information (i.e.,
delays) of all these paths at each receiver point for each gNB.
All this information from the ray-tracer is sufficient to start
modeling link quality (SNRs). In the next section, we discuss
the addition of mobility to the current scenario.

B. Mobility

As mentioned above, the ray-tracer provides all the re-
ceived signal information on the points in the layout grid
(spaced 0.5 m). The next step is to add mobility to the scenario.
The goal is to mimic a vehicle (UE) moving downtown with
velocity given in Table IV (from [51]). We use the MATLAB
Navigation Toolbox [54], which implements rapidly-exploring
random tree (RRT) algorithm [55] to achieve this goal. MAT-
LAB enables us to control various aspects of mobility: (a)
Generating random routes for UEs, (b) Handling UE velocity
in these routes and (c) Preventing collisions with obstacles
(buildings) in these routes.

We start by importing the obstacle layout from the ray
tracer to MATLAB. This layout is converted into Binary
Occupancy Grid where length and width of each grid square
is set to 0.5 m. The binary occupancy grid assigns ones to the
grid points where obstacles are present and zeros otherwise. At
the beginning of each route, a starting point and an end point
of the UE are sampled from the uniform distribution over the
grid". Similarly, a random velocity with distributions from
Table IV is assigned to the UE. To avoid collisions, we use the
Navigation Toolbox [54] from MATLAB, which works on a
binary occupancy grid and ensures that the UE does not collide
with any buildings during the course of its route. The UE
continues to move until a total of 7" = 3000 samples spaced
20 ms apart (60 s for each trajectory, in accordance to the beam
measurement periodicity from 3GPP [33]) are collected. We
refer to these 7 = 3000 samples as a trajectory'®. A total
of 200 trajectories (100 for training and 100 for testing) are
generated. A generated trajectory with a binary occupancy grid
is shown in Fig. 3b.

C. Hand blockage modeling

So far, the link quality generated from simulation trajec-
tories captures the effect of multi-path, mobility and blockage
by buildings. To make our simulations more realistic, we add
hand blockage on link quality as well. As mentioned in Section
I, hand blockage is also something that has to be overcome
in the mmWave regime. We use a linear interpolated hand
blockage model from [56] based on measurements at 28 GHz.
The model depends on the angle of arrivals of different paths

31t is ensured that the UE does not start inside any of the buildings (through
a binary occupancy grid).

“Multiple routes might be generated during the trajectory until the required
number of samples are collected. Multiple routes are connected together by
their end/start points i.e., the end point of the older route becomes the start
point of the new route, ensuring continuity.

‘ * UE Trajectory ‘
0 100 200 300 400
X [meters]

(b) Layout imported to MATLAB with UE trajectory

Fig. 3: Demonstration of UE mobility in one of the trajectories in
Downtown Rosslyn, VA

at the UE and the orientation of the UE (landscape or portrait).
Since we use a ray tracer for our simulations, all the spatial
information needed to implement the hand blockage model
is available. For orientation, we choose one randomly at the
start of each trajectory with equal probability. A hand blockage
event on any path is triggered if the azimuth (elevation) angle
of arrival ((0) falls in the range [(; = x/2] ([f1 = n/2]). The
range signifies the azimuth (elevation) angular spread. Both
azimuth and elevation angle of arrival conditions need to be
true for a blockage event to be initiated. These conditions are
similar to what has been proposed by the 3GPP standard to
model hand blockage [51]. The values of (1, x, 1 and 7 have
been listed in Table II. After triggering, the time dynamics of
the blockage event are controlled by random variables 7434B,
Tr3ap and Tplock. Where mp is the total blockage event time
, Tasap and Ty3qp represent the time taken for the signal to
decay or rise by 3dB, respectively. These values (in ms) are
generated upon triggering a blockage event and are provided
in Table III [56], where Weibull(c, 5) denotes a weibull
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Orientation C1 X 61 n Blockage Attenuation (A) (dB)
Portrait mode 260° 120° 100° | 80° . R . _ ) B
Tandscape mode 707 1607 107 —z0 Weibull Distribution with « = 16.7 and 3 = 4.61

TABLE II: Parameters for triggering hand blockage event

random variable with a probability distribution function (PDF)
Sweibun () given by:

Fwan(sla, ) = 22 expl(~(a/a)?), @ 0.

Parameters Td3dB Tr3dB D
Weibull model parameters } g 2‘8‘7‘4 ?‘(7)25 g'gg

TABLE III: Parameters to model time dynamics of a hand blockage
event

The blockage event on a particular path is modeled based
on the parameters above using linear interpolation. We now
define some parameters that will aid in this interpolation,

AT434B,r3dB

3 )
where Tgecay is the time needed for the signal level to decay
to A dB from the initial signal level. 7,5 is the time needed
to rise to the normal signal level from A dB. The 3 in the
denominator is because the transition is measured every 3 dB.
The total time of blockage event is given by:

a7)

Tdecay,rise —

TBlock = maX(Tdecay + Trises TD)- (1 8)

The time during which the signal level remains constant at
A dB during a blockage interval 7 opstant 1S given by:

19)

Tconstant = TBlock — (Tdecay + 7-rise)-

We now have all the parameters required to represent the
blockage event in time. The loss suffered by hand blockage
p(7) at time sample 7 can be represented in the following
piece-wise linear manner:

A

T 0 <7 < Tdeca
Tdecay >~ < decay
A7 Tdecay S T < Tdecay + Tconstant
— A
p(r):=qA— T,

Trise

Tdecay + Tconstant <7<

Tdecay + Tconstant + Trise = TBlock-

(20)

It should be noted that A < 0 since it measures loss. Fig.
4a shows a blockage event labeled with all the parameters
mentioned above. Fig. 4b shows an instance in the trajectory
where a link suffers from hand blockage. The figure shows
how the SNR degrades by 10dB in 100ms just by hand
blockage. Other factors that contribute to this degradation
(not shown in figure) in the simulation setup are blockage
by buildings and fast fading (since coherence time of channel
is small). The factors all together may result in very frequent
degradation of a link that is being tracked. This necessitates
a good predictor, which can accurately predict on all links so
the gNB/UE can always track the best link.

0 ‘ ‘

! I I /

A=-17.44dB

&

Hand blockage Loss (dB)
=

157 Tdecay Tconstant
—
—
-20 ! ! ! ! !
0 100 200 300 400 500 600
ms

42.05 421 42.15

Time (s)

41.95 42

(b) Hand blockage event identified in one of the links
from one of the trajectories

Fig. 4: Hand Blockage Model

D. Beamforming codebook design

A 4 x 2 uniform planar array (UPA) with \/2 antenna
spacing is assumed at the UE and an 8 x 8 UPA is assumed at
the gNB. These sizes for 28 GHz are similar to past capacity
analyses such as [34]. We assume two identical antenna arrays
at the UE and gNB for full 360 degree coverage, like practical
devices [57] (i.e., one array covering the front hemisphere and
the other covering the rear). Let F; := {f;l),fj@)} W, =
{wl(l)7 WZ(Q)}) denote the pair of gNB (UE) beamforming
vectors corresponding to the j-th (I-th) TX (RX) direction,
where f;l), f;z € CNrx (wl(l),wl(2) € CNrx), correspond to
the front and rear antenna arrays, respectively. We consider a
simple beamforming codebook based on the steering vector of
a UPA, such that the main lobes of the beam patterns cover the
hemisphere, equally spaced in both azimuth and elevation. We
refer the reader to [19] for the expressions of f;l), f(2) W(l)

g ool
and wl(2).

E. SNR calculation

Given the rays for respective paths from the ray tracer for
a trajectory n, we compute the narrowband channel matrix for
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Parameters Value Parameters Value Parameters Value

fe 28 GHz | Bandwidth (T) 400MHz | Ntx (1) 64

Nrx (1) 8 NgnB [36] 4 UE height (f) 1.7m

gNB height () 10m Cell Radius [58] ~100m UE Velocity (t) U[0,27] m/s
Transmit Power [59] 23dBm Noise Figure [60] 9dB Sampling Interval [33] 20ms
Npaths 20 Number of Reflections 2 Number of Transmissions 0

TABLE IV: Simulation parameters used for generating channel trajectories with ray-tracer. (f: [51], : [61]). U]a, b] denotes a uniform

random variable over [a, b].

the i-th gNB'5, H; ,,(¢). We apply the beamforming vectors to
compute the SNR on each link. The expression for v, (7, j, 1, t)
is as follows:

HMX\WFHMKUEP

— 21
wEW, kB(BW)NFTO ’ ( )
f,cF;

Yn (i, 7,1, t) = 101ogy,

where kp is Boltzmann’s constant, BIW denotes the system
bandwidth, Nz is the noise figure, and Ty is the temperature.
We flatten the ¢ = 1,--- ,NgnB, j = 1, , Npx and [ =
1,---, Nrx dimensions to k = 1,--- , Nyx Nrx Ngnp = K,
which is often done in machine learning problems. 7, (k, t) is
given by:

Y (%, 4,1, ) — Flatten —  (22)

t=1,--,NgnB ,j=1,---,Nrx ,l=1,--- ,Nrx

Y (k1)
k=1, ,NTx NrRx NgNB

In total, we have Ny,; = 200 trajectories of -+, (k,t) with
T = 3000 samples, each spaced 20 ms apart. All the values of
SNRs are in dB. The values of SNRs obtained by simulations
will have large fluctuations depending on the link between
UE and gNB. These large fluctuations will result in a large
range of SNRs'®, which will result in poor performance of the
predictors. To make the range smaller, we clip the SNRs at
a lower threshold 7ower and an upper threshold 7,pper Which
can be calculated from the classic Shannon’s equation:

—1)dB =-7.5dB,
= 25.27dB,

Yiower = 10 10g10(2"710wer
Yupper = 101og o (2MPrer — 1) + A dB

where 7jower = 0.2344bps/Hz is the spectral efficiency
offered by the lowest modulation and coding scheme (MCS
0) according to 3GPP NR standards [62]. Hence, Yiower 18
the ideal lowest SNR at which a signal can be decoded. If the
UE/gNB is not able to measure SNR on a link (from blockage
or any other reason), it reports a value of ¥jower On that link.
Similarly, nypper = 7.4063 bps/Hz dictates upper bound on
SNR since there is no change in throughput afterwards. A
indicates how far the system is operating from the Shannon
capacity and is set to 3dB [35].

(23)

VI. TRAINING AND TUNING PREDICTORS
A. Performance evaluation of auto-encoders and PCA

The encoders and decoders of the auto-encoder are de-
signed to reduce the dimensions of the links from K to d/,

1SWe consider narrowband since primary synchronization signal (PSS)
(used for estimating link quality) is narrowband. Tracking based on wideband
SNR is an interesting aspect to look at in the future.

16Practically, this range is a function of the receiver sensitivity

and then back to K. We use 50% of the SNR trajectories
for training (NVirain = 100, total number of training samples
= Nirain XT'). The depth (number of layers) and width (hidden
units) contribute to the number of auto-encoder parameters
L ¢ that are to be optimized. Too many parameters will cause
processing inefficiency, while fewer parameters will result in
information loss. Training epochs will similarly impact the
training time and over/under-fitting of the data. We use cross-
validation to roughly find these hyper-parameters that provide
a good processing-accuracy trade-off. These parameters along
with CAE architecture is shown in Fig. 5. The proposed CAE
takes input tensor with dimensions NirainT X NgnB X Nrx X
Nrx (refer to Table IV for values) and the encoder returns a
tensor of dimensions NiyainT X Ngng X Nrx x 8!, reducing
input dimensions by a factor of 8. The tensor is then flattened
into a d’y~ dimensional vector. This flattening is necessary to
make the CAE compatible with ML-based predictors since
next-step prediction will happen over these flattened latent
variables. For decoding, there is a reshape layer that reshapes
the flattened vector into a tensor of the dimensions mentioned
above. The CAE decoder maps the compressed tensor back to
the original SNR dimensions.

Following the discussion above, we reduced the dimen-
sions of the SNR data from K = 2048 to d);, = 256.
Similarly, we use PCA for dimensionality reduction over
all the training trajectory SNRs. For PCA to get the same
order of accuracy as auto-encoder (Table V), we need more
dimensions as compared to CAE. The parameters that need to
be tuned for PCA, Lpca'® > Lac (from Table V). Although
PCA has more trainable parameters than CAE, it is easier to
train because of its linear nature (e.g., using singular value
decomposition). An ML-based predictor will have to predict
a 512 dimensional vector for PCA and a 256 dimensional
vector for auto-encoder. This difference in dimensions for
predictor inputs will cause the processing intensity of PCA-
based predictors to significantly increase as compared to CAE-
based designs. We will show this in the next sub-section, where
LSTM-AC and LSTM-PCA are compared.

B. Training ML-based predictors

After creating an appropriate auto-encoder and PCA en-
coder/decoder set, we train LSTM-PCA, LSTM-AC, Vanilla
RNN with AC, Transformer with AC and CNN with AC.
ML-based methods are trained over 100 train trajectories

"The CAE compresses the NTx dimension because it contributes the most
to the number of input dimensions.
18 _ /
LPCA =K x dPCA
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Fig. 5: Architecture of the proposed CAE. Kernel size for all the layers is 3 x 3. The activation is ReLU and padding is same. CAE is trained for 10

epochs with MSE loss.

Dimensionality reduction technique Total trainable parameters d’{ AC,PCAY K v (dB)
Auto-encoder 377,304 (Lac) 256 T | 04321
PCA 1,048,576 (Lpca) 512 i 0.4384

TABLE V: Comparison of reconstruction performance and dimensionality reduction of CAE and PCA.

of encoded SNRs (of dimensions d’; obtained using auto-
encoder) to solve the one time step ahead prediction problem
using MSE loss!®. LSTM-PCA is trained similarly over PCA-
encoded SNRs (of dimension d> ). The hyper-parameters
for all these methods are found using cross-validation. The
trainable parameter count (complexity) for these methods is
listed in Table VI. We see that vanilla RNN with AC is the
most processing efficient, while LSTM-PCA is most expen-
sive. As discussed in Section I'V-B, this complexity is due to
the larger input dimensions for LSTM-PCA. We also see that
Transformer with AC has a lot of training parameters, which
can be attributed to the underlying self-attention mechanism
of the network. Overall, we note that RNN-based predictors —
which use auto-encoders LSTM-AC and Vanilla RNN — are
approximately 260% more processing efficient than LSTM-
PCA. This processing efficiency justifies the use of auto-
encoders for dimensionality reduction in context of the multi-
cell multi-beam prediction problem.

C. Tuning parameters for baseline predictors

There is not much space for tuning for baseline predictors
except for the parameter M (window size in this case). The
training method for baseline predictors is to find a value of M
that minimizes the losses in (3)-(4)°. The values of M that

19 All ML-based predictors have been trained for equal number of epochs
(20) so the comparison is fair. Training times differ for each network based
on their complexity.

20Baseline predictors do not need any dimensionality reduction since they
are already simple.

provide a good trade-off between the two losses are obtained
by brute-force method iterating over values of M localized to
{1,---,50} for all the Ny,,i, trajectories. For moving average,
the best window size turns out to be MMVA = 14, while
MR = 10 is the best for linear estimators. This tuning is
done to ensure we are comparing the performances of ML-
based predictors to baseline predictors, which are best (at least
locally) in their own domain.

VII. PREDICTION PERFORMANCE AND APPLICATIONS

A. Prediction performance metrics evaluation

In this sub-section, we present the generalization error
analysis of all the predictors. As mentioned in Section I, we
take a site-specific training approach, where a site comprises
of a group of gNBs and a UE in a particular environment. This
training enables capturing useful correlations across time and
across gNBs. The networks are trained over known trajectories
within the site as mentioned in Section VI. The predictor
performance is measured over new trajectories (i.e., trajectories
that the network has not seen before). This training and testing
procedure is consistent with the ones widely used in the ML
community. The generalization ability of the predictors is the
testing of prediction performance over the new trajectories
near the site. We test the predictors on Niest (= 100)?! new

2IThese test trajectories are the same for auto-encoders and ML-based
methods.
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12
Models No. of parameters L Models No. of parameters L

Auto-encoder (AC) 377,304 Transformer with AC (M = 8) 4,190,808

LSTM-AC (M = 4) 1,264,344 Vanilla RNN with AC (M = 5) | 1,165,016

LSTM-PCA (M = 9) | 4,592,128 CNN (M = 8) 1,755,584

TABLE VI: Comparison of complexity in terms of trainable parameters for different ML-based predictors.
. . . . Methods/Performance | P(e; <2dB) P(e10 <2dB) P(£ <2dB)
22 1 10

trajectories”~. We calculate the metrics e and £ (from Section TSTV-AC 50% 90% 98%
IIT) for all test trajectories (a total of Ni. points), and for Transformer with AC 80% 88% 94%
all the predictors (ML-based and baseline). The performance CNN with AC 70% 80% 8%
predic -1ne). 1he p Vanilla RNN with AC__| 70% 2% 4%
comparison is captured over all trajectories in form of a LSTM-PCA 50% 81% 94%
cumulative density function (CDF), F(-). These CDFs for ¢ Linear Estimator 12% 8% 12%
y ( ), ( ) c Moving Average 4% 3% 5%

and ¢ for different predictors are shown in Fig. 6 and are
summarized in Table VII.

LSTM-AC Transformer CNN
Vanilla RNN Linear Estimator LSTM-PCA
Moving Average
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Fig. 6: Comparing performance of different predictors based on
performance metrics from Section III

22Each prediction takes less than 100 ys on average for LSTM-PCA (worst
case). This means prediction can be done in real-time. This computation was
done on a 2018 Apple Macbook Pro i5 without any GPU support.

TABLE VII: Performance of all the predictors based on metrics
from (3) and (4). P(y) means probability that event y happened.

It can be observed from Table VII and Figs. 6a and 6b
that LSTM-AC has the best prediction performances among
the predictors tested. For example, LSTM-AC keeps the
top 1 (top 10) prediction error below 2dB 90% (94%) of
the time, outperforming the transformer-based predictor by
10% (6%). This is an interesting observation because gen-
erally, transformers outperform LSTMs particularly in fields
of computer vision (CV) and NLP. The better performance
of LSTMs can be explained by limited training data, small
number of training epochs, lack of transformer depth/width
and dependence of transformer complexity on M. In [63], [64]
authors show LSTMs can outperform transformers in scarcity
of training data. Regarding training epochs, both architectures
were trained for 20 epochs to make comparison fair. Therefore,
Transformer might not have trained enough hence impacting
its prediction capacity. Additionally, we consider the simplest
transformer design that converged (loss reduced in training).
Even the simplest transformer with AC has 4.2 million param-
eters (400% more than LSTM-AC). Since, one of the goals of
this work is designing processing efficient networks, we did
not modify the width or depth of the transformer, which can
result in worse prediction performance. Moreover, complexity
of transformer increases with increasing memory (M), which
is not case for LSTM. This increased complexity is not
justified in terms of the bias-variance trade-off (as compared
to LSTM) and will result in performance degradation?>.

Comparing dimensionality reduction techniques, we see
that LSTM-AC has a 40% (13%) gain in top 1 (top 10)
link prediction over LSTM-PCA. This gain is due to better
encoding/decoding performance of auto-encoders as compared
to PCA. LSTM-AC also outperforms baseline linear predictors
by 78% (86%). Overall, ML-based predictors perform better
as compared to linear predictors (which is expected) and
auto-encoder-based predictors perform better than the PCA-
based predictor. We can also observe from Table VII and Fig.
6¢ that all ML-based predictors have similar misalignment
error performances (between 94% to 98%) outperforming
baseline linear predictors by at least 82%. This means that
these ML-based predictors are able to successfully predict the
beam indices within 2dB of the best beam at least 94% of

23These are only few reasons. The final performance evaluation is a function
of data set, choice of loss functions, metrics, hyper-parameters etc.
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the time. The takeaway of these analyses is that NN-based
methods with auto-encoder pre-processing offer significantly
better performance than standard pre-processing such as PCA
or linear prediction. Among the NN-based predictors, LSTM-
AC in particular provides a good processing efficiency and
performance trade-off.

B. Applications

In this sub-section, we discuss some applications of multi-
cell multi-beam tracking based on the network predictions.
These applications are just a byproduct of the prediction prob-
lem that minimizes the loss in (2). Hence, these applications
are just a subset of the core prediction problem we address in
this paper. The applications themselves may be solved using
a relatively simpler approach if the problem is formulated
according to the application’*. However, we look at these
applications in context of the problem formulated in this work:
based on the M previous measurements, predict the next time
slot SNRs on all beams from all cells. The applications we
discuss are outage prediction and proactive beam switching.

1) Outage prediction: As mentioned in Section I-B, a lot
of work using RNNs has been done explicitly for blockage
prediction purposes. Since we are predicting on all the beam-
pairs from all the gNBs (using all predictors), we can predict
blockages on any link. One extreme case of these blockages
is outage i.e., all the available links are blocked, hence the
UE/gNB goes into outage. Using this definition, we can define
outage when the maximum SNR from all the links falls below
a threshold vjower + A dB. Mathematically, we define a true
outage event as a binary variable B given by:

B(t) = ]]_(ml?.X Wn(kv t) < Mower + A) (24)

We can similarly define a predicted outage event BP(t) as:

Bp(t) = ]]-(m]?X 7£(k7 t) < Vower + A) (25)
With these definitions, the following two metrics can be used
to capture the outage prediction performances of different
predictors:

o Outage detection accuracy: When B(t) = BP(t) = 1, an
outage is correctly predicted. Outage detection accuracy
is the ratio of correctly predicted outages to the total
number of true outages over all trajectories.

o Outage false alarm ratio: When B(t) = 0 and BP(t) =
an outage is predicted when there was none. This is the
ratio of falsely predicted outages to the total number of
predicted outages over all trajectories.

These metrics have been shown in Fig. 7a for A = 3dB.
We can observe that NN-based techniques have more than
96% outage prediction accuracy as compared to 80% for the
best baseline linear predictor. Higher prediction accuracy can
be attributed to the ability of NN-based predictors to foresee

24For example, proactive beam switching discussed below can be for-
mulated as a markov decision process, centered around optimizing beam
switching based on some observed action and state space.
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Fig. 7: Applications of predictors

sudden channel variations (triggering of a hand blockage event
or a blockage caused by building). The false alarm ratio for
all the policies except LSTM-PCA is less than 6%. Hence, the
designed predictors are able to correctly detect outages 96% of
the time, while also keeping the false alarm rate low. LSTM-
AC in particular delivers an outage accuracy of more than
96% with a false alarm rate of around 4% and is comparably
processing efficient. The outage prediction capacity of these
predictors can be used for various proactive purposes e.g., a
UE can turn off its radio frequency front end (RFFE) to save
power when it senses an outage. Similarly, a gNB can smartly
allocate resources to different UEs from the predicted outages.

2) Proactive beam switching: The predictors designed can
also be used for proactive link switching. We assume that at
the start of every test trajectory, UE is served by best available
link (ko). At time ¢, a beam/link needs to be switched if there
is a better link (with greater SNR) available as compared to
the serving link. For proactive link switching application, we
define two events: successful proactive link switch and false
proactive link switch. A successful proactive link switch occurs
when the following three conditions are true:

n(ko,t) < n(k,t)  :link switch needed,
Yn (Ko, t) {krgi)k([)}v( ) ink switch neede

Pkg,t) < Pkt :link switch predicted, (26
7h (Ko, t) {kr:%;a:]io} VP (k,t) ink switch predicted, (26)
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V(KB ows ) > Tn(ko,t) :the new predicted link index, (27)
kP, has a better SNR.

After a successful switch, the UE updates the best-serving
link kg = kP, ,. Similarly, a false proactive link switch can be

new-*

defined as:

(ko t) > 2(k,#)  :link switch not needed,
Y (Ko, t) {k{%i)iio}’y( ) ink switch not neede

i (k1)

. :link switch predicted.

(28)

P(ko,t) <
v (Ko, t) ax

We present the results of successful and false link switch
prediction percentages in Fig. 7b*. We see that ML-based
predictors are successful in proactive beam switching 91%
of the time as compared to linear estimator and moving
average at around 80%. However, looking at the false alarm
percentage, we see that the false alarm percentage of ML-
based predictors is less than 2% as compared to 10% (16%) to
that of the linear estimator (moving average), meaning LSTM
predictors not only accurately predict the beam switching in
advance but also keep the false beam switch rate low. LSTM-
AC and Vanilla RNN will be preferred in this case because
of their low complexities. The superior performance of ML-
based predictors can be explained by the ability of the neural
networks to predict multiple beams from multiple cells more
accurately as compared to baseline linear predictors. This
proactive beam switching can be translated into handovers if
the beams switched are from different gNBs.

VIII. SUMMARY AND FUTURE WORK

Beam tracking is a fundamental challenge in all mmWave
systems. In this work, we have proposed an auto-encoder in-
tegrated LSTM network for multi-cell multi-beam prediction.
Auto-encoders reduce input dimensionality of the predictor —
a major problem in multi-cell multi-beam tracking scenarios
— enabling processing efficient design of accurate LSTM
predictors. Notably, the method can track signals from multiple
cell sites and is applicable for procedures including handover
and carrier aggregation with multiple cells. The method was
validated on detailed ray tracing measurements. There is
significant opportunity to build on this work. Most importantly,
we have looked at narrowband measurements similar to what
is obtained with reference signals in 5G NR. A key research
direction is to predict the wideband channel characteristics
from intermittent narrowband measurements. A second avenue
of future research is to validate the work on larger training
data sets. We have already accumulated ray tracing on five
large cities in our work [30] and a similar campaign can be
used here. Another direction for the future is tightening the
assumption from “UE is able to measure all the links to predict

25 Successful link switch percentage is the ratio of the sum of successful
link switches to total number of link switches needed. False alarm switch
percentage is the ratio of the sum of false link switches to total number of
link switches predicted.

261n general, handovers are much more expensive than beam switching, but
if there is exchange of information about UEs within the gNBs, handovers
can be handled in a similar manner to beam switching.

all the links” to “UE is able to measure a subset of links to
predict all the links”. This new assumption gives rise to a new
problem, which is finding how to choose the subset of links
from which the predictors can extrapolate the link qualities of
all the links.
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