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AbstractÐMillimeter wave (mmWave) systems rely on com-
munication in narrow beams for directional and spatial multi-
plexing gains. A key challenge in realizing these systems is beam
tracking, particularly in environments with high mobility and
blockage. Additionally, in wide-area mmWave cellular systems,
user equipment (UE) devices must often simultaneously track
signals from multiple cells, since links to individual cells can be
unreliable. Models of the channel dynamics across multiple cells
and multiple beams are difficult to derive from first principles.
In this work, we propose a fully data-driven approach based on a
novel auto-encoder integrated long short term memory (LSTM)
network, which predicts multiple beams from multiple cells, one
time step in the future. The key innovation is to use an auto-
encoder pre-processing step, which reduces the dimensionality
of the input ± the main challenge in multi-cell, multi-beam
tracking. The prediction capability of the proposed network is
verified and compared to common baseline predictors as well as
popular machine learning (ML) based neural network predictors
in realistic system-level simulations using a commercial ray-
tracer. We observe that predictions from the proposed network,
which utilizes auto-encoders for dimensionality reduction, offers
significantly better best beam accuracy and lower beam misalign-
ment loss than common baseline approaches. We also discuss
outage prediction and proactive beam switching as applications
of the multi-cell multi-beam prediction.

Index TermsÐMillimeter wave (mmWave) communications,
LSTM, machine learning, cellular wireless, 5G, NR, dimensional-
ity reduction, ray tracing, channel prediction, multi-connectivity,
beamforming.

I. INTRODUCTION

A. Motivation

Millimeter wave (mmWave) wireless systems have

emerged as a key component of fifth generation (5G) cellular

standards [2]. The abundance of available bandwidths at these

frequencies can enable both massive broadband and ultra-low

latency communications for use cases including vehicle to ev-

erything (V2X) communications, robotics, drones, healthcare,

augmented reality and virtual reality.

A well-known challenge of mobile communication at these

frequencies is beam tracking. To overcome the high isotropic

path loss in the mmWave frequencies, both the transmit-

ter (TX) and receiver (RX) must typically communicate in
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narrow, steerable directional beams. Tracking these beams

at a high angular resolution is challenging, particularly in

high mobility environments. In addition, mmWave signals are

highly susceptible to blockage from humans, hands and many

everyday building materials [3]±[6]. Thus, small changes in the

orientation of the device or appearance of blockers can result

in a rapid degradation of link quality in any given direction.

As a result, mmWave systems often need to track and predict

link quality along multiple directions to guarantee reliable

communication. Moreover, most mmWave systems rely on

dense cell deployments combined with multi-connectivity to

provide macro-diversity resistance to blockage [7]. Multi-

connectivity can be supported via carrier aggregation [8] where

a mobile (UE) can be simultaneously connected to multiple

cells. Hence, the mobile needs to track and predict link quality

not only from multiple directions (beamforming) but also

multiple directions from multiple cells (beamforming coupled

with macro-diversity).

The broad goal of this work is to understand the problem

of tracking multiple beams from multiple cells. We will refer

to the signal path from one cell to a UE along a particular

TX and RX direction pair as a link. Each link has a time-

varying quality. The problem is to use past measurements

to estimate a set of future link qualities as well as the best

link indices (that have the best quality) with high accuracy.

These future estimates can help mobile mmWave wireless

systems accurately track links and proactively switch them

when needed.

Traditional statistical prediction approaches are difficult,

since link statistics are complex and difficult to model from

first principles. The link qualities in particular can have

intricate statistical relationships between different angles and

base stations. We thus propose a machine learning approach

where the prediction algorithms can be trained from data.

Specifically, we formulate the multi-beam multi-cell prediction

problem as a vector-valued sequence-to-sequence problem and

solve it using recurrent neural networks (RNNs) and auto-

encoders. In our work, we use a well-known RNN called

long short term memory (LSTM), which has worked for

similar problems [9], [10]. LSTMs can capture long-term

dependencies and have been successful in a range of problems,

particularly in natural language processing (NLP), speech

recognition and robotics. Auto-encoders are used to reduce

input dimensions of LSTM. Our contributions in this paper

are:

(a) Novel neural network architecture with an auto-encoding
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precoder: We propose an auto-encoder integrated LSTM

network capable of predicting all link qualities with

correct indices, one time step ahead in the future (e.g.,

20ms, the typical period for reference signals in 5G NR

[11]). A key challenge in these architectures is the large

raw signal dimension, particularly when the number of

base stations and directions is high, as discussed later

in Section I-B. The high dimension can result in poor

generalization and a high computational cost. We thus

propose a novel auto-encoder based pre-coder for initial

dimensionality reduction. We demonstrate in simulations

that the auto-encoder based LSTM can offer a reduction

of approximately 260% in the number of parameters

with improved performance compared to standard dimen-

sionality reduction methods such as principal component

analysis (PCA).

(b) Ray tracing evaluation: To validate the method, we

generate traces of link quality ± signal to noise ratio

(SNR) ± using a commercial ray-tracer at mmWave

frequencies. The traces mimic a car with a multiple

antenna receiver moving in downtown Rosslyn, which is

connected to multiple cells with multiple antennas. These

traces capture most of the major channel characteristics

like multi-path, mobility and blockages from buildings.

To make the scenario more realistic, we also implement

a measurement-based hand blockage model on top of the

ray-tracer generated SNRs. The generated data set is also

useful for ML-based wireless research, as discussed in

Section I-B. After data generation, we test the prediction

performances of the methods mentioned in (a) on the

traces. Over multiple test trajectories of the generated

data, the average test error in best link prediction from

the proposed predictor is 90% of the time less than 2 dB,

outperforming optimally tuned baseline linear predictors

(ML predictors) by at least 78% (10%) at the same

percentile. Similarly, for the top 10 links, the average

error is less than 2 dB for 94% of the time, which is 86%

(8%) better than the linear baseline predictors (ML-based

predictors). Furthermore, the error due to misalignment

of best predicted beams is less than 2 dB for 98% of the

time using the proposed predictor, outperforming baseline

linear predictors by at least 86%.

(c) Site-specific training: An important implication of the

work is that we offer a method for site-specific training,

where the prediction of links from a particular collection

of base stations can be optimized. Site-specific models

can be run in the network (where the UE reports measure-

ments to the network) or in the UE (where the network

provides the UE parameters). This site-specific training,

using an edge server, is demonstrated in Fig. 1.

(d) Applications for beam management procedures: We also

discuss outage prediction and proactive beam-switching

as applications of the proposed predictors. Although the

desired predictors are not optimized for these applica-

tions, we observe that predictors still deliver adequate

accuracy. The proposed auto-encoder integrated LSTM

predictor can successfully predict outages 96% (80% for

the best baseline linear predictor) of the time with a

false alarm prediction lower than 5% (same for the best

baseline linear predictor). Similarly, the proposed predic-

tor can proactively switch beams with a 91% accuracy

(81% for the best baseline linear predictor), while keeping

the false beam-switching rate lower than 2% (10% for

baseline predictor).

B. Related Work

There is now a growing body of work on deep learning

methods for various forms of link prediction and channel

estimation. For example, previous work on single link quality

predictions have been done at sub-6 GHz frequency for a

vehicular scenario in [13]. Work on link prediction based on

LTE and WiMax measurements has been done in [14]. CSI

estimation using deep learning has also been addressed in

[15] and tested on sub-6 GHz measurements. The work [16]

uses RNNs for a very simple LTE-MIMO system (only four

links) with no blockages, and [17] uses LSTMs to predict

RSSIs (one link) for different sub-6 GHz interfaces, while

[18] has developed neural network models for single beam

estimation from non-coherent measurements and validated

these in experiments. Our work however, tackles multi-beam

multi-cell prediction at the mmWave frontier, which is more

complicated because of the channel impediments like narrow

beams, severe blockages, complex interactions with the envi-

ronment, etc. Importantly, since we consider tracking a much

larger number of links, the role of the dimensionality reduction

is key. As shown in [19], the number of beams increases as

carrier frequency fc increases (∝ f2
c )1. Increasing fc results in

severe blockage [20] and penetration loss [21], which neces-

sitates more macro-diversity (multi-cell connectivity), thereby

increasing the input dimensions even more. As we move to

next generation wireless networks (higher fc) with even higher

1For example, if fc is increased from 28 to 140GHz (sub-THz, 6G), the
number of directions to track increase by a factor of 32 [19], which equals
increase in input dimension size in our case.

Fig. 1: Demonstration of site-specifc training. The blue arrows
indicate gNBs sending data to the edge server. The edge server
collects the data and trains the neural network. Once trained, the
parameters of the network are broadcast to all gNBs and UEs,
indicated by orange arrows. Similar architecture is proposed in [12].
The channel between the edge sever and UE/gNBs is not part of
training the ML network.
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dimensional inputs, the dimensionality reduction will become

more crucial for ML-aided wireless communications. To the

best of our knowledge, this is the first work that tackles the

increased dimensionality problem (because of increased beams

and multi-cells) for mmWave wireless systems using auto-

encoders.

A related line of work [22]±[24] tackles beam and block-

age predictions at mmWave, leveraging sub-6 GHz links (non-

standalone mode of operation). In our work, we solve the

multi-cell multi-beam prediction problem solely based on

mmWave links (standalone mode of operation). Also, [25]

and [26] use ML for mmWave link blockage classification

and prediction, while [27] uses gated recurrent unit (GRU) for

blockage prediction and proactive hand-over in a simplistic

environment. However, these works do not address the link

quality (SNR) and link index prediction problem. Our work

confronts the link SNR and index prediction problem in a

realistic environment based on 3GPP parameters, measurement

campaigns and proved works. These prediction capabilities

will help in processes like proactive beam switching, han-

dovers [27] and adaptive rate prediction. V2X, robotics and

drone communications can also benefit from these proactive

applications. To the best of our knowledge, this work is unique

in solving the multi-beam, multi-cell magnitude and index

prediction problem for mmWave systems.

Finally, a key challenge in ML methods is the need for

large quantities of training data. A common theme in many

prior works, such as [17], [24], [28], has been the use of ray

tracing, which enables large quantities of training points to

be generated via electromagnetic simulations. Ray tracing has

also been vital in training deep generative models [29], [30].

This work also uses ray tracing combined with hand blockage

models to capture local effects not included in a conventional

ray tracer. Since the ray tracing scenario conforms with the

3GPP NR standard at mmWave frequencies, the generated

data set is essential to foster research in ML-assisted wireless

communications (similar to the DeepMIMO data [28])2.

C. Organization

Section II defines some system parameters for link mea-

surements based on 3GPP standards, which will help us align

our work with the standard. We formulate the single-step ahead

prediction problem in Section III and define some performance

metrics, which are useful from a wireless communications per-

spective. Section IV presents proposed LSTM-based predictors

and an argument about the need for dimensionality reduction,

which will be achieved using auto-encoders and PCA. We

also introduce some other ML-based neural network (NN)

predictors for comparison in this section. In Section IV-D, we

present some baseline linear predictors to which performance

of NN-based predictors will be compared. Discussion on a

detailed and realistic simulation setup based on a commercial

ray tracer is included in Section V. In Section VI, training

2The data set can be found at
https://github.com/shastpi/mmWave-ray-tracer-dataset

and tuning of hyper-parameters of the proposed predictors as

well as the baseline predictors are given. In Section VII-A, we

compare prediction performance of all predictors and observe

how the proposed predictor outperforms the baseline linear

predictors as well as other NN predictors. We discuss predic-

tion performances of all the predictors for various applications

in Section VII-B. Finally, Section VIII concludes the paper

with a summary.

II. SYSTEM PARAMETERS

Although our methodology is general, to make the analysis

concrete we will focus on tracking and predicting the links for

3GPP NR-like systems, which can be reviewed below3.

gNB and UE codebooks: In 5G NR terminology, the

base station cell is called the gNB and the mobile is called

the UE [31]. To simplify the analysis, we assume the gNB

transmits from a codebook of NTX possible directions, and

the UE receives from a codebook of NRX directions. Hence,

for each gNB-UE pair there are NTXNRX direction pairs. In

general, we will assume that NTX is equal to the number of

TX antennas at the gNB, and NRX is equal to the number

of receive antennas at the UE. Hence, there is one codebook

vector for each spatial degree of freedom. However, most of

the framework can also be applied to over-sampled codebooks.

Reference signals (RS) for beam measurements: Beam

tracking in 5G NR is done using reference signals such

as synchronization signal blocks (SSBs) or channel state

information reference signals (CSI-RS). SSBs are periodically

broadcast on relatively wider beams from each 5G NR gNB

for the purpose of base station discovery and downlink beam

detection (usually in idle mode) [31]. CSI-RS on the other

hand are sent on narrower beams during data transmission

from gNB and enable beam tracking in mobile environments.

The beamsweep is generally done in a hierarchical manner

i.e., the SSBs with wider beams are first used to determine a

coarse direction of transmission, which is then refined using

reference signals like CSI-RS. However, in this work, we

only consider narrow beams, which are referred to as refined

beams after beam refinement. This brings us to our first

assumption that reference signals only use narrow beams for

beam quality measurements (SNR). Measurements over narrow

beams eliminate the hierarchical aspect of beam tracking and

make beam tracking more challenging.

These RSs are transmitted in bursts with some periodicity

TRS. We set this interval to 20ms, which is consistent with

SSB and CSI-RS periodicity in the 3GPP NR standards

for carrier frequency of 28GHz with a sub-carrier spacing

(SCS) of 120 kHz [32]. In each RS burst, NRS beams can

be measured (typically with one TX direction for each RS).

The parameters NRS and TRS are configurable. In simulations

below, we will set NRS = NTX allowing one RS in each

downlink direction. The values of these and other important

parameters are given in Table I.

3An excellent description of the NR protocol can be found in [31]
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Parameter Value Remarks

Carrier frequency, fc 28 GHz Standard mmWave NR frequency for FR2

Occupied bandwidth, BW (MHz) 400 Maximum bandwidth for mmWave NR systems

Subcarrier spacing (SCS), kHz 120
SCS = 120 kHz and BW = 400 MHz are common for early 5G deployments at

28 GHz [32].

OFDM symbol duration, Tsym (µs) 8.92 Derived from SCS [33].

Number of UE (gNB) antennas, NRX (NTX) 8 (64) The array sizes at 28 GHz are similar to previous capacity analyses [34], [35].

Duration of one RS, T1RS (µs) Varies
For SSB it is 4 OFDM symbols i.e., 4Tsym [33]. For CSI-RS, it can be {1, 2, 4}Tsym

depending on OFDM symbols used[33].

RS burst period, TRS (ms) 20 From NR configuration [33].

Maximum number of RS during an SSB burst

period NRS
64 NRS has a maximum value of 64 for 5G NR systems for the default 120 KHz SCS [33].

TABLE I: 3GPP NR-based system parameters.

Network Model with Carrier Aggregation: Resilience

to blockage at mmWave frequencies necessitates macro-

diversity, i.e., the UE must be connected to multiple cells

[7], [8]. To this end, we assume that the UE is connected to

NgNB gNBs via carrier aggregation, a key feature in 3GPP

systems that enables simultaneous connections to multiple

cells [8]. The cells either operate in different component

carriers or within the same component carrier4 ± the analysis

for this paper is identical. The above process does not require

synchronization across cells.

The notions of RSs and carrier aggregation are introduced

to justify an important assumption for our prediction method

− the UE/gNB are able to measure all the beams at each

discrete time interval. This discrete time interval in our case

is TRS.

Our analysis can apply to both fully digital and analog

beamforming at the UE. With fully digital beamforming, the

UE can measure all NRX directions every RS measurement pe-

riod. Hence, after one RS burst of NTX transmissions, all RX-

TX pairs will have been measured. For analog beamforming

during an RS burst allocated period, the UE can send uplink

measurement signals (like sounding reference signals − SRS)

to gNB from one of its beams, and a gNB with fully digital

beamforming can measure all the beam-pairs for that particular

beam5. In this manner, the complete beam sweep for all pairs

will take NRX such instances. In either beamforming case,

since we assume carrier aggregation, the UE can measure the

signal from all cells in each measurement burst. Henceforth,

for simplicity, we will assume that beam sweeping is done

at a fully digital beamformed UE via RS bursts. Therefore,

the UE measures each synchronization resource individually.

The other signals will appear as interference. Since mmWave

systems are wideband and generally power limited, we have

neglected this interference.

III. PROBLEM FORMULATION

We index the discrete time steps (RS bursts) by t =
0, 1, . . . T . Let γ(i, j, l, t) denote the measured channel quality

(i.e., SNR) from cell i = 1, . . . NgNB , in TX direction

4According to [36], the UE can track up to 21 inter and intra-carrier
frequency cells.

5RSs may be broadcast to all UEs whereas SRSs are gNB specific, so this
method will affect scheduling efficiency of the gNB, because it has to get
ready to measure all the uplink measurements. Furthermore, this assumption
is only valid if the channel is reciprocal.

j = 1, . . . NTX, and RX direction l = 1, . . . , NRX at

measurement period t. We merge the first three dimensions of

the SNR tensor so it becomes γ(k, t), where k = 1, · · · ,K =
NTXNRXNgNB. We call each k a link. The matrix γ(k, t) thus

describes the variation of the link qualities over time. The vari-

ations will in general depend on UE motion, blocking, small-

scale fading, hand blockage and other channel characteristics.

The SNR measurement can be a wideband average SNR or

effective SNR when there is frequency-selective fading.

We will often train on multiple trajectories where each tra-

jectory is some route of the UE experiencing some blockage.

In this case, we denote the SNR tensor for n-th trajectory as

γn(k, t). A trajectory consists of traces of SNRs on all beam-

pairs at all gNBs for T time steps (refer to Section V-B for

the exact definition). We consider predictors of the form,

γp(:, t) = P[γ(:, t−M : t)], (1)

where P[·] is the prediction function, and we have used the

python-like6 notation to indicate that the predictor depends on

all K links from the previous M time samples. The output is a

prediction of all K links. The predictor can be a simple linear

one such as moving average, or it can be more complex such

as LSTM or GRU. Given training data of the n-th training

trajectory, γn(k, t), n = 1, . . . , N , the predictors will be

trained with the standard mean squared error (MSE) loss as

defined in [37],

L :=
1

NTK

N∑

n=1

K∑

k=1

T∑

t=1

(γp
n(k, t)− γn(k, t))

2 (2)

=
1

NTK
∥γp

n − γn∥
2
F .

The proposed ML-based technique of minimizing loss in (2)

has no theoretical guarantees, which tends to be the case in

most ML works. Therefore, we opt the methodology followed

by other ML-aided wireless works [18], [38] and instead rely

on developing good training and testing data sets. Moreover,

even for classic algorithms, theoretical guarantees are typically

only given for simplified versions of the problems [18].

For complex problems, validation on data is done to prove

effectiveness of the proposed scheme, which is consistent with

6In python, indexing of a vector v using v(a : b) means that we would
like to obtain the values of the vector from index range [a, b). Note that the
index b is not included in the final values. So in (1), we are trying to predict
the SNR values at time t based on the previous M SNR values on all links.
Another notation we use from python is the : . If A is an m × n matrix,
A[1, :] means that we want the data from row 1 and all columns of A. This
idea can be similarly extended to the tensor γ.
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our approach of testing. For our work, we will use several

metrics in test. For example, given a test trajectory, γ(k, t),
we can evaluate the root mean squared error (RMSE) loss :

ϵRMSE :=

√√√√ 1

TK

K∑

k=1

T∑

t=M

(γp(k, t)− γ(k, t))2.

However, the RMSE loss, while good for training, is not

necessarily representative of performance. We thus consider

two other test metrics: the Top C link(s) prediction error and

beam misalignment error.

Top C link(s) prediction error, ϵC , captures the difference

between the true C links with maximum SNR(s) and C
predicted links with maximum SNR(s) at time t. Specifically,

consider a test trajectory, γ(k, t). At time t, let γ̂(u, t) denote

the values of γ(k, t) sorted over k in descending order. Hence,

γ̂(u, t) represents the link qualities in sorted order. Similarly,

for the predictions γp(k, t), we define γ̂p(k, t). The top C
RMSE is then defined as,

ϵC =

√√√√ 1

CT

T∑

t=1

C∑

u=1

(γ̂p(u, t)− γ̂(u, t))2. (3)

We will use C = {1, 10} in this work. This metric captures

how well a predictor can predict best C links from the

available links. This metric is similar to Top-1 and Top-3

metrics discussed in [22]. The motivation for introducing this

metric for C = 1 is that if a UE/gNB is tracking multiple

links, it will always choose the link with the best quality (SNR

in our case) to transmit/receive on so it can yield maximum

gains during communication. One of the use cases that can

be derived from this metric is proactive link rate adaption

where UE/gNB will adapt its transmission rate according to

predicted SNR. Likewise, a use case for C = 10 is proactive

beam switching i.e., if the best beam/link is predicted to be

blocked, the UE/gNB could switch to any of the predicted

unblocked links. Hence, ϵC will indicate the accuracy of the

best C link predictions.

Beam misalignment error ξ: The predictor must estimate

not only the future best link quality but also the index of the

best link. An instance might occur when a predictor predicts

the best link quality accurately but mispredicts the index of the

best link, which will result in misalignment loss in real time7.

So in order to capture how precise best link index predictions

are, we introduce ξ, which can be written as :

ξ =

√√√√ 1

T

T∑

t=1

(γ(kp(t), t)−max
k

γ(k, t))2, (4)

7Qualitatively, this loss occurs to the predictors predicting wrong best beam
indices. For example, let us consider a case with only 2 beams: beam a and
beam b. The true SNRs on these beams are 10 and 15 dB, respectively. The
network predicts the SNRs to be 13 dB and 12 dB, respectively. If we were to
trust the predictions by network, we would choose the beam with maximum
predicted SNR for communication, which is beam a. However, beam b is
actually better than beam a, hence our choice to choose beam a over beam b
will result in some degradation of performance. This degradation in the above
example is 5 dB, so our beam misalignment error comes out to be 5 dB.

where kp(t) is the best predicted index from the estimated

SNRs and can be written as:

kp(t) = arg max
k

γp(k, t). (5)

A similar metric was used in [18]. The beam misalignment

error is the difference between true SNR on the true best

beam index (maximum true SNR) and true SNR on the best

predicted beam index. The beam misalignment error we define

in (4) is measured in dB − not to be confused with degrees,

which is another measure of beam misalignment. Measuring

loss in degrees might have different circumstances depending

on the communication architecture e.g., a sub-6GHz system

might be able to provide a decent throughput even with a

large misalignment loss in degrees, while the same is not true

for mmWave systems. Due to this inconsistency of measuring

misalignment loss in degrees, we opt to measure it in dB
instead. Another advantage of measuring loss in dB is that

it can be translated directly into other system performance

metrics like throughput.

IV. PROPOSED AUTO-ENCODER INTEGRATED LSTM

NETWORK

A. LSTM

In this work, we consider an LSTM [9], which is widely

used for sequence-to-sequence prediction problems. LSTM

is a natural choice for wireless tracking problems due to

its ability to capture short-term dependencies (e.g., multi-

path fading) and long-term dependencies (e.g., shadowing

and blocking). LSTM networks from a research viewpoint −
although relatively old − have been successful in ML-aided

wireless communications [1], [39]±[41]. Moreover, LSTM

based predictors are less complex in terms of architecture

design as compared state of art sequence predictors like self-

attention based transformers (e.g., BERT, which themselves

have underlying RNNs). LSTM networks are designed to

circumvent the vanishing gradient problem, which is promi-

nent in RNNs. The aforementioned success and comparatively

reduced complexity makes LSTM networks a suitable choice

for next generation ML-aided wireless communications. The

standard LSTM operation with q hidden units and d dimen-

sional input is governed by the following set of equations:

g(t) = tanh(Wgxx(t) +Ughh(t− 1) + bg), (6a)

i(t) = σ(Wixx(t) +Uihh(t− 1) + bi), (6b)

f(t) = σ(Wfxx(t) +Ufhh(t− 1) + bf ), (6c)

o(t) = σ(Woxx(t) +Uohh(t− 1) + bo) (6d)

s(t) = g(t)⊙ i(t) + s(t− 1)⊙ f(t), (6e)

h(t) = ϕ(s(t))⊙ o(t), (6f)

z(t) = ReLU(Wzhh(t) + bz), (6g)
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where x(t) ∈ R
d is the input vector to the LSTM unit,

i(t) ∈ R
q is the input gate, f(t) ∈ R

q is the forget

gate, o(t) ∈ R
q is the output gate, h(t) ∈ R

q is the

hidden state vector, s(t) ∈ R
q is the cell state vector and

g(t) ∈ Rq is the cell input activation vector. {Wgx, Wix,

Wfx,Wox} ∈ Rq×d, {Ugh, Uih, Ufh,Uoh} ∈ Rq×q and

{bg , bi, bf , bo} ∈ Rq are the weights and biases of respective

gates that need to be learned during the LSTM training.

The input gate decides whether the current incoming data is

contributing new information to the network. The forget gate

flushes out unwanted data from the memory. The output gate

dictates what to show at the network output [10], [42]. The cell

state keeps track of the memory of the unit, which includes

both short-term and long-term memories. The hidden state

vector is eventually used to predict the output variable. The

hidden state can extract short-term, long-term or both types

of memory stored in the cell state to make the prediction.

The last equation (6g) represents a fully connected NN that

takes the predicted hidden state vector from LSTM as an

input and maps it to a d dimensional output z(t). Hence

during training, the network also needs to learn weight matrix

Wzh ∈ R
d×q and bias vector bz ∈ R

d. In the above

equations, ⊙ represents element-wise multiplication, σ and

ReLU represent sigmoid and rectified linear unit activation

functions, respectively. These are given by:

σ(x) =
1

1 + exp(−x)
, (7)

ReLU(x) = max{0, x}. (8)

A visualization of an LSTM cell unrolling in time with all the

aforementioned parameters can be found in [10].

B. Dimensionality reduction via auto-encoding

The LSTM outputs will be the predicted link qualities one

time step in the future:

z(t) = {γp(k, t), k = 1, . . . ,K}. (9)

For the inputs, we could use the raw measured SNR values8:

x(t) = γ(:, t−M : t).

Now, the total number of parameters LLSTM that are needed to

train an LSTM network with q hidden units and d dimensional

input is:

LLSTM = 4(qd+ q2 + q) + qd+ d. (10)

Using the raw SNR values (9) as inputs, the input and output

dimensions would be d = K = NTXNRXNgNB. As we will

see in Section VI-B, this number can be prohibitively large,

therefore requiring a large number of LSTM parameters. The

large number of parameters increases the generalization error

and inference complexity. Thus, we also consider employing

a dimensionality reduction of the form:

x(t−M : t) = Φ (γ(:, t−M : t)) ,Encoding, (11)

x̂(t−M : t) = Ψ (x(t−M : t)) ,Decoding, (12)

8We use python-like notation here as well.

which transforms the K-dimensional SNR data at each time

window M to some lower dimension d′ ≤ K before it is sent

to the LSTM. We call Φ(.) and Ψ(.) encoder and decoder,

respectively. The LSTM predicts xp(t) one time step ahead

and the decoder converts the predictions back to SNRs. The

classic dimensionality reduction method is PCA, which can

be trained on the set of SNR values γn(k, t) over the training

trajectories n and times t. The LSTM predicts xp(t) and a

decoder provides us with predicted SNRs γp(k, t). We call

this method LSTM-PCA. We will quantify the performance of

dimensionality reduction methods using the following RMSE

metric υ:

υ =

√√√√ 1

NTK

T∑

t=1

N∑

n=1

K∑

k=1

[Ψ(Φ(γn(k, t))− γn(k, t)]2. (13)

We define the dimensionality reduction factor κ as:

κ =
d′

K
=

d′

NTXNRXNgNB
. (14)

Both metrics above [(14),(13)] characterize the performance of

a dimensionality reduction technique. The limitation of PCA

is that it only performs linear dimensionality reduction ± it

is essentially a projection from the d-dimensional space to a

lower d′-dimensional space. We thus consider auto-encoder

based approach.

Choice of auto-encoders: To address the dimension-

ality reduction, we need to choose an auto-encoder that best

serves our purpose. We choose undercomplete auto-encoders

[43], which compress (encodes) large dimensional input data

into lower dimensional signals (bottleneck). These signals are

then used to recreate the original data9. We use undercom-

plete auto-encoders consisting of convolutional neural network

(CNN) layers and hence are termed as convolutional auto-

encoders (CAEs). In CAEs, the encoding function Φ(·) is

realized as a CNN. In addition, we train a decoder network

Ψ that maps the low-dimensional x(t) back to the original

space. Several loss functions are possible, and in this case, we

use the standard MSE loss between the original γn(k, t) and

their reconstruction. See [44] for an example. We integrate

the designed auto-encoder with LSTM and call this scheme

LSTM-AC. The dimensionality of the hidden states d′ as well

as the encoder and decoder architectures are parameters in

the network. We discuss their selection and design in Section

VI-A.

Regardless of the dimensionality reduction method used,

the network is trained on the one-step ahead MSE prediction

loss (2). In training, we use M time steps of input, x(t −
M), . . . ,x(t − 1), to generate each z(t). The parameter M ,

indicating the memory of the network, dictates the number

of time steps over which the LSTM network unfolds. M is

another parameter that needs to be tuned, and its value can be

found in Section VI-B. Final design of the proposed LSTM-

AC architecture is shown in Fig. 2.

9Another option maybe is de-noising auto-encoders (DAEs). Since we do
not assume any noise in measuring SNRs, DAEs are not the best choice.
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γ(:, t−M : t) Φ(.) x(t−M : t)

P(.)x(t)Ψ(.)γp(:, t)

Encoder

LSTMDecoder

M ×K M × d′AC

d′ACK

Fig. 2: Flowchart of the proposed LSTM-AC predictor. Ellipses represent
input/output data while boxes represent neural networks (which are to be
trained). The dimensions of respective inputs/outputs are shown on the top
of ellipses. Dimensions M ×K mean the data consists of M previous time
samples of dimensions K.

C. Other ML-based NN predictors

In addition to LSTM-PCA and LSTM-AC, we also test

the performance of some additional ML-based NN predictors

to investigate how ML-based solutions perform for the given

problem. These predictors are Vanilla RNN, Transformer and

CNN. Vanilla RNN, which is a simple predecessor of LSTM,

is tested to see how much gain LSTM provides over simple

RNNs. Transformer-based predictor (used extensively in NLP)

is much more complex than LSTM, because it uses self-

attention10 and is probed to observe how complex predictors

perform. CNNs are explored to note how generic NN archi-

tectures perform, which are not designed for time series. All

the aforementioned predictors will use auto-encoder in their

architecture, since networks with large dimensional inputs are

hard to train and provide poor generalization performance. The

complexity, design and training of these ML-based predictors

is discussed in Section VI-B.

D. Baseline linear predictors

We will also compare the prediction performance of the

LSTM-based predictors to simple baseline linear predictors.

The first is a simple moving average,

γp(k, t) =
1

M

M∑

m=1

γ(k, t−m), (15)

which takes the average of the previous M time steps. The

parameter M can be optimized in the training phase. A more

general estimator is a linear estimator,

γp(k, t) =

K∑

v=1

M∑

m=1

Wk,v,mγ(ℓ, t−m), (16)

which takes a linear combination of the links in previous times.

We allow dependencies from the predicted link k from all

measured links v. The weights in the model, Wk,v,m, can be

learned from minimizing the mean squared loss. Similar to

moving average, M is a parameter that needs to be optimized

for the linear estimator.

10Transformers themselves consist of RNNs in their architectures.

V. SIMULATION SETUP

A. Scenario/Layout

A vital step in testing the prediction capabilities of dif-

ferent predictors is to generate a realistic data set of SNRs.

The data should ideally come from real-life measurements.

However, measurements which include exhaustive beamsweep

of all the links between UE and multiple gNBs are hard to

obtain and are not currently available. We therefore adopt a

ray-tracer based approach, which enables much larger volumes

of data. The ray tracing is accurate in that it captures paths

from all propagation phenomena like diffraction, reflections

and transmissions. We use the commercial ray tracer from

Remcom called Wireless Insite [45], which has been widely

used in research communities [24], [46] and has been verified

through mmWave measurements [47], [48]. This ray-tracing

package has also been widely used in many ML experiments

[22], [28], [49], [50].

The first step in setting up the ray-tracer is to import

the scenario layout. In our case, the scenario is downtown

Rosslyn, Virginia11. The layout consists of building locations

and dimensions in the area. The layout also includes materials

from which these buildings are made so that the propagation

mechanics like reflection, refraction and penetration of the

scenario are accurately captured. Once the layout is imported

into the ray-tracer, we place four gNBs (labeled BS in Fig.

3a) at some of the intersections in the city. The gNBs are

approximately 200m apart, translating to a cell radius of

roughly 100m, which is consistent with the 3GPP Urban

Micro ªUMiº scenario [51]. These gNBs need to be assigned

certain parameters like fc, transmit bandwidth BW , etc. The

ray tracer also needs to consider the total number of paths

i.e., the number of paths to consider from each gNB to

each receiver point. We set this property equal to 20 in

accordance with the 3GPP UMi NLOS scenario [51]. The ray

tracer is configured to show the paths with a maximum of 2

reflections, 1 transmission and 0 diffractions. As described in

[52], [53], mmWave systems will mostly rely on reflections for

multi-path propagation, justifying the choice to mostly focus

on reflections. Similarly, the 1 transmission means we only

consider penetration of a signal through one obstacle12. The

main mode of signal propagation in our work is line of sight

(LOS) paths and non-line of sight (NLOS) reflected paths.

The main sources of reflections are the buildings and terrain

(ground). Once all the aforementioned parameters (listed in

Table I) have been set, we place receiver points over the

entire layout grid spaced 0.5m apart both in x and y axes.

We deploy isotropic antennas at gNB and receiver points.

Adding beamforming on top of these traces will be discussed

in Section V-D. We now execute the ray-tracing. The ray-

tracer output provides us with propagation information: (1)

Received power on all the paths at each receiver point for

11This layout is also provided by Remcom inside Wireless Insite.
12Transmissions at mmWave are quite attenuated because of high penetra-

tion loss [21]. Hence, there is a very small chance that a signal transmitted
through two different obstacles is received, so we only choose one transmis-
sion.
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each gNB, (2) The spatial information (e.g., path lengths, angle

of arrivals and departures) of all these paths at each receiver

point for each gNB and (3) The temporal information (i.e.,

delays) of all these paths at each receiver point for each gNB.

All this information from the ray-tracer is sufficient to start

modeling link quality (SNRs). In the next section, we discuss

the addition of mobility to the current scenario.

B. Mobility

As mentioned above, the ray-tracer provides all the re-

ceived signal information on the points in the layout grid

(spaced 0.5m). The next step is to add mobility to the scenario.

The goal is to mimic a vehicle (UE) moving downtown with

velocity given in Table IV (from [51]). We use the MATLAB

Navigation Toolbox [54], which implements rapidly-exploring

random tree (RRT) algorithm [55] to achieve this goal. MAT-

LAB enables us to control various aspects of mobility: (a)

Generating random routes for UEs, (b) Handling UE velocity

in these routes and (c) Preventing collisions with obstacles

(buildings) in these routes.

We start by importing the obstacle layout from the ray

tracer to MATLAB. This layout is converted into Binary

Occupancy Grid where length and width of each grid square

is set to 0.5m. The binary occupancy grid assigns ones to the

grid points where obstacles are present and zeros otherwise. At

the beginning of each route, a starting point and an end point

of the UE are sampled from the uniform distribution over the

grid13. Similarly, a random velocity with distributions from

Table IV is assigned to the UE. To avoid collisions, we use the

Navigation Toolbox [54] from MATLAB, which works on a

binary occupancy grid and ensures that the UE does not collide

with any buildings during the course of its route. The UE

continues to move until a total of T = 3000 samples spaced

20ms apart (60 s for each trajectory, in accordance to the beam

measurement periodicity from 3GPP [33]) are collected. We

refer to these T = 3000 samples as a trajectory14. A total

of 200 trajectories (100 for training and 100 for testing) are

generated. A generated trajectory with a binary occupancy grid

is shown in Fig. 3b.

C. Hand blockage modeling

So far, the link quality generated from simulation trajec-

tories captures the effect of multi-path, mobility and blockage

by buildings. To make our simulations more realistic, we add

hand blockage on link quality as well. As mentioned in Section

I, hand blockage is also something that has to be overcome

in the mmWave regime. We use a linear interpolated hand

blockage model from [56] based on measurements at 28GHz.

The model depends on the angle of arrivals of different paths

13It is ensured that the UE does not start inside any of the buildings (through
a binary occupancy grid).

14Multiple routes might be generated during the trajectory until the required
number of samples are collected. Multiple routes are connected together by
their end/start points i.e., the end point of the older route becomes the start
point of the new route, ensuring continuity.

(a) Actual layout of Downtown Rosslyn, VA
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(b) Layout imported to MATLAB with UE trajectory

Fig. 3: Demonstration of UE mobility in one of the trajectories in
Downtown Rosslyn, VA

at the UE and the orientation of the UE (landscape or portrait).

Since we use a ray tracer for our simulations, all the spatial

information needed to implement the hand blockage model

is available. For orientation, we choose one randomly at the

start of each trajectory with equal probability. A hand blockage

event on any path is triggered if the azimuth (elevation) angle

of arrival ζ(θ) falls in the range [ζ1 ± χ/2] ([θ1 ± η/2]). The

range signifies the azimuth (elevation) angular spread. Both

azimuth and elevation angle of arrival conditions need to be

true for a blockage event to be initiated. These conditions are

similar to what has been proposed by the 3GPP standard to

model hand blockage [51]. The values of ζ1, χ, θ1 and η have

been listed in Table II. After triggering, the time dynamics of

the blockage event are controlled by random variables τd3dB,

τr3dB and τBlock. Where τD is the total blockage event time

, τd3dB and τr3dB represent the time taken for the signal to

decay or rise by 3 dB, respectively. These values (in ms) are

generated upon triggering a blockage event and are provided

in Table III [56], where Weibull(α, β) denotes a weibull
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Orientation ζ1 χ θ1 η Blockage Attenuation (A) (dB)

Portrait mode 260o 120o 100o 80o
Weibull Distribution with α = 16.7 and β = 4.61

Landscape mode 40o 160o 110o 75o

TABLE II: Parameters for triggering hand blockage event

random variable with a probability distribution function (PDF)

fWeibull(.) given by:

fWeibull(x|α, β) =
β

α
(
x

α
)β−1 exp(−(x/α)β), x ≥ 0.

Parameters τd3dB τr3dB τD

Weibull model parameters
α 0.044 0.045 0.59

β 2.07 1.76 6.32

TABLE III: Parameters to model time dynamics of a hand blockage
event

The blockage event on a particular path is modeled based

on the parameters above using linear interpolation. We now

define some parameters that will aid in this interpolation,

τdecay,rise =
Aτd3dB,r3dB

3
, (17)

where τdecay is the time needed for the signal level to decay

to A dB from the initial signal level. τrise is the time needed

to rise to the normal signal level from A dB. The 3 in the

denominator is because the transition is measured every 3 dB.

The total time of blockage event is given by:

τBlock = max(τdecay + τrise, τD). (18)

The time during which the signal level remains constant at

A dB during a blockage interval τconstant is given by:

τconstant = τBlock − (τdecay + τrise). (19)

We now have all the parameters required to represent the

blockage event in time. The loss suffered by hand blockage

ρ(τ) at time sample τ can be represented in the following

piece-wise linear manner:

ρ(τ) :=





A
τdecay

τ, 0 ≤ τ < τdecay,

A, τdecay ≤ τ < τdecay + τconstant,

A− A
τrise

τ,

τdecay + τconstant ≤ τ <

τdecay + τconstant + τrise = τBlock.

(20)

It should be noted that A < 0 since it measures loss. Fig.

4a shows a blockage event labeled with all the parameters

mentioned above. Fig. 4b shows an instance in the trajectory

where a link suffers from hand blockage. The figure shows

how the SNR degrades by 10 dB in 100ms just by hand

blockage. Other factors that contribute to this degradation

(not shown in figure) in the simulation setup are blockage

by buildings and fast fading (since coherence time of channel

is small). The factors all together may result in very frequent

degradation of a link that is being tracked. This necessitates

a good predictor, which can accurately predict on all links so

the gNB/UE can always track the best link.
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(b) Hand blockage event identified in one of the links
from one of the trajectories

Fig. 4: Hand Blockage Model

D. Beamforming codebook design

A 4 × 2 uniform planar array (UPA) with λ/2 antenna

spacing is assumed at the UE and an 8×8 UPA is assumed at

the gNB. These sizes for 28GHz are similar to past capacity

analyses such as [34]. We assume two identical antenna arrays

at the UE and gNB for full 360 degree coverage, like practical

devices [57] (i.e., one array covering the front hemisphere and

the other covering the rear). Let Fj := {f
(1)
j , f

(2)
j } (Wl :=

{w
(1)
l ,w

(2)
l }) denote the pair of gNB (UE) beamforming

vectors corresponding to the j-th (l-th) TX (RX) direction,

where f
(1)
j , f

(2)
j ∈ C

NTX (w
(1)
l ,w

(2)
l ∈ C

NRX ), correspond to

the front and rear antenna arrays, respectively. We consider a

simple beamforming codebook based on the steering vector of

a UPA, such that the main lobes of the beam patterns cover the

hemisphere, equally spaced in both azimuth and elevation. We

refer the reader to [19] for the expressions of f
(1)
j , f

(2)
j ,w

(1)
l

and w
(2)
l .

E. SNR calculation

Given the rays for respective paths from the ray tracer for

a trajectory n, we compute the narrowband channel matrix for
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Parameters Value Parameters Value Parameters Value

fc 28GHz Bandwidth (‡) 400MHz NTX (‡) 64

NRX (‡) 8 NgNB [36] 4 UE height (†) 1.7m
gNB height (†) 10m Cell Radius [58] ∼100m UE Velocity (†) U [0,27] m/s
Transmit Power [59] 23dBm Noise Figure [60] 9dB Sampling Interval [33] 20ms
NPaths 20 Number of Reflections 2 Number of Transmissions 0

TABLE IV: Simulation parameters used for generating channel trajectories with ray-tracer. (†: [51], ‡: [61]). U [a, b] denotes a uniform
random variable over [a, b].

the i-th gNB15, Hi,n(t). We apply the beamforming vectors to

compute the SNR on each link. The expression for γn(i, j, l, t)
is as follows:

γn(i, j, l, t) = 10 log10


 max

wl∈Wl,
fj∈Fj

|wH
l Hi,n(t)fj |

2

kB(BW )NFT0


 , (21)

where kB is Boltzmann’s constant, BW denotes the system

bandwidth, NF is the noise figure, and T0 is the temperature.

We flatten the i = 1, · · · , NgNB, j = 1, · · · , NTX and l =
1, · · · , NRX dimensions to k = 1, · · · , NTXNRXNgNB = K,

which is often done in machine learning problems. γn(k, t) is

given by:

γn(i, j, l, t)
i=1,··· ,NgNB ,j=1,··· ,NTX ,l=1,··· ,NRX

→ Flatten → (22)

γn(k, t)
k=1,··· ,NTXNRXNgNB

.

In total, we have Ntraj = 200 trajectories of γn(k, t) with

T = 3000 samples, each spaced 20ms apart. All the values of

SNRs are in dB. The values of SNRs obtained by simulations

will have large fluctuations depending on the link between

UE and gNB. These large fluctuations will result in a large

range of SNRs16, which will result in poor performance of the

predictors. To make the range smaller, we clip the SNRs at

a lower threshold γlower and an upper threshold γupper which

can be calculated from the classic Shannon’s equation:

γlower = 10 log10(2
ηlower − 1) dB = −7.5 dB,

γupper = 10 log10(2
ηupper − 1) + ∆ dB = 25.27 dB, (23)

where ηlower = 0.2344 bps/Hz is the spectral efficiency

offered by the lowest modulation and coding scheme (MCS

0) according to 3GPP NR standards [62]. Hence, γlower is

the ideal lowest SNR at which a signal can be decoded. If the

UE/gNB is not able to measure SNR on a link (from blockage

or any other reason), it reports a value of γlower on that link.

Similarly, ηupper = 7.4063 bps/Hz dictates upper bound on

SNR since there is no change in throughput afterwards. ∆
indicates how far the system is operating from the Shannon

capacity and is set to 3 dB [35].

VI. TRAINING AND TUNING PREDICTORS

A. Performance evaluation of auto-encoders and PCA

The encoders and decoders of the auto-encoder are de-

signed to reduce the dimensions of the links from K to d′AC

15We consider narrowband since primary synchronization signal (PSS)
(used for estimating link quality) is narrowband. Tracking based on wideband
SNR is an interesting aspect to look at in the future.

16Practically, this range is a function of the receiver sensitivity

and then back to K. We use 50% of the SNR trajectories

for training (Ntrain = 100, total number of training samples

= Ntrain×T ). The depth (number of layers) and width (hidden

units) contribute to the number of auto-encoder parameters

LAC that are to be optimized. Too many parameters will cause

processing inefficiency, while fewer parameters will result in

information loss. Training epochs will similarly impact the

training time and over/under-fitting of the data. We use cross-

validation to roughly find these hyper-parameters that provide

a good processing-accuracy trade-off. These parameters along

with CAE architecture is shown in Fig. 5. The proposed CAE

takes input tensor with dimensions NtrainT ×NgNB×NRX×
NTX (refer to Table IV for values) and the encoder returns a

tensor of dimensions NtrainT ×NgNB ×NRX × 817, reducing

input dimensions by a factor of 8. The tensor is then flattened

into a d′AC dimensional vector. This flattening is necessary to

make the CAE compatible with ML-based predictors since

next-step prediction will happen over these flattened latent

variables. For decoding, there is a reshape layer that reshapes

the flattened vector into a tensor of the dimensions mentioned

above. The CAE decoder maps the compressed tensor back to

the original SNR dimensions.

Following the discussion above, we reduced the dimen-

sions of the SNR data from K = 2048 to d′AC = 256.

Similarly, we use PCA for dimensionality reduction over

all the training trajectory SNRs. For PCA to get the same

order of accuracy as auto-encoder (Table V), we need more

dimensions as compared to CAE. The parameters that need to

be tuned for PCA, LPCA
18 > LAC (from Table V). Although

PCA has more trainable parameters than CAE, it is easier to

train because of its linear nature (e.g., using singular value

decomposition). An ML-based predictor will have to predict

a 512 dimensional vector for PCA and a 256 dimensional

vector for auto-encoder. This difference in dimensions for

predictor inputs will cause the processing intensity of PCA-

based predictors to significantly increase as compared to CAE-

based designs. We will show this in the next sub-section, where

LSTM-AC and LSTM-PCA are compared.

B. Training ML-based predictors

After creating an appropriate auto-encoder and PCA en-

coder/decoder set, we train LSTM-PCA, LSTM-AC, Vanilla

RNN with AC, Transformer with AC and CNN with AC.

ML-based methods are trained over 100 train trajectories

17The CAE compresses the NTX dimension because it contributes the most
to the number of input dimensions.

18LPCA = K × d′PCA
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Conv2D Layer

Input Shape (None,4,8,64)

Output Shape (None,4,8,64)
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Fig. 5: Architecture of the proposed CAE. Kernel size for all the layers is 3× 3. The activation is ReLU and padding is same. CAE is trained for 10
epochs with MSE loss.

Dimensionality reduction technique Total trainable parameters d′
{AC,PCA} κ υ (dB)

Auto-encoder 377,304 (LAC) 256 1
8

0.4321

PCA 1,048,576 (LPCA) 512 1
4

0.4384

TABLE V: Comparison of reconstruction performance and dimensionality reduction of CAE and PCA.

of encoded SNRs (of dimensions d′AC obtained using auto-

encoder) to solve the one time step ahead prediction problem

using MSE loss19. LSTM-PCA is trained similarly over PCA-

encoded SNRs (of dimension d′PCA). The hyper-parameters

for all these methods are found using cross-validation. The

trainable parameter count (complexity) for these methods is

listed in Table VI. We see that vanilla RNN with AC is the

most processing efficient, while LSTM-PCA is most expen-

sive. As discussed in Section IV-B, this complexity is due to

the larger input dimensions for LSTM-PCA. We also see that

Transformer with AC has a lot of training parameters, which

can be attributed to the underlying self-attention mechanism

of the network. Overall, we note that RNN-based predictors −
which use auto-encoders LSTM-AC and Vanilla RNN − are

approximately 260% more processing efficient than LSTM-

PCA. This processing efficiency justifies the use of auto-

encoders for dimensionality reduction in context of the multi-

cell multi-beam prediction problem.

C. Tuning parameters for baseline predictors

There is not much space for tuning for baseline predictors

except for the parameter M (window size in this case). The

training method for baseline predictors is to find a value of M
that minimizes the losses in (3)-(4)20. The values of M that

19All ML-based predictors have been trained for equal number of epochs
(20) so the comparison is fair. Training times differ for each network based
on their complexity.

20Baseline predictors do not need any dimensionality reduction since they
are already simple.

provide a good trade-off between the two losses are obtained

by brute-force method iterating over values of M localized to

{1, · · · , 50} for all the Ntrain trajectories. For moving average,

the best window size turns out to be MMVA = 14, while

MLR = 10 is the best for linear estimators. This tuning is

done to ensure we are comparing the performances of ML-

based predictors to baseline predictors, which are best (at least

locally) in their own domain.

VII. PREDICTION PERFORMANCE AND APPLICATIONS

A. Prediction performance metrics evaluation

In this sub-section, we present the generalization error

analysis of all the predictors. As mentioned in Section I, we

take a site-specific training approach, where a site comprises

of a group of gNBs and a UE in a particular environment. This

training enables capturing useful correlations across time and

across gNBs. The networks are trained over known trajectories

within the site as mentioned in Section VI. The predictor

performance is measured over new trajectories (i.e., trajectories

that the network has not seen before). This training and testing

procedure is consistent with the ones widely used in the ML

community. The generalization ability of the predictors is the

testing of prediction performance over the new trajectories

near the site. We test the predictors on Ntest (= 100)21 new

21These test trajectories are the same for auto-encoders and ML-based
methods.
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Models No. of parameters L Models No. of parameters L
Auto-encoder (AC) 377,304 Transformer with AC (M = 8) 4,190,808

LSTM-AC (M = 4) 1,264,344 Vanilla RNN with AC (M = 5) 1,165,016

LSTM-PCA (M = 9) 4,592,128 CNN (M = 8) 1,755,584

TABLE VI: Comparison of complexity in terms of trainable parameters for different ML-based predictors.

trajectories22. We calculate the metrics ϵC and ξ (from Section

III) for all test trajectories (a total of Ntest points), and for

all the predictors (ML-based and baseline). The performance

comparison is captured over all trajectories in form of a

cumulative density function (CDF), F (·). These CDFs for ϵC
and ξ for different predictors are shown in Fig. 6 and are

summarized in Table VII.

LSTM-AC Transformer CNN

Vanilla RNN Linear Estimator LSTM-PCA

Moving Average

. .
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Fig. 6: Comparing performance of different predictors based on
performance metrics from Section III

22Each prediction takes less than 100 µs on average for LSTM-PCA (worst
case). This means prediction can be done in real-time. This computation was
done on a 2018 Apple Macbook Pro i5 without any GPU support.

Methods/Performance P (ϵ1 <2 dB) P (ϵ10 <2 dB) P (ξ <2 dB)
LSTM-AC 90% 94% 98%

Transformer with AC 80% 88% 94%

CNN with AC 70% 80% 98%

Vanilla RNN with AC 70% 72% 94%

LSTM-PCA 50% 81% 94%

Linear Estimator 12% 8% 12%

Moving Average 4% 3% 5%

TABLE VII: Performance of all the predictors based on metrics
from (3) and (4). P (y) means probability that event y happened.

It can be observed from Table VII and Figs. 6a and 6b

that LSTM-AC has the best prediction performances among

the predictors tested. For example, LSTM-AC keeps the

top 1 (top 10) prediction error below 2 dB 90% (94%) of

the time, outperforming the transformer-based predictor by

10% (6%). This is an interesting observation because gen-

erally, transformers outperform LSTMs particularly in fields

of computer vision (CV) and NLP. The better performance

of LSTMs can be explained by limited training data, small

number of training epochs, lack of transformer depth/width

and dependence of transformer complexity on M . In [63], [64]

authors show LSTMs can outperform transformers in scarcity

of training data. Regarding training epochs, both architectures

were trained for 20 epochs to make comparison fair. Therefore,

Transformer might not have trained enough hence impacting

its prediction capacity. Additionally, we consider the simplest

transformer design that converged (loss reduced in training).

Even the simplest transformer with AC has 4.2 million param-

eters (400% more than LSTM-AC). Since, one of the goals of

this work is designing processing efficient networks, we did

not modify the width or depth of the transformer, which can

result in worse prediction performance. Moreover, complexity

of transformer increases with increasing memory (M ), which

is not case for LSTM. This increased complexity is not

justified in terms of the bias-variance trade-off (as compared

to LSTM) and will result in performance degradation23.

Comparing dimensionality reduction techniques, we see

that LSTM-AC has a 40% (13%) gain in top 1 (top 10)

link prediction over LSTM-PCA. This gain is due to better

encoding/decoding performance of auto-encoders as compared

to PCA. LSTM-AC also outperforms baseline linear predictors

by 78% (86%). Overall, ML-based predictors perform better

as compared to linear predictors (which is expected) and

auto-encoder-based predictors perform better than the PCA-

based predictor. We can also observe from Table VII and Fig.

6c that all ML-based predictors have similar misalignment

error performances (between 94% to 98%) outperforming

baseline linear predictors by at least 82%. This means that

these ML-based predictors are able to successfully predict the

beam indices within 2 dB of the best beam at least 94% of

23These are only few reasons. The final performance evaluation is a function
of data set, choice of loss functions, metrics, hyper-parameters etc.
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the time. The takeaway of these analyses is that NN-based

methods with auto-encoder pre-processing offer significantly

better performance than standard pre-processing such as PCA

or linear prediction. Among the NN-based predictors, LSTM-

AC in particular provides a good processing efficiency and

performance trade-off.

B. Applications

In this sub-section, we discuss some applications of multi-

cell multi-beam tracking based on the network predictions.

These applications are just a byproduct of the prediction prob-

lem that minimizes the loss in (2). Hence, these applications

are just a subset of the core prediction problem we address in

this paper. The applications themselves may be solved using

a relatively simpler approach if the problem is formulated

according to the application24. However, we look at these

applications in context of the problem formulated in this work:

based on the M previous measurements, predict the next time

slot SNRs on all beams from all cells. The applications we

discuss are outage prediction and proactive beam switching.

1) Outage prediction: As mentioned in Section I-B, a lot

of work using RNNs has been done explicitly for blockage

prediction purposes. Since we are predicting on all the beam-

pairs from all the gNBs (using all predictors), we can predict

blockages on any link. One extreme case of these blockages

is outage i.e., all the available links are blocked, hence the

UE/gNB goes into outage. Using this definition, we can define

outage when the maximum SNR from all the links falls below

a threshold γlower +∆ dB. Mathematically, we define a true

outage event as a binary variable B given by:

B(t) = 1(max
k

γn(k, t) < γlower +∆). (24)

We can similarly define a predicted outage event Bp(t) as:

Bp(t) = 1(max
k

γp
n(k, t) < γlower +∆). (25)

With these definitions, the following two metrics can be used

to capture the outage prediction performances of different

predictors:

• Outage detection accuracy: When B(t) = Bp(t) = 1, an

outage is correctly predicted. Outage detection accuracy

is the ratio of correctly predicted outages to the total

number of true outages over all trajectories.

• Outage false alarm ratio: When B(t) = 0 and Bp(t) = 1,

an outage is predicted when there was none. This is the

ratio of falsely predicted outages to the total number of

predicted outages over all trajectories.

These metrics have been shown in Fig. 7a for ∆ = 3dB.

We can observe that NN-based techniques have more than

96% outage prediction accuracy as compared to 80% for the

best baseline linear predictor. Higher prediction accuracy can

be attributed to the ability of NN-based predictors to foresee

24For example, proactive beam switching discussed below can be for-
mulated as a markov decision process, centered around optimizing beam
switching based on some observed action and state space.
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Fig. 7: Applications of predictors

sudden channel variations (triggering of a hand blockage event

or a blockage caused by building). The false alarm ratio for

all the policies except LSTM-PCA is less than 6%. Hence, the

designed predictors are able to correctly detect outages 96% of

the time, while also keeping the false alarm rate low. LSTM-

AC in particular delivers an outage accuracy of more than

96% with a false alarm rate of around 4% and is comparably

processing efficient. The outage prediction capacity of these

predictors can be used for various proactive purposes e.g., a

UE can turn off its radio frequency front end (RFFE) to save

power when it senses an outage. Similarly, a gNB can smartly

allocate resources to different UEs from the predicted outages.

2) Proactive beam switching: The predictors designed can

also be used for proactive link switching. We assume that at

the start of every test trajectory, UE is served by best available

link (k0). At time t, a beam/link needs to be switched if there

is a better link (with greater SNR) available as compared to

the serving link. For proactive link switching application, we

define two events: successful proactive link switch and false

proactive link switch. A successful proactive link switch occurs

when the following three conditions are true:

γn(k0, t) < max
{k:k ̸=k0}

γn(k, t) :link switch needed,

γp
n(k0, t) < max

{k:k ̸=k0}
γp
n(k, t) :link switch predicted, (26)
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γn(k
p
new, t) > γn(k0, t) :the new predicted link index, (27)

kpnewhas a better SNR.

After a successful switch, the UE updates the best-serving

link k0 = kpnew. Similarly, a false proactive link switch can be

defined as:

γn(k0, t) > max
{k:k ̸=k0}

γn(k, t) :link switch not needed,

γp
n(k0, t) < max

{k:k ̸=k0}
γp
n(k, t) :link switch predicted.

(28)

We present the results of successful and false link switch

prediction percentages in Fig. 7b25. We see that ML-based

predictors are successful in proactive beam switching 91%

of the time as compared to linear estimator and moving

average at around 80%. However, looking at the false alarm

percentage, we see that the false alarm percentage of ML-

based predictors is less than 2% as compared to 10% (16%) to

that of the linear estimator (moving average), meaning LSTM

predictors not only accurately predict the beam switching in

advance but also keep the false beam switch rate low. LSTM-

AC and Vanilla RNN will be preferred in this case because

of their low complexities. The superior performance of ML-

based predictors can be explained by the ability of the neural

networks to predict multiple beams from multiple cells more

accurately as compared to baseline linear predictors. This

proactive beam switching can be translated into handovers if

the beams switched are from different gNBs26.

VIII. SUMMARY AND FUTURE WORK

Beam tracking is a fundamental challenge in all mmWave

systems. In this work, we have proposed an auto-encoder in-

tegrated LSTM network for multi-cell multi-beam prediction.

Auto-encoders reduce input dimensionality of the predictor −
a major problem in multi-cell multi-beam tracking scenarios

− enabling processing efficient design of accurate LSTM

predictors. Notably, the method can track signals from multiple

cell sites and is applicable for procedures including handover

and carrier aggregation with multiple cells. The method was

validated on detailed ray tracing measurements. There is

significant opportunity to build on this work. Most importantly,

we have looked at narrowband measurements similar to what

is obtained with reference signals in 5G NR. A key research

direction is to predict the wideband channel characteristics

from intermittent narrowband measurements. A second avenue

of future research is to validate the work on larger training

data sets. We have already accumulated ray tracing on five

large cities in our work [30] and a similar campaign can be

used here. Another direction for the future is tightening the

assumption from ªUE is able to measure all the links to predict

25Successful link switch percentage is the ratio of the sum of successful
link switches to total number of link switches needed. False alarm switch
percentage is the ratio of the sum of false link switches to total number of
link switches predicted.

26In general, handovers are much more expensive than beam switching, but
if there is exchange of information about UEs within the gNBs, handovers
can be handled in a similar manner to beam switching.

all the linksº to ªUE is able to measure a subset of links to

predict all the linksº. This new assumption gives rise to a new

problem, which is finding how to choose the subset of links

from which the predictors can extrapolate the link qualities of

all the links.
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