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ABSTRACT: Understanding how abiotic, biotic, and historical factors
shape species distributions remains a central question in ecology, but
studies linking biotic factors to continental-scale patterns remain
scarce. Here, we present a novel framework for simultaneously test-
ing patterns expected when abiotic, biotic, or historical factors drive
species range limits. We use ecological niche models to produce em-
pirical estimates of the “biotic, abiotic, and movement” paradigm
(BAM diagrams), which previously has been used only theoretically.
On the basis of climatic and pollen data as well as explicit consider-
ation of dispersal limitations, we implement the framework for a
group of North American birds (Oreothlypis warblers) with clear
habitat associations. Because the pollen-based predictor variables
characterize vegetation, they represent biotic factors needed by each
bird species. Although continental-scale patterns of distribution are
traditionally attributed to abiotic factors, only one species matched
the hypothesis of solely abiotic drivers. In contrast, pollen-based
models indicate biotic drivers for two species, correctly predicting
their absence in climatically suitable areas. These results highlight
the feasibility of considering and quantifying the potential effects
of biotic interactions on species ranges, especially when interactions
can be decoupled from abiotic factors. Furthermore, the availability
of pollen data now and in the Holocene highlights the potential of
these data to be used to predict range shifts of other organisms tightly
dependent on particular vegetation types.
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Introduction

Understanding how abiotic, biotic, and historical factors
interact to shape species distributions has been and re-
mains a central question in ecology, evolution, and conser-
vation biology (Gaston 2009; Sexton et al. 2009). Investi-
gating the role played by climatic factors, in particular,
has been greatly facilitated by the development of species
distribution modeling (SDM) and ecological niche model-
ing (ENM) methods that aim to characterize the ecological
space in which a species occurs and identify geographical
areas of climatic suitability (Peterson et al. 2011). How-
ever, despite calls for such considerations, studies link-
ing abiotic, biotic, and historical factors simultaneously
to continental-scale distributional patterns remain scarce
(reviewed in Wisz et al. 2013 and Aratjo and Rozenfeld
2014).

Climatic factors have been demonstrated to limit species
distributions using both correlative (Lima et al. 2007) and
physiological (Parker and Andrews 2007) studies, but other
factors also shape species’ geographical ranges. Specifically,
at a given time a species might occupy either all or a frac-
tion of the geographical space in which conditions are fa-
vorable. For example, transplant experiments in monkey
flowers in western North America showed that these species
occupy the entire altitudinal range in which they can grow
within that geographical region (Angert and Schemske
2005). However, such cases of a species in “distributional
equilibrium” (when it occupies all areas in a region with fa-
vorable conditions) are not the norm (Aratjo and Pearson
2005). The extent of distributional “disequilibrium” (when



a portion of a species’ potential range is not occupied) de-
pends on such factors as colonization history, dispersal abil-
ity, biogeographical barriers, biotic interactions, and human
impacts (Peterson et al. 1999; Araujo and Pearson 2005;
Svenning et al. 2008; Hara 2010; Flgjgaard et al. 2011).

Whereas modeling abiotic suitability (e.g., based on cli-
matic variables) has received great attention, the effect of
biotic interactions on large-scale distributional patterns has
been hypothesized to be encapsulated by the abiotic condi-
tions in which the species occur (Eltonian noise hypothesis;
Soberén and Nakamura 2009). In this case, only fine-scale
patterns of the distribution of the species can be attributed
to the effects of biotic interactions (Pearson and Dawson
2003; Peterson et al. 2011). Nevertheless, many studies have
linked biotic interactions to range limits (reviewed in Wisz
etal. 2013 and Louthan et al. 2015), and simulation analyses
suggest that patterns resulting from positive biotic interac-
tions (i.e., mutualism and commensalism) manifest across
all scales (Aratjo and Rozenfeld 2014). As called for recently,
integration of biotic interactors into ENMs represents a nec-
essary key advance, especially given the pressing need to fore-
cast the effects of anthropogenic climate and land use change
on species distributions (Anderson 2013 and references therein;
Blois et al. 2013).
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The conceptual BAM (“biotic, abiotic, and movement”)
framework of factors (fig. 1; Soberén and Peterson 2005;
Peterson 2008; Peterson et al. 2011) formally describes
the regions in which a species occurs as the intersection
of areas that meet certain ecological and historical require-
ments. In it, the area of a continent or other geographical
study region is depicted as a Venn diagram (fig. 1) in which
a geographical region (G) is divided into three overlapping
sets: first, areas with abiotic conditions in which the species
can exist, denoted set A; second, areas in which the biotic
composition includes interacting species that are necessary
for the focal species and excludes prohibitive ones, denoted
set B; and third, areas where the species is not limited by
geographical barriers to movement (i.e., dispersal), denoted
set M (note later extensions to demographically related re-
strictions in small areas of suitable conditions; Anderson
2013). Different configurations of the BAM diagram are
commonly used to illustrate, from a theoretical point of
view, how each of these classes of factors (abiotic, biotic,
and movement) or changes in them determine species ranges
(e.g., Peterson 2008; Peterson et al. 2011, fig. 3.5). However,
despite a recent surge in studies investigating the role
played by biotic interactors in determining species ranges
by including biotic variables as additional predictor vari-
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/

Figure 1: BAM (“biotic, abiotic, and movement”) diagram representing the geographical areas where certain ecological and historical con-
ditions required by a hypothetical species are met. The blue area (A) represents the regions in which the abiotic conditions are suitable for
the species. The green area (B) represents the regions in which a suitable combination of interacting species occurs. The red area (M)
indicates the regions that have been available for a species (e.g., no barriers to dispersal). Areas in the darkest gray match the species’ need
for all three factors. G represents the total geographical area of the study region. Note that the different sets in the right panel represent a rearrange-
ment of the areas in the map on the left and therefore still represent the extent of suitability in geographical space. Modified from Soberén and

Peterson (2005).
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ables (Anderson 2017), an empirical approach to simulta-
neously modeling and mapping the areas that are suitable
for a species based on abiotic, biotic, and movement-related
factors remains lacking.

Here, we provide such a framework for empirically dis-
entangling the effects these classes of factors have on spe-
cies ranges and apply it to the breeding ranges of a group
of North American wood warblers (Parulidae). For six spe-
cies of the genus Oreothlypis, we modeled necessary abi-
otic and biotic conditions by including predictor variables
that fall into these categories (climatic conditions and pal-
ynological data, respectively); we then identified the suit-
able geographical areas in North America using these mod-
els and taking current dispersal limitations into account.
Importantly, wood warblers show a strong association with
the forest types in which they occur, particularly during the
breeding season (Curson et al. 1994; Curson 2010), indicat-
ing that the availability of a particular vegetational compo-
sition (e.g., one that can be characterized with palynological
data) may limit their distributions. Here, the quantification
of environmentally suitable areas is not intended to charac-
terize the complete set of abiotic or biotic factors limiting
these species distributions but rather to illustrate the feasi-
bility of applying the framework by using examples very
likely to affect the species distributions (climate and pol-
len/vegetation). For instance, interactions with other organ-
isms, such as competition, predation, or parasitism, would
not be captured by climatic or palynological data. Hence, the
current analyses directly address only one possible kind of
critical biotic limitation.

Pollen data have great potential for understanding spe-
cies range limits across space and time (Maguire et al.
2015), and we use them in a novel way here. Generally,
such data are used only in models of the plants themselves
(e.g., McGuire and Davis 2013; Blois et al. 2014; Yannic
et al. 2014), and their capacity to predict other species dis-
tributions (in comparison with climatic and other abiotic
variables) has not been tested. Importantly, it is reasonable
to assume in this system that vegetational composition is
not affected by the presence of the wood warblers them-
selves and thus can be used as a predictor in correlative
ENMs (i.e., the pollen data represent unlinked or scenopoe-
tic factors sensu Soberon 2007; see also Anderson 2017).
Furthermore, because the bird-plant interaction is assumed
to be positive-neutral (analogous to commensalism, in which
the effects on the presence or abundance of the species is uni-
directional), it can be expected to manifest in a species’ geo-
graphical range at regional and continental scales (Araujo
and Rozenfeld 2014). Notably, if this bird-plant relationship
quantified on the basis of pollen data affects species ranges at
continental scales, it would constitute a new way to model
species distributions across both space and time (Maguire
et al. 2015).

Framework for Simultaneous Testing

ENMs based on these two largely independent sources of
environmental information (climate and pollen), along with
explicit consideration of regions accessible to each species
(without internal barriers to dispersal), allow for tests of
abiotic versus biotic limits to species distributions. Specifi-
cally, the following three scenarios exist for ENMs gener-
ated within a geographical region delimited to reflect areas
without internal dispersal barriers. In the first scenario, if
a species’ distribution is limited by climatic factors, biotic-
ally suitable areas should exist outside the range of the spe-
cies, with the species occurring only in the more restricted,
climatically suitable areas (fig. 2A). Conversely, in the sec-
ond scenario, if biotic factors (i.e., vegetational composi-
tion) are limiting, some areas outside the distribution would
be climatically suitable, and the species would occur only in
a smaller set of biotically suitable areas (fig. 2B). Alterna-
tively, in the third scenario, if abiotically and biotically suit-
able areas are congruent, it is not possible (with correlative
analyses) to disentangle their relative importance to the lim-
its of a species’ distribution (including the possibility that
the Eltonian noise hypothesis is true). In this latter case,
the species would occupy all suitable areas (i.e., be at distri-
butional equilibrium; fig. 2C). Additionally, a fourth scenario
is expected if dispersal restrictions (or other factors not cap-
tured by the climatic or pollen data sets) are limiting. In
that case, the species would not be present in all suitable
areas of the continent but rather would be present in only
those areas within the region lacking internal barriers to
dispersal (fig. 2D). The latter two scenarios (fig. 2C, 2D)
represent cases in which climate and pollen-based ENMs
would have similar predictions. However, incongruence is
expected in the former two scenarios (fig. 24, 2B); in these
cases, the areas predicted by the models made on the basis
of the limiting variable class (climate or pollen) would be
most similar to ENMs built using both sets of variables to-
gether.

Methods
Focal Species

We obtained records for six of the seven North American
species of Oreothlypis wood warblers (Lovette et al. 2010):
the orange-crowned warbler (O. celata), Virginia’s warbler
(O. virginae), the Tennessee warbler (O. peregrina), Lucy’s
warbler (O. luciae), the Nashville warbler (O. ruficapilla),
and the Calaveras warbler (O. ridgwayi). The geographical
ranges of these species cover almost all forest types in
North America; some species, such as the orange-crowned
warbler, are broadly distributed, whereas others, such as
Virginia’s warbler, are found in narrow montane habitats.
Although the Nashville and Calaveras warblers have tradi-
tionally been considered conspecific, molecular data indi-
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Figure 2: Hypothetical scenarios under which abiotic and biotic factors may limit species distributions represented by different configura-
tions of the BAM (“biotic, abiotic, and movement”) diagram. A, Predicted configuration if a species’ distribution is limited by abiotic factors.
B, Predicted configuration if biotic factors are limiting. C, Predicted distribution if both of these factors limit the species’ distribution.
D, Predicted configuration if “movement” restrictions or other factors not captured by the biotic or abiotic variables are limiting, beyond
the confounded effects of abiotic and biotic factors. The lower panels represent configurations in which biotically and abiotically suitable

areas are congruent.

cate that they show substantial differentiation and might
not even be each other’s closest relative (Weir and Schlu-
ter 2004). Because of the paucity of locality and palynolog-
ical data for the Colima warbler (O. crissalis), it was not
included in the study.

Environmental Variables

We used two sources of variables to describe the environ-
mental niche of each species. First, the scenopoetic abiotic
factors were based on climatic data from WorldClim (Hij-
mans et al. 2005) that were interpolated from monthly
data from meteorological stations across the globe. The
complete WorldClim data set includes 19 bioclimatic var-
iables; of these, eight that describe the average, extremes,
and variability of temperature and precipitation were em-
ployed in this study (table 1).

The second source of variables, related to scenopoetic bi-
otic requirements (see above) of each species, was derived
from present palynological data (Late Quaternary North
American Vegetation Dynamics Data; Williams et al. 2004)
in which the relative abundances of 55 plant taxa were sam-
pled from lake deposit pollen and interpolated on a geograph-
ical grid. Pollen data from Williams et al. (2004) were iden-
tified to various taxonomic levels; therefore, they required
further classification into 15 derived variables in which the
pollen percentages of each taxon were pooled together as
plant functional groups (tables 1, S1; tables S1, S2 are avail-
able online; based on Williams et al. 1998). Key assumptions
are that palynological data at this resolution reflect the vege-
tation in the proximity of the lakes in which the pollen was
deposited (Sugita 2007) and that the pollen-vegetation rela-
tionship is the same across the continent. It is worth noting
that more complex pollen-vegetation models (e.g., Dawson
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Table 1: Biotic and abiotic variables included as environmental predictors

Climatic variables (abiotic factors)

Pollen variables (biotic factors)

Bioclimatic variable Variable code Functional group Abbreviation
Annual mean temperature BIO1 Boreal conifer BorCon
Temperature seasonality BIO4 Cool temperate conifer CoolTempCon
Maximum temperature of warmest month BIOS5 Eurythermic conifer EuryCon
Minimum temperature of coldest month BIO6 Boreal summer green BorSumGre
Annual precipitation BIO12 Cool temperate summer green CoolTempSumGre
Precipitation of wettest month BIO13 Temperate summer green TempSumGre
Precipitation of driest month BIO14 Warm temperate summer green WarmTempSumGre
Precipitation seasonality BIO15 Warm temperate evergreen WarmTempEvGreen

Shrubs Shrubs

Sedge Sedge

Forbs Forbs

Grass Grass

Holly and Ericaceae AqEric

Legumes Legumes

Selaginella Selagi

et al. 2016 and references therein) have been developed, but
their application has been at more localized areas than the
continental scale.

Both data sets were projected from their original format
into a longitude-latitude WGS84 projection with a 0.5° res-
olution and an extent covering North America using the
raster (Hijmans 2017) and rgdal (Bivand et al. 2017) pack-
ages in R 3.1.3 (R Core Team 2014). Because data from
pollen deposits were sparse and to avoid excessive interpo-
lation across geography, not all cells in North America were
included in the original generation of the pollen data (Wil-
liams et al. 2004). Therefore, areas for which climatic data
were available but pollen data were not were not used in this
study.

Locality Data

Presence records for each of the species were obtained
from the eBird database (Sullivan et al. 2009). The total
number of records for each species ranged from ~18,000
to 415,000. We restricted analyses to the portion of records
that were observed during 2 months of the breeding season
(June 15 to August 15) and that fell within 100 km of the es-
timated breeding distribution of each respective species (avail-
able at http://www.natureserve.org/; Ridgely et al. 2007). The
total unique localities ranged from ~2,300 to 22,000 per
species. Because of the coarse resolution of the environ-
mental data and substantial aggregation of records around
highly sampled areas, only one locality per cell was used,
for a total of 84-1,087 unique cells recorded per species.

Study Region

ENMs are built on the assumption that environmental
variables used to model the niche (or others correlated with

them) are the only factors limiting the geographical distri-
bution within the training area (Peterson et al. 2011). To
meet this expectation (see the noise assumptions of An-
derson [2013]), the region from which environmental data
are drawn should be restricted to areas in which there are
no biogeographical restrictions to the presence of the spe-
cies (i.e., within which no dispersal barriers exist; M in fig. 1).
Additionally, the study region should not include areas in
which unexamined biotic factors limit the species’ distribu-
tion (outside B in fig. 1; Anderson and Raza 2010). In these
parapatrically distributed wood warblers, competitive inter-
actions with close relatives likely restrict the distributions of
some species that come into geographical contact (Anderson
et al. 2002; Krosby and Rohwer 2010).

To build distribution models that match these assump-
tions, we defined species-specific training areas (red area
in fig. 3A and panel A of figs. S1-S5; figs. S1-S8 are avail-
able online) through a two-step process. First, we excluded
regions to which the species likely has not had the oppor-
tunity to disperse by defining an area including the known
breeding distribution of each species based on its breeding
range (Ridgely et al. 2007) with a 500-km buffer. Second,
we took into account the possible effect of interspecific
competition by excluding areas in which other nonsym-
patric species of this group occur (again using the same
range polygons). The resulting study regions for each species
represent areas in which the species can be expected to be
in environmental equilibrium with respect to the variables
used in the models.

Because the eBird presence locality data were highly bi-
ased (i.e., toward grid cells in more accessible areas and
closer to urban centers that have been more heavily sam-
pled), we addressed the potential effect of geographical
sampling differences on the ENMs. To do so, background
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data used to train the model should be proportional to the
sampling effort that led to the presence locality data (Phil-
lips et al. 2009). To produce such a data set, we first cre-
ated a sampling effort raster in which the value of each cell
was the number of times it had been sampled based on the
entire eBird data set for the same dates as the occurrence
data. Background data were then selected by sampling with-
out replacement 70% of the cells within the background area
defined for each species, where the probability of a cell be-
ing sampled was proportional to the number of sampling
events in that cell (weighted target group approach of An-
derson 2003). There are two reasons for sampling back-
ground data without replacement here. First, only one local-
ity record per cell was used in the presence data set. Second,
if the probability of sampling with replacement had been
proportional to the sampling effort, a computationally un-
feasible amount of background points would be required
to capture a representative portion of the ecological space
(because the number of sampling events in some cells was
orders of magnitude larger than in others).

Model Selection and Projection

ENMs were made in Maxent 3.3.3.k (Phillips et al. 2006),
using the dismo package (Hijmans et al. 2017) in R 3.13.
To select key species-specific settings related to model com-
plexity for Maxent, we used the ENMeval R package (Mus-
carella et al. 2014) to build and evaluate multiple candidate
models with various combinations of the regularization
multiplier and feature classes allowed (see below). We used
the block partitioning method of ENMeval, in which the
study area was partitioned into four spatial bins, three of
which were used to train the model in each iteration while
the remaining one was withheld for evaluation.

Niche models were built with three sets of variables:
(1) climate only, (2) pollen only, and (3) both climate and
pollen. For each of the three sets of variables, 180 total mod-
els were made per species. These models were built using 60
different combinations of settings in which two factors var-
ied: the complexity of the feature classes included and the
regularization multiplier. We employed all of the combina-
tions of feature classes provided by ENMeval and regulari-
zation multipliers from 1 to 5 in intervals of 0.5 units. The
best model was selected under two sequential conditions:
information criteria and transferability. First, to select the
best-performing settings, only the candidate models within
two units of the lowest corrected Akaike information cri-
terion (AICc) score (Warren et al. 2008) were considered.
Second, when more than one model had a AAICc lower
than 2, the one with the lowest difference between training
and testing AUC (area under the curve) was selected to max-
imize geographical transferability (Warren and Seifert 2011;
Radosavljevic and Anderson 2014). Importantly, metrics cal-

culated on the withheld bin are subject to being artifactually
over- or underestimated because evaluation localities re-
main spatially biased (whereas the resulting model was cor-
rected for bias using the weighted target group approach).
Thus, we favored AICc over other performance metrics be-
cause it is calculated on the unpartitioned, corrected model.

For each of the models, we quantified the number of
parameters used by Maxent as a measure of complexity
(Warren and Seifert 2011). It is worth noting that model
selection based on the lowest AICc (see above) penalizes
parameter-rich ENMs (Warren and Seifert 2011; Musca-
rella et al. 2014). Additionally, to assess model performance
and transferability, the omission rate metric was calculated
(using the “10% training omission” threshold, OR10). This
metric calculates the proportion of test localities with suit-
ability values below the 10% training suitability threshold.
Under perfect transferability, the OR10 value is expected
to be 0.10. Therefore, values larger than that indicate that
the ENMs built with the training data predict presences
in the testing data set less adequately than those models
showing OR10 at or below 0.10. The settings selected for
each species (for each environmental data set) were then
used to build ENMs using the full (unpartitioned) pres-
ence and background data.

For each species, the final ENMs based on each of the
three sets of variables were projected onto the entire con-
tinent, therefore estimating all environmentally suitable areas
in North America regardless of whether the species actually
occurs there. Projections into nonanalog environments (con-
ditions present in North America but not within the training
area of a particular species) were made by allowing Maxent
to extrapolate responses beyond the range of the variables in
an unconstrained manner (i.e., not “clamping”; Elith et al.
2011). To evaluate to what extent suitability patterns pro-
jected by ENMs were affected by extrapolation into nonanal-
ogous environments, we identified areas in the continent in
which at least one variable that contributed to the model
(A > 0) fell outside its training range. To examine the indi-
vidual contribution of each variable, response curves of ENMs
were examined using Maxent’s explain tool (Elith et al. 2010).

Environmental Variable Correlations

Unlike regression-based techniques, in which highly cor-
related variables could produce spurious results due to
overfitting or collinearity, Maxent is built to handle highly
correlated variables by excluding predictors with redun-
dant information from the final model, via regularization
(Elith et al. 2011). However, to assess the extent to which
congruences between the resulting models are an outcome
of correlation of the environmental data, we calculated the
pairwise Pearson product-moment correlation coefficients
among the climatic variables and pollen functional groups



as well as between variables in the two data sources, across
all cells in the continent. These pairwise comparisons were
visualized using the R package corrplot (Wei and Simko
2017).

Distance Matrix and Multidimensional Scaling

To examine the overall congruence of the various species’
ENMs, we computed a distance matrix among all resulting
projections. Suitability maps of all species based on each of
the three sets of variables were compared pairwise among
species. The distance between two raster grids was equal to
1 — Schoener’s D (Schoener 1968; Warren et al. 2008),
calculated using the nicheOverlap function in dismo (Hij-
mans et al. 2016). The value of the comparison of two maps
ranges between 0 and 1, with identical maps having a value
of 0 and very dissimilar maps having a value close to 1. To
visualize these distances in a two-dimensional space, we
then performed a nonmetric multidimensional scaling anal-
ysis using the vegan package (Oksanen et al. 2016) in R.

Empirical BAM Diagrams

We tested the predictions outlined in the introduction by
examining results via empirical BAM quantifications and
visualizations. To compute BAM diagrams for each species,
we first defined the total biotically and abiotically suitable
regions by applying a 10% training omission rate thresh-
old to the continental projections of the climate-only and
pollen-only models (sets A and B, respectively, in BAM;
Pearson 2004; Peterson et al. 2011). As mentioned earlier,
we approximated the “movement” (set M) of BAM as the
species-specific area from which the background data were
drawn for each species. We subsequently calculated the
total area deemed suitable by both climate and pollen (via
the separate models) as well as their overlap using the raster
package in R. Euler diagrams depicting the relationships
among the “biotic, abiotic, and movement” areas were first
calculated in R and then illustrated using the BAM diagram
script deposited in Dryad (https://dx.doi.org/10.5061/dryad
.q3b45; Sanin and Anderson 2018).

Results
Model Selection and Evaluation

The best-performing settings (lowest AICc models) varied
greatly across species and the set of variables used (figs. 3,
S1-S5). Feature classes used were consistent within a spe-
cies, increasing in complexity in species with more occur-
rence records and larger geographical ranges. The regular-
ization multiplier varied within species, without any clear
pattern for each set of environmental variables.
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Models for narrowly distributed species (Lucy’s, Virgin-
ia’s, Tennessee, and Nashville warblers; OR10 range, 0.12-
0.35) had better performance in terms of transferability
than did those with more heterogeneous environmental
conditions across the species’ range (Calaveras and orange-
crowned warblers; OR10 range, 0.31-0.82), which gener-
ally resulted in more complex and over-fit ENMs. While
these values might be caused by uncorrected spatial bias
in evaluation localities (see above), they could also be the
result of violating the assumption of stationarity among
the geographically independent evaluations bins (Murphy
and Lovett-Doust 2007; Radosavljevic and Anderson 2014).
Model evaluation metrics estimated for every model built
have been uploaded to Dryad (https://dx.doi.org/10.5061
/dryad.q3b45; Sanin and Anderson 2018).

Environmental Variable Correlations

The absolute values of the Pearson’s correlation coefficients
were highest between bioclimatic variables, with eight (28.6%;
bold blue grid squares in fig. S6) of those pairwise combina-
tions showing substantial correlation (magnitude greater
than 0.75). As expected, bioclimatic variables derived re-
lated to temperature were highly correlated, and so were
those derived from precipitation. Likewise, six comparisons
between pairs of functional group variables were highly cor-
related (bold green grid squares in fig. S6). Notably, however,
comparisons for pairs of functional group versus bioclimatic
variables were considerably less correlated, with only one pair
showing a correlation greater than 0.75 (bold black grid
square in fig. S6).

Geographical Concordance of
Abiotic and Biotic Suitability

The final maps of environmental suitability based on mod-
els built with three different sets of variables (climate only,
pollen only, and both pollen and climate) for each species
indicated various patterns of geographical concordance
but with few complications of nonanalog environments.
For example, the suitable conditions in North America
for the Tennessee warbler for the three sets of environmen-
tal data differ: climate only (fig. 3B), pollen only (fig. 3C),
and both climate and pollen (fig. 3D; corresponding maps
for all other species can be found in figs. S1-S5). As ex-
pected, models built with climate and pollen together pre-
dicted a more restricted distribution of suitability than did
models built with either separately. The extent of suitable
area predicted in nonanalogous environments was negligible
for most models (mean, 2.6%; range, 0%—18%; figs. S7, S8),
with the exception of the climate-only model for Virginia’s
warbler, which predicted as climatically suitable areas in the
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eastern United States in which the precipitation of the driest
month was higher than the range found in the area in which
the ENM was trained.

The extent to which abiotically and biotically suitable
areas overlapped when projected to the full extent of North
America varied greatly across taxa. Congruent with the pre-
dictions of geographic correspondence (nonindependence)
between biotic and abiotic factors (Eltonian noise hypothe-
sis; fig. 2C, 2D), the respective climate-only and pollen-only
models were virtually identical in orange-crowned, Nashville,
Tennessee, and Lucy’s warblers (fig. 4). However, climate-only
and pollen-only models were conspicuously different from
each other (and from the pollen-and-climate models) for
Virginia’s and Calaveras warblers (orange and yellow sym-
bols, respectively, in fig. 4). Notably, for these species two
opposing patterns were recovered regarding their similar-

ity (quantified distance) to the climate-and-pollen models.
On one hand, the pollen-only model for Virginia’s warbler
was closer to its climate-and-pollen model, congruent with
the prediction of biotic limits to its distribution (fig. 2B).
On the other hand, for the Calaveras warbler (fig. 24), the
climate-only model was more similar to the one based on
both climate and pollen, consistent with limiting climatic
factors.

Empirical BAM Diagrams

The patterns described above were reflected in the BAM
diagrams constructed for each species based on ENMs, which
also include quantification of movement-related factors (fig. 5).
Suitable areas predicted by pollen and climatic variables sep-
arately overlapped broadly for orange-crowned, Nashville,
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Figure 4: Multidimensional scaling plot showing the relationship among the projected suitable areas for all species of warblers examined in
this study. This plot visualizes the overall distances (1 — Schoener’s D) between climate-only ecological niche models (ENMs; squares),
pollen-only ENMs (circles), and climate-and-pollen ENMs (triangles) for each species (different colors).
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Figure 5: Empirical BAM (“biotic, abiotic, and movement”) diagrams calculated for each species of warbler examined in this study. Blue
areas represent abiotically suitable regions based on climate-only ecological niche models (ENMs). Green areas represent biotically suitable
regions based on pollen-only ENMs. Red areas represent available areas within which movement-related factors are not expected to be lim-
iting (see text). The length of the black bar at the bottom of each diagram is proportional to the total area of the union of A, B, and M,
indicating the “zoom” for each species relative to the whole of North America (the sum of the black bar and the gray bar).
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Tennessee, and Lucy’s warblers (fig. 5A-5C, 5E). For those
species, when ENMs were projected to North America, areas
abiotically and biotically suitable outside the training area
(M) of the species were scarce. This is consistent with the
scenario of distributional equilibrium (fig. 2C), in which
the most important factor (or its correlate) limiting the spe-
cies’ distribution in the continent is included in the ENMs,
and the species occupies all suitable areas.

In contrast, areas from which Virginia’s warbler (fig. S5)
is absent in the eastern United States were predicted to
be climatically suitable. Concordant with the scenario of
biotic limitations (fig. 2B), suitable areas based on pollen
data were largely restricted to the vicinity of presence
records for this species (fig. 5F). In particular, the high rel-
ative abundance of two plant functional groups related to
mixed and deciduous forest account for the low suitability
in the east. Reflecting the difference in forest composition
among these areas, Virginia’s warbler was associated with
a large representation (more than 40% of relative pollen
abundance) of the “eurythermic conifer” functional group
species (such as junipers of the Cupressaceae family; ta-
ble S1). In contrast, areas in which either “temperate sum-
mer green” or “warm temperate evergreen” represented
more than 15% of the relative pollen abundance were es-
timated as not suitable.

Alternatively and consistent with abiotic limits to distri-
butions (fig. 2A), the Calaveras warbler’s climate-based
ENM predicted a more restricted area than the one based
on pollen, which indicated suitability in southwestern Can-
ada, where the species is absent (fig. 5D). These biotically
suitable areas experience unsuitably low temperatures and
higher temperature seasonality than the modeled tolerances
of the Calaveras warbler.

Importantly, cases like the Tennessee warbler suggest
that species do not perfectly match just one of the hypo-
thetical scenarios in figure 2 across all of its distribution.
This species does not occur in western Alaska, where biotic
factors seemed to be limiting (figs. 3, 5C). In this case, the
abundance of boreal conifers was the variable that contrib-
uted the most to the model (as determined by this variable
having the largest lambda weight in the ENM). Specifically,
only areas in which pollen of species classified as “boreal
conifers” accounted for more than 20% of the palynological
composition were considered as suitable for it. Low suitabil-
ity in western Alaska is explained by the change of a commu-
nity dominated by boreal conifers into one with a large rep-
resentation of “cool temperature summer green” plants west
and north of the northern Rocky Mountains.

Discussion

As possible limits to species distributions, abiotic and bi-
otic factors have often been treated as alternatives (e.g.,

Cumming 2002), but the current results indicate the utility
of comparing models based on them separately and to-
gether. Although bioclimatic variables and those for pollen
functional groups had low correlation coefficients (fig. S6C),
pollen-only and climate-only models broadly overlapped for
most of the taxa. Thus, abiotic and biotic factors are not geo-
graphically independent of each other for these species. Fur-
thermore, for four species—orange-crowned, Lucy’s, Ten-
nessee, and Nashville warblers—most biotically suitable
areas are also climatically suitable (and vice versa), which
suggests that the plant communities in which these species
occur are strongly associated with climate. While this pattern
is congruent with the Eltonian noise hypothesis (Peterson
et al. 2011) for this set of biotic factors, our results do not
imply that this is the mechanism behind the geographical
coincidence of climatically and vegetationally suitable areas.

Using climate and pollen data simultaneously produced
the closest predictions to the actual geographical range for
models when projected to the entire continent, but with
only slight improvements over models made with one or
the other (depending on the species involved; triangles
in fig. 4). Additionally, with the exception of the Calaveras
warbler, all species occurred across most of the abiotically
and biotically suitable areas available on the continent,
which suggests distributional equilibrium for them in North
America. This pattern was also supported by the empirical
BAM diagrams (fig. 5), in which nearly no abiotically and
biotically suitable areas (the intersection of A and B in fig. 5)
were outside the available areas for each species (M), except
for the Calaveras warbler.

At odds with the view that abiotic factors constitute the
primary limitations for species distributions at a continen-
tal scale (Pearson and Dawson 2003), only one of the six
taxa examined (the Calaveras warbler) exhibited a pattern
consistent with solely climatic limitation within areas ac-
cessible to it. Specifically, the models identified low mini-
mum temperatures and high temperature seasonality as pu-
tative limiting factors (fig. 2A). Importantly, however, the
role played by climate in shaping a species’ geographical
range cannot be discounted in those species for which in-
dependent models based on either climate or pollen had
similar predictions. Moreover, climatic factors could play an
indirect role through other biotic factors not explicitly exam-
ined here. For example, the availability of prey species (Price
and Gross 2000), the availability of host species (Gutiérrez
et al. 2005; Bozick and Real 2015), or the lack of competition
(Taniguchi and Nakano 2000; Gutiérrez et al. 2014) or dis-
ease (Lips et al. 2008) could ultimately depend on the clima-
tic limitations of the interacting species. In such a case, the ef-
fect of these interactions on a focal species’ distribution would
also be captured by the climatic variables used as long as the
interactor occurred in distributional equilibrium with cli-
mate within the study region examined (Anderson 2013,2017).



Furthermore, biotic data alone clearly provided relevant
information not accounted for in climate-only ENMs for
at least two species. For Virginia’s warbler and to a lesser
extent the Tennessee warbler, climatic models predicted
more regions outside a species’ distribution to be suitable
than did the pollen data set. For Virginia’s warbler—a spe-
cies specialized to pinyon-juniper woodlands (Curson et al.
1994; Curson 2010)—climatically suitable areas in eastern
North America, where this forest type does not occur, did
not contain a high enough abundance of the conifer spe-
cies required by this species. Importantly, the climatic
suitability in this case is contingent on the ENM extrapo-
lation into a portion of the areas in which less extreme
droughts occur compared with those in which the model
was trained. Similarly, for the Tennessee warbler (which
during its breeding season is strongly associated with its
primary prey item, the spruce budworm; Patten and Bur-
ger 1998; McMartin et al. 2002), the dominance of species
in the functional group “cool temperature summer green”
in northwestern Alaska resulted in low biotic suitability, as
opposed to the boreal conifer-dominated areas where it is
distributed. That pollen-based models correctly predict
low suitability for the species in climatically suitable areas
suggests that these biotic factors (i.e., plant species) could
have been affected by similar historical events as the focal
wood warbler species. Historical processes such as postgla-
ciation range expansion, the inability to cross geographical
barriers (i.e., the Rocky Mountains), or vicariant events
would affect fauna and flora simultaneously (yet likely in
idiosyncratic ways), but modern climate would not reflect
these patterns.

This study provides a novel framework for testing pat-
terns expected regarding the drivers of species’ range lim-
its at a continental scale. By estimating BAM diagrams em-
pirically (the “biotic, abiotic, and movement” paradigm;
Soberén and Peterson 2005), we evaluated the importance
of abiotic, biotic, and movement-related limits to species
distributions, harnessing a framework that previously had
been used only theoretically. The putative mechanisms un-
covered by the present correlative analyses should now be
tested via experimental studies (Peterson et al. 2015). Addi-
tionally, future uses of this framework can include consid-
eration of other classes of biotic interactions (e.g., preda-
tors, mutualists, and parasites; Giannini et al. 2013) when
such interactors are not themselves affected by the focal
species (i.e., they are scenopoetic; Soberén 2007; Anderson
2017). This framework is particularly well suited for sys-
tems in which the presence of an organism is essential to
the occurrence of the focal species (e.g., phytophagous in-
sects and their host plants or parasites and their hosts).
Extensions of this paradigm should be developed for as-
sessing the role played by biotic interactions on species
ranges when populations of both species are linked (affect-
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ing each other), which represents a current limitation to
correlative SDMs (Anderson 2017). Finally, these results
highlight the importance of considering the potential effects
of biotic interactions when ENMs are projected across time
or space and used as tools for policy making regarding issues
such as invasive species and climate change (Sax et al. 2013;
Louthan et al. 2015) or for biogeographical analyses (Kozak
et al. 2008) in which the availability of palynological data
now and in the Holocene (Maguire et al. 2015) highlights
the potential of these data to be used to predict range shifts
of other organisms tightly dependent on particular vegeta-
tion types.
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