
www.ecography.org

ECOGRAPHY

Ecography

726

Subject Editor: Timothy Keitt
Editor-in-Chief: Miguel Araújo
Accepted 5 June 2017

41: 726–736, 2018
doi: 10.1111/ecog.02909

doi: 10.1111/ecog.02909 41 726–736

Models of species ecological niches and geographic distributions now represent a 
widely used tool in ecology, evolution, and biogeography. However, the very common 
situation of species with few available occurrence localities presents major challenges for 
such modeling techniques, in particular regarding model complexity and evaluation. 
Here, we summarize the state of the field regarding these issues and provide a worked 
example using the technique Maxent for a small mammal endemic to Madagascar 
(the nesomyine rodent Eliurus majori). Two relevant model-selection approaches exist 
in the literature (information criteria, specifically AICc; and performance predicting 
withheld data, via a jackknife), but AICc is not strictly applicable to machine-learning 
algorithms like Maxent. We compare models chosen under each selection approach 
with those corresponding to Maxent default settings, both with and without spatial 
filtering of occurrence records to reduce the effects of sampling bias. Both selection 
approaches chose simpler models than those made using default settings. Furthermore, 
the approaches converged on a similar answer when sampling bias was taken into 
account, but differed markedly with the unfiltered occurrence data. Specifically, for 
that dataset, the models selected by AICc had substantially fewer parameters than 
those identified by performance on withheld data. Based on our knowledge of the 
study species, models chosen under both AICc and withheld-data-selection showed 
higher ecological plausibility when combined with spatial filtering. The results for 
this species intimate that AICc may consistently select models with fewer parameters 
and be more robust to sampling bias. To test these hypotheses and reach general 
conclusions, comprehensive research should be undertaken with a wide variety of real 
and simulated species. Meanwhile, we recommend that researchers assess the critical 
yet underappreciated issue of model complexity both via information criteria and 
performance on withheld data, comparing the results between the two approaches and 
taking into account ecological plausibility.
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Introduction

Ecological niche models (ENMs; often termed species 
distribution models, SDMs) constitute an important tool 
in ecology and evolution, but their application is espe-
cially difficult for species that have only few occurrences 
available. Correlative ENMs determine the relationship 
between localities where a species is known to occur, and 
the abiotic (e.g. climatic, edaphic) and biotic (e.g. veg-
etation, species interactions) properties of these locations, 
yielding an estimate of suitability for the species (Elith 
et  al. 2006). These models have seen wide application 
throughout environmental biology, including use in con-
servation, agriculture, zoonotic diseases, and many other 
areas (Elith and Leathwick 2009). When copious data are 
available, ENMs even can be used for studying the variables 
driving population abundance, demography, and recruit-
ment (Williams et  al. 2009, Martínez-Meyer et  al. 2013, 
Searcy et  al. 2015, Muscarella and Uriarte 2016). Linked 
with such demographic information as well as genetic data, 
ENMs also hold promise for studying the effects of past 
and ongoing climate change (Pearson and Dawson 2003, 
Waltari et al. 2007).

Unfortunately, however, the majority of species are 
known from very few occurrences (Soberón et  al. 2000), 
greatly hindering the production of useful ENMs for such 
species. Even in these cases, researchers often hope to use 
ENMs for various uses. Critically, ENM predictions inform 
conservation assessments, which are especially impor-
tant for data-poor species (Anderson and Martínez-Meyer 
2004, Franklin 2010). For these species, such models can 
help target geographic areas for future sampling. Similarly, 
newly detected invasive species or taxa associated with 
emerging zoonotic diseases present opportunities for con-
tributions via ENMs, yet often afford only few occurrences. 
More generally, including data-poor species is necessary 
for comprehensive analyses identifying areas for preserva-
tion (i.e. reserve selection; Papeş and Gaubert 2007, Lawler 
et  al. 2011), understanding macroecological patterns,  
and synthetic studies of the effect of past environmental 
change on patterns of phyloendemism (Brown et al. 2016, 
Prates et al. 2016).

Model complexity

Estimating optimal levels of model complexity remains 
a key outstanding methodological issue for ENMs, and 
especially challenging for species with few occurrences 
(Merow et al. 2013, Muscarella et al. 2014, Warren et al. 
2014, Moreno-Amat et  al. 2015). Model complexity has 
key relevance both for geographic predictions and identi-
fication of realistic hypotheses regarding the driving envi-
ronmental variables (Araújo and Guisan 2006, Elith and 
Graham 2009, Merow et  al. 2014). Major complications 
identifying optimal complexity exist even for the com-
monly used machine-learning algorithm Maxent (Anderson 
and Gonzalez 2011, Shcheglovitova and Anderson 2013), 

which has shown high performance for small sizes com-
pared with other techniques (Hernandez et al. 2006, Wisz 
et al. 2008). Specifically, the Maxent software allows for the 
use of default settings for factors that affect model complex-
ity greatly (e.g. feature classes and regularization multipli-
ers; Phillips and Dudík 2008). In contrast, users can create 
models with a wide range of settings for each species (yield-
ing many candidate models) to identify those that lead to 
optimal levels of model complexity. Although rarely done 
(Halvorsen 2013), such species-specific tuning of model 
settings (also termed ‘smoothing’; Elith et  al. 2010) has 
been shown to result in simpler and substantially more real-
istic Maxent models than those built using default settings 
(Anderson and Gonzalez 2011, Warren and Seifert 2011, 
Jueterbock et  al. 2013, Muscarella et  al. 2014, Radosav-
ljevic and Anderson 2014, Warren et  al. 2014, Moreno-
Amat et al. 2015).

However, no general consensus yet exists regarding the 
most appropriate way to select optimal complexity for 
Maxent or many other ENMs (i.e. that best approximat-
ing the calibration data while holding the greatest general-
ity when applied to independent data; Warren et al. 2008, 
Elith et al. 2011). Two main approaches involve evaluating 
model performance via internal testing (i.e. on calibration 
data), versus quantifying model performance on external 
(withheld) evaluation data. Regarding the first approach, 
some studies have advocated the use of information criteria, 
specifically Akaike’s information criterion in the selection 
of optimally complex ENMs (AICc, corrected for small 
sample size; Baldwin 2009, Warren and Seifert 2011). 
However, although properly applied to several regression-
based ENMs (e.g. GAM/GLM; Guisan and Thuiller 2005), 
information criteria do not fit the machine-learning para-
digm perfectly (Warren and Seifert 2011). Specifically, the 
degrees of freedom for each model cannot be calculated 
exactly, and this issue is compounded because some fea-
ture classes can be penalized multiple times (Dudík 2007, 
Warren et al. 2014). Nevertheless, even if imperfect in this 
context, AICc still may be useful for machine-learning 
because it gives a quantitative measure without the use 
of external evaluation data, balancing model complex-
ity with goodness-of-fit (Guisan and Thuiller 2005). In 
contrast, in the second approach, external performance is 
measured on withheld data, quantifying the model’s abil-
ity to predict evaluation records. In this vein, two studies 
proposed estimating optimal complexity for Maxent mod-
els based on a sequence of two criteria for evaluation of 
withheld data (hereafter termed jackknife, for application 
with small sample sizes of occurrence records). In those 
particular implementations, the first criterion (e.g. omis-
sion rate) minimizes overfitting to calibration data, and 
the second one (e.g. AUC) maximizes discriminatory abil-
ity (Shcheglovitova and Anderson 2013, Radosavljevic 
and Anderson 2014). Here, we quantify overfitting as any 
evaluation omission rates higher than that expected based 
on the thresholding rule applied (see also Model selection 
techniques in Methods).
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Present experiment and questions

Because progress in the field requires comparisons of these 
two approaches, we provide a worked example illustrating 
an integrated effort to compare these selection approaches. 
For the withheld-data approach, we use particular evalua-
tion metrics in a sequential manner (i.e. first omission rate 
and then AUC; see below for details) but note that many 
other implementations are possible (Peterson et  al. 2011, 
Warren and Seifert 2011). Although numerous studies have 
implemented either AICc or the jackknife method to Maxent 
model tuning, to our knowledge the two have not yet been 
directly compared.

Specifically, we address these issues with a poorly known 
forest-dwelling species endemic to wet montane areas of 
Madagascar, Eliurus majori (family Nesomyidae, subfamily 
Nesomyinae). We do so by creating a suite of candidate mod-
els built with a range of settings for factors that affect model 
complexity (feature classes and regularization multipliers). 
Out of that suite of candidate models, we compare those 
identified as optimal by each of the two approaches, as well 
as with the one produced using Maxent’s default settings. For 
all three models, we also made qualitative assessments of their 
ecological plausibility based on our existing, although lim-
ited, knowledge of the study species (Goodman et al. 2014).

Additionally, we address one important possible con-
founding factor: the effects of sampling bias. Although both 
AICc and the jackknife method used on withheld data assume 
that occurrence data derive from unbiased sampling, such 
an assumption is likely violated in most datasets (Hijmans 
et al. 2000, Phillips et al. 2009, Peterson et al. 2011). There-
fore, to assess whether either model-selection technique is 
affected strongly by spatial sampling bias (which likely results 
in environmental bias; Reddy and Dávalos 2003, Kadmon 
et al. 2004), we conduct these experiments with two datas-
ets that should reflect different levels of sampling bias (Boria 
et al. 2014). Specifically, we use datasets of localities with and 
without application of a spatial filter. The original dataset, 
comprised of all localities, presumably reflects relatively high 
sampling bias in geography, typical of museum biodiversity 
data (Reddy and Dávalos 2003, Graham et  al. 2004). To 
produce a second dataset, we spatially filter the localities, 
yielding a dataset that should reflect relatively less sampling 
bias (Veloz 2009, Anderson and Raza 2010, Carroll 2010, 
Hijmans 2012, Boria et al. 2014).

The present worked example addresses three main 
questions.

Question 1: how do model complexity and geographic 
predictions differ between default settings and each of the 
two model-selection techniques?
Maxent’s default settings have a tendency to produce over-
fit models, leading to the following expectations. For each 
dataset (unfiltered or filtered), we expect that each model-
selection technique (AICc or jackknife) will identify 
models that are simpler (fewer parameters) and less overfit 
(showing lower omission rates) than the one made using 

default settings. Similarly, we expect the geographic predic-
tions of models selected using the two techniques to differ 
from those of the default models (low similarity, resulting 
in low Schoener’s D-value and binary concordance; defined 
below).

Question 2: how do model complexity and geographic 
predictions differ between the two model-selection 
techniques (AICc and jackknife)?
We have no a priori expectation that the selection tech-
niques will differ. Therefore, for each dataset, we expect 
that the two techniques will identify similar model com-
plexity (number of parameters and measure of overfit-
ting) and geographic predictions (high D-value and binary 
concordance).

Question 3: how do the results of these comparisons differ 
depending on whether or not the occurrence localities are 
spatially filtered?
For each selection technique, as well as the default settings, 
we expect that the datasets (unfiltered and filtered) will lead 
to different geographic predictions. Specifically, because 
the assumed bias is higher in the unfiltered dataset (likely 
resulting in increased complexity), the binary predictions for 
the unfiltered dataset should indicate a smaller area as suitable 
than for the filtered dataset.

Methods

Input data

We compiled locality information for Eliurus majori from 
museum voucher specimens (Supplementary material 
Appendix 1 Table A1). This largely arboreal species is endemic 
to Madagascar and only known from intact or fairly intact 
mesic montane forests of the eastern and central portions 
of the island (Soarimalala and Goodman 2011, Goodman 
et al. 2014). Identifications were inferred from a phylogeny 
based on the mitochondrial gene cytochrome b in which 
individuals assigned to E. majori were most closely related 
to specimens from that clade (with morphological confirma-
tion by specialist S. M. Goodman) than to those from any 
other Eliurus species (Jansa et al. 1999, Jansa unpubl.; n  23 
unique localities). To reduce the likely effects of sampling bias 
in this dataset, we spatially filtered the 23 original localities 
such that the maximum number of localities was retained. 
Because of the heterogeneous vegetational and topographi-
cal landscape of Madagascar and the inferred likely level of 
sampling bias across geography (Goodman et al. 2014), we 
used a 10 km filtering distance, resulting in 13 occurrences 
(Boria et al. 2014). To do so, we used a preliminary version of 
spThin (functionally equivalent to ver. 0.1; Aiello-Lammens 
et al. 2015) in R (R Development Core Team) to sample the 
unfiltered dataset 10 000 times, and then randomly select 
one of the datasets that produced the maximum number of 
occurrence localities remaining (n  13). These analyses do 
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not allow for tests of expectations regarding the level of com-
plexity or overfitting between unfiltered and filtered datasets. 
Such tests would require sample-size rarefaction experiments 
and spatially independent evaluations (Boria et  al. 2014). 
Rather, to address possible sensitivity of the model-selection 
techniques to biased sampling, we conducted all analyses  
first with the unfiltered dataset and then with the spatially 
filtered one.

As a set of plausible predictors likely to affect the species’ 
distributions, we used 19 bioclimatic variables from World-
Clim.org (Hijmans et al. 2005) at 30 arc seconds resolution. 
The WorldClim data describe aspects of temperature and 
precipitation, and have been shown to produce informative 
niche models of non-volant mammals (Jezkova et al. 2009, 
Anderson and Raza 2010). They are likely relevant for mod-
eling this species, which appears to be associated with mesic 
montane conditions (Goodman et al. 2014). Clearly, other 
types of variables (e.g., soils, topography, vegetation, land 
use, and even biotic interactions) often constitute impor-
tant additional determinants of species distributions (Elith 
and Leathwick 2009, Meier et  al. 2010). However, using 
solely climatic variables (which hold pervasive effects on 
species distributions; Araújo et al. 2009) likely can provide 
an informative first-pass in estimating environmental con-
straints affecting geographic distributions, especially when 
little is known of the biology of a rare species. To the degree 
that other factors not considered here affect the species’ dis-
tribution, the models would be underspecified (see discus-
sion later regarding interpretation of underfit and overfit 
models based on quantitative evaluations). Note that even 
though 19 variables were input here, not all of them were 
necessarily used for any feature class, and some of them 
might be used repeatedly for hinge features (Phillips and 
Dudík 2008). We restricted the selection of environmental 
data from ‘background’ pixels to a region in which known 
records are more likely to form a representative sample of 
the climatic conditions suitable for the species (Anderson 
and Raza 2010, Peterson et al. 2011, Anderson 2013). Spe-
cifically, we used a rectangle encompassing a 100 km buffer 
around the most extreme locality in each of the four cardi-
nal directions. Many methods of selecting the background 
exist in the literature (Phillips 2008, Anderson and Raza 
2010, Peterson et  al. 2011, Radosavljevic and Anderson 
2014), but the bounding rectangle we use achieves our pri-
mary aim of excluding areas that are climatically suitable, 
but to which E. majori has been unable to disperse and/or is 
not known to occur.

Niche modeling

We created niche models allowing for a wide range of 
complexity by varying two critical settings: feature classes 
(FCs) and regularization multiplier (RM). The various FCs 
allowed in a given Maxent model control the flexibility of 
the shape of the modeled response to each input variable. 
Complementarily, regularization promotes simplicity by 

applying penalties for additional parameters included in a 
model, and higher weights for them (Phillips and Dudík 
2008, Phillips et  al. 2009, Merow et  al. 2013). Hence, 
higher regularization protects against overfitting (the omis-
sion rate at which 10% (or at least one) of the localities 
are omitted). In particular, we created a suite of models by 
allowing increasing complexity of the FCs employed, as 
likely to be appropriate for the small sample size available 
for this species: linear (L); linear and quadratic (LQ); hinge 
(H); and linear, quadratic, and hinge (LQH). For each FC 
combination, we built models across a wide range of levels 
of regularization. By default, Maxent assigns a particular  
ß regularization value for each feature class (Phillips 2008, 
Elith et al. 2011). Current releases of Maxent allow the use 
of a regularization multiplier, a single coefficient multiplied 
to each respective ß value to increase or decrease the penal-
ties assigned, across all feature classes in concert. Increasing 
penalties to Maxent models generally decreases the levels of 
overfitting, but excessive regularization will lead to underfit-
ting. This corresponds to a decrease in the explanatory abil-
ity of the model (e.g. lower discrimination) and an increase 
in the likelihood of commission errors. Assessing a range 
of regularization multipliers allows for a wide breadth of 
complexity tests (Merow et al. 2013), and permits Maxent 
to perform within a varying range of complexities (Radosav-
ljevic and Anderson 2014; see also results) that can lead to 
a best-fit model. Because our evaluation metrics aim to bal-
ance simplicity with explanatory ability, for each FC com-
bination, we built models across a set of RM values that 
ranged from 1–5, increasing by increments of 0.25. As in 
recent studies using similar datasets, preliminary analyses 
(not shown) indicated that optimality was found within this 
range (Radosavljevic and Anderson 2014). This resulted in 
a suite of 68 combinations of FC/RM settings, yielding 68 
candidate models.

We made the models in Maxent (ver. 3.3.3k) using the 
R package ‘ENMeval’ (ver. 0.1.1; Muscarella et al. 2014). 
We extracted AICc values, parameters used (lambda values; 
see below), a measure of overfitting (10% omission rate), 
and AUC (see below for details of evaluation statistics). 
To generate evaluation statistics based on withheld data, 
we employed the jackknife method of ENMeval because 
of the small sample size used in this study. We ran all 
models with a single set of 10 000 background pixels and 
chose the raw output format for all analyses (except visu-
alization or comparisons in geographic space; see below). 
Note that neither omission rates (hereafter, OR) nor the 
area under the receiver operator characteristic curve (eval-
uation AUC; hereafter, AUC) values used in the sequen-
tial method (see below) differ among the various Maxent 
output formats, all of which preserve relative ranks. We 
did not explicitly allow Maxent to include as background 
pixels all of those where occurrence localities lay, using the 
‘noaddsamplestobackground’ argument of Maxent (however, 
random background pixels may be sampled in these 
locations).

http://WorldClim.org
http://WorldClim.org
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Additionally, to quantify concordance of resulting pre-
dictions in geographic space across the entirety of Mada-
gascar (projecting well beyond the calibration study region; 
see below) we re-calibrated models in the Maxent graphic 
user interface. Here, we used all localities from each data-
set (filtered and unfiltered; no withheld data) and either the 
default, AICc-optimal, or sequential-optimal settings (using 
the species-specific background region, and then projecting 
to the whole island). To allow comparisons among the three 
predictions, models were projected using the logistic format 
(see Royle et al. 2012, Hastie and Fithian 2013 for assump-
tions). Several methods exist to compare model outputs (e.g. 
Schoener’s D, Moran’s I, Spearman’s rank correlation coeffi-
cient, and percent binary concordance; Schoener 1968, War-
ren et al. 2008). Among these, we first chose one parametric 
and one nonparametric measure for pairwise comparisons 
of the resulting predictions. First, we calculated Schoener’s 
D-values characterizing the similarity in geographic space 
considering the entire gradient of prediction strength (using 
the R package ‘dismo’; Hijmans et  al. 2013). Values of D 
range from 0 to 1, with higher values indicating increased 
geographic concordance between predictions. Subsequently, 
to quantify the similarity of predicted suitable vs. unsuitable 
regions, we converted predictions to binary maps according 
to the 10% training omission-rate threshold of that model 
using the R package ‘biomod2’ (Thuiller et al. 2009). Many 
thresholding rules are justified for presence-only occurrence 
data (Peterson et al. 2011), and here we used one likely to be 
reasonable (10% calibration omission rate; see below). Using 
these binary maps, we calculated the proportion of pixels 
predicted present and measured binary concordance among 
predictions (‘raster’, R; Hijmans and van Etten 2012). Addi-
tionally, we measured the altitudinal range of each prediction 
to compare with elevations from specimen tags. Although 
Schoener’s D-value and measures of binary concordance both 
range between 0 and 1, these statistics are not directly com-
parable in absolute terms. Rather, relative patterns must be 
interpreted within each metric separately. Hence, for each 
metric, the researcher must establish a study-region specific 
qualitative determination of the level of similarity interpreted 
as ‘similar’ and ‘different’.

Model selection techniques

AICc technique
We first identified the optimal model based on AICc (corrected 
for small sample sizes; Warren and Seifert 2011), which 
scores models based on balancing complexity and goodness 
of fit. AICc penalizes high model complexity, giving the 
lowest (best) score to the model that best approximates the 
calibration data without being overly complex. Specifically, 
it measures complexity by the number of parameters actually 
included in each resulting model. The lambda coefficients 
of a Maxent model indicate weights for all included param-
eters (i.e. those with non-zero values; Phillips et  al. 2006). 
Importantly, AICc leads to various related quantitative 

measures, including the change in AICc score (ΔAICc; the 
difference between the likelihood of a given model and that 
of the best model). Additionally, to allow comparisons of 
overfitting with the models selected via sequential criteria, for 
model settings selected as optimal by AICc, we obtained the 
average omission rate using the jackknife procedure and the 
same thresholding rule as for sequential criteria. AICc (rather 
than BIC) was used here because the available parameter 
space is massive, and we do not expect that any of the models’ 
approximations of the data to be correct, only that one of the 
candidate models will have the least predictive error among 
those examined (Aho et al. 2014).

Jackknife with sequential criteria
Next, we identified the optimal model using a sequence 
of two criteria based on performance on withheld data. To 
obtain evaluation statistics, we partitioned localities using a 
jackknife technique, which is useful for small samples size of 
localities (small n). The jackknife (a method of withholding 
data) consists of n iterations; in each iteration n – 1 localities 
are used for calibration, and the model is evaluated on the 
withheld locality (Pearson 2007, Shcheglovitova and Ander-
son 2013). This was done for each combination of settings, 
with performance averaged across all n iterations for each 
measure of performance.

As sequential criteria for model selection, we first identi-
fied the models that displayed the lowest average OR and 
then, of that subset of models, we chose the one with the 
highest average AUC score (Shcheglovitova and Anderson 
2013). Omission rates (the proportion of evaluation locali-
ties with predicted values below a particular threshold, e.g. 
‘omitted’) indicate whether a model is overfit to the calibra-
tion data. Specifically, overfit models typically have higher 
than expected ORs. We calculated the omission rate on the 
(withheld) evaluation locality of each iteration after apply-
ing the 10% calibration omission rate threshold (and then 
averaged across jackknife iterations). For this thresholding 
rule, because approximately 10% of evaluation localities 
are expected to fall outside the resulting binary prediction, 
omission rates above 10% indicate overfitting (Pearson 
2007, Shcheglovitova and Anderson 2013, Radosavljevic and 
Anderson 2014). Because of the presence-only nature of the 
occurrence records (and lacking tenable absence data), we 
were not able to calculate unbiased estimates of commission 
errors, or false predictions of presences. Notably, model selec-
tion based first on OR (to minimize omission rates) might 
tend to identify very permissive (potentially underfit) models 
with high commission errors. For this reason, we applied a 
somewhat relaxed thresholding rule (10% training omission, 
rather than the stricter minimum training presence rule). 
Additionally, the second criterion applied does give higher 
values to models that predict smaller areas (that should tend 
to have lower commission rates, even though these cannot be 
quantified here in an unbiased manner). Specifically, AUC 
(the area under the curve of the receiver operator character-
istic plot) gives a relative measure of overall discriminatory 
ability, by quantifying the proportion of instances in which a 
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randomly selected occurrence record ranks higher than a ran-
domly selected background pixel (Peterson et al. 2011). AUC 
values were averaged across all jackknife iterations, yielding 
an average AUC for each combination of model settings. 
Overall, this sequential-selection method is designed to avoid 
models that are overfit to calibration data (via the OR selec-
tion criterion), but hence it only indirectly penalizes model 
complexity (in contrast to AICc).

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.t84q0 > (Galante et al. 2017).

Results

Default settings versus selection techniques  
(Question 1)

As expected, for both datasets (spatially unfiltered and 
filtered) the optimal models selected by each selection tech-
nique had fewer parameters than models made with default 
settings (Table 1). There was a large difference in the num-
ber of parameters used between AICc-optimal and default 
models in each dataset; however, for both datasets, many vari-
ables used in the AICc-optimal model were also used in the 
default model. The same pattern was apparent for the jack-
knife technique (although weaker for the unfiltered dataset 
than the filtered one). For both datasets, all but one of the 
variables incorporated in the AICc-optimal model were also 
used in the default model. Similarly, all (unfiltered dataset) 
and all but one (filtered dataset) of the variables used in the 
jackknife-optimal model were also used in the default model 
(Supplementary material Appendix 1 Table A3). Likewise, 
optimal settings for each selection technique consistently led 
to models with lower overfitting than the models based on 
default settings. Whereas both of the selection techniques 
displayed evaluation ORs slightly above the theoretically 
expected 10% for this thresholding rule (Radosavljevic and 
Anderson 2014), those of the default models were far higher, 
indicating greater overfitting (Table 1, Fig. 1).

Table 1. Summary of optimal tuning experiments for Maxent models 
of the Malagasy rodent Eliurus majori. Results are provided for two 
model-selection techniques (AICc and jackknife) as well as the 
default settings, for two datasets (unfiltered and filtered localities). 
Settings, number of parameters (non-zero parameter values 
(lambda)), and the omission rate (OR) for evaluation localities is 
provided for all experiments.

Unfiltered (n  24) Filtered (n  13)

Settings l 10% OR Settings l 10% OR

AICc LQ1.5 6 0.1304 H3.5 2 0.1429
Jackknife H1.5 14 0.1304 H4.25 3 0.1429
Default LQH1 17 0.2609 LQ1 8 0.2143

Figure 1. Three evaluation statistics for unfiltered (top row) and filtered (bottom row) locality datasets for Eliurus majori resulting from 
optimization of Maxent models. Left panels (a, f ) show the difference in AICc scores between each model and the model that received the 
lowest AICc score. Middle panels (b, e) show omission rates of withheld data at the 10% calibration threshold. Right panels (c, f ) show the 
test AUC values for each model. In each panel, arrows point to the optimal and default models, showing how changes in model settings can 
affect selection criteria. Model statistics are shown as feature classes (L  linear, LQ  linear  quadratic, H  hinge, LQH  linear  
quadratic  hinge) increasing in regularization multiplier.

http://dx.doi.org/10.5061/dryad.t84q0
http://dx.doi.org/10.5061/dryad.t84q0
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Regarding the geographic predictions, Schoener’s D-val-
ues as well as binary concordance also matched expectations 
(Table 2). Specifically, the D-values indicated that the AICc-
selected models and default models were quite different, for 
both datasets. Likewise, the corresponding comparisons of 
the jackknife technique and default models show low similar-
ity, although somewhat higher using the unfiltered dataset. 
These trends in relative similarity for comparisons of continu-
ous predictions were echoed in the corresponding compari-
sons of the binary maps.

Based on visual inspection, the two model-selection tech-
niques showed marked differences from default models for 
one dataset, but not for the other. For the unfiltered dataset, 
the default model was noticeably, though not drastically dif-
ferent from the models selected by either technique, and all 
three models showed small, restrictive areas as suitable. These 
areas were mostly surrounding known occurrence localities. 
Both the model selected by the jackknife technique and that 
created using default settings predicted the same elevational 
range as suitable (454–2744 m), which was more restrictive 
than the range indicated by the model selected by AICc 
(171–2744 m). For the filtered dataset, models chosen by the 
two selection techniques were drastically different from that 
created using default settings. The default model was much 
more restricted to areas immediately around the occurrence 
localities, yet spanned a larger elevational range (171–2744 
m), while the other two models showed much larger areal 
extent, yet were narrower in elevational range (442–2744 m).

AICc versus jackknife (Question 2)

The models selected as optimal using the two selection 
techniques had different levels of complexity and overfitting, 
as well as geographic predictions when using the unfiltered 
dataset, but these were similar using the filtered dataset 

(Table 1, Fig. 1). The unfiltered dataset led to a large discrep-
ancy in the number of parameters used by optimal models, 
and many particular variables were not shared between opti-
mal models. In contrast, the models selected using the filtered 
dataset incorporated very similar numbers of parameters. For 
the unfiltered dataset, only three of the six variables used by 
the AICc-optimal model were incorporated into the jack-
knife-optimal model. For the filtered dataset, both selection 
techniques used the same two variables (albeit for the jack-
knife-optimal model, Bio 8 was used twice as hinge features; 
Supplementary material Appendix 1 Table A3). With each 
of the respective datasets, the two selection techniques led 
to identical ORs. Matching the results regarding numbers of 
parameters, Schoener’s D-values for the comparison between 
the models identified by each of the selection techniques was 
low for the unfiltered dataset but very high for the filtered 
dataset (Table 1). Again, the same pattern of relative values 
was found for the percent binary concordance, although the 
values were much higher.

The geographic predictions chosen by these two model-
selection techniques were very similar (as judged by visual 
inspection) for one dataset, and less so for the other. Using 
the spatially unfiltered dataset, the model selected by the 
sequential technique was more broadly predictive, with 
stronger predictions in the higher elevations, and showed 
higher suitability in the mid-elevation areas. Using this data-
set, the elevations predicted as present from a binary map of 
each prediction were also different. In contrast, using the spa-
tially filtered dataset, models showed very high similarity in 
geographic space, such that the elevations predicted as pres-
ent using binary maps of each prediction showed the same 
elevational range as suitable.

Impact of spatial filtering (Question 3)

As expected, comparisons between datasets (spatially unfil-
tered vs filtered) showed marked differences in geographic 
predictions for each model-selection technique as well as 
for the default settings. The geographic agreement between 
continuous predictions was low, as quantified by Schoener’s 
D (unfiltered compared with filtered: AICc  0.6294; 
jackknife  0.5846; default  0.6827). As found above, 
binary concordance was consistently higher than the 
D-values in an absolute sense, but the values for these com-
parisons were low relative to the range of values found earlier 
for the comparisons between techniques for a given dataset 
(AICc  95.10%; jackknife  93.55%; default  95.46%; 
Table 1). Furthermore, as predicted, models from the 
unfiltered dataset consistently indicated smaller areas as suit-
able than those from the filtered dataset, as quantified by 
the percent of Madagascar predicted suitable (AICc: 8.43% 
unfiltered, 10.92% filtered; jackknife: 5.04% unfiltered, 
11.42% filtered; default: 4.71% unfiltered, 9.16% filtered). 
For the unfiltered dataset, both optimal models as well as the 
default one used predominantly temperature-related vari-
ables. For the filtered dataset, both optimal models as well as 

Table 2. Summary of comparisons of continuous (logistic output; A 
and B) and binary (C and D) model predictions in geographic space 
for tuning experiments for Maxent models of the Malagasy rodent 
Eliurus majori. Schoener’s D-value (A and B) as well as binary con-
cordance (C and D) are provided for all pairwise comparisons of 
two model-selection techniques (AICc and jackknife) as well as the 
default settings, for each of two datasets (spatially unfiltered and 
filtered localities).

Jackknife Default

Continuous comparisons (Schoener’s D)
(A) Unfiltered dataset
AICc 0.817 0.792
Jackknife – 0.852
(B) Filtered dataset
AICc 0.941 0.749
Jackknife – 0.710

Binary comparisons (thresholded predictions)
(C) Unfiltered dataset
AICc 96.2% 96.1%
Jackknife – 98.7%
(D) Filtered dataset
AICc 99.5% 95.7%
Jackknife – 95.2%
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the default model incorporated derived variables showing a 
fairly even mix of purely temperature variables with variables 
that combine temperature and precipitation information 
(e.g. mean temperature of the wettest quarter; Supplemen-
tary material Appendix 1 Table A3).

The models created in this experiment varied substantially 
in geographic space between spatially unfiltered and filtered 
datasets (Fig. 2). For the unfiltered dataset, the three mod-
els each predicted a small proportion of the island as highly 
suitable, with few differences among them. In those models, 
the particular areas with high suitability fell in eastern por-
tions of the humid highlands. In contrast, use of the filtered 
dataset led to models that indicated a much larger propor-
tion of the island as highly suitable, with clear differences 
existing among the three models. These differences were evi-
dent between the two datasets, within each selection tech-
nique. The maps from the two selection techniques (AICc 
and jackknife) displayed very high similarity. Each indicated 
strong prediction throughout humid areas of intermediate 
and high elevation (including the westernmost known locality 
for this species and other large extents of the highlands not 

strongly predicted in any of the models with the unfiltered 
dataset). Differing markedly from each of those two models, 
the one made using the default settings was largely restricted 
to the eastern humid highland regions, but not to the degree 
of any of the models made with unfiltered records.

Discussion

The comprehensive evaluation approach we illustrate here 
in the worked example for the Malagasy endemic rodent 
E. majori illuminated key trends for the two model-selection 
techniques. Following expectations, the two techniques 
produced simpler models (with fewer parameters) than 
did default settings. Furthermore, the lower omission rates 
obtained with AICc and the jackknife technique indicated 
lower levels of overfitting than when using default settings. 
We reiterate that, lacking true absence data, the present 
analyses cannot adequately quantify possible overpredic-
tions. Nevertheless, these two model selection techniques 
also led to more realistic geographic predictions (including 

Figure 2. Optimal and default Maxent models for the Malagasy rodent Eliurus majori (logistic output). Results correspond to the unfiltered 
dataset (top) and filtered dataset (bottom), and three ways of determining model settings: AICc (left), sequential criteria based on perfor-
mance on withheld (via jackknife) data (middle), and default settings (right). Plotted localities (white dots) represent unfiltered or filtered 
occurrence records for the corresponding row. Greyscale map shows elevation for reference (Hijmans et al. 2005).
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consideration of possible under and over prediction as indi-
cated by expert opinion). These trends were especially strong 
when using the spatially filtered dataset. As expected for both 
selection techniques, simpler models yielded larger suitable 
geographic areas when compared with default settings, par-
ticularly in the middle latitudes of the range of E. majori. 
Specifically, using the unfiltered dataset, both model selec-
tion techniques led to areas of higher prediction that were 
less concentrated around known records (likely due to sam-
pling bias). The filtered dataset led to much more realistic 
geographic predictions for the highlands using both model 
selection techniques, in comparison with the default.

The above trends were strongest – and the selection tech-
niques performed most similarly – for the filtered dataset 
(which is most likely to match the assumption of unbiased 
sampling). The model-selection techniques differed substan-
tially regarding numbers of parameters for the unfiltered 
dataset (with AICc showing simpler models), but with the 
filtered dataset both techniques led to much simpler mod-
els than default. Regarding geographic predictions, none 
of the models created using the unfiltered dataset showed 
high suitability for the majority of the humid highlands, 
which includes the westernmost known locality of the 
species even though all models included multiple variables 
related to precipitation (Supplementary material Appendix 1  
Table A3). These models all indicated that the major vari-
able associated with environmental suitability (and hence, 
an identified putative driver) for this species is temperature 
(Supplementary material Appendix 1 Table A3). For the 
filtered dataset, in contrast, all models indicated a mix of 
variables solely reflecting temperature and those capturing 
interactions between temperature and precipitation. This 
reflects a more realistic assessment of the species based on 
our prior knowledge. The elevational ranges indicated by 
binary optimal models selected using this dataset were var-
ied. The model selected by the jackknife technique indicated 
the same elevation range as the default model, both of which 
were more similar to the observed elevation range of this spe-
cies (875–2500 m; Soarimalala and Goodman 2011) than 
was that of the AICc-selected model.

In contrast, for the filtered dataset, the predictions from 
both techniques were remarkably similar, with minor dif-
ferences lying in the less suitable areas. For that dataset, the 
selection techniques both showed moderate suitability for 
nearly the entire highland area of the island, including the 
westernmost locality (Fig. 2). Reconstructions of vegetation 
types in Madagascar indicate that such regions held humid 
montane forests before extensive anthropogenic deforesta-
tion (Rakotondratsimba and Goodman 2014). Similarly, the 
elevational ranges indicated as optimal by both techniques 
using this dataset were both more similar to the observed 
elevations than was that for the default model. Hence, based 
on our prior knowledge of the study species, we determined 
that models made with the filtered dataset (especially those 
corresponding to the two selection techniques) more closely 

match reality than those made using the unfiltered dataset. 
However, these results also suggest that the behavior of these 
model-selection techniques depends on the level of sampling 
bias present, here, indicating that AICc may be more robust 
to departures from the assumption of unbiased sampling.

Future directions

These results show trends for a single data-poor species, 
and help set an agenda for future investigations that could 
lead to more general conclusions and recommendations. 
First, we advocate that researchers perform similar model-
tuning experiments for the species at hand in a given study, 
also taking into account ecological plausibility (Franklin 
2010). Second, the field needs strategic comprehensive 
studies aimed at discovering general patterns. This research 
should include similar experiments using: various types of 
relevant predictor variables (i.e. both climatic and non-
climatic; abiotic and biotic), a range of sample sizes, other 
data-partitioning methods, varying levels of sampling 
bias, and modifications to the particular implementations 
of these selection techniques. For example, other imple-
mentations could include different thresholding rules, 
performance metrics (e.g. the difference between calibra-
tion and evaluation AUC values; Warren and Seifert 2011, 
Radosavljevic and Anderson 2014), or non-sequential 
weighting. Ideally, such experiments would include other 
real species from a variety of taxa, regions, and life history 
traits. Additionally, research using simulated species with 
known tolerances and varying levels of niche complexities 
may offer critical opportunities for addressing these issues. 
Together, studies using real data and those with simulated 
species – each across a wide range of sample sizes – would 
help elucidate more general conclusions regarding the 
performance of these two selection techniques. If possible, 
such conclusions would facilitate broad implementation 
of niche models for pressing uses across environmental 
biology (Peterson 2006, Anderson 2012). These types of 
investigations are crucial for studying general trends in 
biodiversity and conservation and are necessitated by the 
lack of occurrence data for the overwhelming majority of 
taxa (Soberón et al. 2000).
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