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Ecography Models of species ecological niches and geographic distributions now represent a
. . widely used tool in ecology, evolution, and biogeography. However, the very common
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doi: 10.1111/ecog.02909 situation of species with few available occurrence localities presents major challenges for
S i such modeling techniques, in particular regarding model complexity and evaluation.

Subject Editor: Timothy Keitt Here, we summarize the state of the field regarding these issues and provide a worked

Editor-in-Chief: Miguel Aratjo example using the technique Maxent for a small mammal endemic to Madagascar

Accepted 5 June 2017 (the nesomyine rodent Eliurus majori). Two relevant model-selection approaches exist

in the literature (information criteria, specifically AICc; and performance predicting
withheld data, via a jackknife), but AICc is not strictly applicable to machine-learning
algorithms like Maxent. We compare models chosen under each selection approach
with those corresponding to Maxent default settings, both with and without spatial
filtering of occurrence records to reduce the effects of sampling bias. Both selection
approaches chose simpler models than those made using default settings. Furthermore,
the approaches converged on a similar answer when sampling bias was taken into
account, but differed markedly with the unfiltered occurrence data. Specifically, for
that dataset, the models selected by AICc had substantially fewer parameters than
those identified by performance on withheld data. Based on our knowledge of the
study species, models chosen under both AICc and withheld-data-selection showed
higher ecological plausibility when combined with spatial filtering. The results for
this species intimate that AICc may consistently select models with fewer parameters
and be more robust to sampling bias. To test these hypotheses and reach general
conclusions, comprehensive research should be undertaken with a wide variety of real
and simulated species. Meanwhile, we recommend that researchers assess the critical
yet underappreciated issue of model complexity both via information criteria and
performance on withheld data, comparing the results between the two approaches and
taking into account ecological plausibility.
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Introduction

Ecological niche models (ENMs; often termed species
distribution models, SDMs) constitute an important tool
in ecology and evolution, but their application is espe-
cially difficult for species that have only few occurrences
available. Correlative ENMs determine the relationship
between localities where a species is known to occur, and
the abiotic (e.g. climatic, edaphic) and biotic (e.g. veg-
etation, species interactions) properties of these locations,
yielding an estimate of suitability for the species (Elith
et al. 2006). These models have seen wide application
throughout environmental biology, including use in con-
servation, agriculture, zoonotic diseases, and many other
areas (Elith and Leathwick 2009). When copious data are
available, ENMs even can be used for studying the variables
driving population abundance, demography, and recruit-
ment (Williams et al. 2009, Martinez-Meyer et al. 2013,
Searcy et al. 2015, Muscarella and Uriarte 2016). Linked
with such demographic information as well as genetic data,
ENMs also hold promise for studying the effects of past
and ongoing climate change (Pearson and Dawson 2003,
Waltari et al. 2007).

Unfortunately, however, the majority of species are
known from very few occurrences (Soberén et al. 2000),
greatly hindering the production of useful ENM:s for such
species. Even in these cases, researchers often hope to use
ENM:s for various uses. Critically, ENM predictions inform
conservation assessments, which are especially impor-
tant for data-poor species (Anderson and Martinez-Meyer
2004, Franklin 2010). For these species, such models can
help target geographic areas for future sampling. Similarly,
newly detected invasive species or taxa associated with
emerging zoonotic diseases present opportunities for con-
tributions via ENMs, yet often afford only few occurrences.
More generally, including data-poor species is necessary
for comprehensive analyses identifying areas for preserva-
tion (i.e. reserve selection; Papes and Gaubert 2007, Lawler
et al. 2011), understanding macroecological patterns,
and synthetic studies of the effect of past environmental
change on patterns of phyloendemism (Brown et al. 2016,
Prates et al. 2016).

Model complexity

Estimating optimal levels of model complexity remains
a key outstanding methodological issue for ENMs, and
especially challenging for species with few occurrences
(Merow et al. 2013, Muscarella et al. 2014, Warren et al.
2014, Moreno-Amat et al. 2015). Model complexity has
key relevance both for geographic predictions and identi-
fication of realistic hypotheses regarding the driving envi-
ronmental variables (Aradjo and Guisan 2006, Elith and
Graham 2009, Merow et al. 2014). Major complications
identifying optimal complexity exist even for the com-
monly used machine-learning algorithm Maxent (Anderson
and Gonzalez 2011, Shcheglovitova and Anderson 2013),

which has shown high performance for small sizes com-
pared with other techniques (Hernandez et al. 2006, Wisz
etal. 2008). Specifically, the Maxent software allows for the
use of default settings for factors that affect model complex-
ity greatly (e.g. feature classes and regularization multipli-
ers; Phillips and Dudik 2008). In contrast, users can create
models with a wide range of settings for each species (yield-
ing many candidate models) to identify those that lead to
optimal levels of model complexity. Although rarely done
(Halvorsen 2013), such species-specific tuning of model
settings (also termed ‘smoothing’; Elith et al. 2010) has
been shown to result in simpler and substantially more real-
istic Maxent models than those built using default settings
(Anderson and Gonzalez 2011, Warren and Seifert 2011,
Jueterbock et al. 2013, Muscarella et al. 2014, Radosav-
ljevic and Anderson 2014, Warren et al. 2014, Moreno-
Amat et al. 2015).

However, no general consensus yet exists regarding the
most appropriate way to select optimal complexity for
Maxent or many other ENMs (i.e. that best approximat-
ing the calibration data while holding the greatest general-
ity when applied to independent data; Warren et al. 2008,
Elith et al. 2011). Two main approaches involve evaluating
model performance via internal testing (i.e. on calibration
data), versus quantifying model performance on external
(withheld) evaluation data. Regarding the first approach,
some studies have advocated the use of information criteria,
specifically Akaike’s information criterion in the selection
of optimally complex ENMs (AICc, corrected for small
sample size; Baldwin 2009, Warren and Seiferc 2011).
However, although properly applied to several regression-
based ENMs (e.g. GAM/GLM; Guisan and Thuiller 2005),
information criteria do not fit the machine-learning para-
digm perfectly (Warren and Seifert 2011). Specifically, the
degrees of freedom for each model cannot be calculated
exactly, and this issue is compounded because some fea-
ture classes can be penalized multiple times (Dudik 2007,
Warren et al. 2014). Nevertheless, even if imperfect in this
context, AICc still may be useful for machine-learning
because it gives a quantitative measure without the use
of external evaluation data, balancing model complex-
ity with goodness-of-fit (Guisan and Thuiller 2005). In
contrast, in the second approach, external performance is
measured on withheld data, quantifying the model’s abil-
ity to predict evaluation records. In this vein, two studies
proposed estimating optimal complexity for Maxent mod-
els based on a sequence of two criteria for evaluation of
withheld data (hereafter termed jackknife, for application
with small sample sizes of occurrence records). In those
particular implementations, the first criterion (e.g. omis-
sion rate) minimizes overfitting to calibration data, and
the second one (e.g. AUC) maximizes discriminatory abil-
ity (Shcheglovitova and Anderson 2013, Radosavljevic
and Anderson 2014). Here, we quantify overfitting as any
evaluation omission rates higher than that expected based
on the thresholding rule applied (see also Model selection
techniques in Methods).
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Present experiment and questions

Because progress in the field requires comparisons of these
two approaches, we provide a worked example illustrating
an integrated effort to compare these selection approaches.
For the withheld-data approach, we use particular evalua-
tion metrics in a sequential manner (i.e. first omission rate
and then AUC; see below for details) but note that many
other implementations are possible (Peterson et al. 2011,
Warren and Seifert 2011). Although numerous studies have
implemented either AICc or the jackknife method to Maxent
model tuning, to our knowledge the two have not yet been
directly compared.

Specifically, we address these issues with a poorly known
forest-dwelling species endemic to wet montane areas of
Madagascar, Eliurus majori (family Nesomyidae, subfamily
Nesomyinae). We do so by creating a suite of candidate mod-
els built with a range of settings for factors that affect model
complexity (feature classes and regularization multipliers).
Out of that suite of candidate models, we compare those
identified as optimal by each of the two approaches, as well
as with the one produced using Maxent’s default settings. For
all three models, we also made qualitative assessments of their
ecological plausibility based on our existing, although lim-
ited, knowledge of the study species (Goodman et al. 2014).

Additionally, we address one important possible con-
founding factor: the effects of sampling bias. Although both
AlICcand the jackknife method used on withheld data assume
that occurrence data derive from unbiased sampling, such
an assumption is likely violated in most datasets (Hijmans
et al. 2000, Phillips et al. 2009, Peterson et al. 2011). There-
fore, to assess whether either model-selection technique is
affected strongly by spatial sampling bias (which likely results
in environmental bias; Reddy and Ddvalos 2003, Kadmon
et al. 2004), we conduct these experiments with two datas-
ets that should reflect different levels of sampling bias (Boria
etal. 2014). Specifically, we use datasets of localities with and
without application of a spatial filter. The original dataset,
comprised of all localities, presumably reflects relatively high
sampling bias in geography, typical of museum biodiversity
data (Reddy and Ddvalos 2003, Graham et al. 2004). To
produce a second dataset, we spatially filter the localities,
yielding a dataset that should reflect relatively less sampling
bias (Veloz 2009, Anderson and Raza 2010, Carroll 2010,
Hijmans 2012, Boria et al. 2014).

The present worked example addresses three main
questions.

Question 1: how do model complexity and geographic
predictions differ between default settings and each of the
two model-selection techniques?

Maxents default settings have a tendency to produce over-
fit models, leading to the following expectations. For each
dataset (unfiltered or filtered), we expect that each model-
selection technique (AICc or jackknife) will identify
models that are simpler (fewer parameters) and less overfit
(showing lower omission rates) than the one made using
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default sectings. Similarly, we expect the geographic predic-
tions of models selected using the two techniques to differ
from those of the default models (low similarity, resulting
in low Schoener’s D-value and binary concordance; defined

below).

Question 2: how do model complexity and geographic
predictions differ between the two model-selection
techniques (AICc and jackknife)?

We have no a priori expectation that the selection tech-
niques will differ. Therefore, for each dataset, we expect
that the two techniques will identify similar model com-
plexity (number of parameters and measure of overfit-
ting) and geographic predictions (high D-value and binary

concordance).

Question 3: how do the results of these comparisons differ
depending on whether or not the occurrence localities are
spatially filtered?

For each selection technique, as well as the default settings,
we expect that the datasets (unfiltered and filtered) will lead
to different geographic predictions. Specifically, because
the assumed bias is higher in the unfiltered dataset (likely
resulting in increased complexity), the binary predictions for
the unfiltered dataset should indicate a smaller area as suitable
than for the filtered dataset.

Methods

Input data

We compiled locality information for Eliurus majori from
museum voucher specimens (Supplementary material
Appendix 1 Table Al). This largely arboreal species is endemic
to Madagascar and only known from intact or fairly intact
mesic montane forests of the eastern and central portions
of the island (Soarimalala and Goodman 2011, Goodman
et al. 2014). Identifications were inferred from a phylogeny
based on the mitochondrial gene cytochrome b in which
individuals assigned to E. majori were most closely related
to specimens from that clade (with morphological confirma-
tion by specialist S. M. Goodman) than to those from any
other Eliurus species (Jansa et al. 1999, Jansa unpubl.; n =23
unique localities). To reduce the likely effects of sampling bias
in this dataset, we spatially filtered the 23 original localities
such that the maximum number of localities was retained.
Because of the heterogencous vegetational and topographi-
cal landscape of Madagascar and the inferred likely level of
sampling bias across geography (Goodman et al. 2014), we
used a 10 km filtering distance, resulting in 13 occurrences
(Boria et al. 2014). To do so, we used a preliminary version of
spThin (functionally equivalent to ver. 0.1; Aiello-Lammens
etal. 2015) in R (R Development Core Team) to sample the
unfiltered dataset 10 000 times, and then randomly select
one of the datasets that produced the maximum number of
occurrence localities remaining (n=13). These analyses do



not allow for tests of expectations regarding the level of com-
plexity or overfitting between unfiltered and filtered datasets.
Such tests would require sample-size rarefaction experiments
and spatially independent evaluations (Boria et al. 2014).
Rather, to address possible sensitivity of the model-selection
techniques to biased sampling, we conducted all analyses
first with the unfiltered dataset and then with the spatially
filtered one.

As a set of plausible predictors likely to affect the species’
distributions, we used 19 bioclimatic variables from World-
Clim.org (Hijmans et al. 2005) at 30 arc seconds resolution.
The WorldClim data describe aspects of temperature and
precipitation, and have been shown to produce informative
niche models of non-volant mammals (Jezkova et al. 2009,
Anderson and Raza 2010). They are likely relevant for mod-
eling this species, which appears to be associated with mesic
montane conditions (Goodman et al. 2014). Clearly, other
types of variables (e.g., soils, topography, vegetation, land
use, and even biotic interactions) often constitute impor-
tant additional determinants of species distributions (Elith
and Leathwick 2009, Meier et al. 2010). However, using
solely climatic variables (which hold pervasive effects on
species distributions; Aratjo et al. 2009) likely can provide
an informative first-pass in estimating environmental con-
straints affecting geographic distributions, especially when
lictle is known of the biology of a rare species. To the degree
that other factors not considered here affect the species’ dis-
tribution, the models would be underspecified (see discus-
sion later regarding interpretation of underfit and overfit
models based on quantitative evaluations). Note that even
though 19 variables were input here, not all of them were
necessarily used for any feature class, and some of them
might be used repeatedly for hinge features (Phillips and
Dudik 2008). We restricted the selection of environmental
data from ‘background’ pixels to a region in which known
records are more likely to form a representative sample of
the climatic conditions suitable for the species (Anderson
and Raza 2010, Peterson et al. 2011, Anderson 2013). Spe-
cifically, we used a rectangle encompassing a 100 km buffer
around the most extreme locality in each of the four cardi-
nal directions. Many methods of selecting the background
exist in the literature (Phillips 2008, Anderson and Raza
2010, Peterson et al. 2011, Radosavljevic and Anderson
2014), but the bounding rectangle we use achieves our pri-
mary aim of excluding areas that are climatically suitable,
but to which E. majori has been unable to disperse and/or is
not known to occur.

Niche modeling

We created niche models allowing for a wide range of
complexity by varying two critical settings: feature classes
(FCs) and regularization multiplier (RM). The various FCs
allowed in a given Maxent model control the flexibility of
the shape of the modeled response to each input variable.
Complementarily, regularization promotes simplicity by

applying penalties for additional parameters included in a
model, and higher weights for them (Phillips and Dudik
2008, Phillips et al. 2009, Merow et al. 2013). Hence,
higher regularization protects against overfitting (the omis-
sion rate at which 10% (or at least one) of the localities
are omitted). In particular, we created a suite of models by
allowing increasing complexity of the FCs employed, as
likely to be appropriate for the small sample size available
for this species: linear (L); linear and quadratic (LQ); hinge
(H); and linear, quadratic, and hinge (LQH). For each FC
combination, we built models across a wide range of levels
of regularization. By default, Maxent assigns a particular
f§ regularization value for each feature class (Phillips 2008,
Elith et al. 2011). Current releases of Maxent allow the use
of a regularization multiplier, a single coeflicient multiplied
to each respective [ value to increase or decrease the penal-
ties assigned, across all feature classes in concert. Increasing
penalties to Maxent models generally decreases the levels of
overfitting, but excessive regularization will lead to underfit-
ting. This corresponds to a decrease in the explanatory abil-
ity of the model (e.g. lower discrimination) and an increase
in the likelihood of commission errors. Assessing a range
of regularization multipliers allows for a wide breadth of
complexity tests (Merow et al. 2013), and permits Maxent
to perform within a varying range of complexities (Radosav-
ljevic and Anderson 2014; see also results) that can lead to
a best-fit model. Because our evaluation metrics aim to bal-
ance simplicity with explanatory ability, for each FC com-
bination, we built models across a set of RM values that
ranged from 1-5, increasing by increments of 0.25. As in
recent studies using similar datasets, preliminary analyses
(not shown) indicated that optimality was found within this
range (Radosavljevic and Anderson 2014). This resulted in
a suite of 68 combinations of FC/RM settings, yielding 68
candidate models.

We made the models in Maxent (ver. 3.3.3k) using the
R package ‘ENMeval’ (ver. 0.1.1; Muscarella et al. 2014).
We extracted AICc values, parameters used (lambda values;
see below), a measure of overfitting (10% omission rate),
and AUC (see below for details of evaluation statistics).
To generate evaluation statistics based on withheld data,
we employed the jackknife method of ENMeval because
of the small sample size used in this study. We ran all
models with a single set of 10 000 background pixels and
chose the raw output format for all analyses (except visu-
alization or comparisons in geographic space; see below).
Note that neither omission rates (hereafter, OR) nor the
area under the receiver operator characteristic curve (eval-
uation AUC; hereafter, AUC) values used in the sequen-
tial method (see below) differ among the various Maxent
output formats, all of which preserve relative ranks. We
did not explicitly allow Maxent to include as background
pixels all of those where occurrence localities lay, using the
‘noaddsamplestobackground’ argument of Maxent (however,
random background pixels may be sampled in these
locations).
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Additionally, to quantify concordance of resulting pre-
dictions in geographic space across the entirety of Mada-
gascar (projecting well beyond the calibration study region;
see below) we re-calibrated models in the Maxent graphic
user interface. Here, we used all localities from each data-
set (filtered and unfiltered; no withheld data) and either the
default, AICc-optimal, or sequential-optimal settings (using
the species-specific background region, and then projecting
to the whole island). To allow comparisons among the three
predictions, models were projected using the logistic format
(see Royle et al. 2012, Hastie and Fithian 2013 for assump-
tions). Several methods exist to compare model outputs (e.g.
Schoener’s D, Moran’s /, Spearman’s rank correlation coefli-
cient, and percent binary concordance; Schoener 1968, War-
ren et al. 2008). Among these, we first chose one parametric
and one nonparametric measure for pairwise comparisons
of the resulting predictions. First, we calculated Schoener’s
D-values characterizing the similarity in geographic space
considering the entire gradient of prediction strength (using
the R package ‘dismo’; Hijmans et al. 2013). Values of D
range from 0 to 1, with higher values indicating increased
geographic concordance between predictions. Subsequently,
to quantify the similarity of predicted suitable vs. unsuitable
regions, we converted predictions to binary maps according
to the 10% training omission-rate threshold of that model
using the R package ‘biomod2’ (Thuiller et al. 2009). Many
thresholding rules are justified for presence-only occurrence
data (Peterson et al. 2011), and here we used one likely to be
reasonable (10% calibration omission rate; see below). Using
these binary maps, we calculated the proportion of pixels
predicted present and measured binary concordance among
predictions (‘raster’, R; Hijmans and van Etten 2012). Addi-
tionally, we measured the altitudinal range of each prediction
to compare with elevations from specimen tags. Although
Schoener’s D-value and measures of binary concordance both
range between 0 and 1, these statistics are not directly com-
parable in absolute terms. Rather, relative patterns must be
interpreted within each metric separately. Hence, for each
metric, the researcher must establish a study-region specific
qualitative determination of the level of similarity interpreted
as ‘similar’ and ‘different’.

Model selection techniques

AlCc technique

We first identified the optimal model based on AICc (corrected
for small sample sizes; Warren and Seifert 2011), which
scores models based on balancing complexity and goodness
of fit. AICc penalizes high model complexity, giving the
lowest (best) score to the model that best approximates the
calibration data without being overly complex. Specifically,
it measures complexity by the number of parameters actually
included in each resulting model. The lambda coefficients
of a Maxent model indicate weights for all included param-
eters (i.e. those with non-zero values; Phillips et al. 2000).
Importanty, AICc leads to various related quantitative
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measures, including the change in AICc score (AAICc; the
difference between the likelihood of a given model and that
of the best model). Additionally, to allow comparisons of
overfitting with the models selected via sequential criteria, for
model settings selected as optimal by AICc, we obtained the
average omission rate using the jackknife procedure and the
same thresholding rule as for sequential criteria. AICc (rather
than BIC) was used here because the available parameter
space is massive, and we do not expect that any of the models’
approximations of the data to be correct, only that one of the
candidate models will have the least predictive error among
those examined (Aho et al. 2014).

Jackknife with sequential criteria

Next, we identified the optimal model using a sequence
of two criteria based on performance on withheld data. To
obtain evaluation statistics, we partitioned localities using a
jackknife technique, which is useful for small samples size of
localities (small n). The jackknife (a method of withholding
data) consists of n iterations; in each iteration n — 1 localities
are used for calibration, and the model is evaluated on the
withheld locality (Pearson 2007, Shcheglovitova and Ander-
son 2013). This was done for each combination of settings,
with performance averaged across all n iterations for each
measure of performance.

As sequential criteria for model selection, we first identi-
fied the models that displayed the lowest average OR and
then, of that subset of models, we chose the one with the
highest average AUC score (Shcheglovitova and Anderson
2013). Omission rates (the proportion of evaluation locali-
ties with predicted values below a particular threshold, e.g.
‘omitted’) indicate whether a model is overfit to the calibra-
tion data. Specifically, overfit models typically have higher
than expected ORs. We calculated the omission rate on the
(withheld) evaluation locality of each iteration after apply-
ing the 10% calibration omission rate threshold (and then
averaged across jackknife iterations). For this thresholding
rule, because approximately 10% of evaluation localities
are expected to fall outside the resulting binary prediction,
omission rates above 10% indicate overfitting (Pearson
2007, Shcheglovitova and Anderson 2013, Radosavljevic and
Anderson 2014). Because of the presence-only nature of the
occurrence records (and lacking tenable absence data), we
were not able to calculate unbiased estimates of commission
errors, or false predictions of presences. Notably, model selec-
tion based first on OR (to minimize omission rates) might
tend to identify very permissive (potentially underfit) models
with high commission errors. For this reason, we applied a
somewhat relaxed thresholding rule (10% training omission,
rather than the stricter minimum training presence rule).
Additionally, the second criterion applied does give higher
values to models that predict smaller areas (that should tend
to have lower commission rates, even though these cannot be
quantified here in an unbiased manner). Specifically, AUC
(the area under the curve of the receiver operator character-
istic plot) gives a relative measure of overall discriminatory
ability, by quantifying the proportion of instances in which a



Table 1. Summary of optimal tuning experiments for Maxent models
of the Malagasy rodent Eliurus majori. Results are provided for two
model-selection techniques (AlCc and jackknife) as well as the
default settings, for two datasets (unfiltered and filtered localities).
Settings, number of parameters (non-zero parameter values
(lambda)), and the omission rate (OR) for evaluation localities is
provided for all experiments.

Unfiltered (n =24)

Filtered (n=13)

Settings A 10% OR  Settings 10% OR
AlCc LQ1.5 6 0.1304 H3.5 2 0.1429
Jackknife  HT1.5 14 0.1304 H4.25 3 0.1429
Default LQHT 17 0.2609 LQ1 8 0.2143

randomly selected occurrence record ranks higher than a ran-
domly selected background pixel (Peterson et al. 2011). AUC
values were averaged across all jackknife iterations, yielding
an average AUC for each combination of model settings.
Opverall, this sequential-selection method is designed to avoid
models that are overfit to calibration data (via the OR selec-
tion criterion), but hence it only indirectly penalizes model
complexity (in contrast to AICc).

Data deposition

Data available from the Dryad Digital Repository: <htep://
dx.doi.org/10.5061/dryad.t84q0 > (Galante et al. 2017).

Results

Default settings versus selection techniques
(Question 1)

As expected, for both datasets (spatially unfiltered and
filtered) the optimal models selected by each selection tech-
nique had fewer parameters than models made with default
settings (Table 1). There was a large difference in the num-
ber of parameters used between AICc-optimal and default
models in each dataset; however, for both datasets, many vari-
ables used in the AICc-optimal model were also used in the
default model. The same pattern was apparent for the jack-
knife technique (although weaker for the unfiltered dataset
than the filtered one). For both datasets, all but one of the
variables incorporated in the AICc-optimal model were also
used in the default model. Similarly, all (unfiltered dataset)
and all but one (filtered dataset) of the variables used in the
jackknife-optimal model were also used in the default model
(Supplementary material Appendix 1 Table A3). Likewise,
optimal settings for each selection technique consistently led
to models with lower overfitting than the models based on
default settings. Whereas both of the selection techniques
displayed evaluation ORs slightly above the theoretically
expected 10% for this thresholding rule (Radosavljevic and
Anderson 2014), those of the default models were far higher,
indicating greater overfitting (Table 1, Fig. 1).
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Figure 1. Three evaluation statistics for unfiltered (top row) and filtered (bottom row) locality datasets for Elinrus majori resulting from
optimization of Maxent models. Left panels (a, f) show the difference in AICc scores between each model and the model that received the
lowest AICc score. Middle panels (b, €) show omission rates of withheld data at the 10% calibration threshold. Right panels (c, f) show the
test AUC values for each model. In each panel, arrows point to the optimal and default models, showing how changes in model settings can
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quadratic + hinge) increasing in regularization multiplier.
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Regarding the geographic predictions, Schoener’s D-val-
ues as well as binary concordance also matched expectations
(Table 2). Specifically, the D-values indicated that the AICc-
selected models and default models were quite different, for
both datasets. Likewise, the corresponding comparisons of
the jackknife technique and default models show low similar-
ity, although somewhat higher using the unfiltered dataset.
These trends in relative similarity for comparisons of continu-
ous predictions were echoed in the corresponding compari-
sons of the binary maps.

Based on visual inspection, the two model-selection tech-
niques showed marked differences from default models for
one dataset, but not for the other. For the unfiltered dataset,
the default model was noticeably, though not drastically dif-
ferent from the models selected by cither technique, and all
three models showed small, restrictive areas as suitable. These
areas were mostly surrounding known occurrence localities.
Both the model selected by the jackknife technique and that
created using default settings predicted the same elevational
range as suitable (454-2744 m), which was more restrictive
than the range indicated by the model selected by AICc
(171-2744 m). For the filtered dataset, models chosen by the
two selection techniques were drastically different from that
created using default settings. The default model was much
more restricted to areas immediately around the occurrence
localities, yet spanned a larger elevational range (171-2744
m), while the other two models showed much larger areal
extent, yet were narrower in elevational range (4422744 m).

AICc versus jackknife (Question 2)

The models selected as optimal using the two selection
techniques had different levels of complexity and overfitting,
as well as geographic predictions when using the unfiltered
dataset, but these were similar using the filtered dataset

Table 2. Summary of comparisons of continuous (logistic output; A
and B) and binary (C and D) model predictions in geographic space
for tuning experiments for Maxent models of the Malagasy rodent
Eliurus majori. Schoener’s D-value (A and B) as well as binary con-
cordance (C and D) are provided for all pairwise comparisons of
two model-selection techniques (AICc and jackknife) as well as the
default settings, for each of two datasets (spatially unfiltered and
filtered localities).

Jackknife Default

Continuous comparisons (Schoener’s D)
(A) Unfiltered dataset

AlCc 0.817 0.792
Jackknife - 0.852
(B) Filtered dataset

AlCc 0.941 0.749
Jackknife - 0.710

Binary comparisons (thresholded predictions)

(C) Unfiltered dataset

AlCc 96.2% 96.1%
Jackknife - 98.7%
(D) Filtered dataset

AlCc 99.5% 95.7%
Jackknife - 95.2%
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(Table 1, Fig. 1). The unfiltered dataset led to a large discrep-
ancy in the number of parameters used by optimal models,
and many particular variables were not shared between opti-
mal models. In contrast, the models selected using the filtered
dataset incorporated very similar numbers of parameters. For
the unfiltered dataset, only three of the six variables used by
the AICc-optimal model were incorporated into the jack-
knife-optimal model. For the filtered dataset, both selection
techniques used the same two variables (albeit for the jack-
knife-optimal model, Bio 8 was used twice as hinge features;
Supplementary material Appendix 1 Table A3). With each
of the respective datasets, the two selection techniques led
to identical ORs. Matching the results regarding numbers of
parameters, Schoener’s D-values for the comparison between
the models identified by each of the selection techniques was
low for the unfiltered dataset but very high for the filtered
dataset (Table 1). Again, the same pattern of relative values
was found for the percent binary concordance, although the
values were much higher.

The geographic predictions chosen by these two model-
selection techniques were very similar (as judged by visual
inspection) for one dataset, and less so for the other. Using
the spatially unfiltered dataset, the model selected by the
sequential technique was more broadly predictive, with
stronger predictions in the higher elevations, and showed
higher suitability in the mid-elevation areas. Using this data-
set, the elevations predicted as present from a binary map of
each prediction were also different. In contrast, using the spa-
tially filtered dataset, models showed very high similarity in
geographic space, such that the elevations predicted as pres-
ent using binary maps of each prediction showed the same
elevational range as suitable.

Impact of spatial filtering (Question 3)

As expected, comparisons between datasets (spatially unfil-
tered vs filtered) showed marked differences in geographic
predictions for each model-selection technique as well as
for the default settings. The geographic agreement between
continuous predictions was low, as quantified by Schoener’s
D (unfiltered compared with filtered: AICc=0.6294;
jackknife = 0.5846; default = 0.6827). As found above,
binary concordance was consistently higher than the
D-values in an absolute sense, but the values for these com-
parisons were low relative to the range of values found earlier
for the comparisons between techniques for a given dataset
(AICc=95.10%; jackknife =93.55%; default=95.46%);
Table 1). Furthermore, as predicted, models from the
unfiltered dataset consistently indicated smaller areas as suit-
able than those from the filtered dataset, as quantified by
the percent of Madagascar predicted suitable (AICc: 8.43%
unfiltered, 10.92% filtered; jackknife: 5.04% unfiltered,
11.42% filtered; default: 4.71% unfiltered, 9.16% filtered).
For the unfiltered dataset, both optimal models as well as the
default one used predominantly temperature-related vari-
ables. For the filtered dataset, both optimal models as well as



the default model incorporated derived variables showing a
fairly even mix of purely temperature variables with variables
that combine temperature and precipitation information
(e.g. mean temperature of the wettest quarter; Supplemen-
tary material Appendix 1 Table A3).

The models created in this experiment varied substantially
in geographic space between spatially unfiltered and filtered
datasets (Fig. 2). For the unfiltered dataset, the three mod-
els each predicted a small proportion of the island as highly
suitable, with few differences among them. In those models,
the particular areas with high suitability fell in eastern por-
tions of the humid highlands. In contrast, use of the filtered
dataset led to models that indicated a much larger propor-
tion of the island as highly suitable, with clear differences
existing among the three models. These differences were evi-
dent between the two datasets, within each selection tech-
nique. The maps from the two selection techniques (AICc
and jackknife) displayed very high similarity. Each indicated
strong prediction throughout humid areas of intermediate
and high elevation (including the westernmost known locality
for this species and other large extents of the highlands not

Default

Unfiltered

Filtered

strongly predicted in any of the models with the unfiltered
dataset). Differing markedly from each of those two models,
the one made using the default settings was largely restricted
to the eastern humid highland regions, but not to the degree
of any of the models made with unfiltered records.

Discussion

The comprehensive evaluation approach we illustrate here
in the worked example for the Malagasy endemic rodent
E. majori illuminated key trends for the two model-selection
techniques. Following expectations, the two techniques
produced simpler models (with fewer parameters) than
did default settings. Furthermore, the lower omission rates
obtained with AICc and the jackknife technique indicated
lower levels of overfitting than when using default settings.
We reiterate that, lacking true absence data, the present
analyses cannot adequately quantify possible overpredic-
tions. Nevertheless, these two model selection techniques
also led to more realistic geographic predictions (including

High elevation

Low elevation

Figure 2. Optimal and default Maxent models for the Malagasy rodent Eliurus majori (logistic output). Results correspond to the unfiltered
dataset (top) and filtered dataset (bottom), and three ways of determining model settings: AICc (left), sequential criteria based on perfor-
mance on withheld (via jackknife) data (middle), and default settings (right). Plotted localities (white dots) represent unfiltered or filtered
occurrence records for the corresponding row. Greyscale map shows elevation for reference (Hijmans et al. 2005).

733



consideration of possible under and over prediction as indi-
cated by expert opinion). These trends were especially strong
when using the spatially filtered dataset. As expected for both
selection techniques, simpler models yielded larger suitable
geographic areas when compared with default settings, par-
ticularly in the middle laticudes of the range of E. majori.
Specifically, using the unfiltered dataset, both model selec-
tion techniques led to areas of higher prediction that were
less concentrated around known records (likely due to sam-
pling bias). The filtered dataset led to much more realistic
geographic predictions for the highlands using both model
selection techniques, in comparison with the default.

The above trends were strongest — and the selection tech-
niques performed most similarly — for the filtered dataset
(which is most likely to match the assumption of unbiased
sampling). The model-selection techniques differed substan-
tially regarding numbers of parameters for the unfiltered
dataset (with AICc showing simpler models), but with the
filtered dataset both techniques led to much simpler mod-
els than default. Regarding geographic predictions, none
of the models created using the unfiltered dataset showed
high suitability for the majority of the humid highlands,
which includes the westernmost known locality of the
species even though all models included multiple variables
related to precipitation (Supplementary material Appendix 1
Table A3). These models all indicated that the major vari-
able associated with environmental suitability (and hence,
an identified putative driver) for this species is temperature
(Supplementary material Appendix 1 Table A3). For the
filtered dataset, in contrast, all models indicated a mix of
variables solely reflecting temperature and those capturing
interactions between temperature and precipitation. This
reflects a more realistic assessment of the species based on
our prior knowledge. The elevational ranges indicated by
binary optimal models selected using this dataset were var-
ied. The model selected by the jackknife technique indicated
the same elevation range as the default model, both of which
were more similar to the observed elevation range of this spe-
cies (875—2500 m; Soarimalala and Goodman 2011) than
was that of the AICc-selected model.

In contrast, for the filtered dataset, the predictions from
both techniques were remarkably similar, with minor dif-
ferences lying in the less suitable areas. For that dataset, the
selection techniques both showed moderate suitability for
nearly the entire highland area of the island, including the
westernmost locality (Fig. 2). Reconstructions of vegetation
types in Madagascar indicate that such regions held humid
montane forests before extensive anthropogenic deforesta-
tion (Rakotondratsimba and Goodman 2014). Similarly, the
elevational ranges indicated as optimal by both techniques
using this dataset were both more similar to the observed
elevations than was that for the default model. Hence, based
on our prior knowledge of the study species, we determined
that models made with the filtered dataset (especially those
corresponding to the two selection techniques) more closely
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match reality than those made using the unfiltered dataset.
However, these results also suggest that the behavior of these
model-selection techniques depends on the level of sampling
bias present, here, indicating that AICc may be more robust
to departures from the assumption of unbiased sampling.

Future directions

These results show trends for a single data-poor species,
and help set an agenda for future investigations that could
lead to more general conclusions and recommendations.
First, we advocate that researchers perform similar model-
tuning experiments for the species at hand in a given study,
also taking into account ecological plausibility (Franklin
2010). Second, the field needs strategic comprehensive
studies aimed at discovering general patterns. This research
should include similar experiments using: various types of
relevant predictor variables (i.e. both climatic and non-
climatic; abiotic and biotic), a range of sample sizes, other
data-partitioning methods, varying levels of sampling
bias, and modifications to the particular implementations
of these selection techniques. For example, other imple-
mentations could include different thresholding rules,
performance metrics (e.g. the difference between calibra-
tion and evaluation AUC values; Warren and Seifert 2011,
Radosavljevic and Anderson 2014), or non-sequential
weighting. Ideally, such experiments would include other
real species from a variety of taxa, regions, and life history
traits. Additionally, research using simulated species with
known tolerances and varying levels of niche complexities
may offer critical opportunities for addressing these issues.
Together, studies using real data and those with simulated
species — each across a wide range of sample sizes — would
help elucidate more general conclusions regarding the
performance of these two selection techniques. If possible,
such conclusions would facilitate broad implementation
of niche models for pressing uses across environmental
biology (Peterson 2006, Anderson 2012). These types of
investigations are crucial for studying general trends in
biodiversity and conservation and are necessitated by the
lack of occurrence data for the overwhelming majority of
taxa (Soberén et al. 2000).
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