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We consider nonparametric estimation of a mixed discrete-continuous distribution
under anisotropic smoothness conditions and a possibly increasing number of support
points for the discrete part of the distribution. For these settings, we derive lower
bounds on the estimation rates. Next, we consider a nonparametric mixture of normals
model that uses continuous latent variables for the discrete part of the observations.
We show that the posterior in this model contracts at rates that are equal to the derived
lower bounds up to a log factor. Thus, Bayesian mixture of normals models can be
used for (up to a log factor) optimal adaptive estimation of mixed discrete-continuous
distributions. The proposed model demonstrates excellent performance in simulations
mimicking the first stage in the estimation of structural discrete choice models.
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1. INTRODUCTION

NONPARAMETRIC ESTIMATION METHODS have become more accessible and useful in em-
pirical work due to availability of fast computers and very large data sets. The theory and
practical implementation of nonparametric methods for continuous data are very well
developed at this point. However, in most economic applications, the data contain both
continuous and discrete variables. Nonparametric methods for multivariate discrete and
mixed discrete-continuous distributions and their theoretical properties are less well un-
derstood and developed. We address this issue in the present paper.

The standard flexible approach to estimation of discrete distributions is to use sample
frequencies as estimators of the corresponding probabilities. These estimators do not per- 1
form well in the case where the number of values that discrete variables can take is larger
or comparable to the sample size, which we, following Hall and Titterington (1987), re-
fer to as sparsity. The sparsity in the multivariate case is rather a rule than an exception;
for example, estimating a joint distribution of 5 discrete variables each taking 10 values
would involve estimation of 10° probabilities by the corresponding sample frequencies.
The presence of continuous variables in addition to the discrete ones further exacerbates
the problem. In economics, these issues often arise in the context of estimation of single-
agent and game-theoretic static and dynamic discrete choice models. Popular two-stage
estimation procedures for these models pioneered by Hotz and Miller (1993) deal with
discrete dependent variables such as market entry decisions and discrete covariates such
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1356 A.NORETS AND J. PELENIS

as the number of entrants currently in the market. A natural solution to this problem that
appears to work well in practice (Aitchison and Aitken (1976), Li and Racine (2007))
is to smooth discrete data, hoping that probabilities at nearby discrete values are close
or smooth in some sense and that one could learn about a probability of a certain value
from the observations at nearby values. Of course, smoothing can only be beneficial if the
underlying data have certain smoothness properties. Ideally, a procedure for estimation
of discrete distributions should be able to optimally take advantage of smoothness in the
data generating process if it is present and at the same time perform no worse than the
standard frequency estimators if the data generating process is not (sufficiently) smooth.

In this paper, we formalize these ideas for multivariate mixed discrete-continuous dis-
tributions by setting up an asymptotic framework where the multivariate discrete part of
the data generating distribution can have either a large or a small number of support
points and it can be either very smooth or not, and these characteristics can differ from
one discrete coordinate to another. In these settings, we derive optimal minimax rates for
estimation of discrete-continuous distributions. We show that smoothing is beneficial only
for a subset of discrete variables with a quickly growing number of support points and/or
sufficiently high level of smoothness.

We propose an estimation procedure that adaptively (without a priori knowledge of
smoothness levels of the data generating process) achieves the derived optimal conver-
gence rates. The procedure is based on a Bayesian mixture of multivariate normal distri-
butions. Mixture models have proven to be very useful for Bayesian nonparametric mod-
eling of univariate and multivariate distributions of continuous variables. These models
possess outstanding asymptotic frequentist properties: in Bayesian nonparametric estima-
tion of smooth densities, the posterior in these models contracts at optimal adaptive rates
up to a log factor (Rousseau (2010), Kruijer, Rousseau, and van der Vaart (2010), Shen,
Tokdar, and Ghosal (2013)). Tractable Markov chain Monte Carlo (MCMC) algorithms
for exploring posterior distributions of these models are available and they are widely
used in empirical work (see Dey, Muller, and Sinha (1998)).

From the computational perspective, discrete variables can be easily accommodated
through the use of continuous latent variables in Bayesian MCMC estimation (Albert
and Chib (1993)). In nonparametric modeling of discrete-continuous data by mixtures,
latent variables were used by Canale and Dunson (2011) and Norets and Pelenis (2012)
among others. Some results on frequentist asymptotic properties of the posterior distri-
bution in such models have also been established. Norets and Pelenis (2012) obtained
approximation results in Kullback-Leibler distance and weak posterior consistency for
mixture models with a prior on the number of mixture components. De Yoreo and Kottas
(2017) established weak posterior consistency for Dirichlet process mixtures. In similar
settings, Canale and Dunson (2015) derived posterior contraction rates that are not opti-
mal. In the present paper, we show that a mixture of normals model with a prior on the
number of mixture components that uses latent variables for modeling the discrete part
of the distribution can deliver optimal posterior contraction rates for nonparametric esti-
mation of discrete-continuous distributions. The obtained optimal posterior contraction
rates are adaptive since the priors we consider do not depend on the size of the support
and the smoothness of the data generating process.

We illustrate our theoretical results in an application to the first-stage estimation of
discrete choice models. Specifically, we use data from Monte Carlo experiments in Pakes,
Ostrovsky, and Berry (2007), who compared various two-stage estimation procedures on
a model of firm’s entry decisions. Our procedure delivers 2.5 times reduction in the esti-
mation error relative to the frequency estimator. Overall, our theoretical and simulation
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BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS 1357

results suggest that models for discrete data based on mixtures and latent variables should
be an important part of the econometric toolkit.

The rest of the paper is organized as follows. In Section 2, we describe our framework
and the Bayesian model. Section 3 presents simulation results and favorable comparisons
with frequency and kernel estimators. The asymptotic theoretical results are presented in
Section 4. MCMC algorithm for model estimation and proof outlines are given in the ap-
pendices. Auxiliary results and proof details are delegated to the Supplemental Material
(Norets and Pelenis (2022)).

2. DATA GENERATING PROCESS AND BAYESIAN MODEL

Let us denote the continuous part of observations by x € X C R% and the discrete part
by y=(,...,Ys,) €Y, where

dy

Y=[]¥, withy=

j=1

1-1/2 2—1/2 N, —1/2
NJ bl N] 9 N] b

is a grid on [0, 1]% (a product symbol IT applied to sets hereafter denotes a Cartesian
product). The number of values that the discrete coordinates y; can take, N;, can po-
tentially grow with the sample size or stay constant. For each discrete coordinate value

Y € yj, let

(¥, —0.5/N;,y;+0.5/N;] otherwise,

be an interval that includes y; and has a length of 1/N;, except for the first and the
last intervals that are expanded to include the rest of the negative and positive parts
of the real line correspondingly. Then, every value of the discrete part of observations

y=(1,...,Ya) €Y can be associated with a hyper-rectangle 4, = ]_[fi , Ay, Let us rep-

resent the data generating density-probability mass function py(y, x) as an integral of a
latent density f, over A4,,

oy x) = / f35> x) d5, (1)

where f; belongs to the set of probability density functions (pdf) on R¢ with respect to the
Lebesgue measure, and d = d, + d,. The representation of a mixed discrete-continuous
distribution in (1) is so far without a loss of generality since, for any given p,, one could
always define f; using a mixture of densities with non-overlapping supports included in
A, ye).

yWe assume that the data available for estimation of p, are composed of n indepen-
dently identically distributed observations from pg: (Y”, X") = (Y, X4, ..., Y,, X,). Let
Py, Ey, P}, and Ej denote the probability measures and expectations corresponding to pg
and its product pj.

When N;’s grow with the sample size 7, the generality of the representation in (1) can
be lost when assumptions such as smoothness are imposed on f,. Nevertheless, in what
follows, we do allow for f to be smooth. The interpretation of the smoothness is that
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1358 A.NORETS AND J. PELENIS

the values of discrete variables can be ordered and that borrowing of information from
nearby discrete points can be useful in estimation.

2.1. Bayesian Model

Our nonparametric Bayesian model for the data generating process in (1) is based on a
mixture of normal distributions with a variable number of components for modeling the
joint distribution of (¥, x),

G x10,m) =" ar (3, x: i, 0 ),
- (2

p(y, %16, m) = / £, x10,m) d5,

where 6 = (i, vi, ap, k=1,2,...;0) and ¢(-; i, o - V,:l/z) denotes a multivariate nor-
mal density with mean pu,; € R? and a diagonal covariance matrix with the squared ele-
~1/2 —1/2 —1/2 .
ments of vector o - v, “ = (oqv,’", ..., o4v,,’”) on the diagonal.
We use the following prior for (8, m). The prior for (a4, ..., @,) conditional on m is
Dirichlet(a/m, ...,a/m), a > 0,

F(CZ) a/m— 1
M(ay, ..., anm) = F(a/m)m l_[ /

It is a standard conjugate prior for discrete probability distributions and it is commonly
used in finite mixture models. The prior means and variances of the mixing weights are
equal to 1/m and (m — 1)/([a + 1]m?) correspondingly. The hyperparameter a is called
the concentration parameter: when a is large, the prior concentrates on equal mixing
weights; when a is small, a considerable fraction of mixing weights tend to be close to 0
a priori. For applications of Dirichlet priors in econometrics, see, for example, Chamber-
lain and Imbens (2003). The prior probability mass function for the number of mixture
components 7 is

(m) oc e7rmtoem™ = =1,2,...,y>0,7, >0, 3)

where o« means “proportional to.” The exponential tails of I1(m) attain a tradeoff be-
tween putting just enough prior probability on the relevant finite mixture approximations
of f, and putting appropriately small prior probabilities on rough mixtures that would
overfit the data.

A popular alternative to specifying a prior on m and (e, ..., a,,) is a Dirichlet process
mixture (m is set to infinity and a “stick-breaking” prior (Sethuraman (1994)) is used for
the infinite sequence of mixing weights («;, . ..)). This prior would deliver the same poste-
rior contraction rates for continuous variables or settings where smoothing is important;
however, when smoothing is not beneficial, the Dirichlet process mixture prior does not
seem to put sufficient weight on the relevant finite mixture approximations, and, hence,
we focus on the mixtures of finite mixtures here.

The component specific scale parameters v, are not necessary for asymptotic results; it
is a common practice in the literature to include them (see, e.g., Geweke (2005)) and they
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BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS 1359

seem to improve the finite sample performance. We use independent conditionally con-
jugate gamma-normal priors for (i, v«;). The common scale parameters o are required
to ensure that the prior puts sufficient probability on small values of the variances of all
mixture components at once (the variances play a role of the bandwidth in asymptotic
results). We use independent inverse gamma priors for the components of o. A detailed
description of the model, priors, and the MCMC algorithm for model estimation is given
in Appendix A. Section 4.3.1 provides more general conditions on the prior that deliver
adaptive posterior contraction rates for the model in (2).

The Bayesian model, the MCMC estimation algorithm, and the theoretical results pre-
sented below can be easily modified to accommodate settings with variables that take both
discrete and continuous values. A standard example of such variables is the consumer ex-
penditure on a good that can be zero with positive probability and otherwise is continuous
on R, . To accommodate this example, we can associate the discrete value of 0 with inter-
val A, = R_ for a latent variable y and treat the continuous positive expenditure values
as x in model (2). We do not pursue such modifications here for brevity.

An important issue in kernel smoothing estimation of densities with bounded support
is the estimator bias near the boundary. It is not known if a similar problem arises in
Bayesian normal mixture models as the locations of the normal distributions in the mix-
ture models are chosen effectively by the penalized likelihood maximization rather than
set equal to the observations as in kernel smoothing. Nevertheless, the normal densi-
ties have unbounded support and normal mixture models appear to perform better when
continuous variables with known bounds are appropriately transformed into unbounded
variables, which is also a common remedy in the literature on kernel smoothing.

3. APPLICATION

In applied economics literature, nonparametric estimation of multivariate discrete or
mixed discrete-continuous distributions is often used in the first stage of two-stage estima-
tion procedures for structural discrete choice models. Pakes, Ostrovsky, and Berry (2007)
compared various two-stage estimation procedures on a model of firm’s entry decisions.
Their Monte Carlo experiments provide convenient and realistic settings for demonstrat-
ing the performance of the mixture based models in practice.

The first stage in Pakes, Ostrovsky, and Berry (2007) requires estimation of entry and
exit probabilities conditional on the number of entrants currently in the market and a
discretized market size measure. These conditional probabilities are essentially obtained
from the standard frequency estimator of the joint distribution for the four-dimensional
vector of discrete random variables: the market size, the number of firms currently in the
market, the number of new entrants, and the number of exiting firms. In what follows,
we use the simulated data from Pakes, Ostrovsky, and Berry (2007) to compare our esti-
mator with the standard frequency estimator and a classical kernel estimator with special
discrete kernels from a publicly available R package np (Hayfield and Racine (2008)).
The kernel bandwidth parameters are selected in the package by cross-validation as de-
scribed in Li and Racine (2003); the latter authors provided simulation evidence that their
methods outperform several other alternatives in the classical literature; the package np
implements a wide variety of nonparametric methods presented in a textbook on non-
parametric econometrics by Li and Racine (2007).

Pakes, Ostrovsky, and Berry (2007) simulated a structural entry exit model to obtain
one million draws for their Monte Carlo experiments. We use this one million simulated
draws as a population distribution to estimate. The support of this population distribu-
tion consists of 2617 values of the four-dimensional random vectors describing the market
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1360 A.NORETS AND J. PELENIS
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FIGURE 1.—Marginal population distributions.

size, the current number of firms, the number of entrants and the number of exits. The
marginal population distributions of each vector component are depicted in Figure 1.
All the discrete values shown in the figure have non-zero probabilities, although some of
those probabilities are small. From this population, we draw 50 random samples of size
n =500 (Pakes, Ostrovsky, and Berry (2007) used n =250 and n = 1000 in their Monte
Carlo experiments). For each sample, we compute the standard frequency estimator, the
kernel estimator, and the mixture model estimators for a fixed m € {1, ..., 30} and a vari-
able m. The MCMC algorithm for the fixed m model is standard in the literature (Diebolt
and Robert (1994)). For the variable m model, we implemented two MCMC algorithms:
an adaptation of a split-merge algorithm for Dirichlet process mixtures from Jain and
Neal (2004) and an approximately optimal reversible jump algorithm from Norets (forth-
coming); they produce the same estimation results in the Monte Carlo experiments but
the latter algorithm converges much faster. The reversible jump algorithm is described in
detail in Appendix A.

Figure 2 presents the reversible jump MCMC draws and the prior and the posterior dis-
tributions of m for the first two samples used in the Monte Carlo experiment. Estimation
results for the fixed and variable m models are obtained from 10,000 and 50,000 MCMC
draws correspondingly, as MCMC convergence is slower for the variable m models. As
can be seen from the MCMC trace plots in the figure, the posterior simulator reliably
explores the posterior distribution; MCMC results for other samples are similar.

The priors used in estimation experiments are roughly based on the first two sample
moments: the prior for the location parameter w,; is centered at the corresponding sample
average, Y; =Y\, Y;/n, and has variance equal to the sample variance, &7 = Y\ (Y; —
Y;)?/n. The prior mode of the precision parameter aj‘z is set to the inverse of the sample

variance, &j’z, and its variance is set to 1. The component specific scale parameters have
prior mode and precision equal to 1. These empirical Bayes priors are similar to unit
variance priors centered at 0 for location parameters and 1 for scale parameters used in

conjunction with standardized data.
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FIGURE 2.—MCMC trace plot and prior and posterior of m for two samples.

Choosing reasonable values for the Dirichlet parameter @ and the prior hyper-
parameters for m is less straightforward. We set 7, = 0 as the finer adjustments that
it can provide to the penalization of larger values of m in the prior do not appear to
be important in simulations. We set y = 0.5, approximately the smallest value at which
every mixture component has at least several observations assigned to it by latent mix-
ture allocation variables (defined in Appendix A) on most iterations of MCMC sampler
runs. The Dirichlet parameter a = 15 is set to be comparable to the values of MCMC
draws of m (larger values of a shrink towards equal mixing probabilities). Prior robust-
ness and sensitivity checks are important, especially for these hyper-parameters. The es-
timation results are not sensitive to moderate variations in the prior (a € {10, 15, 20} and
v €40.25, 0.5, 1}), as we illustrate in the Supplemental Material.

The estimation errors in L;, L,, and L, averaged over the 50 random samples are
presented in Figure 3. The L, distance between discrete-continuous distributions p; and
P> can be defined by

dp,(p1, p2) = (Z/JPI(}’, x) = p2(y, x)|rdx)1/r, r>0.

yey

The L, distance is also equal to two times the largest difference between the probabili-
ties that the two distributions can assign to the same event; in the case of only discrete
variables, L, is the sup-norm; L, is most commonly used in classical nonparametrics for
analytical tractability.

As can be seen from the figure, the mixture based estimators match the average L, er-
ror of the frequency estimator with just two mixture components and that of the kernel
estimator with six mixture components. The results for L, and L., are similar, except the
kernel estimator performs slightly worse than the frequency estimator in the sup-norm.
The use of a higher number of mixture components and a variable number of components
further reduces the estimation error of the Bayesian estimators. The improvements of the
mixture model over the standard frequency estimator are expected given the smooth ap-
pearance of the probability mass functions in Figure 1, the sample size (n = 500), and the
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FIGURE 3.—Average estimation errors for Bayesian fixed and variable m estimators and frequency and
kernel estimators.

cardinality of the population support, 2617. The mixture models outperform the kernel
estimator on average as shown in the figure and in each of the 50 random samples. The-
oretical properties (beyond the consistency and the asymptotic normality for a fixed dis-
crete support) are not known for the discrete kernel estimator in our asymptotic settings
with smoothness and a possibly growing support. Our conjecture is that, at least without
considerable modifications, this kernel estimator is unlikely to deliver the adaptive op-
timal estimation rates that are established for mixture models in the following section;
and, perhaps, that is why the kernel estimator is outperformed by the mixture model in
our simulations. A few other applications and favorable comparisons of a fixed m mixture
model with standard parametric and nonparametric alternatives can be found in Norets
and Pelenis (2012).

The performance of the variable m model is practically the same as the performance
of models with a large fixed m. Somewhat unexpectedly, the estimation results for the
models with fixed m do not deteriorate when m is large (m = 30). The estimation errors
are slightly more volatile for larger m, but on average, the errors decrease in m as can
be seen in Figure 3. Of course, the performance can be easily evaluated in simulation
settings, when the data generating process is known. As far as we are aware, theoretically
justified Bayesian procedures for choosing a fixed m have not been developed in non-
parametric settings and their development is an interesting subject for future research.
Hence, presently the variable m model with the asymptotic guarantees obtained in this
paper is the preferred option, and the fixed m models should be used for sensitivity and
robustness checks.

Overall, the Monte Carlo simulations presented in this section suggest that models for
discrete data based on mixtures and latent variables should be an important part of the
toolkit in empirical industrial organization and economics more generally. The follow-
ing section presents asymptotic results that further justify this claim from the theoretical
perspective.
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BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS 1363

4. ASYMPTOTIC FRAMEWORK AND RESULTS

To get more refined results and to accommodate discrete variables that are not ordered
or “smooth,” we allow N;’s to grow at different rates for different j’s or to be constant for
some j’s. For the same reason, we allow for anisotropic smoothness of the density f; that
accommodates the existence of derivatives of different orders along different coordinates.

4.1. Anisotropic Smoothness

For each coordinate j e {1, ..., d}, we introduce a smoothness coefficient, 8; > 0, such
that | B;] (the largest integer that is strictly smaller than ;) is the highest possible order
of the partial derivative with respect to the coordinate j. In the univariate case, the | 3;]th
derivative is often assumed to satisfy a Holder condition with the exponent B; — | B;]
to accommodate non-integer smoothness coefficients and to deliver Taylor expansion ap-
proximations with remainders of the appropriate order. Different generalizations of these
ideas to the multivariate case are possible. We introduce a generalization below that is
suitable for our purposes. Let Z, denote the set of non-negative integers. For smoothness
coefficients (B4, ..., B4) and an envelope constant L, an anisotropic (B, ..., B4)-Holder
class, CP1Bal  is defined as follows.

partial derivative of order k, D* f, is finite, and

d
[D*f(z+82) = D f(2)| S LY 1AzP0 - Hiabie, (4)

j=1
for any Az such that Az; =0 when Zf;l ki/Bi+1/B;<1.

In this definition, a Holder condition is imposed on D*f for a coordinate j when D* f
cannot be differentiated with respect to z; anymore (3.4 k;/B; <1 but 30 ki/B; +
1/B; > 1). This definition slightly differs from definitions available in the literature on
anisotropic smoothness that we found. Section 13.2 in Schumaker (2007) presents some
very general anisotropic smoothness definitions but restricts attention to integer smooth-
ness coefficients. Ibragimov and Hasminskii (1984), and most of the literature on mini-
max rates under anisotropic smoothness that followed including Barron, Birgé, and Mas-
sart (1999) and Bhattacharya, Pati, and Dunson (2014), do not restrict mixed derivatives.
Shen, Tokdar, and Ghosal (2013) used |Az;|™"®i=%-) instead of |Az;|Fi\=2k1/BD in (4).
Their requirement is stronger than ours for functions with bounded support, and it ap-
pears too strong for our derivation of lower bounds on the estimation rate. However, our
definition is sufficiently strong to obtain a Taylor expansion with remainder terms that
have the same order as those in Shen, Tokdar, and Ghosal (2013) (while the definitions
that do not restrict mixed derivatives do not deliver such an expansion).

When B; =8, Vjand 30 ki//B+1/8>1, B;(1 - X0 k;/B) = B — LB, and we get
the standard definition of B8-Holder smoothness for the isotropic case.

The envelope L can be assumed to be a function of (z,Az) to accommodate densi-
ties with unbounded support. We derive lower bounds on estimation rates for a constant
envelope function; the derived bounds are applicable to functions with non-constant en-
velopes as a constant envelope is just a special case of a non-constant one. Upper bounds
on posterior contraction rates are derived under more general assumptions on L.
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1364 A.NORETS AND J. PELENIS

4.2. Lower Bounds on Estimation Rates

For a class of probability distributions P, { is said to be a lower bound on the estimation
error in metric p if there exists a positive constant ¢ independent of n such that

infsup P(p(p, p) = ¢{) = ¢ > 0.
14

PEP

This definition means that there does not exist an estimator that asymptotically delivers
an estimation error in p that is smaller than ¢ for all data generating distributions in P.
If the estimation error for a given estimator for distributions in P matches (up to a mul-
tiplicative constant) a lower bound for P, then this estimator is considered rate optimal.
A comprehensive introduction into the theory of lower bounds can be found in Tsybakov
(2008). In this section, we present lower bounds for discrete-continuous distributions that
are matched with upper bounds on estimation errors for the mixture based models in
Section 4.3.

We consider the following class of probability distributions: for a positive constant L,
let

P={pip0n) = [ FGxds.gecrret, fisapat]. 5)

To define our lower bounds, we need the following additional notation. Let .A denote
a collection of all subsets of indices for discrete coordinates {1,...,d,}. For J € A, let
Je={1,...,d}\J and y,; denotes the sub-vector {y;, j € J} for a vector y. Then,

NJ:l_[Nj
jel

denotes the number of values a discrete subvector y; can take, d; = card(J), and

o5s]

jele

denotes an aggregate smoothness coefficient for the subvector containing the coordinates
of the continuous part of observations x and the continuous latent variables y with indices
inJ.ForJ=0orJ =0, weset Ny=1, By =00, and B,/(2Bs+ 1) =1/2.

THEOREM 1: For P defined in (5),

Bjc

Bjc J5
N, |28+ N 2B,c+1
L, =min[—J:| J+= [—1] = (6)

JeA|l n n

multiplied by a positive constant is a lower bound on the estimation error in the L, distance.

Bjc
One could recognize expression [N; /n]w in (6) as the standard estimation rate for
a d,.-dimensional density with anisotropic smoothness coefficients {8;, j € J} and the
sample size n/N; (Ibragimov and Hasminskii (1984)). One way to interpret this is that
the density of {x, y;, j € J°} conditional on y; is {8;, j € J°}-smooth and the number of
observations available for its estimation (observations with the same value of y;) should
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BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS 1365

be of the order n/N,; also, the estimation rate for the marginal probability mass function

Bje
for y; is [N;/n]"?, which is at least as fast as [N;/n]*<¥". In this interpretation, smoothing
is not performed over the discrete coordinates with indices in set J, and the lower bound

Bre
is obtained when J minimizes [N,/ n]w. Thus, an estimator that delivers the rate in
(6) should, in a sense, optimally choose the subset of discrete variables over which to
perform smoothing. In the standard asymptotic settings, when the support of the discrete
variables stays constant and the smoothness coefficients for all the continuous variables
are the same, By,11 = --- = By, the lower bound on the estimation rate in Theorem 1
simplifies to the familiar expression n—f«/fa+dx) which explicitly showcases the curse of
dimensionality inherent in nonparametric estimation.

It should be possible to extend the results on the lower bounds to other distances. How-
ever, suitable sufficient conditions in the Bayesian nonparametrics literature for the cor-
responding upper bounds appear to be currently available only for the L, distance (or the
Hellinger and the total variation distances, which are equivalent); hence, we focus on L,
here. The proof of Theorem 1 is given in Appendix B.

4.2.1. Related Literature on Lower Bounds

Let us briefly review most relevant results on lower bounds and place our results in
that context. The most closely related results on minimax rates for anisotropic continuous
distributions are developed in Ibragimov and Hasminskii (1984). The minimax estima-
tion rates for mixed discrete-continuous distributions appear to have been studied first by
Efromovich (2011). He considered discrete variables with a fixed support and no smooth-
ness assumptions on the discrete part of the distribution. He showed that in these settings,
the optimal rates for discrete-continuous distributions are equal to the optimal nonpara-
metric rates for the continuous part of the distribution. Relaxing the assumption of the
fixed support for the discrete part of the distribution is very desirable in nonparametric
settings. It has been commonly observed at least since Aitchison and Aitken (1976) that
smoothing discrete data in nonparametric estimation improves results in practice. Hall
and Titterington (1987) introduced an asymptotic framework that provided a precise the-
oretical justification for improvements resulting from smoothing in the context of estimat-
ing a univariate discrete distribution with a support that can grow with the sample size. In
their setup, the support is an ordered set and the probability mass function is 8-smooth
(in a sense that analogs of B-order Taylor expansions hold). They showed that in their
setup, the minimax rate is the smaller one of the following two: (i) the optimal estimation
rate for a continuous density with the smoothness level 8, n=#/®#+D and (ii) the rate of
convergence of the standard frequency estimator, (N/n)'/?, where N is the cardinality of
the support and » is the sample size. Hall and Titterington (1987) referred to their setup
as “Sparse Multinomial Data” since N can be larger than n and this is the reason we refer
to sparsity in the title of the paper. Burman (1987) established similar results for 8 = 2.
Subsequent literature in multivariate settings (e.g., Dong and Simonoff (1995), Aerts, Au-
gustyns, and Janssen (1997)) did not consider lower bounds, but demonstrated that when
the support of the discrete distribution grows sufficiently fast, then estimators that employ
smo?thil)lg can achieve the standard nonparametric rates for 8-smooth densities on R?,
n—ﬁ/ 2B+d .

We generalize the results of Hall and Titterington (1987) on lower bounds for univari-
ate discrete distributions to multivariate mixed discrete-continuous case and anisotropic
smoothness. Alternatively, our results can be viewed as a generalization of results in Efro-
movich (2011) to settings with anisotropic smoothness and potentially growing supports
for discrete variables.
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1366 A.NORETS AND J. PELENIS

4.3. Posterior Contraction Rates for a Mixture of Normals Model
4.3.1. Assumptions on Prior

The assumptions on the prior for model (2) in Section 2.1 can be slightly generalized as
follows. For positive constants ay, a,, ..., ay, for each j e {1, ..., d}, o; is assumed inde-
pendent of other parameters a priori and the prior satisfies

H(crlf2 >s) < are>  for all sufficiently large s > 0, (7)
(0;? <s) <ays* for all sufficiently small s > 0, (8)
M{s<o?<s(1+1)} > ags e 5>0,1€(0,1). 9)

The inverse gamma prior for o; satisfies (7)—(9).

A priori, the components of w, ui, k=1,...,m, j=1,...,d are assumed indepen-
dent from each other, other parameters, and across k. Prior density for w,; is bounded
below for some ay;, a5, 7, > 0 by

allexp(—alzluk,-sz), (10)

and for some a3, 73 > 0 and all sufficiently large w,; > 0,

T (g ¢ [—ps p]) < e, (11)

Normal priors for u,; satisfy these conditions.

A prior on m that can be bounded above and below by functions in the form of the right-
hand side of (3), possibly with different constants, would work; to simplify the notation,
we assume (3). We also set the component specific scale parameters v;; to 1. An extension
of the posterior contraction results to variable vy;’s is straightforward (see, e.g., Theorem
A.5 in Norets and Pati (2017) for continuous variables), and it is not presented here for
brevity.

4.3.2. Posterior Contraction Rates

This section presents upper bounds on the posterior contraction rates for the Bayesian
mixture model that match the lower bounds in Section 4.2 up to a log factor. That means
that the Bayesian mixture model delivers a rate optimal (up to a log) estimator for the data
generating process in (1) under our smoothness assumptions. The estimator is adaptive
since the prior and model specification do not depend on the smoothness of the data
generating density and the fineness of the support relative to the sample size. To simplify
the exposition, we present the results below in Theorem 2 for the case when the data
generating latent density f, has a bounded support.

THEOREM 2: Assume the conditions on the prior in Section 4.3.1. Suppose f, € CP1--Pl
and f > fo > f > 0 holds on the support of fo, where L, f,and [ are finite positive constants.

Let
N Bjye/(@2Be+1)
€ :minq—’] (logn)”), (12)

JeA n
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BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS 1367

where
t; > (dje + By + max{r;, 1})/(2 + B;.') + max{0, (1 — 1) /2}

and Ty is a parameter in the prior on m. Suppose also ne2 — oo and for J, that attains the
minimum in (12), N;, = o(n'™) for some small v > 0. Then, the posterior contracts at the
rate €, there exists M > 0 such that

- pn
(p:di,(p, po) > Me,|Y", X") = 0.

As in Section 4.2, when J¢ = @, B;c can be defined to be infinity and B;c /(285 +1) =1/2
in (12). The assumption N;, = o(n'™") excludes the cases with very slow (non-polynomial)
rates as some parts of the proof require log(1/¢,) to be of order logn.

The theorem is a special case of the results presented in Appendix C that can accom-
modate unbounded support for f;. The proof of Theorem 2 follows from the discussion
of the more general assumptions in the Appendix as the bounded support case is used
there to illustrate the assumptions. Similarly to other papers on posterior contraction for
mixtures of normal densities, though, the more general sufficient conditions in the Ap-
pendix require sub-exponential tails for fy. The results for f; with an unbounded support
also require the envelope function L in the smoothness definition to be comparable to f;.

The proof of the posterior contraction results is based on the general sufficient condi-
tions from Ghosal, Ghosh and van der Vaart (2000). It exploits approximations of smooth
densities by mixtures of normal distributions developed in the Bayesian nonparametrics
literature (Rousseau (2010), Kruijer, Rousseau, and van der Vaart (2010), de Jonge and
van Zanten (2010), and Shen, Tokdar, and Ghosal (2013)) and also develops appropri-
ate approximations for non-smooth discrete distributions. Posterior contraction rates for
nonparametric density estimation by mixture models derived in the aforementioned pa-
pers also include a log factor similar to (logn)” in (12). It is not known in the literature
whether the log factor can be avoided; however, it is not a very important issue as the log
factor is negligible compared to the polynomial part of the rate.

The results on the upper bounds in this section and lower bounds in Section 4.2 also
hold for the data generating processes where f; is not smooth at all in some discrete
coordinates. The resulting rates can be obtained from those we derive by setting the cor-
responding coordinates in 3 to (values arbitrarily close to) zero in (6), so that for the
optimal rate, smoothing is effectively not performed for these coordinates. Thus, the pro-
posed Bayesian model achieves the objective outlined in the Introduction: it optimally
takes advantage of smoothness in the data generating process if it is present and at the
same time performs no worse than the standard frequency estimators if the data gener-
ating process is not (sufficiently) smooth. Simulations in Section 3 suggest that the model
performs better in practice than available parametric and nonparametric alternatives and
appears to live up to its excellent theoretical properties.

5. FUTURE WORK

In many applications, conditional rather than joint distributions are actually of interest.
Of course, one could always estimate the joint distribution and then extract the condi-
tional distributions of interest. When the smoothness of the joint and conditional distri-
butions is the same, then rate optimality of the joint distribution estimator implies rate
optimality for the corresponding conditional distribution estimator. However, when the
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1368 A.NORETS AND J. PELENIS

conditional distribution is smoother, then it could be beneficial to estimate the conditional
distribution directly. In an ongoing work, Norets and Pelenis (forthcoming), we pursue an
extension of our posterior contraction results to conditional distribution models based on
covariate dependent mixtures; the extension is similar to work by Norets and Pati (2017)
on continuous distributions.

It would also be of interest to explore whether other Bayesian nonparametric models
(e.g., those based on Gaussian process priors) or classical nonparametric methods based
on higher order kernels or orthogonal series expansions can deliver estimators with adap-
tive optimal convergence rates in our asymptotic framework.

APPENDIX A: MODEL, PRIORS, AND MCMC ALGORITHM
A.1. Model and Priors

For the MCMC implementation and description, it is convenient to formulate the
model in (2) using mixture allocation latent variables (Diebolt and Robert (1994)),

(51, ...,5,), latent variables (Y1, ..., Y,) corresponding to discrete observations, and pre-

cision parameters h; = aj’z so that for each observation index i € {1, ..., n} and mixture

component index k € {1, ..., m},
(Vi X)lsi = ko gy by vgym~ (s (BP0, g ),
p(s; = k|0, m) = ay.

The joint distribution of observables and unobservables in the model is

p()ll',Yi’Xi,siaiz17~-~’n;/*L17V17"":u‘maym;h’m)
n
1

=[TUYi € Ay (Vi Xis s (P00t 1 v %)) e,

< TM(an, ..., aulm) - [ [T1C) [ [T (i) T (wiy) - TH(m). (13)

j=1 k=1

The common precision parameter, /;, is a priori distributed as a square of a gamma dis-
tributed random variable with shape 4, and rate B, , which is consistent with the condi-

tions in Section 4.3.1:
Ay 2-1 _p 12
(k) och, " e ®™i
The priors for (v, uy;) are conditionally conjugate gamma-normal:

A,-1 _p

H(ij) o ij/ e ,,,/.-ykj,

12 =05k, v (pkj—pe,)?
H(pegjlvgg) ocvyie i

The priors for mixing weights and m are as described in Section 2.1:

m
M(ay, ..., an|m) « 1_[ az/mfl’ T(m) o - mliogm)t
k=1
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BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS 1369

A.2. MCMC Algorithm

We develop a Metropolis-within-Gibbs algorithm with a reversible jump step for m
(Green (1995)) for exploring the posterior distribution. See, for example, Geweke (2005)
for a textbook treatment of MCMC algorithms in general and for mixture models in par-
ticular.

Conditional on m, the distributions for the Gibbs sampler blocks of the parameters and
the latent variables are proportional to (13) and can be written as follows:

Yil...~ &Yy myyo by v %) - 1{¥; € Ay,} (truncated normal),

plsi=k|...)x q’)(Yi, X ks (h] ]/21/,;11/2, e, hd'ﬂv,;;/z))ak (multinomial),
pla, ..., an )o<l_[ /i =B (Dirichlet),

vi=1/2 o By 050, v (gi—f)?
P (s Vgl - - )0<Vk, v k03 (=)™ (gamma-normal),

with parameters

b =hy 4Ry S W=k, =iy [_M w3 }

i=1 itsi=

A, = A, +05 Z 1{s; = k}, B, = B, + 0.5[ Z Y2+ hﬂjpdl — l_zﬂjﬁf]

i=1 iisi=k

The block for 4; is simulated by the Metropolis—Hastings-within-Gibbs with a gamma
proposal with shape parameter Ah_/Z + n/2, rate parameter 0.5 7, v,;(Y, ~l-- — ;)% and

5_ 0.5
the Metropohs—Hastlngs acceptance probability min{1, Lo =0 )}, where /4 is the

proposal and /4; is the current value. In the descriptions of blocks for s Vigi and h above,
it was 1mphclt1y assumed that index j refers to discrete coordinates (j € {1, . d WH; for

j =d,, Y; should be replaced by X;; in the descrlptlons of these blocks.

For the model with variable m, a block for m is added to the MCMC algorithm. The
update for m is performed by an approximately optimal reversible jump algorithm from
Norets (forthcoming). To apply the algorithm, we first transform the mixing weights
into unnormalized weights &, k = 1,..., so that conditional on m, a, = ax/ Y ", &
and the Dirichlet prior on («y,..., a,) corresponds to a gamma prior for the unnor-
malized weights: a;|m ~ Gamma(a/m,1), k =1,...,m. Let 6, = (ux, vk, @), O1m =
(h,6y,...,0,),Y={Y;,Y;, X;i=1,...,n}and denote a proposal distribution for the pa-
rameter of a new mixture component m + 1 by ,,,1(6,,,1|Y, 61,). The algorithm works
as follows. Simulate proposal m* from Pr(m* = m + 1|m) = Pr(m* = m — 1|lm) = 1/2.
If m* = m + 1, then also simulate 6,, .1 ~ 7,,1(6,,1]|Y, 01,). Accept the proposal with
probability min{1, a(m*, m)}, where

p(Y|m*, 01, )IL(01, | m*) T (m*)
p(Y|m, Glm)H(elmlm)H(m)

a(m*, m) =

Um" =m+1] ) )
X <7~Tm(0m+1|01m,y) +1{m —m—l}'n'ml(emlglml,Y)). (14)
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1370 A.NORETS AND J. PELENIS

Norets (forthcoming) showed that an optimal choice of proposal 7, is the conditional
posterior p(6,,.1|Y,m + 1, 0y,,). The conditional posterior can be evaluated up to a
normalization constant; however, it seems hard to directly simulate from it and com-
pute the required normalization constant. Hence, we use a Gaussian approximation to
p(0mi1|Y,m+1, 0,,) as the proposal (with the mean equal to the conditional posterior
mode, obtained by a Newton method, and the variance equal to the inverse of the negative
of the Hessian evaluated at the mode).

From an initial value of parameters, (6", m®), the MCMC algorithm sequentially up-
dates parameters by simulating from the algorithm blocks. The resulting Markov chain,

(B(r) m®"), r=1,..., M, is used to approximate posterior objects of interest such as the

1m>

posterior predictive (or posterior mean) density-point mass

M

1 N
POy XY™, X" ~ 3 p(y, xl6y,, m).

r=1

APPENDIX B: PROOF OUTLINE FOR LOWER BOUNDS

In this section, we set up the notation and an outline of the proof of Theorem 1. De-
tailed calculations are delegated to lemmas in the Supplemental Material. The proof is
based on a general theorem from the literature on lower bounds, which we present next
in a slightly simplified form.

LEMMA 1—Theorem 2.5 in Tsybakov (2008): ¢ is a lower bound on the estimation error

in metric p for a class Q if there exist a positive integer M >2 and q;,q; € Q,0<j<i<M
such that p(q;, q;) >2{, 9, < qo, j=1,...,M and

ZKL ,O8)/M <log(M)/8, (15)
where KL is the Kullback-Leibler divergence and Q7 is the distribution of a random sample

from gq;.

The following standard result on bounding the number of unequal elements in binary
sequences is used in our constructionof g;, j=1,..., M.

LEMMA 2—Varshamov-Gilbert bound, Lemma 2.9 in Tsybakov (2008): Consider the
set of all binary sequences of length m,

Q={w=(w,...,ws):w, €{0,1}} =40, 1}".

Suppose m > 8. Then there exists a subset {w', ..., w™} of O such that w’ = (0, ..., 0),
Y Hwi#wl}=m/8, Y0<j<i<M,
r=1

and

M > 28,
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0.4

0371

02r

01r

g(u)

01r

02r

03r

-0.5 025 0 0.25 05

FIGURE 4.—Function g for ¢y = 1.

To define g;’s for our problem, we need some additional notation. Let
Ko(u) =exp{—1/(1 —u?)} - 1{lul < 1}.

This function has bounded derivatives of all orders and it smoothly decreases to zero at
the boundary of its support. This type of kernel functions is usually used for construct-
ing hypotheses for lower bounds; see Section 2.5 in Tsybakov (2008). Since we need to
construct a smooth density that integrates to 1, we define (as illustrated in Figure 4)

g(u) = CO[K0(4(14 +1/4)) — Ko(4(u — 1/4))],

where ¢; > 0 is a sufficiently small constant that will be specified below.

Function g will be used as a kernel in construction of g;’s. Let us define the bandwidth
for these kernels first.

For the continuous coordinates, we define the bandwidth as in Ibragimov and Hasmin-
skii (1984),

hi=TVE  jie{d,+1,...,d}.
For the discrete ones, over which smoothing is beneficial, we define the bandwidth as
2
l’li:Qi'F}l/Bi:ﬁ'Ri, iGJ:ﬂ{l,...,dy},

where R; = [I"VPiN;/2] + 1 is a positive integer and o; € (1, 2] as shown in Lemma 7.

For the rest of the discrete coordinates, our innovation is to first define artificial
anisotropic smoothness coefficients B = —log(I',)/logN;, i € J,, at which the rate in
(6) would have the same value whether we smooth over y; (i € J¢) or not (i € J,). Then,
we define the bandwidth as

hi=2-TV¥ —=2/N,, iel..

To streamline the notation, we also define B = B, for i € J¢.
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1372 A.NORETS AND J. PELENIS

Let m; be the integer part of h;', i=1,...,d. Let us consider m = ]—[?:1 m; adjacent
rectangles in [0, 1]¢, B, r = 1, ..., m, with the side lengths (A, ..., h;) and centers ¢ =
(cy..oych),cr=hi(ky, —1/2), ki, €{l,...,m;}.Forze R and r =1, ..., m, define

82 =T [ Te((z— )/ h),

which can be non-zero only on B,. A set of hypotheses is defined by sequences of binary
weights on g,’s as follows:

qj(y’x):L |:go(jz,x)+2wig,(j/,x):| dj)’ (16)

r=1

where w/ € {0, 1}, j =0, ..., M, and M are defined in Lemma 2, and g, satisfies the fol-
lowing conditions: (i) it is a density on R?, (ii) it is bounded away from zero on [0, 1]¢, (iii)
it belongs to CPr-FaL/2 for some L > 2. Examples of g, include uniform (go = 1;9¢), a
normal density, and a smoothed to zero uniform that is proportional to

[Tl tou(z) + IKo(z +1) - 1(z; < 0) + [Ko(2 — 2) - 1(z; > 1)],

i=1

where IK,(z) = /% Ko(u) du/ [*, Ko(u) du.

The rest of the proof is delegated to lemmas in the Supplemental Material, which show
that g, in (16) satisfy the sufficient conditions from Lemma 1. Specifically, Lemma 3
derives the lower bound on the L, distance. Lemma 4 verifies condition (15) when m > 8.
Lemma 5, part (i) of Lemma 7, and the assumptions on g, imply that the latent densities
in the definition of g; belong to CF1-Fel j=0,..., M.

This argument (Lemma 4 specifically) requires /1 > 8 as it relies on Lemma 2. Observe
that as n — oo, m > 8 if there are continuous variables or there are discrete variables
over which smoothing is beneficial (J¢ # ). Thus, m < 8 can happen only if there are no
continuous variables and N,, = N, --- N, is bounded. This is just a problem of estimating
a multinomial distribution with finite support and the standard results for parametric
problems deliver the usual n~'/? rate.

APPENDIX C: POSTERIOR CONTRACTION RATES FOR UNBOUNDED SUPPORT
C.1. Assumptions on the Data Generating Process for Unbounded Support

In what follows, we consider a fixed subset of discrete indices J € A and show that under

Bc
regularity conditions, the posterior contraction rate is bounded above by [%] T times
a log factor. If the regularity conditions we describe below for a fixed J hold for every
subset of A, then the posterior contraction rate matches the lower bound in (6) up to a
log factor.

Without a loss of generality, let J ={1,...,d,}, I ={d, +1,...,d,},J°={1,...,d}\J,
and djc = card(J¢). Similarly to ) and A, defined in Section 2, we define V; =[], Y

and A, =[], Ay, Also, let y; = {yi}ics» Y1 = {Vitier, X = (Y1, X) € X =R,

:sdny woxy papeojumoq ‘¢ ‘70T ‘THTOR9Y

KopmAreaquouruo,

umorg Aq $88.1V.LIH/IY6E 01/10p/w0d

n

suo1, o 095 “[Z202/11/20] U0 ATe1qrT aunquQ) AoTiAy “ATeiqr ANsioaru

//:sd) suonpuo)) pue

Kojia

10y A1e1qrT QUIUQ AafiAy O (

o[

asn jo

nIe vo ¢

I

05 a1e s9[0!

U201 UMW) dANEaI) A[qEaNdde oy Aq patio
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To formulate the assumptions on the data generating process, we need additional nota-
tion,

forQyr, X) = /A fo(yy, ) dyy,

s () = /X fou O, %) dF,

ooy Jor Qs X)
fOlJ(x|yJ)— WOJ(yJ) >

oy Ve, x|yr) = / Jou e, x|yr) dy.
AYI

Also, let Fy; and E,; denote the conditional probability and expectation corresponding to
fou- If 7, (y;) = 0 for a particular y,, then we can define the conditional density fy, (¥|y;)
arbitrarily. We make the following assumptions on the data generating process.

ASSUMPTION 1: There are positive finite constants b, fy, T such that for any y, € Y, and
xe X,

fou(Elys) < foexp(=bIEII"). (17)

It appears that all the papers on (near) optimal posterior contraction rates for mixtures
of normal densities impose similar tail conditions on the data generating densities.

ASSUMPTION 2: There exists a positive and finite y such that for any (yr,y;) € Y and
xe X,

/ Fou G xlyy) s = f fou G xlyy) . (18)
Ay N{Iyrli<y}

Ay N{llyrll>y}

This assumption always holds for 4,, C [0, 1]%<~%. When A,, is a rectangle with at least
one infinite side, an interpretation of this assumption is that the tail probabilities for y,
conditional on (x, y;) decline uniformly in (x, y;). Bounded support for j; is a sufficient
condition for this assumption.

ASSUMPTION 3: We assume that
for € Pl (19)
where for some 7o > 0 and any (¥, AX) € R¥re,
L(¥%,A%) = L(%) exp{rollA%|*}, (20)
L(¥ + AX) < L(%) exp|moll A%} (21)

The smoothness assumption (19) on the conditional density fy, is implied by the
smoothness of the joint density f, at least under boundedness away from zero assump-
tion; see Lemma 10 in Appendix D.3.3. A constant envelope function L used in the lower
bound construction would satisfy the assumption.
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1374 A.NORETS AND J. PELENIS

ASSUMPTION 4: There are positive finite constants € and F, such that for any y, € Y, and
k= (ki € NG, Yo ki Bi < 1,

Creprldrd)

D" o (X[ ys icsc Ki/Bi ~ ) )

/[i]“mfjl(ii(l);lj);”] ) fou(Xly;)dx <F, )
- 2eByld; ] ]

/ [%} fou(Elys)di < F. )

The envelope function and restrictions on its behavior are mostly relevant for the case

of unbounded support. Condition (23) suggests that the envelope function L should be
comparable to fy,.

ASSUMPTION 5: For some small v > 0,
N;=o(n'"). (24)

We impose this assumption to exclude from consideration the cases with very slow (non-
polynomial) rates as some parts of the proof require log(1/¢,) to be of order logn.

C.2. Posterior Contraction Rates for Unbounded Support

Let us define a constant that determines the power of the log n term in the upper bound
on the posterior contraction rate derived below in Theorem 3,

dye[141/(Byedye) +1/7] + max{r;, 1, 7o/7} oy
o= 2+4+1/Bye ’ (25)
max{7, 1}/2 itJ =0,

where (7, 71, 7,) are defined in Sections 2.1, 4.3.1, and C.1.

THEOREM 3: Suppose the assumptions from Sections 4.3.1 and C.1 hold for a given J € A.
Let

N Bjye/(2Bye+1)
€, = [_’] (logn)", (26)
n

where t; > t;y + max{0, (1 — 7,)/2}. Suppose also ne2 — oo. Then, there exists M > 0 such
that

— P
H(p :dr,(p, po) > M6n|Y",X”) 30.

Asin Section 4.2, when J¢ = {J, B;c can be defined to be infinity and B;c/ (28, +1) =1/2
in (26). Note that in the bounded support case, 7 can be chosen arbitrarily large and a
simplified expression in Theorem 2 can be used instead of #;, in the lower bound on ¢,.
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COROLLARY 1: Suppose the assumptions from Sections 4.3.1 and C.1 hold for every J €
A. Let

€, =min| —
JeA

N Bjc/(Zﬁ/c+l)
' [ ] (logn)", @7)

n

where t; > t;y + max{0, (1 — 7,)/2}. Suppose also ne> — oo. Then, there exists M > 0 such
that

- Py
(p:d.,(p, po) > Me,|Y", X") =20.

Under the assumptions of the corollary, Theorem 3 delivers a valid upper bound on
the posterior contraction rate for every J € A including the one for which the minimum
in (27) is attained. Hence, the corollary is an immediate implication of Theorem 3. The
proof of Theorem 3 is presented below.

C.3. Proof Outline for Posterior Contraction Results

To prove Theorem 3, we use the following sufficient conditions for posterior contraction
from Theorem 2.1 in Ghosal and van der Vaart (2001). Let €, and €, be positive sequences
with €, < €,, €, — 0, and né2 — oo, and ¢, ¢, ¢, and ¢, be some positive constants. Let
p be the Hellinger or L, distance. Suppose F, C F is a sieve with the following bound on
the metric entropy M., (€,, F., p):

log M, (€,, F,, p) < cine., (28)
(7)) < csexp{—(c2 + 4)né}. (29)

Suppose also that the prior thickness condition holds:
I(KC(po, €1)) > caexp{—cané,}, (30)

where the generalized Kullback-Leibler neighborhood K( py, €,) is defined by

K(po, €) = { / Zpo(y,x) log P, ¥) dx < €

P00
[ noofioa o] a <€2}-

Then, there exists M > 0 such that

v n n P6‘
H(p:p(p,p0)>Me,,|Y ,X") = 0.

The definition of the sieve and a verification of conditions (28) and (29) closely follow
analogous results in the literature on contraction rates for mixture models in the context
of density estimation. The details are given in Lemma 20 in the Supplemental Material.
Verification of the prior thickness condition is more involved and we formulate it as a
separate result in the following theorem.
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1376 A.NORETS AND J. PELENIS

THEOREM 4: Suppose the assumptions from Sections 4.3.1 and C.1 hold for a given J € A.
Let t; > t;, Where ty is defined in (25), and

N Byec/(2Bjec+1)
€n = [—]] (logn)". (31)
n
For any C > 0 and all sufficiently large n,
II(KC(po, €:)) > exp{—Cné.}. (32)

Approximation results are key for showing the prior thickness condition (32). Appropri-
ate approximation results for fo,(y;, X) = fo (X|ys) s (y;) are obtained as follows. Based
on approximation results for continuous densities by normal mixtures from Shen, Tokdar,
and Ghosal (2013), we obtain approximations for fy,(-|y;) for every y;, in the form

K

fi @) =) ay, & (% mjy, s 050), (33)

j=1

where the parameters of the mixture will be defined precisely below. For the discrete
variables over which smoothing is not performed, y;, we show that 7, (y;) can be appro-
priately approximated by

/A Z 7701(}’})¢()~’J§ y}, 0';) dys,

Yy y}

where [ 4, ¢ (3, y;, 07) dy; behaves like an indicator 1{y; = y;} for sufficiently small o7.
J
Section D.3 in the Supplemental Material presents proof details.
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