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ABSTRACT The millimeter wave (mmWave) bands have attracted considerable attention for high
precision localization applications due to the ability to capture high angular and temporal resolution
measurements. This paper explores mmWave-based positioning for a target localization problem where
a fixed target broadcasts mmWave signals and a mobile robotic agent attempts to capture the signals to
locate and navigate to the target. A three-stage procedure is proposed: First, the mobile agent uses tensor
decomposition methods to detect the multipath channel components and estimate their parameters. Second,
a machine-learning trained classifier is then used to predict the link state, meaning if the strongest path
is line-of-sight (LOS) or non-LOS (NLOS). For the NLOS case, the link state predictor also determines
if the strongest path arrived via one or more reflections. Third, based on the link state, the agent either
follows the estimated angles or uses computer vision or other sensor to explore and map the environment.
The method is demonstrated on a large dataset of indoor environments supplemented with ray tracing to
simulate the wireless propagation. The path estimation and link state classification are also integrated into
a state-of-the-art neural simultaneous localization and mapping (SLAM) module to augment camera and
LIDAR-based navigation. It is shown that the link state classifier can successfully generalize to completely
new environments outside the training set. In addition, the neural-SLAM module with the wireless path
estimation and link state classifier provides rapid navigation to the target, close to a baseline that knows
the target location.

INDEX TERMS Millimeter wave, positioning, SLAM, robotics, navigation, 5G.

I. INTRODUCTION

THE MILLIMETER wave (mmWave) bands have
tremendous potential for new localization technolo-

gies [1], [2], [3] and have emerged as a central component
of the positioning methods in the 3GPP Fifth Generation
New Radio (5G NR) standard [4], [5], [6], [7], [8]. The
wide bandwidths in the mmWave frequencies coupled with
arrays with large number of elements enable detecting paths
with very high delay and angular resolution.

This work considers mmWave-based positioning in the
context of a robotic target localization application motivated
by search and rescue applications (illustrated in Fig. 1): In
this problem, a fixed target is located at some unknown
position and a mobile robotic agent must locate and navi-
gate to the target in the shortest possible time. We assume
the environment and obstacles are not known, so the agent
also needs to map and localize itself within the environ-
ment as part of the target discovery. To assist in the target
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FIGURE 1. Target localization and navigation: A target with a wireless transponder
and a robotic agent must locate and navigate to the target using received wireless
signals. The path and map shown in the figure are example outputs of the Active
Neural-SLAM module [11] augmented with the proposed mmWave wireless path
estimation and link state classification algorithm.

localization, the target is equipped with a mmWave transmit-
ter that can periodically broadcast known positioning signals.
The agent is equipped with a mmWave receiver that can
attempt to locate the target from measurements of the posi-
tioning signals. Specifically, the agent can attempt to estimate
the angles of arrivals of the signals to determine the direc-
tion in which to navigate so as to reach the target. Note that,
while ultra-wide band (UWB) localization systems in tradi-
tional frequencies such as [9], [10] can achieve high temporal
resolution, mmWave is uniquely able to obtain high angu-
lar resolution from a single receiver. As we will see, this
angular information is critical for the target localization.
A key challenge in using angle of arrival estimation in

such navigation applications is that the strongest signal may
not arrive from a line-of-sight (LOS) path. In the mmWave
bands in particular, signals are highly susceptible to blocking
[12], [13]. As such, strongest paths often arrive via non-LOS
(NLOS) routes that might involve one or more reflections
or diffractions. Following paths that involve many reflec-
tions/diffractions might not lead to the shortest route to the
target. To use the angular information, it is thus vital to
first perform some form of link state classification to esti-
mate which measurements are in a LOS or NLOS state [14],
[15], [16]. While there is a large body of work in mmWave
positioning [17], [18], [19], link state classification in these
frequencies is less understood. Positioning measurements in
the mmWave range have several unique features including
the need to support directional antenna elements, multiple
arrays, and beam sweeping which provide more complex
set of inputs for link classification. The broad goal of this
work is to understand how to develop good path estimation
and link state classification algorithms that can be applied in
the context of target localization and navigation for realistic
mmWave front-ends and signaling.
For this link state classification and target localization

problem, we propose a three-step procedure: First, at each

agent location, we use a modification of a low-rank ten-
sor decomposition algorithm [20], [21] to detect signal
paths and estimate their path parameters such as the angles
of arrival. Second, we train a neural network to deter-
mine if the strongest path is LOS or NLOS from the
path parameters. For NLOS paths, the network also deter-
mines if the path has arises from a single reflection or
higher order reflections. Importantly, the neural network
is trained on data distinct from the test environment, so
no prior knowledge or calibration in the environment is
required.
Finally, for the target navigation, we employ the follow-

ing simple algorithm: When a link is classified as a LOS,
strong single reflection, or strong single diffraction, the agent
simply follows the direction of the strongest detected path.
Otherwise, in absence of strong LOS or first-order reflec-
tion, the agent explores the environment using conventional
SLAM methods, potentially using other sensor modalities
such as camera or LiDAR.
The proposed method and analysis has a number of

features that improve upon the state of the art:
• Detailed antenna and multiple array modeling: Practical
mmWave devices at the terminal (UE) and base station
(gNB) often use multiple arrays oriented in different
directions to obtain 360 degree coverage [22], [23].
This work models these multiple array structures and
also includes detailed models of the antenna element
directivity in each array. In addition, we do not con-
sider any local oscillator (LO) synchronization across
different arrays.

• Beam sweeping double directional estimation: Many
prior mmWave localization studies have either
abstracted the directional estimation [19], considered
single-sided directional estimates [17], [18], or consid-
ered double directional estimates using MIMO signal-
ing [24], [25]. In this work, we modify the low-rank
tensor decomposition algorithms in [20], [21] to account
for both sweeping of the TX beams and use of multiple
arrays at the TX and RX. Beam sweeping at the trans-
mitter is critical to model for most cellular mmWave
systems [26].

• Novel neural network feature input: Prior works such
as [25] have used machine learning-based link state
classification using aggregate features of the paths such
as the spread of the received power, delays or angles of
the paths. In this work, we propose a neural network
that takes the raw features of each detected path. This
larger feature space is enabled by training the network
on extensive data from ray tracing.

• Multi-class link classification: Instead of simply clas-
sifying the link as LOS or NLOS, we differenti-
ate between four states: LOS, NLOS from a single
interaction, higher-order NLOS and outage. We show
that for target localization application, both LOS and
first-order NLOS paths have angles of arrival that
strongly correlate with good navigation directions.
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• Validation in realistic, complex environments: The
proposed approach is trained and tested on a large set
of detailed indoor environments from the Gibson data
set [27], that is widely-used in robotic navigation [28].
Each 3D model in the data set is imported to a state-
of-the-art ray tracer [29], where we predict the wireless
paths at 28GHz. The wireless propagation data is then
combined with realistic models of the arrays including
the array sectorization and orientation and estimation
algorithms.

• Intra-site generalization ability: We demonstrate that
models trained on one set of environments generalize
to completely new environments. Indeed, we show that,
on new environments not in the training set, our link
classification has a 88% accuracy.

• Target localization demonstration: The link state clas-
sification and angular estimation is combined with a
state-of-the-art neural SLAM module [11] tested in AI
Habitat robotic simulation environment [28] with the
Gibson dataset above [27]. In addition to the detailed
3D models, the dataset includes LIDAR and camera data
which are the typical inputs of the SLAM methods. We
simulate the simple navigation policy that follows the
estimated path when the detected link state is LOS or
first-order NLOS; otherwise, the agent uses the explo-
ration mode in the neural SLAM.We believe this is
the first full end-to-end detailed simulation of mmWave
wireless localization combined with state-of-the-art neu-
ral SLAM. In addition, we show that the proposed
multi-class link state classifier significantly outperforms
a policy that only uses the LOS classification.

• Public dataset: All the code and wireless data is made
public, providing the first complete 5G wireless local-
ization dataset combined with camera data and robotic
simulation environment [30].

II. PATH ESTIMATION AND LINK STATE CLASSIFICATION
PROBLEM
A. OVERVIEW
Before addressing the navigation problem specifically, in
this section, we introduce a general problem of estimating
multi-path components and the link state from mmWave
measurements. To this end, consider a channel between a
single TX and RX location. We assume a ray model where
the channel is characterized by L discrete paths [31]. We
will only consider paths with gains above some threshold.
As we will see below, the threshold is selected such that the
path’s parameters can be estimated accurately.
Now, each sufficiently strong path is either LOS or NLOS

where any NLOS path arrives with one or more interactions
such as diffractions, reflections, or transmissions. As shown
in Fig. 2, we will classify the link as being in one of four
states on the basis of the strongest received path:

• LOS: The strongest received path is above the minimum
threshold and is LOS;

FIGURE 2. A demonstration of the LOS, First-order NLOS, and Higher-order NLOS
path.

• First-order NLOS: At least one of received paths that
are above the minimum threshold is NLOS with one
interaction;

• Higher-order NLOS: All sufficiently strong paths from
the TX to RX are NLOS with two or more interactions.

• Outage: There are no sufficiently strong paths above
the minimum threshold.

Given this classification, we consider two problems:
1) Path estimation: Estimate the parameters (angles of

arrival, angle of departure, relative delay and received
SNR) for the strongest paths; and

2) Link state classification: Determine if the strongest
path is LOS, First-order NLOS or Higher-order NLOS,
or there is no sufficiently strong path.

As we will see below, the reason we are interested in
this problem is that the angle of arrival of LOS and first-
order NLOS path have strong correlation with the optimal
direction for navigation. Hence, if can reliably detect the
link state and estimate the angle of arrival of the strongest
path, we can build a navigation system that simply follows
the estimated strongest path angle of arrival.

B. SIGNALING AND ARRAY MODELING
We wish to realistically model the measurement of the sig-
nals from which the path estimation and link classification
will be performed. To this end, we make the following
assumptions:
Array Modeling: As discussed in the introduction, multiple

arrays are critical in the mmWave range to provide 360
degree coverage [22], [23]. To this end, we assume that the
TX and RX have, respectively, Ntx

arr and Nrx
arr mmWave arrays.

We let Ntx
ant and Nrx

ant denote the number of antennas in each
array. Since each array is typically designed to cover some
angular region, we will sometimes refer to an array as a
sector.
Although our simulations below consider only 2D local-

ization, the methods are general and apply to 3D modeling as
well. For 3D problems, we will use the notation � = (φ, θ)

to denote an azimuth and elevation angle pair. In the case
of 2D problem, � = φ is the azimuth angle only with the
elevation angle being ignored.
Now, for each potential RX angle, �rx, we let urx(�rx)

denote the array signature across all the Nrx
arr arrays. In

general, a receive array signature represents the complex
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gains that would appear on a plane wave arriving from a
given angle [31]. For the case of multiple arrays, we can
write the received-side array signature as

urx
(
�rx) =

[
u(1)
rx

(
�rx), . . . ,u(Nrx

arr)
rx

(
�rx)

]
, (1)

where u(j)
rx (�rx) is spatial signature from the j-th array at

the RX. To model the arrays accurately, we will assume
u(j)
rx (�rx) includes both the array gain and element gain. Also,

to account for mutual coupling in densely-spaced arrays, we
can apply the coupling matrix normalization as described
in [32]. We will also assume the array spatial signatures are
normalized such that ‖u(j)

rx (�rx)‖2 is the directivity (in linear
scale) of array j in the direction �rx. At the TX side, we
define utx(�tx) similarly:

utx
(
�tx) =

[
u(1)
tx

(
�tx), . . . ,u(Ntx

arr)
tx

(
�tx)

]
. (2)

Finally, to consider the response on a single array, we
introduce the following notation: Given a receive angle �rx,
let

ûrx
(
�rx) =

[
0, . . . , 0,u(j)

rx (�rx), 0, . . . , 0
]
, (3)

with j = arg max ‖u(j)
rx (�rx)‖2. Since ‖u(j)

rx (�rx)‖2 is the
directivity of the array j, ûrx(�rx) in (3) represents the array
response on the array with the highest gain for the angle of
arrival �rx. Similarly, we define

ûtx
(
�tx) =

[
0, . . . , 0,u(j)

tx
(
�tx), 0, . . . , 0

]
, (4)

where j = arg max ‖u(j)
tx (�rx)‖2.

TX Codebook: To enable detection, we assume the TX
transmits a known synchronization signal, sweeping through
a sequence of directions from the different TX arrays. Similar
to (2), we can represent a TX beamforming vector with
Ntx
arr sub-vectors with Ntx

ant components each representing the
complex phases applied to the antenna elements. We will
let Ntx

dir denote the total number of TX directions. For each
TX direction k, we will let wtx

k denote the TX beamforming
vector for that direction. We will call wtx

k a TX codeword,
the set of the TX codewords will be called the (multi-array)
codebook.
Several methods can be used for 3D codebook design for

mmWave systems (e.g., [23], [33]). In this work, we will
simply assume the k-th TX codeword is of the form

wtx
k = 1

∥∥∥̂utx
(
�

tx
k

)∥∥∥
ûtx

(
�

tx
k

)
, (5)

where �
tx
k is some angle of departure for the codeword and

ûtx(�tx
k ) is as defined in (4). That is, wtx

k is aligned to the
TX steering vector for some TX angle �

tx
k . We have used

the overline in the transmit angle �
tx
k to differentiate the TX

angle from the angles of the paths �tx
� that will be described

below. The set of TX angles is the set
{
�

tx
k , k = 1, . . . ,Ntx

dir

}
. (6)

FIGURE 3. Example TX beam sweeping with Ntx
arr = 3 arrays and 4 directions per

array for a total of Ntx
dir = 12 beam directions. The synchronization signals are sent

once in each direction with the pattern repeating every Tsweep seconds.

Observe that from (4), each TX codeword is transmitted on
only one TX array at a time both to conserve power and
not assume any local oscillator synchronization across TX
arrays.
TX Beam Sweeping: In each of the Ntx

dir directions, we
assume the TX sends a known synchronization or refer-
ence signal of duration Tsync. Hence, the total time to
transmit all Ntx

dir directions is TsyncNtx
dir. We assume the

beam sweep pattern is repeated every Tsweep seconds with
Tsweep ≥ Ntx

dirTsync.
An example is illustrated in Fig. 3 with Ntx

arr = 3 TX
arrays and four directions per array for a total of Ntx

dir = 12
directions.
Wireless Channel Model: Let xk(t) denote the complex

baseband synchronization signal sent in the k-th direction,
k = 1, . . . ,Ntx

dir. We assume a standard multi-path clus-
ter model [31] where the corresponding received signal is
given by

rk(t) =
L∑

�=1

g�urx
(
�rx

�

)
utx

(
�tx

�

)�wtx
k xk(t − τ�) + vk(t), (7)

where wtx
k is the TX beamforming for direction k as given

in (5), rk(t) is the complex baseband signal across all Nrx
arrN

rx
ant

receive antenna elements, and vk(t) is AWGN noise that we
assume i.i.d. across RX antennas. In (7), L is the number of
paths, and for each path �, �rx

� and �tx
� are the RX and TX

angles, urx(�rx
� ) and utx(�tx

� ) are the steering vectors of the
arrays at those angles, g� is the complex path gain, and τ�

is the path delay. For simulation, one can generate the path
parameters via statistical models such as [34], although as
we will discuss below, in this work the path parameters will
be found from ray tracing.

III. PROPOSED ALGORITHM FOR PATH ESTIMATION
AND LINK STATE CLASSIFICATION
A. PATH ESTIMATION VIA LOW-RANK TENSOR
DECOMPOSITION
For the path estimation, we adapt a commonly-used low rank
tensor decomposition method [20], [21] with modifications
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to handle the multiple arrays and TX beam sweeping. Define
the spatial and temporal correlation

ρk
(
τ,�rx) :=

∫
ûrx

(
�rx)∗rk(t)x∗

k(t − τ) dt, (8)

which is a complex function of the TX angle k, RX angle
�rx and delay τ . Under the channel model (7), the sig-
nal will contribute one peak in the correlation magnitude
|ρk(τ,�rx)|2 for each path � when (τ,�rx) = (τ�,�

rx
� ) when

the TX direction �tx
� is closely aligned the transmit angle

�
tx
k . Thus, in principle, we can locate the paths from the

peaks in the correlation function.
Following [20], [21], we use a low-rank tensor decompo-

sition to extract these peaks. Specifically, we first select a
discrete set of delays and RX angles:

τ = τ i, i = 1, . . . ,Ndly, (9)

�rx = �
rx
j , j = 1, . . . ,Nrx

dir, (10)

where Ndly is the number of delay hypotheses and Nrx
dir is

the number of RX angular directions. Again, note that we
use the overlines in τ i and �

rx
j to differentiate them from

the true delays and angles τ� and �rx
� . We then evaluate the

complex correlation (8) at the discrete values to obtain a
third-order tensor:

S[i, j, k] = ρk

(
τ i,�

rx
j

)
. (11)

As described in [20], [21], we then find an approximate
low-rank decomposition,

S[i, j, k] ≈
R∑

�=1

a�ib�jc�k, (12)

where R is the estimated rank, and a�, b� and c� are the basis
vectors for each rank one term in the delay, RX angle and
TX angle dimensions. Any low-rank tensor decomposition
method can be used (see, e.g., [35] for a survey). In this
work, we will use two-way PCA by first performing PCA
flattening the (j, k) dimensions and then performing PCA on
the (j, k) matrix.
Following the low-rank tensor decomposition, we can esti-

mate for the delays, TX and RX angles can be found from
the peaks in the basis vectors:

τ̂ ′
� = τ i, i = arg max |a�i| (13a)

�̂rx
� = �

rx
j , j = arg max |b�j| (13b)

�̂tx
� = �

tx
k , k = arg max |c�k|. (13c)

Since we do not assume timing synchronization between
the TX and RX, the estimated delays τ̂ ′

� are only meaningful
as relative values. For this reason, we convert the raw delay
estimates to relative delay estimates

τ̂� = τ̂ ′
� − min

�=1,...,K
τ̂ ′
�. (14)

We can also estimate the RX SNR of the path as:

γ� := ‖a�‖2‖b�‖2‖c‖2�
Eavg

, (15)

where the numerator represents the total energy along the
estimated �-th direction and the denominator is the average
energy per sample,

Eavg := 1

NdlyNtx
dirN

rx
dir

∑

ijk

|S[i, j, k]|2.

The resulting procedure thus produces a set of path estimates
{
(̂τ�, �̂

rx
� , �̂tx

� , γ�), � = 1, . . . ,K
}
, (16)

that includes the relative delay, RX and TX angles and SNRs
of the path. We will fix K in this work since we have an
SNR indication γk to discard low energy paths.

B. CONFIGURATION AND SYNCHRONIZATION ISSUES
The methods described above apply to any scenario where
the target device can transmit a mmWave beam sweeping
synchronization signals. Such signals are commonly used in
mmWave RADAR and can be used in this application if the
target can carry a RADAR transmitter. If the target device has
a standard 5G mmWave device, then the existing manage-
ment and positioning signals may be used [7], [8], [36], but
some additional configuration capabilities may be needed.
For example, if the target is a 5G UE device, the path
estimation could potentially be performed from the uplink
sounding reference signals (SRS). The mobile agent could
then attempt to listen to the SRS signals for localizing the
target. Of course, normally the SRS are directed to the serv-
ing base station. Hence, for the signaling method described
above, the UE would need to receive some configuration
from the network to transmit the SRS in a sweeping pattern.
Also, if the UE does not have a connection to a mmWave
base station (a likely scenario since the target may be inside
where the mmWave signals are blocked), the UE would need
to be configured over a sub-6 GHz carrier and be permitted
to transmit even in absence of a detected network.
Whichever signals are used, one issue is the transmit syn-

chronization. For the mobile agent RX to know the transmit
angle, �̂tx

� in (16), the RX would need to know which beams
are being transmitted at which times. In addition, the TX
would need to inform the RX of the TX directions. In the
cellular case, this information would also need to be con-
veyed in the configuration. Since this may not always be
possible, we investigate in the simulations below the cases
when the TX angles is and is not available.

C. LINK STATE CLASSIFICATION NEURAL NETWORK
The next step is to classify the link state (LOS, First-Order
NLOS, Higher-Order NLOS or Outage) from the parameter
estimates (16) of the detected paths. We use the estimates
from a fixed number, K = 5, paths, taking the paths with the
strongest estimates SNRs. In general, increasing the number
of paths increases the number of features in our model and
hence can result in over-fitting. We found K = 5 to provide
the lowest generalization error. Note that we take the K = 5
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strongest paths, not the K earliest paths. Hence, we do not
miss any strong paths that arrive late.
Since the data (16) are heterogeneous, we then transform

the inputs to a common scale – a critical step to use neu-
ral networks. Although the methods can be applied for 3D
angles, for the remainder of the paper, we will focus on 2D
problems that only use the azimuth angles. That is, the angle
estimate �̂tx

� �̂rx
� are scalar azimuth angles. These angles are

in the range [−π, π], and are scaled from [−1, 1]. The SNR
parameter γ� are transformed to scaled value in z� ∈ [0, 1]
with the transformation

z� = max

{
0,min

{
1,

γ� − γmin

γmax − γmin

}}
, (17)

for some fixed parameters γmin and γmax. Under the scal-
ing (17), paths weaker than the threshold γmin result in z� = 0
and very strong paths (γ� ≥ γmax) are mapped to z� = 1.
We used fixed limits γmin = 5 dB and γmax = 50 dB. Also,
when less than K paths are detected, we set the correspond-
ing scaled SNR values to zero to indicate the path does not
exist.
For the delays, we measure the values relative to the first

detected path (14). Subtracting the first path is required since
we do not assume absolute timing. We then scale the relative
delays by a fixed value of 100 ns which corresponds to 30m
of propagation distance.
In total, the pre-processing results in scaled values of the

four parameters of the each paths (16). With data from K = 5
paths, the neural network takes as an input 4K = 20 values.
If the TX angles �̂tx

� are not assumed to be available, then
the neural network will have 3 values per path with a total
of 5(3) = 15 values. As we will describe below, we will
then apply a simple 2 layers fully connected network. The
output is a four-way softmax for the four link states, LOS,
First order NLOS, High order NLOS and Outage.

IV. CREATION OF THE ROBOTIC AND WIRELESS
DATASET
We validate the methods on the AI Habitat robotic simulation
environment [28] with the Gibson 3D indoor models [27].
Gibson’s underlying database of spaces includes 572 full
buildings composed of 1447 floors covering a total area
of 211 000m2. The indoor environments include complete
3D camera and LiDAR data, and maps from actual interior
environments. These 3D models can be imported into the AI
Habitat simulation that includes a complete kinematic model
of the robots The simulation environment has been widely-
used for validating indoor SLAM and navigation algorithms,
see e.g., [37], [38].
One key contribution of this work is to augment this

dataset with a wireless coverage maps. This will create what
we believe is the first dataset with camera, LiDAR and wire-
less data integrated into a robotic simulation environment.
In addition to validating the algorithms in this work, the
dataset can be used for other positioning work as well as
cloud robotics experiments with wireless connectivity.

FIGURE 4. Most 3D models in the Gibson data set are of multi-storey residences. In
this example, the left figure shows a three storey house. We exact the second floor, as
shown on the right, to generate our test layout.

FIGURE 5. A typical indoor environment in the Gibson data set [27] with furniture,
plants, and irregular building structures that significantly increases computational
load for ray tracing.

To capture the wireless coverage, we use the powerful
ray tracing package, Wireless InSite by Remcom [29] which
has also been used in several other recent mmWave studies
such as [39], [40], [41]. Ray tracing uses a high-frequency
approximation to simulate the electromagnetic paths between
any two locations. As the Gibson dataset contains highly
detailed and fine-grained 3D models, we need to pre-process
them in order to reduce the computational effort when we
use them as ray tracing environments. Since we consider the
navigation and positioning problems in 2D and most of the
buildings in the data set are multi-story residence buildings,
we first select and extract one floor from each – an example
is shown in Fig. 4.
Next, as shown in Fig. 5, the indoor environment con-

tains furniture, plants, and irregularly constructed structures.
These objects often have many non-smooth reflecting sur-
faces, which significantly increases the amount of computing
required for the ray tracing. To simplify the 3D model, we
utilize Habitat-Sim [28], [42] to capture a floor plan – mak-
ing the model essentially 2D. Also, as far as possible, the
irregular and uneven walls, ceilings, and floors of the origi-
nal 3D model are transformed into smooth planes. The edges
of the simplified 2D floor plan are then vertically extended
to create walls. The resulting 3D map can then be imported
to Remcom Wireless Insite – See Fig. 6.
For each imported map, we then place the transmitters

in 10 randomly selected locations representing 10 possible
target positions. The ray tracing is then used to estimate
the wireless paths at RX locations on a 160 × 160 grid
with 0.15× 0.15 m grid representing a total area of 24m2.
Example ray tracing simulations areas are shown in Fig. 7.
The ray tracing is performed at 28GHz, the most

commonly-used frequency for 5G mmWave devices [43].
We ignore the difference of material and treat all walls as
the ITU (International Telecommunication Union) layered
drywall whose permittivity is 2.94 (F/m) and conductivity is
0.1226 (S/m) in 28GHz.
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FIGURE 6. An example of a 24×24 meter indoor environment map generated by the
Habitat-Sim [28]. The Wireless InSite tool by Remcom [29] uses the top-down map to
rebuild a 3D indoor model. Some assumptions are made to reduce the high
computational costs of ray tracing.

FIGURE 7. Four examples of ray tracing simulation area. In each map, green dots
represent transmitter locations and the red dots represent the receiver grid with total
25,600 receivers.

FIGURE 8. LOS (left) and NLOS (right) examples of the ray tracing paths. (Some
weaker paths are not shown).

For each TX-RX location, the ray tracing produces an
estimate of the set of large scale parameters

(
g�,�

rx
� ,�tx

� , τ�

)
, � = 1, . . . ,L,

for the paths in the channel model (7). Example ray tracing
outputs are shown in Fig. 8. Using the true signal parame-
ters, we can then simulate the path estimation algorithms in
Section III to create estimates of the path parameters (16).

TABLE 1. Path estimation simulation parameters.

FIGURE 9. The pattern of a gNB antenna array and a UE antenna array. Arrays are
aligned so that its bore-sight is on the x-axis. An antenna’s directivity is a component
of its gain. When the target is located in the main lobe (yellow areas in the figure), the
maximum antenna gain is received.

The specific parameters for the arrays and transmitter are
discussed in the next section.
In total, the procedure is run on 38 unique environments

from the Gibson dataset with 10 TX locations in each envi-
ronment. For each environment and TX location, the ray
tracing results in a map of the true wireless paths at each
RX location. The path estimation simulation creates a second
map of the estimated paths at each RX locations. Combined
with the original Gibson data, we have thus created a uni-
fied dataset where 3D models with camera and LiDAR data
are augmented with wireless ray tracing and wireless path
estimation. The dataset is made available in [30].

V. PATH ESTIMATION AND LINK STATE CLASSIFICATION
SIMULATION RESULTS
In this section, we describe the simulation parameters and
measured performance of the path estimation and link state
classifier on the data set in Section IV. We will discuss the
integration with navigation in the subsequent section.

A. ARRAY MODELING
We assumed a 28GHz array similar to several recent pub-
lished 5G designs and layouts [22], [44]. The parameters for
the arrays and signaling are shown in Table 1. The target
TX is assumed to be a UE device and the RX is a gNB. The
arrays use microstrip patch antennas and the beam patterns
of each array when directed at boresight are shown in Fig. 9.
As in [22], we create the multiple antenna arrays at both

the gNB and UE. Specifically, we assume three arrays with
azimuth angles 0◦, 120◦, and −120◦ and 0◦ elevation. The
multi-sector layout provides 360◦ coverage. For example,
Fig. 10 plots the maximum gain for each individual array and
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FIGURE 10. Array gain including the element gain from each gNB array as well as
the best for all three arrays. We see that by using multiple arrays we can obtain full
azimuth coverage.

FIGURE 11. Example received power spectrum along TX-RX direction pair along
with the location of the actual ray tracing paths of a LOS link and a NLOS link. The
black squares indicate the result of path estimation by the low-rank tensor
decomposition in Section III.

the maximum gain over all three arrays over [−180◦, 180◦]
the azimuth directions. We see that the minimum gain is
only approximately 3 dB below the maximum.
For the beam search codebook at the gNB, we simply use

the beams on 48 angles uniformly spaced in [−180◦, 180◦]
in the azimuth direction. Since the gNB has 16 elements
per array and three arrays, the use of 48 beams corresponds
to the number of orthogonal spatial degrees of freedom.
Similarly, in the UE we use 24 beams.

B. PATH ESTIMATION
As shown in Table 1, the TX power was set to 23 dBm with a
sample rate of 400MHz – standard in 5G deployments [43].
For the positioning signal, we transmitted a 2048 sample
random waveform for a total of duration of 5.1 µs to enable
the signal to be transmitted entirely in one 5G NR OFDM
symbol. The correlation (8) was performed via an FFT. Since
the positioning accuracy is only dependent on the sample
rate, duration and power — such as those used in 3GPP
positioning [4], [5], [6], [7], [8] — would have resulted in
similar performance.
The tensor decomposition path estimation algorithms in

Section III were then run at each location. Fig. 11 depicts a
result of the estimated paths at one LOS location (left) and
NLOS location (right). The red circles represent the angular

FIGURE 12. Distribution of the absolute error between the estimated strongest
path’s AoA from channel sounding and the AoA of the strongest path in real ray
tracing data set.

TABLE 2. Link state neural network classifier configuration.

locations of true paths where you can clearly observe path
clusters from the scattered reflections and diffractions. The
black squares are the estimated path locations and generally
extract the cluster centers.
The overall accuracy of the method is depicted in Fig. 12

which shows the CDF of the AoA error on the strongest
path across the 38 environments and 10 transmitter locations
described in the dataset in Section IV. The CDF is plotted
separately for LOS and NLOS cases with the NLOS case
plotted separately for the case of first-order and higher-order
NLOS. We see that the strongest path’s AoA errors differ
greatly between the three link states. Indeed, 98% of LOS
links and 85% of first-order NLOS links have errors less than
5◦. In contrast, for higher-order NLOS links, more than 40%
of errors are larger than 10◦. For this reason, the angular
estimates for the LOS and first-order NLOS links are much
more reliable when used for navigation.

C. LINK STATE CLASSIFICATION
We next evaluated the link state neural network described in
Section III-C. Our network attempts to classify the link state
(LOS, First-Order NLOS, Higher-Order NLOS, and outage)
from the estimated path parameters (16). As inputs, we use
the parameters from the K = 5 strongest detected paths.
The parameters of this link-state neural network are shown in
Table 2. When the TX When the TX angle is available, there
are 4 parameters per path for a total of 4K = 20 inputs. We
use a simple fully connected neural network with two layers
with 8 and 6 hidden units with the ReLU activation [47].
We also compare our neural network method to a modified
method from [25], one of the best prior work algorithms. In
paper [25], Huang and Molisch et al. propose the machine
learning based LOS and NLOS identification methods for
the MIMO system in vehicle-to-vehicle (V2V) networks.
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FIGURE 13. Loss of the link-state classification neural networks.

FIGURE 14. The 18 maps are used as the training set and the other 20 maps are
used as the test set. The yellow line shows the validation accuracy of our model which
reached about 88% after about 100 epochs.

The method of [25] uses a set of custom features (static and
time-varying characteristics), while our proposed approach
uses the raw MPC (the multipath component) data.
The network is trained on 18 of the 38 environments and

tested on the remaining 20. As described in Section IV, each
environment has 10 TX locations. We train and test only on
the valid indoor RX locations in each map. The resulting
total training set contains 483690 unique TX-RX links while
the validation set contains 563810 unique TX-RX links.
We train this network with links from a set of training

maps, resulting in a pre-trained link-state classification neu-
ral network. We tested the robot’s navigation algorithms on a
other set of different maps. It should be emphasized that the
test maps are completely new environments relative to the
robot, which also shows that our pre-trained link-state clas-
sification neural network can be extended to any unknown
new indoor environment.
We use the Adam optimizer [48] with a learning rate of

0.001 for 300 epochs. The loss is shown in Fig. 13, and
the accuracy is shown in Fig. 14. The yellow line represents
the accuracy of validation, while the blue line represents the
accuracy of training. From Fig. 14, we see that our model’s
validation accuracy reached 88% after approximately 100
epochs, while the modification of prior method obtains 84%.
The main contribution of our network is considering first-
order NLOS versus higher-order NLOS (a four-way link-
state classifier), not this increase in accuracy.
To visualize the errors, Fig. 15 plots the true and predicted

link states in a typical environment. The true link state (as
predicted by ray tracing and shown on the left) consistent

FIGURE 15. Two Link-States maps. (a) is truth from ray tracing tool and (b) is result
of the link-states classification neural network prediction.

FIGURE 16. The confusion matrix of the validation data set on only AoA method
and AoA+AoD method. AoA+AoD method improves the classification performance in
LOS, first-order NLOS, and higer-order NLOS links.

with common sense. In particular, all RX locations where the
TX can be directly seen are in the LOS state. From the right
figure, we see that the link state is predicted mostly correctly,
but there are some errors. For the most part, the estimates
are conservative meaning an LOS state is predicted as first-
order NLOS, or first-order NLOS predicted as higher-order
NLOS.
Finally, it is interesting that one can distinguish first-order

and higher-order LOS so accurately. Of course, from a sin-
gle multi-path component, one cannot know if it arrived
via one or more reflections. However, the neural network
demonstrates that the joint statistics across multiple path
components can reveal the number of reflections with a high
accuracy in completely new environments not part of the
training data set.

D. REMOVING THE TX ANGLE INFORMATION
As described in Section III-B, the TX angle estimate (�̂tx

�

in (16)) may not always be available as it requires synchro-
nization and knowledge of the TX codebook at the RX. To
study the effect of removing the TX angle, we re-trained
and re-evaluated the link classifier performance when the
TX angle is removed.
Fig. 16 plots the confusion matrix of the validation

data set using only RX angle (AoA) and RX and TX
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FIGURE 17. MmWave-based wireless path detection and link state classification are used to augment the Active Neural-SLAM module [11] by overwriting the navigation goal
from the wireless path estimation.

angle (AoA + AoD). With the exception of a very
small difference in the outage state, the accuracy of using
AoA degrades performance somewhat. For example, with-
out using the AoD estimate, the accuracy of LOS state
decreases from 96% to 88%. Furthermore, the AoA-only
method incorrectly classifies 25% of the LOS links and
the first-order NLOS state. For the remainder of the paper,
we will assume we have the TX information, although
localization without TX information is an area of future
work.

VI. INTEGRATION WITH ACTIVE NEURAL-SLAM
A. OVERVIEW OF ACTIVE NEURAL-SLAM
We conclude by integrating the path estimation and link state
classification into the state-of-the-art Active Neural-SLAM
algorithm of [11] to perform the target localization. We first
review the basics of the Active Neural-SLAM algorithm
of [11].
Neural-SLAM is a powerful new method for agent nav-

igation in unseen environments, sometimes referred to as
exploration. Exploration is a critical task in building intelli-
gent agents. In exploration, the goal of the agent is to explore
as much area as it can and as fast as possible. Efficient explo-
ration in a large environment requires the agent to effectively
map and memorize the already seen environment, estimating
its current state/pose and plan the next actions. Traditional
machine learning methods to learn to explore have been
successful, but these methods generally require end-to-end

reinforcement learning (RL) making the task of exploration
difficult in large environments and increase the sample com-
plexity. Instead, Chaplot et. al. [11] recently proposed Active
Neural-SLAM (see the lower half of Fig. 17) which uses
structured spatial representations, hierarchical policies and
search based planners. The Active Neural-SLAM consists
of three components: Neural-SLAM (fSLAM), Global Policy
(πG), and Local Policy (πL). The Neural-SLAM component
is trained using a supervised learning approach to predict
the top-down 2D map and estimate the agent’s current pose
based on the incoming RGB camera images and sensor pose
readings. The Global policy is trained using RL with rewards
proportional to the increase in coverage. The Global policy
takes as input the predicted top-down 2D map and the esti-
mated agent’s pose from the Neural-SLAM component to
output a long term goal on the map. Given the long-term
goal, predicted top-down map and agent pose estimate, a Fast
Marching planner computes the shortest path from the cur-
rent agent location to the long-term goal in the unexplored
area on the map. A short-term goal is generated on this
planned path at a farthest point within 0.25m of the agent’s
current location. The local policy is trained using imita-
tion learning, wherein it takes input as RGB camera images
and short term goal to output a navigational action. Active
Neural-SLAM uses AI Habitat Simulator and is shown to
out-perform existing end-to-end RL methods and other base-
lines on Gibson and Matterport datasets for exploration
tasks.
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B. INTEGRATION OF WIRELESS INFORMATION FOR
TARGET DISCOVERY
The modular structure of the Active Neural-SLAM frame-
work provides a simple method to add wireless information
for the target discovery problem. As mentioned in the
Introduction, suppose the mobile agent must locate and
navigate to target. The target’s location is not known, but
it broadcasts positioning signals. To navigate to the target
we can augment the Active Neural-SLAM module with the
wireless signal processing, shown in the top half of Fig. 17.
As described above, the mobile agent will have a wireless

receiver and can estimate the wireless paths and their angles
of arrivals (AoAs). If the target was known to be in a LOS
state, and the AoA was reliable, the agent could simply fol-
low the AoA of the strongest path. In Fig. 17, this navigation
goal is referred to as the “wireless-based navigation goal”.
Of course, the link state and the path estimate are not

known a priori by the mobile agent. We thus propose to use
the link state classification along with the estimated SNR of
the strongest path to make a decision on whether to use the
wireless-based navigation goal or not. If the wireless-based
navigation goal is selected, it can simply overwrite the nav-
igation goal in the Active Neural-SLAM module. If, on the
other hand, the wireless-based navigation goal is considered
unreliable, the mobile agent can use the exploration-based
goal from the original global policy. This selection concept
is illustrated in Fig. 17.
The resulting algorithm structure thus attempts to use the

wireless based AoA when it is accurate, but goes back to
the exploration when the wireless signals are not reliable or
not likely to point into a useful direction to the target.
We consider three possible selection algorithms for deter-

mining whether or not to use the estimated AoA from the
wireless detection:

• AoA based on SNR only: The robot follows the AoA of
the highest SNR path if the path SNR is above some
threshold in any link state. Otherwise, the robot follows
the goal from Active Neural-SLAM map exploration.

• AoA when LOS: The robot follows the estimated AoA
when the strongest path is in a LOS state and the SNR
is above the threshold.

• AoA when LOS or First-order NLOS: The robot follows
the estimated AoA when the strongest path is in a LOS
state or first-order NLOS and the SNR is above the
threshold.

In the simulations below we use a minimum SNR thresh-
old of 10 dB for all three options, which we found to give
the best results. Note that the second and third options
require link state classification and the third option requires
differentiation between first-order and higher-order NLOS.
To better evaluate the performance of our proposed AoA

when LOS or First-order NLOS wireless assisted algorithm,
we use a state-of-the-art completely computer vision-based
navigation algorithm which calls the Visual LOS CV-Based
SLAM navigation algorithm. The Visual LOS CV-Based
SLAM navigation algorithm is defined as that: the robot

FIGURE 18. The arrival success rate of three algorithms in easy, moderate, and hard
environments. Our proposed AoA when LOS or First-order NLOS wireless assisted
algorithm has the highest arrival success rate in all test levels, and it beats the
stat-of-art completely computer vision-based navigation algorithm.

first starts to use the Active Neural-SLAM algorithm [11] to
explore the unknown environment, and as soon as the target
appears in the robot’s field of view, we assume that the robot
uses a computer vision technology to identify and locate the
target with 100% accuracy, and then finally the robot sets
the goal on the position of the target and navigates itself.

C. EVALUATION
To evaluate different algorithms, we compared them to a
baseline algorithm where the robot knows the position (coor-
dinates) of the target (TX) and always sets walking-goal at
the TX. The baseline is essentially an oracle that provides
an upper bound on the performance of any algorithm that
does not know the TX location.
The baseline algorithm also provides a simple classifica-

tion of the environments. Twenty validation maps with a
total of 193 independently validated tests were run. Based
on the number of steps taken by the robot to reach the desti-
nation of the baseline algorithm, we classified the tests into
three difficulty levels: easy, moderate, and hard. And there
are 52 easy tests, 76 moderate tests, and 65 hard tests. We
will present the results separately for these cases.
In order to evaluate the performance of an algorithm, we

rely on two criteria: arrival success rate and arrival time.
The robot is defined to have succeeded at arriving at the
destination if it arrives at the TX location within 1000 steps.
The arrival success rate (sometimes, simply arrival rate) is
the fraction of the number of time of the robot succeeds in
arriving. In the case of a successful arrival, the arrival time
is measured relative to the baseline algorithm. As a result,
an algorithm with the lowest arrival time and highest arrival
success rate is preferable.
Fig. 18 plots the arrival success rates for the four algo-

rithms in the easy, moderate and hard environments. We
see that without the assistance of the link-state classifica-
tion neural network, the robot using the AoA based on SNR
only algorithm gets stuck and is unable to succeed in 11
percent of the moderate tests and 23 percent of the difficult
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tests. At the same time, the AoA when LOS or First-order
NLOS algorithm is superior to AoA when LOS. This result
suggests that the four-way link state classification provides
a more robust metric for using the wireless information. The
reason for this is that even though the estimation error of
AoA in the first-order NLOS is larger than the LOS, the
robot can still use the AoA information to navigate itself
and avoid getting stuck with high probability. As we use the
beam sweeping double directional path estimation for both
AoA and AoD, our link-states classification neural network
shows high accuracy in identifying LOS, first-order NLOS,
and higher-order NLOS. Since the estimation error of AoA
varies greatly under the three different link states, as shown
in Fig. 12, we consider that using the angular information in
the wireless signal to help navigation in the case of LOS and
first-order NLOS is the optimal solution which can reach a
highest arrival rate. In addition, the AoA when LOS or First-
order NLOS wireless assisted algorithm is the only one that
defeats the state-of-the-art completely computer vision-based
navigation algorithm in all three difficult levels. As a result,
the robot can utilize the information provided by the wire-
less signal to the maximum extent without being affected
by the noise in the wireless communications that may cause
the robot to move in the wrong direction.
In order to analyze the arrival time, Fig. 19 plots the

cumulative distribution functions (CDFs) of the arrival time
for the different algorithms in the three difficulty levels.
Instances where the algorithm did not succeed as arriving
are treated as a big arrival time. Note that the arrival times
are relative to the baseline with an arrival time of one being
optimal.
We see that in all three difficult levels, the arrival time of

AoA based on SNR only and AoA when LOS only algorithms
are slightly better than the Visual LOS CV-Based SLAM nav-
igation algorithm, which means that without a link-state
classification or with a three-way (LOS, NLOS, outage)
link-state classifier, the mmWave wireless system have very
limited optimization of the state-of-the-art completely com-
puter vision-based navigation algorithm. However, with our
new four-way link-state classifier (LOS, fisrt-order NLOS,
higher-order NLOS, outage), the AoA when LOS or First-
order NLOS wireless assisted algorithm performs most
effectively in moderate and hard level tests.

D. REPRESENTATIVE EXAMPLE
It is useful to look at a representative example, to visualize
the problems with navigation without the link state classifi-
cation. Fig. 20 shows the predicted map and route followed
by robot with AoA when LOS or First-order NLOS on the
top panel and AoA based on SNR on the bottom panel. The
robot is started at the same location in both cases. In this
case, the starting point are in higher-order NLOS link-state.
In the AoA based on SNR algorithm, the robot follows the
AoA. Since it is a high-order LOS, the direction is not valu-
able even if it is reliably detected. As a result, the robot
spends a significant amount of time in the area framed by

FIGURE 19. Three cumulative distribution function (CDF) plots show the arrival
speed in easy, moderate, and hard difficult level. At the moderate and hard difficulty
levels, our proposed AoA when LOS or First-order NLOS wireless assisted algorithm
performs most effectively. The results demonstrate the effectiveness of the four-way
link-state classification neural network in improving the robot indoor navigation
problem.

the black dashed line in Fig. 20(b). In contrast, the AoA when
LOS or First-order NLOS algorithm successfully detects that
the location is a high-order NLOS state. The robot then
ignores the AoA initially and instead relies on the Active
Neural-SLAM exploration which rapidly takes it into a new
area.

VII. CONCLUSION
We have considered using mmWave-based positioning for
target localization in unknown environment. This problem
is relatively new in the context of mmWave-based localiza-
tion. We have considered an algorithm that uses advanced
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FIGURE 20. An example of two different robot walling paths are generated in a test
case. In (a), the robot uses the AoA when LOS or First-order NLOS and spends 150
steps to arrive the TX. In (b), the robot uses the AoA based on SNR and spends 358
steps to reach the TX. The area framed by the black dashed line shows the difference
between the two algorithms.

wireless path estimation and link state classification meth-
ods and integrated these into a state-of-the-art neural SLAM
module for complete robotic navigation. Our results demon-
strate that target navigation is possible, even in challenging
new environments. In particular, the results demonstrate the
importance of accurately determining the link state including
differentiating between first-order and higher-order NLOS
states.
The proposed method is, however, a starting point and

there are several open avenues for future work. Most obvi-
ously, the wireless and visual sensor data are not currently
processed jointly: the proposed algorithm uses one or the
other at any given time. Moreover, in the proposed approach,
the wireless information is not used for SLAM, only for
localization. There is now a large body of work on mmWave
SLAM [3], [49] and one avenue of future work is to incor-
porate these or other methods. Indeed, the camera and RF
signals represent a “digital twin” from one another with
significant possibilities for joint processing. More broadly,

there is a rich interplay between visual processing, wireless
sensing and navigation. To assist future work in this area,
we have developed a fully open source data set [30] that
integrates the robotic simulation, camera data and wireless
coverage.
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