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Abstract—We report 135GHz MIMO receiver array tile 

modules. The module integrate four or eight RF channels on an 
LTCC carrier, each channel having a 22nm SOI CMOS IC for RF-
-baseband and a linear microstrip patch antenna array; DC, 
baseband IQ and LO reference signal connections are by printed 
circuit board connected to the LTCC carrier. Digital beamforming 
is demonstrated with the 8-element array, showing 12o 3-dB beam 
width and 56o angular steering range, and with the 4-element array, 
showing 12o 3-dB beam width and 20o angular steering range 
before the appearance of grating lobes. The 4-element arrays, in 
single-beam operation, shows -15.7 dB RMS error vector 
magnitude receiving 1.34Gb/s QPSK data, and shows -15.6dB 
error vector magnitude receiving 1.92Gb/s 16QAM data. 

Keywords—Heterogeneously integrated receivers, D-band 
receiver, MIMO receiver, millimeter wave packaging. .  

I. INTRODUCTION  
100-300GHz wireless systems will benefit from large 

available bandwidths and, given the short wavelengths, 
which permit compact transceiver arrays with many 
elements, massive spectral re-use via massive spatial 
multiplexing (MIMO). Extremely high link capacities are 
feasible [1] in endpoint and backhaul links; endpoint links 
provide data transmission between a hub and many mobile or 
fixed users, while backhaul links transmit data from the hubs 
to the internet backbone.  

Reported D-band (110-170GHz) receivers and 
transceivers include single-channel ICs [2,3,4,5,6], packaged 
single-channel transceivers [ 7 , 8 , 9 ] , dual-polarization 
transceivers [10], a 143GHz outdoor link [11], a 2×2 line-of-
sight MIMO link [12] , a link using 4- and 16-element arrays 
[13], and array transceiver ICs [14]. Here we report receiver 

hub array tile modules for a 135GHz MIMO endpoint link. 

 
Figure 1: The array (a) tiles horizontally, producing 

horizontally-steered beams having narrow lateral and 
moderate vertical beam width. Users are primarily 
distributed laterally over the ground (b) but some distributed 
vertically in tall buildings (c). Given a maximum building 
height, the range R decreases rapidly as the elevation angle φ 
increases, hence vertical beam steering is not required.  

II. APPLICATION, ARCHITECTURE, AND CONSTRUCTION 
The receiver tile module is design for use in sets to form 

32-element or larger horizontal linear array (Figure 1a) that 
simultaneously receives many incident signals, separating 
them (Figure 1b) by their horizontal angle of incidence θ. If 
most users are on the ground, with fewer in tall buildings, a 
linear (1D) array better separates user signals than a 2D 
array. Even with a small vertical -3dB beam width and no 
vertical beam steering, signals from the top of moderately 
tall buildings can be received because, given some maximum 

(a) 

(b) (c) 
Figure 2: Eight-channel 140GHz MIMO receiver array tile module: (a) photograph of the overall module, (b) cross-section diagram showing the 
interface printed circuit boards , the LTCC carrier, connectors, and ICs, and (c) photograph of the LTCC carrier showing the antennas and CMOS 
ICs. The overall module is 450mm × 15mm, while the LTCC carrier is approximately 12 mm × 25 mm. 
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height, as the elevation angle φ increases, the received signal 
strength will increase if the antenna is designed so that its 
gain decreases less rapidly than sin-2(φ) at large φ.  

The array is designed for use with MIMO digital 
beamforming [15,16,17], which, from the array's IQ output 
signals, determines the data and direction of the received 
signals. System link budget analysis is reported in [1].  

Figure 2 shows photographs of the full module and of the 
assembled LTCC carrier, and shows a module cross-section. 
The module has an array of eight antennas, at 0.65λ pitch, 
each being a linear microstrip patch array. These antennas 
feed eight single-channel receiver ICs [3], in Global 
Foundries 22nm SOI CMOS that down convert the received 
RF signals, generating differential baseband IQ signals. 
Figure 3 shows a detailed block diagram.  

 
Figure 3: The MIMO receiver array tile module contains an LTCC 
carrier with eight receiver channels, each channel having a linear 
microstrip patch antenna array and a CMOS receiver IC, plus two 
printed circuit boards providing baseband IQ signal and DC 
connections, plus a 4:1 spitting network for the 15GHz LO 
reference signal. 

The CMOS ICs are attached by flip-chip bonding using 
50 μm Cu studs; [18] reports the design and performance of 
the antennas and flip-chip interfaces. The measured gain of a 
single element of the 8-element antenna array, itself an 8-
element series-fed patch antenna, is 11dB, with 12o E-plane 
(vertical) and 70o H-plane (horizontal) 3-dB beam width. The 
horizontal beam width is then decreased by the array gain.  

 
Figure 4: Experimental configuration for receiver array 
characterization. The FPGA generates modulated data on a 1GHz 
IF, an IQ downconverter and IQ upconverter then convert this to a 
4GHz IF, and a mm-wave mixer translates this to 136GHz, with an 
128GHz image outside the receiver passband. The test transmitter 
is mounted on a rotation stage 15cm from the array. The receiver 
array generates 1GHz IF signals, at quadrature phase between I and 
Q; the I-signals are captured by the FPGA. 
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Figure 5: Measured gains of the receiver channels on the 4-channel 
module.  

III. ARRAY CHARACTERIZATION 
To test the arrays (Figure 4), a PC running MATLAB 

generates a numerical description of a 1GHz bandwidth 
OFDM waveform and transfers it to an FPGA, which 
generates the analog waveform on a 1GHz IF. An IQ 
downconverter (ADI ADL5380) and upconverter (ADI 
ADL5375) then shift the signal to a 4GHz IF. The signal is 
them mixed against a 132GHz LO to generate a 136GHz 
drive signal, plus an 128GHz image response that lies 
outside the receiver passband. A horn antenna, on a rotation 
stage at 15cm range, illuminates the array with the 136GHz 
drive signal. If the receiver were to convert its signals to 
baseband, then its 16 IQ outputs would have to be digitized, 
yet the FPGA only has eight ADCs. Instead, the receiver 
array LO is offset so that its outputs are at a 1GHz IF. The 
quadrature phase outputs are then redundant, and the eight 
array channels are monitored by the eight FPGA ADCs.  

Two eight-channel receiver modules were constructed; 
both have assembly defects. In one, four of the eight 
channels function, resulting in a 4-element array at 1.3λ 
pitch. In the second, all eight channels function, but 
excessive DC supply lead resistance prevents proper biasing 
for high-data-rate operation. Figure 5 shows the gain, versus 
received power, for the channels on the 4-channel module.  

To form and aim beams, the array must be calibrated, i.e. 
differences between channel gains and phases are measured 
and then corrected for. Given the significant differences 
between channel gains, only phase errors were calibrated. 
Device drivers and calibration procedures were adapted from 
Pi-Radio open-source code [19]. These first measure the per-
channel fractional timing offsets of the received data streams 
and the channel-channel variations in the signal phase. The 
resulting calibration factors are applied to the receiver output 
signals to perform beamforming and data transmission. 
experiments.  

Having calibrated the arrays, radiation patterns were then 
generated for the 4-element and 8-element arrays (Figure 6). 
In each measurement, the illuminating horn antenna is 
positioned at some particular angular of incidence, and the 
array then computes the received power as a function of 
direction. This demonstrates digital beamforming. The 4-
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element array (Figure 6a) shows 12o 3-dB H-plane 
(horizontal) beam width, but, because of the 1.3λ element 
spacing, only 20o angular steering range before the 
appearance of grating lobes. The 8-element array shows 12o 
3-dB H-plane (horizontal) beam width and over 56o angular 
steering range.  
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Figure 6: Measured array patterns for (a) the four-channel receiver, 
taken with the test transmitter located at nine different angular 
positions and (b) the eight-channel receiver, taken with the test 
transmitter located at seven different angular positions.  

Figure 7 shows data transmission experiments. The data 
is transmitted using OFDM, with 960kHz subcarrier spacing. 
The constellation diagrams show the demodulated signal 
after frequency-domain OFDM equalization was performed. 
The pilot density is approximately 20%. In single-beam 
operation, there is -15.7dB RMS error vector magnitude in 
1.34Gb/s QPSK transmission, and -15.6dB error vector 
magnitude in 1.92Gb/s 16QAM transmission. Figure 8 
shows the error vector magnitude as a function of data rate.  

Table 1 compares state-of-the-art packaged D-band (110-
170GHz) multi-channel receivers and transmitter/receiver 
link demonstrations. 

 

 
150 Mbit/s 1.34Gbit/s 

-21.9dB EVM, RMS -15.7dB EVM, RMS 

 
300 Mbit/s 1.92Gbit/s 

-20.8dB EVM, RMS -15.6dB EVM, RMS 
Figure 7: Measured receiver QPSK and 16QAM modulation 
constellations and computed error vector magnitude. 
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Figure 8: Computed error vector magnitude, in dB relative to the 
constellation's RMS amplitude, as a function of data rate. 

Table 1. Comparison between state-of-the-art multi-channel receiver 
modules at D-frequency band (110-170GHz) 

Result [10] [12] [13] [14]* this work 
Freq, GHz 113 135 140 130-170 140 
IC CMOS SiGe CMOS SiGe CMOS 
Package PCB PCB and 

lenses 
PCB Glass LTCC 

Type 1-beam 2×2 LOS  
MIMO 

MIMO$ single-beam 
array 

MIMO 

TX/RX TX,RX TX, RX TX, RX TX, RX RX 
channels 2 2 4, 8,16 8* 4 (8) 
Data 1× 80Gb/s 2× 

16Gb/s 
6Gb/s  1.34Gb/s 

1.92Gbs 
Format 16QAM QPSK 16QAM  QPSK 

16QAM 
EVM     -15.7dB 

-15.6dB 
Link air air air  air 
Distance 10cm 6cm 15m  15cm 
$MIMO-compatible digital beamforming: 1 beam demonstrated 
*No experimental data shown for the array. 
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IV. CONCLUSIONS 
We report a 8-channel MIMO hub receiver array tile 

module using CMOS receivers and a microstrip patch 
antenna array on an LTCC substrate. The module is designed 
to tile into larger arrays to serve high-data-rate endpoint links 
to multiple mobile users. Digital beamforming has been is 
demonstrated with the arrays, showing 12o 3-dB beam width 
and 56o angular steering range, and data transmission has 
been demonstrated at up to 1.92Gb/s. With the construction 
of several of these modules, high-capacity D-band MIMO 
hub receivers should be feasible.  
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