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Abstract— Simulating soft robots in cluttered environments
remains an open problem due to the challenge of capturing
complex dynamics and interactions with the environment. Fur-
thermore, fast simulation is desired for quickly exploring robot
behaviors in the context of motion planning. In this paper, we
examine a particular class of inflated-beam soft growing robots
called ‘“vine robots,” and present a dynamics simulator that
captures general behaviors, handles robot-object interactions,
and runs faster than real time. The simulator framework uses a
simplified multi-link, rigid-body model with contact constraints.
To bridge the sim-to-real gap, we develop methods for fitting
model parameters based on video data of a robot in motion
and in contact with an environment. We provide examples of
simulations, including several with fit parameters, to show the
qualitative and quantitative agreement between simulated and
real behaviors. Our work demonstrates the capabilities of this
high-speed dynamics simulator and its potential for use in the
control of soft robots.

I. INTRODUCTION

Dynamics simulators are widely used in robotics for
applications such as design exploration, motion planning,
controller tuning, and human operator training. However,
simulating soft robots in cluttered environments remains an
open problem due to the challenge of modeling complex
dynamics and handling environment interactions. There are
simulators that use Finite Element Analysis to achieve high
accuracy [1], but they are often slow and difficult to use. In
this work, we are interested in a simulator that is suitable
for motion planning, in which it is common to opt for a
low-fidelity model in order to compute dynamics quickly. In
particular, we are interested in a dynamics simulator that: (1)
captures bending and growing behaviors, (2) handles robot-
object interactions, (3) runs faster than real time, and (4) is
amenable to classical motion planning strategies.

Real-time simulators currently exist for elastomer-based
soft robots [2], [3]. In contrast, our work examines a partic-
ular class of soft growing robots called “vine robots,” which
has shown potential for use in applications such as medical
devices as well as navigation and exploration [4], [5]. Unlike
elastomer-based robots, these inflated-beam robots are built
from flexible but inextensible materials. These robots can
grow over 100 times their original length via pneumatic
eversion. In Fig. 1, we provide an example of a vine robot in
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Fig. 1. Trajectory of a simulated robot (blue) overlaid on video frames of
a soft growing robot (yellow) in a cluttered environment.

motion, and overlay a simulated trajectory that was generated
using the framework presented in this paper.

Prior work has contributed models characterizing vine
robot behavior [6]-[9], and recent papers have explored mod-
els of vine robot interactions with the environment. Haggerty,
et al. modeled transverse and axial buckling modes that
result from environment interaction to predict the pressure
required for eversion [10]. Greer, et al. developed a kinematic
model for a vine robot growing in a cluttered environment
[11]. Selvaggio, et al. examined robot-obstacle interactions
in the context of workspace analysis and presented an object-
interaction model that accounts for point contacts [12]. These
models are for planar motion, as is the case in our work.
Our work differs in that we present a simplified rigid-body
dynamic model that can handle interaction with objects of
various geometries. This is more general than the existing
kinematic and object-interaction models. In addition, we
incorporate this dynamic model into a simulator framework.

Simulation of rigid-body dynamics is possible with exist-
ing software [13]-[16], and vine robot growth has previously
been simulated in Unity [17]. Most of these simulators use
minimal coordinate representation. In contrast, our work uses
maximal coordinates due to the benefits discussed in Section
II. Moreover, because we aim to use our framework in
motion planning, it is beneficial to have access to the internal
details of the dynamics model, including constraint Jacobians
and other derivatives. This low-level access enables tighter
integration with optimization software for motion planning,
system identification, and trajectory optimization.

The main contributions of our work are:

1) A vine robot simulator framework that captures general
behaviors, handles robot-object interactions, runs faster
than real time, and is amenable to motion planning.

2) A method for fitting model parameters based on video
data of a vine robot in motion.

3) Validation of the framework by comparing simulations
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to real vine robot behaviors.

The remainder of the paper is organized as follows: Section
II describes the details of the simulator framework. Section
IIT presents a method for fitting model parameters to bridge
the sim-to-real gap. Section IV characterizes the performance
of the simulator framework in order to validate the methods
proposed in Sections II and III. Finally, Section V summa-
rizes our conclusions.

II. SIMULATOR FRAMEWORK

We draw from previous work on dynamic simulation of
rigid bodies with contact to design a simulator that is compu-
tationally efficient. We make three key design choices: First,
we use a dynamic model with a constant-size state vector
so that computational complexity remains fixed regardless of
robot growth over time. Moreover, constant-size state vectors
are amenable to classical motion planning strategies. In
contrast, a variable length state vector would add significant
complexity during motion planning (e.g., implementing a hy-
brid system where the model changes at specific timesteps in
the trajectory). Second, we use an impulse-velocity dynamics
formulation. Because collisions between rigid bodies result
in velocity discontinuities, instantaneous accelerations and
forces at the moment of impact become infinite. To address
this, dynamics are written in terms of velocities and impulses.
Third, we use the Lagrange multiplier formulation originally
presented by Baraff [18] to define the model and equations of
motion. The benefits of the Lagrange multiplier formulation
are in its simplicity: (1) all coordinates are in the world
frame, and (2) no recursive computations are required (as is
the case with the recursive Newton-Euler and Featherstone
algorithms [19], [20]). Furthermore, these benefits can be
achieved while matching the computational efficiency of
traditional minimal-coordinate techniques [18], and outper-
forming them in numerical robustness and scalability [21].

In the remainder of this section, we present the details
of the simulator framework. In II-A, we provide additional
background information on the Lagrange multiplier method.
In 1I-B, we explain the simplified rigid-body model used
to abstract the vine robot. In II-C to II-E, we describe the
constraints that must be satisfied at any given time. In II-F
and II-G, we write out the stiffness and damping models as
well as the full robot dynamic model. Finally, in II-H, we
combine all previous subsections into a single algorithm for
simulating vine robot dynamics.

A. Lagrange Multiplier Formulation

In the Lagrange multiplier formulation, rigid bodies are
described with maximal coordinates, which equates to 3
degrees of freedom for each rigid body (assuming planar
motion). Joints between bodies are modeled with explicit
constraints, and Lagrange multipliers associated with con-
straint forces (or in this work, constraint impulses) are
calculated at each time step along with the next state.

Constraints are written in the form ¢(q) = 0, where the
function c(q) defines a vector of constraint errors given
a robot configuration q. The constraint impulses act in

opposition to the constraint errors. Specifically, the constraint
impulse vector A is defined in a particular basis that depends
on ¢(q), and the mapping of A from the constraint basis to
maximal coordinates is the Jacobian of the constraint equa-
tion, i.e. J = g—;(q). This yields the following dynamics:

MAv = J" X+ FAt, (1)

where M is the (constant) mass matrix, Av = Vg1 — Vg is
the change in velocity from timestep k to k + 1, J | maps
constraint impulses A into maximal coordinates, F' contains
other forces such as gravity, and At is the timestep length.

We note two important characteristics of the dynamics
formulation: First, dynamics are at the level of velocities
and impulses rather than accelerations and forces due to
the discontinuities that arise in contact dynamics. Second,
this is an implicit formulation wherein simulating dynamics
requires finding A and vj; such that the resulting motion
satisfies the system constraints at timestep & + 1. Thus, this
formulation does not suffer from the constraint drift problem
common in naive maximal-coordinate implementations [21],
[22].

B. Rigid-Body Model

We define a dynamic model that abstracts the vine robot as
a series of rigid bodies. Since we use maximal coordinates,
the configuration for each body is (z,y, ), where (z,y) is
the position of the center of mass and 6 is the orientation,
all expressed in the world frame (Fig. 2). The configuration
q for the entire vine robot is the concatenation of the
configurations for each body, ordered from the base to the
tip. Similarly, the velocity vector v for the entire vine robot
is the concatenation of the velocity vectors for each body.

The series of rigid bodies are connected via alternating
pin and prismatic joints. The first pin joint is between the
first body (at the base of the robot) and the world frame
origin. An illustration of these alternating joints is shown in
Fig. 2. The use of prismatic joints is an abstraction of the
actual mechanism for growth. In reality, vine robots grow via
eversion, i.e. lengthening is achieved by adding new material
to the tip. However, our abstraction enables a fixed-length
state vector, which is important for fast computation and
compatibility with motion planning.

C. Joint Constraints

In this section, we define the joint constraints of the rigid-
body model.

1) Pin Joint: Let bodies 1 and 2 be connected via a pin
joint, where body 2 is more distal. The corresponding pin
joint constraint is that the distal endpoint of body 1 must have
the same coordinates as the proximal endpoint of body 2 as
illustrated in Fig. 3. In algebraic form, the pin constraint is
the vector equation:

(z1 + dcos(61)) — (xo — dcos(62))
(y1 + dsin(61)) — (y2 — dcos(62))

where (z;,y;,0;) is the configuration of body 4 and d is the
distance from the center of mass to the body’s endpoint.

=0, (@
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Fig. 2. Tllustration of the rigid-body model used in the simulator. The vine
robot is abstracted as a series of rigid bodies (m1, . . . , my) with alternating
pin and prismatic joints. For each rigid body, the configuration contains the
position of the center of mass and the orientation in the world frame. Contact
points (red) are used for handling environment interactions.

2) Prismatic Joint: Let bodies 1 and 2 be connected
via a prismatic joint, where body 2 is more distal. The
corresponding prismatic joint constraint is that the two bodies
must be collinear. For this to be true, the following vector

equation must be satisfied:
COS(91):| |:CL‘2 — ,7:1} —0, 3

SO I v o

where b; is the vector normal to body ¢ and h is the vector
from body 1’s center of mass to that of body 2 (Fig. 3).

3) Total Joint Constraint Equation: The joint constraint
for the entire robot is the concatenation of Equations (2) and
(3) for all bodies:

c(q) =0, “4)

where ¢(q) computes the left-hand sides of the joint con-
straint equations for each joint given robot configuration q.

D. Contact Constraints

We enforce contact constraints at specific “contact points”
along the robot. The contact points in Figs. 2 and 3 are shown
in red. In our implementation, contact points correspond
to pin joints, but this choice is arbitrary, and number and
location of contact points may be freely chosen.

Each contact point must satisfy the contact complementary
constraints, which can be summarized as: (1) no interpenetra-
tion (a contact point cannot be inside an object); (2) normal
forces exerted by objects must be non-negative (an object
cannot pull the robot towards it); and (3) normal forces can
only be exerted when the distance between the contact point
and the object is zero,

®(q) >0
n>0 (5)
®(q)'n =0,

where ® computes the vector of signed distances between
each contact point and each object in the environment, and
n is a vector of the normal forces exerted by the environment
at the contact points. The direction of each normal force is
the outward-pointing surface normal vector of each object,
so n need only store a scalar value for each normal force.
This method for handling contact interactions is an ap-
proximation of actual contact interactions whereby contact

Fig. 3. Tllustrations of joint constraints. (a) For a pin joint, endpoints from
body 1 (m1) and body 2 (m2) must be coincident (red circle). (b) For a
prismatic joint, we define normal vectors b; for body i, as well as vector h,
which goes from body 1’s center of mass to that of body 2. The prismatic
joint constraint is that the two bodies be collinear, i.e. by L h and ba L h.

can occur at any point along the robot. Subsets of contact
points can approximate line contacts, and sliding contact is
also captured. Potential problems arise when the spacing
between contact points is large enough that simulations
become unrealistic (e.g. an object can pass through the
robot). Thus, it is important to place contact points such that
the distance between neighboring points is small compared
to the size of objects in the environment. This results in
a trade-off where increasing the number of contact points
improves the accuracy of contact behavior but increases
computational complexity. As a rule of thumb, the maximum
distance between contact points should be smaller than the
minimum corner radius of all objects.

E. Growth Constraints

In our framework, we treat the growth rate of the robot as
a control input u. In doing so, we introduce a growth rate
constraint and a corresponding constraint impulse w. While
we could have defined growth forces and included this in
the external force vector F' in Equation (1), we chose to add
a growth rate constraint because prior work with hardware
implementations often used a feedback controller for the
growth rate [5], [23]. With a feedback controller, actuation
is adjusted to reach a target growth rate. Similarly, with the
growth rate constraint in our simulator framework, constraint
impulses are computed to achieve a target growth rate. The
growth constraint is represented as:

g9(q,v) —u=0, (6)

where the function g(q, v) computes the growth rate of each
prismatic joint via robot kinematics.

While there is no limit on the length of prismatic joints,
contact points must remain well-spaced. In practice, we split
the overall desired growth rate equally amongst prismatic
joints. While this is different from an actual vine robot
(growing from the tip), it keeps contact points evenly spaced.

F. Bending Stiffness and Damping
We model the system response to bending with torsion
springs and dampers at the pin joints. We express this as:

7(q,v) = —K6(q) — CO(v), (7

where K is the stiffness matrix, #(q) computes the pin joint
angles given a robot configuration, C' is the damping matrix,
and 9(V) computes the pin joint velocities given a robot
velocity. Incorporating this into the robot dynamics given
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by Equation (1) requires a matrix R that maps these torques
into maximal coordinates:

F = R7(q,v). (8)
G. Dynamics

Having defined the system constraints and external forces,
we can write out the robot dynamics. The system constraints
include joint constraints, contact constraints, and growth
constraints. Per the Lagrange multiplier formulation, we
introduce three corresponding constraint impulses that we
refer to as A, n, and w. Combining these with the spring
and damping forces yields:

M1 —ve) =J A+ L n+ G 'w+FAt, (9)

where M is the mass matrix, v; is the velocity at timestep ¢,
A, n, and w are constraint impulses, J T,LT, and GT are
Jacobians that map the constraint impulses into maximal
coordinates, F captures spring and damping torques, and At
is the length of the timestep.

For the configuration dynamics, we use the semi-implicit
Euler method commonly used for simulating rigid-body
dynamics with contact [24]. Specifically,

Ai+1 = Ak + Vi1 AL, (10

where qj, and gy are the configurations at timestep & and
k + 1 respectively.
H. Simulator Algorithm

We now synthesize the information from the previous
sections and present the simulator algorithm. The high-level
steps are listed in Algorithm 1.

Simulating the dynamics requires finding values for the
constraint impulses such that the resulting motion satisfies
the system constraints at the end of the time step. This is
equivalent to solving a feasibility problem satisfying:

MVip1—ve) =J A+ L n+ G w+FAt
Qi+1 = Ak + V1AL
c(qk+1) =0
®(qrt+1) > 0
n>0
®(qx+1) ' n=0
g(qk+1avk+1) —u=0,

where the decision variables are qx41, Vi1, A, 1, and w.

(1)

Algorithm 1 Simulate Dynamics

Require: qg, vi, ug, At
compute J(qy) and ¢(qx)
compute L(qy) and ®(qy)
compute G(qy, v) and g(ay, vi)
solve Quadratic Program (QP)
Vi1 < QP optimal solution
Qit1 < 9r + Vi1 A
return qiy1, Vi1

We apply two simplifications that reduce the computation
cost. First, we linearize the constraints and use Equation (10)
to approximate dq as vi41At. For the joint constraint,

c(Qr+1) = c(ar) + Jvi1At, (12)
where J = g—;(qk). For the contact constraint,
(qrt1) = P(ak) + Lvi1At,

where L = g%(qk). For the growth constraint,

13)

9(Ak11, Vir1) = g(ak, Vi) + gqVir1At + g, Av
_ - (14)
~ g(qka Vk) + Gvk-‘rla

where

AV = V1 — Vi,
g(ak, vi) = 9(dr, Vi) — guVi,and
G = g¢Vir1At + go.

These linearizations eliminate the dependence of the con-
straints on qx41. Thus, we remove qy; from the feasibility
problem and compute it with Equation (10) once vy is
known. Second, we reformulate the linearized feasibility
problem as the following quadratic program (QP):

e 1 T T
— M — M FAt
ml‘rfllirfllze 5 Vi1 M Vi1 Vi1 (Mvy, + )
subject to c(dr) + Jvp1At = 0, (15)

O(qr) + Lvir1At >0,
§(qk, vi) + Gviy1 —uy, = 0.

The feasibility problem (11) corresponds to the Karush-
Kuhn-Tucker (KKT) conditions of (15). This allows us to
leverage fast, efficient QP solvers like the Operator Splitting
Quadratic Program (OSQP) solver [25] used in this work.

III. FITTING MODEL PARAMETERS

The framework presented in Section II is sufficient for
generating qualitatively realistic vine robot behaviors. How-
ever, it is necessary to bridge the sim-to-real gap by fitting
model parameters to data. In our work, the rigid-body model
is an abstraction of the vine robot, so we are unable to
collect explicit measurements of the state vector defined
in Section II-B. Thus, we are faced with a joint state and
parameter estimation problem. A common technique for es-
timating parameters given missing or hidden variables is the
Expectation-Maximization algorithm (EM) [26]. However,
we can collect video data of a vine robot in motion, which
provides an observation of the hidden state variables. By
leveraging this additional information, we can use a batch
nonlinear least-squares method and avoid complexities from
the recursion in EM.

We pose the joint state and parameter estimation prob-
lem as a single optimization problem and simultaneously
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fit model parameters as well as a trajectory. This method
assumes the presence of errors in both the dynamic model as
well as the measurements (i.e. video data). Thus, rather than
treating the measurements as ground truth and placing hard
constraints on satisfying dynamics, we form an objective
function with two goals: (1) minimize deviations from the
reference trajectory, and (2) minimize deviations from the
dynamic model. Specifically, we solve:

N N-1
e ~ 2 T
yinimize ;IIpi—p(qi)Il + ; r, Rr;
subject to Z;1+1 — f(Z;, K,C)=r;, i=0,...,N—1,
e(@;)=0, i=0,...,N,
g(qi,vi) =u;, i=0,...,N,
¢(q;) =0, i=0,...,N.
(16)

where Z = {Zy,...,Zn} is a robot trajectory over N
timesteps, Z; is the concatenation of configuration q; and
velocity v;, K and C are stiffness and damping matrices
as defined in Equation (7), and r; is the deviation from
the dynamic model from timestep 7 to 7 + 1. Measurements
p: = {p},...,pl'} are points that are evenly spaced along
the length of the real robot in the i*" video frame. We
use computer vision techniques to find these coordinates
for each frame in the video (e.g., localization of fiducials
on the vine robot). In order to compare this set of points
with a simulated vine configuration q;, we define a function
p(q) that interpolates n points along the length of the
simulated robot in order to correspond with the extracted
measurements p,;. R is a diagonal matrix of weights that
roughly translates to the level of trust in the dynamic model.
This is because increasing the values in R will encourage
lower values for r and thus smaller deviations from the
model. f(Z;, K,C) computes the state at the next time step.
The last three constraints ensure that the joint, contact, and
growth constraints are satisfied at all timesteps. Because we
have a video reference, we know a priori which rigid bodies
are in contact with an object at each time step. Thus, we use
a modified contact constraint ¢(q;) to compute the signed
distances for cases where the distance ought to be 0.

IV. PERFORMANCE

In this section, we characterize the performance of our
simulator framework. First, we validate runtime performance
and measure how this scales with model size. Second, we
discuss simulator accuracy by comparing real vine robot
behaviors with simulated behaviors produced with fit models.
Finally, we demonstrate general environment interactions by
providing an example simulation in a cluttered environment.

A. Runtime and Scaling

To characterize the runtime performance of the simulator,
we consider a vine robot growing at a constant growth rate in
an environment with a single, circular object. Fig. 4 shows an
example of a 4-second trajectory in this environment, with

Fig. 4. Frames from a visualization of a simulated trajectory. A circular
object in the environment is shown in green. The left end of the robot was
fixed to the origin, and a constant growth rate control input was applied.
The model discretizes the vine robot into 30 rigid bodies. Contact points
are shown in red.

a discretization of the vine robot into 30 rigid bodies. In
this example, the timestep At was 10 ms, and the average
runtime per timestep was 3.0 ms.

We repeated this procedure for different discretizations of
the vine robot, which correspond to different numbers of
bodies in the model, and plotted the average runtime per
timestep for each model in Fig. 5. These results show that
(1) there is a linear relationship between model size and
simulator runtime, and (2) the simulator runs in real time
for models with upwards of 70 bodies.

B. Accuracy

To characterize the accuracy of behaviors generated by
the simulator framework, we present two examples of fitting
model parameters using the optimization problem defined
in Section III. In these examples, we specify a 10-body
model and define a mass matrix that models the bodies as
hollow cylinders. We fit scalar values for the stiffness and
damping coefficients (i.e. we make simplifying assumptions
that stiffness and damping are the same at each joint, and
that these torques are linear in behavior). However, the
fitting procedure can accommodate more general stiffness
and damping models as well. Both examples use Interior

2 e Simulator Runtime ®
o E . °
= = 10| Real-time ~ |}..... o 0. ... |
§ 2 °
~ é °
W 5 o ° *
< B o

= .\ | | | |

20 40 60 80 100
Number of Rigid Bodies in Model
Fig. 5. Runtime results for different discretizations of the vine robot. For

each model, we computed a 4-second trajectory, and recorded the average
runtime per timestep. The plot shows a linear relationship between runtime
and model size. The length of each timestep was 10 ms, demonstrating that
the simulator is able to generate trajectories in real time for upwards of
models with 70 bodies.
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Fig. 6. Results from the fitting method presented in this paper for a
cantilevered robot oscillating upon release from an initial displacement in
the y-axis (illustrated). The plot compares the y-coordinates of the robot
tip in the trajectory from the reference against that from the fit model. The
mean absolute error is 3.3 mm.

Point OPTimizer (IPOPT) as the optimization solver [27].

1) Oscillation: As a baseline example, we consider the
scenario of a cantilevered robot oscillating upon release from
an initial displacement (Fig. 6). In this example, there are
no objects in the environment, and there is no growth of
the robot over time. The reference trajectory used in the
fitting procedure came from experimental high-speed video
of an inflated beam marked with fiducials. We extracted a
section of the video corresponding to two oscillations of the
beam. The full video showed third-order dynamics that are
noticeable over a longer time horizon, and we plan to address
modeling this more complex behavior in future work.

The results of the fitting procedure are plotted in Fig. 6.
As a metric for accuracy, we compared the y-coordinate
trajectory of the robot tip between the fit model and the
real robot. The mean absolute error of the y-coordinate was
3.3 mm. Our results validate the ability of the simulator
framework to capture bending modes of the vine robot.

2) Growth Into Wall: As an example of environment
interaction, we consider the scenario of a vine robot that
grows and comes in contact with a wall, causing the distal
endpoint to slide along the wall as the robot bends and
continues growing. We illustrate the contact interaction in
Fig. 7. The reference trajectory used in the fitting procedure
came from a video of the scenario described above. We
extracted a section of the video during which the robot tip
was in contact with the wall. In the fitting optimization, the
modified contact constraint ¢(q;) enforces the robot tip to
have zero distance from the wall.

The results of the fitting procedure are plotted in Fig. 7.
As a metric for accuracy, we compared the x-coordinate
trajectory of the robot tip between the fit model and the
real robot. The mean absolute error of the x-coordinate was
1.1 mm. Our results validate the ability of the fitting proce-
dure to optimize parameters in more complicated scenarios
involving contact and growth.

C. Cluttered Environment Demonstration

To demonstrate that the simulator can generate realistic
behaviors with multiple contact interactions, we present a
simulation of a robot growing in a cluttered environment.

e 170 — T T T
g
8
g 160 |- .
o
=
o
I .
? 150 |- — video |
o]
= — fit
= ! ! ! ! I
0 ) 10 15 20
Timestep
Fig. 7. Results from the fitting method presented in this paper for a vine

robot growing into a wall (illustrated). The plot compares the x-coordinates
of the robot tip in the trajectory from the reference against that from the fit
model. The mean absolute error is 1.1 mm.

We based the environment structure on an existing video to
show the qualitative agreement between the simulated and
real trajectories. For the simulation, we used a model with
40 bodies and generated a 3-second trajectory. The results are
overlaid on the original video in Fig. 1. This example features
simultaneous contact interactions at multiple points along the
vine robot as well as navigation through passageways.

V. CONCLUSION

In this work, we presented a dynamics simulator for
soft growing robots that generates realistic behaviors, han-
dles environment interactions, runs in real time, and is
amenable to motion planning. We designed a framework
that uses a simplified multi-link model and incorporates
existing methods for rigid-body dynamics with contact. We
provided a fitting procedure that bridges the sim-to-real gap.
Finally, we characterized the performance of the simulator
framework in terms of runtime, accuracy, and capability. The
computational efficiency and amenability to motion planning
of our high-speed simulator validates its potential for use
in the control of soft robots. Our implementation of the
simulator framework is available at https://github.
com/charm-lab/Vine_Simulator.

We are interested in multiple areas of future work. First,
if computational constraints are less conservative, the model
fidelity can be increased to better capture vine robot be-
haviors. For example, vine robots grow by adding new
material at the tip, so a time-varying mass matrix would
more accurately model a growing vine robot. Other examples
for improving the fidelity include using a soft-contact model
and incorporating the slight deformation of the robot tube,
fitting higher-order stiffness models to capture non-linear
bending behaviors, and incorporating the effects of beam
pressure. Another direction for future work is extending the
dynamics model to 3D motion. Finally, we are interested
in incorporating bending actuation for steering so that the
presented simulator framework can be utilized in motion
planning strategies.
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