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Abstract—In 5G and future generation wireless systems, mas-
sive IoT networks with bursty traffic are expected to co-exist
with cellular systems to serve several latency-critical applications.
Thus, it is important for the access points to identify the
active devices promptly with minimal resource consumption to
enable massive machine-type communication without disrupting
the conventional traffic. In this paper, a frequency-multiplexed
strategy based on group testing is proposed for activity detection
which can take into account the constraints on network latency
while minimizing the overall resource utilization. The core idea
is that during each time-slot of active device discovery, multiple
subcarriers in frequency domain can be used to launch group tests
in parallel to reduce delay. Our proposed scheme is functional in
the asymptotic and non-asymptotic regime of the total number of
devices (n) and the number of concurrently active devices (k). We
prove that, asymptotically, when the number of available time-
slots scale as Ω( log(n

k
)), the frequency-multiplexed group testing

strategy requires O(k log(n
k

)) time-frequency resources which is
order-optimal and results in an O(k) reduction in the number of
time-slots with respect to the optimal strategy of fully-adaptive
generalized binary splitting. Furthermore, we establish that the
frequency-multiplexed GT strategy shows significant tolerance
to estimation errors in k. Comparison with 3GPP standardized
random access protocol for NB-IoT indicates the superiority
of our proposed strategy in terms of access delay and overall
resource utilization.

Index Terms—IoT, low latency, active device discovery, group
testing, massive random access.

I. INTRODUCTION

With the inception of massive IoT networks comprising
of millions of smart devices, cellular systems are expected
to support Machine-To-Machine traffic in addition to the
conventional Human-to-Human traffic to take advantage of
the widespread coverage [1]. However, Machine-to-Machine
traffic is typically characterized by bursty activity pattern,
access delay constraints, limited power budget etc. which are
in significant contrast to the traditional cellular systems. There-
fore, an effective adaptation of cellular networks to handle
Machine Type Communication (MTC) calls for revision of
various protocols being used in the Radio Access Network.

Narrowband-Internet of Things (NB-IoT) and LTE-MTC are
two popular 3GPP proposed standards to provide connectivity
for MTC [2]. For in-band operation within the bandwidth of
LTE carrier, NB-IoT uses a minimum system bandwidth of 180
kHz. In the standardized design of NB-IoT physical random
access channel (NPRACH), within the OFDM resource grid of
180 kHz bandwidth, an NPRACH band consisting of 12, 24,
36, or 48 subcarriers can be configured. NB- IoT is expected
to serve applications requiring low data rates with a latency

of 10s or less. On the other hand, LTE-MTC is optimized for
applications with higher data rates and lower latency.

In Random Access (RA) procedure, the first phase is typi-
cally detection of the active devices so that resources can be
allocated for upcoming data transmissions. RA in an NB-IoT
system is a 4-stage handshake protocol in which the device
that needs to establish a connection with the Access Point
(AP) randomly chooses and transmits a preamble [3]. The
preamble is distinctively identified by its frequency hopping
pattern. In each RA attempt, based on the Coverage Extension
(CE) level of the device, the preamble is repeated a certain
number of times. If multiple devices from a CE level choose an
identical preamble during the same PRACH instance, it leads
to a collision. The frequency of preamble collisions sharply rise
when there is a massive number of devices trying to access the
network.

In [1], the authors reviewed several proposals to tackle the
RA congestion problem in modern cellular systems. Compres-
sive sensing based techniques for activity discovery exploiting
the sporadic and sparse nature of sensor activities have been
investigated in [4]–[6]. Specifically, [6] compares compressed-
sensing and coded slotted ALOHA in terms of user activity
detection performance vs resource utilization.

Recently, there has been an upswing of research interest in
Group Testing (GT) based designs for active device identifica-
tion in massive random access [7]–[9]. The basic principle is
as follows: Each device is assigned a signature sequence of 0’s
and 1’s. During active device discovery, each sensor uses on-off
signaling to transmit their signature and at the AP, an energy
detector is used. This leads to a Boolean-OR channel model
and the AP identifies the active devices based on the channel
outputs. In [7], Inan et al. proposed random access protocols for
massive access based on non-adaptive GT. In our recent work
[8], we considered energy constrained active device discovery
using GT when there are multiple clusters of devices with
different activity patterns. None of this prior literature explicitly
considers the availability of frequency resources in designing
GT schemes.

In this paper, we use GT techniques to address the following
critical aspects of random access in massive-cellular IoT by
utilizing both time and frequency resources.
i) Latency: Many MTC applications are delay sensitive as the
devices typically carry information requiring timely delivery.
ii) Resource utilization: The MTC-specific RA schemes
should ensure that the massive density of devices does not
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deplete the resources available for Human-to-Human traffic.
Thus, minimizing resource utilizition during active device
discovery is paramount for efficient accomodation of MTC.

If there are no access delay constraints, the optimal strategy
to minimize the total resource utilization is based on Hwang’s
generalized binary splitting (GBS) [10]. On a high level, this
involves applying the binary splitting algorithm recursively
to the k groups of size approximately n/k where n is the
total number of devices out of which k are active. For
sufficiently large n/k, the number of time-slots required by
GBS is approximately k log(n

k ). Though optimal in terms of
overall resource utilization, the adaptive nature of GBS leads
to potential violation of the access delay constraints since
there is no room for parallelization in frequency (except when
n < 2k−1) as each step of the algorithm is adaptively designed
based on the previous steps.

In our work, we propose a strategy based on Li’s method
for screening experimental variables [11] which can take into
account the access delay constraints. The core idea is that in
a given time-slot, multiple subcarriers are available as stated
in [12] to launch group tests in parallel thereby potentially
reducing the overall access delay. Our strategy is applicable in
the asymptotic as well as non-asymptotic regime of n and k. In
the asymptotic regime, the results indicate that the worst-case
resource utilization for our proposed frequency-multiplexed
GT strategy can be O(k log(n

k )) which is order-optimal while
reducing the access delay by a factor of O(k).

The remainder of this paper is organized as follows. In
Section II we formulate the problem of active device discovery
using group testing. In Section III, we propose the frequency-
multiplexed GT strategy for activity detection and discuss
how it operates. The impact of estimation errors in k on the
performance is also characterized. Section IV analyses the
feedback requirements inherent to the various active device
discovery strategies we discussed. Section V presents numeri-
cal simulations. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

Let U = {s1, s2, ..., sn} represent the set of devices with
cardinality |U|= n. Each device si ∈ U can be in one of the
two possible states, viz, Active State (AS) and Inactive State
(IS) independent of the state of other devices. Among the n
devices, k are active and we assume that the value of k is
known beforehand. We will discuss the impact of not knowing
k in Section III.

We use a GT based approach for detecting the set of active
devices. A group testing matrix W is defined as a binary matrix
formed by a set of n-coordinate column vectors, w` ∈ {0, 1}n
where, ` ∈ {1, 2, . . . , L}. i.e.,

W = [w1, . . . ,wL] = [x1, . . . ,xn]
ᵀ ∈ {0, 1}n×L (1)

where the ith row is a binary signature of length L designed for
the ith device. In the active device discovery phase, each active
device transmits its binary signature (On-Off keying) in a time-
synchronized manner over the L probes. Each probe potentially
involves a group of devices transmitting at the same time
over some frequency band if there are multiple active devices

with a 1 at identical indices in their signatures. Also, using
different subcarriers in frequency domain, multiple probes
can be initiated during the same time-slot. In massive access
scenarios, acquiring each device’s channel state information
is infeasible as it typically needs an overwhelming amount of
pilot resources. Thus, we assume that, at the AP, a non-coherent
energy detector is used to make a binary decision indicating
the presence of energy in the received signal. This operation
does not require any CSI. Let y = (y`) ∈ {0, 1}L indicate the
results vector.

y` =

 1 if energy detected (∃i ∈ AS with w`(i) = 1)

0 if no energy detected (∀i ∈ AS,w`(i) = 0)
(2)

The `th probe is a positive probe if y` = 1 and a negative
probe if y` = 0. We assume that there are no errors in
detecting the energy. Given the matrix W composed of binary
signatures and results vector (y), we need to identify the active
devices efficiently. This model is equivalent to the GT problem
considered in [7].

During active device identification phase, we are bound to
operate within a time-frequency resource grid G : [NUB

f ×
NUB

t ] determined by bandwidth and access delay constraints.
In effect, the L probes need to be efficiently distributed across
multiple time-slots and multiple subcarriers. Here, NUB

f is the
upper bound on the number of subcarriers available for active
device discovery and NUB

t is the upper bound on the number
of available time-slots determined based on the access delay
requirements of the devices.

As per 3GPP proposals to alleviate the RA congestion prob-
lem in massive access, the frequency domain RACH resources
can be dynamically varied [1], [12]. Hence, it is reasonable
to assume that NUB

f is large enough and we typically operate
well within as we show in Table I.

We use Nf (i) to denote the number of parallel subcarriers
needed in the ith time slot. Thus, the total resource utilization
is NR =

∑Nt

i=1Nf (i). Our aim is to minimize the worst-case
total resource utilization required for identifying the active
devices using GT while operating within the access delay
constraint Nt ≤ NUB

t where Nt denotes the number of time-
slots we use. We will assume availability of feedback after
every time-slot. In Section IV, we comment on the feedback
requirements for various schemes discussed in this paper.

Our modeling doesn’t have any sparse activity assumptions.
However, the bounds we establish gets tighter if k << n.

III. FREQUENCY-MULTIPLEXED GT FOR ACCESS DELAY
CONSTRAINED ACTIVITY DETECTION

Motivated by Li’s work in [11], we consider a frequency-
multiplexed GT strategy in which multiple disjoint groups of
devices are probed using different subcarriers during each time-
slot. Thus, at each time-slot, no device is subjected to probing
more than once. Moreover, we assume that the group sizes
remain fixed during each time-slot. After each time-slot, based
on the probing results, we eliminate the devices which are
certainly inactive and disjointly partition the reduced set of
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Fig. 1: Frequency-multiplexed GT strategy for activity detection.

devices in the further iterations. A sample illustration is shown
in Fig. 1 where the parameters are n = 20 and k = 4.

Assume that the devices are partitioned into Gi groups of
size Si during the ith time slot. Note that Gi also corresponds
to the number of frequency resources used in time-slot i. After
the ith time-slot, at most k groups can result in positive probes
and therefore at most kSi devices need further evaluation.
Thus, the worst case resource utilization (NR) can be written
as:

NR =
n

S1
+
kS1

S2
+ . . .+ kSNUB

t −1. (3)

Though Si’s in (3) are discrete variables, we consider its
differentiable interpolation for the purpose of analysis. Taking
derivatives w.r.t Si ∀i ∈ {1, 2, . . . , NUB

t }, the RHS in (3) can
be minimized to obtain the following optimal parameters:

S∗i =

(
n

k

)NUB
t −i

NUB
t (4)

G∗i = k ×
(
n

k

) 1

NUB
t

. (5)

Using (4) and (5) in (3), we get

N∗R = k ×NUB
t ×

(
n

k

) 1

NUB
t (6)

The values S∗i , G
∗
i & N∗R need to be appropriately rounded

off to an integer. Note that (5) implies that the optimal
frequency-multiplexed GT strategy involves keeping approx-
imately the same number of groups (frequency resources)
during each time slot i ∈ {1, 2, . . . , NUB

t }.
A. Optimal number of time-slots

Eqn. (6) indicates that N∗R is a convex function of a
continuous interpolation of NUB

t . Thus, though we are allowed
to use upto NUB

t time-slots, the optimal choice for Nt can
be less than NUB

t from a total resource utilization viewpoint.

Taking derivative of NR = k ×Nt ×
(

n
k

) 1
Nt w.r.t Nt gives

Nopt
t ≈ ln

(n
k

)
. (7)

Now, using Nopt
t in (5) and (6), we have the following results.

Theorem 1: The minimum resource utilization (Nmin
R ) for

discovering k active devices from a population of size n using
frequency-multiplexed GT is upper-bounded as follows:

1) If NUB
t ≥

⌈
ln
(n
k

)⌉
: Nmin

R ≤ ek ×
⌈
ln
(n
k

)⌉
. (8)

n = 103 n = 103 n = 104 n = 104

NUB
t k = 5 k = 10 k = 5 k = 10

Gopti Nt Gopti Nt Gopti Nt Gopti Nt

2 71 2 101 2 224 2 317 2

4 19 4 32 4 34 4 57 4

6 14 6 28 5 18 6 32 6

8 14 6 28 5 14 8 28 7

TABLE I: Number of subcarriers (Gopti , ∀i ∈ {1, 2, . . . , Nt}) and
time-slots (Nt = min(Nopt

t , NUB
t )) used by frequency-multiplexed

GT for a given n, k and NUB
t .

2) If NUB
t = α

⌈
ln
(n
k

)⌉
: Nmin

R ≤ αke1/α ×
⌈
ln
(n
k

)⌉
(9)

where α ≤ 1.

Remark 1. Note that the upper bound in (8) for minimum re-
source utilization using the frequency-multiplexed GT strategy
exceeds the resource utilization of Hwang’s GBS strategy [10]
approximately by a factor of e

log e .

Remark 2. Asymptotically, if NUB
t scales as Ω( log

(
n
k

)
),

the frequency-multiplexed GT strategy is order-optimal as its
resource utilization is O(k log

(
n
k

)
). Thus, there is an O(k)

saving in time-slots when compared to the Hwang’s GBS.

Corollary 1: The optimal number of subcarriers (Gopt
i ) re-

quired for active device identification using the frequency-
multiplexed GT strategy is as follows:

1) If NUB
t ≥

⌈
ln
(n
k

)⌉
: Gopti ≈ e× k (10)

2) If NUB
t = α

⌈
ln
(n
k

)⌉
: Gopti ≈ e1/α × k (11)

In Table I, the number of time-slots and subcarriers per time-
slot used by our proposed strategy is shown for several values
of n, k and NUB

t . We now compare these values with the
3GPP standardized preamble based random access for NB-IoT.
In NB-IOT, one NPRACH preamble consists of four symbol
groups, with each symbol group comprising of one CP and five
OFDM symbols [13]. The duration of NPRACH preamble is
5.6 ms or 6 ms. The probability that, in a given RA opportunity,
a device completes preamble transmission without collision
when s NPRACH subcarriers are available as given in [14]
is

Pk,s = 1− (1− 1/s)
k−1

, k > 0 (12)

where s ∈ {12, 24, 36, 48}. Note that in (12) only collisions,
and no noise is considered. Since, a symbol group is the
atomic unit of NPRACH preamble, we consider the number of
time-slots required for an NPRACH preamble as N IOT

t = 4.
Assuming k = 5 active devices and s = 48 subcarriers in
(12) leads to a success probability of 92%. Furthermore, to
achieve a success probability greater than 99%, two repetitions
of NPRACH preamble is required leading to N IOT

t = 8. In
contrast, as shown in Table I, with NUB

t = 8 time-slots, only
Gopt

i = 14 subcarriers are required by our proposed strategy
which corresponds to around 70% bandwidth savings.
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B. What happens if k is unknown?

In a practical scenario, it may not be possible to precisely
know the number of active devices, k. Thus, we have to rely
on estimates of k and hence it is important to understand how
sensitive is the resource utilization (NR) to an estimation error
in k. Assume k̂ is an estimate of k. In this case, the scheme
works as follows: Firstly, the subgroup sizes are computed
using k̂ in (4) as

S∗i (k̂) =

(
n

k̂

)Nt−i
Nt

, where Nt = min(NUB
t , Nopt

t ). (13)

As indicated in (3), during the first time-slot n
S1

= k̂
(

n
k̂

) 1
Nt

subcarriers are needed. After any time-slot, at most k probes
can be positive probes. Thus, at most k × Si devices need
further probing after the ith time-slot, for which the devices
are divided disjointly into groups of size Si+1. Hence kSi

Si+1
=

k
(

n
k̂

) 1
Nt subcarriers are required during any time-slot other

than the first time-slot. Thus, the worst case overall resource
utilization in this case is given by

N∗R(β) = k(Nt + β − 1)

(
n

βk

) 1
Nt

. (14)

Note that β = 1 corresponds to zero estimation error. There-
fore, the percentage increase in the resource utilization (J)
when we use k̂ instead of k is given by,

J(β) =
N∗R(β)−N∗R(1)

N∗R(1)
=
Nt + β − 1

Nt
×
( 1

β

) 1
Nt −1. (15)

As an example, consider the case of n = 103, k = 10
and NUB

t = 4 as shown in Table I. Since ln(100) > 4, we
have Nt = 4. If k is known a priori we require 32 subcarriers
per time-slots leading to a worst-case resource utilization of
NR = 128.. Now, assume that k is unknown and we only have
an estimate k̂ = 6. From (13), in the first time-slot, we use
6× (1000/6)1/4 ≈ 22 subcarriers. The number of subcarriers
needed in the other time-slots equals 10× (1000/6)1/4 ≈ 36 .
This corresponds to a worst-case overall resource utilization
of 130. Notably, the excess resources required is around
1.5% as shown in Figure 2. From Figure 2, one can note
that, as the estimation error increases in either direction, the
resource utilization also increases. However, it does not change
significantly even with reasonable estimation errors.

IV. FEEDBACK CONSIDERATIONS

We assume that the AP coordinates different devices after
each time-slot so that the devices will know which probing
group they belong to. Thus, after each time-slot, there is a
need for feedback to assist the design of further stages. In
contrast, with non-adaptive GT-based algorithms, the probing
schedule is predefined and all the devices are aware of this
schedule beforehand. However, the non-adaptive strategies
require O(k2 log n) time-frequency resources for successful
detection of active devices which is significantly larger than
the resource utilization of adaptive algorithms we considered.
In this section, we evaluate the feedback overheads pertaining
to the different adaptive strategies.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

        
 NR increased by ~ 1.5-2%

Fig. 2: Percentage increase in resource utilization, J(β) due to esti-
mation errors in k. β = k̂/k. Assume n = 1000, k = 10, NUB

t = 4.

Owing to the fully adaptive nature of Hwang’s GBS, 1-
bit of feedback needs to be transmitted by AP after each of
the k log (n

k ) (approximately) time-slots to convey the probing
result. The total feedback required in this case is approximately
k log (n

k ) bits.
Next, we will derive NFB , the amount of feedback required

(in bits) for our proposed frequency-multiplexed GT.
Case 1: NUB

t ≥ Nopt
t

As established in Corollary 1, the optimal number of groups
at each time-slot is given by Gopt

i ≈ e × k. At each of the
Nopt

t time-slot, at most k groups require further probing and
there are approximately

(deke
k

)
combinations possible. Thus, for

the frequency-multiplexed GT, the required feedback is Nopt
t ×

log
(deke

k

)
bits. Using upper bound for the binomial coefficient,

we have (
deke
k

)
≤

(
e× deke

k

)k

(16)

Using e× deke < e2 × (k + 1), we can write,

log

(
deke
k

)
< 2k log e+ k log

(
k + 1

k

)
. (17)

Thus, the required feedback is upper-bounded as

NFB < k log
(n
k

)
×

(
2 +

1

log e
log
(k + 1

k

))
. (18)

Case 2: NUB
t < Nopt

t

In this case, the number of groups at each time-slot is G∗i
as in (5). Thus, the required feedback can be computed as:

NFB = NUB
t × log

(
G∗i
k

)
≤ NUB

t × log

(
e
(n
k

) 1

NUB
t

)k

= NUB
t × k log e+ k log

(n
k

)
.

(19)

Thus, in both cases, our proposed frequency-multiplexed GT
asymptotically requires a feedback of O(k log(n

k )) bits which
is essentially the same as the feedback required for Hwang’s
GBS. However, an important distinction is that with frequency
multiplexed GT, there are Nt = min(Nopt

t , NUB
t ) feedback

instances each providing O( k
Nt

log(n
k )) bits of information,

whereas with Hwang’s GBS, there are O(k log (n
k )) feedback
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Fig. 3: Percentage saving in time-slots for frequency-multiplexed GT
and preamble based strategy (NB-IoT) in comparison to GBS. Assume
n = 103 and s = 48 (for NB-IoT).

instances of 1-bit. Clearly, frequency multiplexed GT requires
O(k) lesser feedback instances.

V. NUMERICAL SIMULATION

In this section, we present simulation results validating our
theoretical results and establishing the utility of the frequency-
multiplexed GT. We consider n = 103 devices in our simula-
tions. Also, the number of active devices (k) was assumed
to range from 2 to 20. While performing simulation, we
randomly tagged k out of the n devices as active. During each
stage of frequency-multiplexed GT, the sensors which were not
eliminated in the previous stages are randomly assigned to a
group based on (4) and (5).

In Fig.3, we compare the frequency-multiplexed GT strategy
described in Section III as well as preamble based access
strategy in NB-IoT in terms of the access-delay (number of
time-slots needed) w.r.t the Hwang’s GBS. For NB-IoT we
assumed s = 48 and a target success probability of 99%
in (12). Clearly, we can see a significant reduction in the
access delay when we employ the frequency-multiplexed GT
strategy instead of GBS. Moreover, as shown in Fig.3, our
proposed frequency-multiplexed GT performs superior to the
3GPP standardized preamble based strategy for NB-IoT.

The variation in overall resource utilization (NR) as a func-
tion of number of active devices (k) for frequency-multiplexed
GT strategy and Hwang’s GBS is shown in Fig. 4. The
information theoretic lower-bound of dlog

(
n
k

)
e is also included

as a benchmark. Clearly, as expected, Hwang’s GBS being
the optimal strategy is close to the benchmark. Our proposed
strategy requires more resources which is the price paid for
reducing access-delay as shown in Fig.3.

VI. CONCLUSION

In this paper, we have proposed a frequency-multiplexed
GT strategy for activity detection using multiple subcarriers
in parallel to tackle the access-delay constraints. We have
analyzed our proposed scheme in the asymptotic and non-
asymptotic regime of n and k. We have also derived the optimal
design parameters which minimize the worst-case resource
utilization. It was shown that, in the asymptotic regime of
n, the frequency-multiplexed GT can deliver order-optimal
performance in terms of resource utilization while saving the

2 6 10 14 18
0

50

100

150

200

250

300

350

400

450

Fig. 4: Comparison of total resource utilization when n = 103.

access-delay by an O(k) factor. Furthermore, we have studied
the impact of estimation errors in k on the resource utilization
and inferred that even with reasonable estimation errors our al-
gorithm operates efficiently without overwhelming the system
resources. We have also investigated the feedback overhead
associated with different schemes of activity detection.

REFERENCES

[1] M. S. Ali, E. Hossain, and D. I. Kim, “LTE/LTE-A random access for
massive machine-type communications in smart cities,” IEEE Communi-
cations Magazine, vol. 55, no. 1, pp. 76–83, 2017.

[2] M. El Soussi, P. Zand, F. Pasveer, and G. Dolmans, “Evaluating the
performance of eMTC and NB-IoT for smart city applications,” in 2018
IEEE International Conference on Communications (ICC), 2018.

[3] R. Harwahyu, R. Cheng, and C. Wei, “Investigating the performance of
the random access channel in NB-IoT,” in 2017 IEEE 86th Vehicular
Technology Conference (VTC-Fall), 2017, pp. 1–5.

[4] M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, “Compressive
sensing-based adaptive active user detection and channel estimation:
Massive access meets massive MIMO,” IEEE Transactions on
Signal Processing, vol. 68, p. 764–779, 2020. [Online]. Available:
http://dx.doi.org/10.1109/TSP.2020.2967175

[5] L. Liu and W. Yu, “Massive connectivity with massive MIMO—part I:
Device activity detection and channel estimation,” IEEE Transactions on
Signal Processing, vol. 66, no. 11, pp. 2933–2946, 2018.
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