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Abstract— Soft robot serial chain manipulators with the

capability for growth, stiffness control, and discrete joints have

the potential to approach the dexterity of traditional robot

arms, while improving safety, lowering cost, and providing

an increased workspace, with potential application in home

environments. This paper presents an approach for design

optimization of such robots to reach specified targets while

minimizing the number of discrete joints and thus construction

and actuation costs. We define a maximum number of allowable

joints, as well as hardware constraints imposed by the mate-

rials and actuation available for soft growing robots, and we

formulate and solve an optimization problem to output a planar

robot design, i.e., the total number of potential joints and their

locations along the robot body, which reaches all the desired

targets, avoids known obstacles, and maximizes the workspace.

We demonstrate a process to rapidly construct the resulting

soft growing robot design. Finally, we use our algorithm to

evaluate the ability of this design to reach new targets and

demonstrate the algorithm’s utility as a design tool to explore

robot capabilities given various constraints and objectives.

I. INTRODUCTION

Soft robots are often created with the goal of offering
compliant physical interactions between a robot and its envi-
ronment, which can be safer and more readily accommodate
uncertainty compared to traditional rigid robots. Moreover,
the materials and actuation technologies used for soft robots
can be less expensive and easier to manufacture or assemble
than those used for traditional rigid robots. Soft robots
have the potential to be designed with both mechanical
properties and geometries appropriate for various tasks and
environments. However, soft robots are typically limited in
their dexterity because continuum arms lack the localized,
large angle changes of traditional joints.

An attractive vision for soft robots is that regular people
(i.e., not professional robot designers) can effectively create
new robots to help them with tasks. This “robot for every
task,” approach is motivated by the goal of democratizing
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          2.3°
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Error: 4.1 cm, 
          13.7°

Fig. 1. A soft growing vine robot design with four discrete joints, optimized
to achieve four different targets, each at a different orientation. Each colored
segment indicates a link, and the joints are between the links. All robots are
grown from a rotating base (not shown). Due to growth, only the necessary
joints are exposed for each target. Here, a single robot design reaches all
targets with their specified orientations. Difference between the computed
linear and angular positions of the end effector and those achieved by the
hardware is listed for each target as “Error”.

the technology and its benefits across a wide spectrum of
users [1], as well as developing robotic devices that are
uniquely suited to the needs of particular users [2]. Design
optimization can automate the process of new robot creation.

Toward the goal of creating soft robot manipulators that
approach dexterity similar to that of traditional rigid robot
arms while bringing advantages in compliance, low cost,
and increased workspace, here we develop a new design
optimization process coupled with the unique properties of
soft growing “vine” robots [3] with stiffening capabilities and
discrete joints [4] in order to create custom soft robot arms
that can reach a set of specific targets, avoid known obstacles,
maximize the workspace, while minimizing construction and
actuation cost. The outcome of the design optimization is the
specification for a soft serial-chain manipulator, which is then
rapidly constructed and demonstrated to achieve the design
goals, as shown in Fig. 1.

A. Related Work

1) Soft, inflated-beam, growing vine robots: Continuum
robots characterized by tip extension, significant length
change, and directional control are termed “vine robots,” due
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to their similar behavior to plants with the growth habit of
trailing. In our instantiation, vine robots are inflated beams
that extend in length from the tip using internal air pressure
to pass the material of a flexible, tubular body through its
center and turn it inside out at the tip (a process called
eversion) [3], [5]. These robots can be made of low-cost
materials, such as low-density polyethylene (LDPE) plastic,
and can grow to very long lengths from a compact base,
giving them a large workspace. They can also use active,
reversible steering mechanisms based on cable tendons [6],
[7], [8] or pneumatic artificial muscles [7], [9], [10], [11],
[12] that are compatible with the growing mechanism. A
number of researchers have recognized the advantages of
tip growth for movement and manipulation in cluttered and
constrained environments, because the robot body does not
slide with respect to the environment [13], [14], [15], [16].

In prior work, vine robot tip orientation has not been
independent from its position [17]. Here we build upon
recent results [4], [18], [19] that lock the robot’s shape or
use the environment to allow the robot tip to reach targets
at different orientations. In particular, we use layer jamming
to control the stiffness of vine robot sections [4] in order to
create discrete joints at selected locations along the length of
the robot. It is also possible to stiffen regions of the robot to
improve shape control and payload handling, although this
is beyond the scope this work [4].

2) Design optimization of soft robots: Due to their infinite
degrees of freedom and large design space that is linked to
their physical properties, soft robots are prime candidates
for design optimization. Design can be interpreted as the
set of parameters and characteristics used to build a soft
robot, which might include lengths, actuators, joints, material
properties, and local shape. Many methods for design opti-
mization exist, including greedy algorithms [20], sensitivity
analysis [21], finite element analysis [22], supervised learn-
ing for sensor placement [23], geometric modeling to achieve
desired deformations [24], genetic algorithms for dexterity
[25], gait parameters [26], and counterweight balance [27].
Furthermore, optimization has been used for control of soft
robots, for example using reinforcement learning [28], [29].

Although design planning has been performed for pas-
sive, pre-shaped, everting tubes that exploit environmental
contacts [30], design optimization of actively steered vine
robots has not yet been approached. In this work, we propose
methods to balance competing demands on a robot design,
including the limitations of actuation, while also considering
geometric constraints that define the proposed task.

II. PROBLEM STATEMENT

Fig. 2 shows a schematic of the vine robot considered in
this work. The robot originates from a base from which it
can grow from its tip or retract. The base can rotate and
thus acts as an active position-controlled joint. The robot
body contains pre-fabricated sections whose stiffness can be
independently controlled using layer jamming. By stiffening
all sections except one and pulling on one of two cables in
the planar case, the robot body bends at the proximal end

Grow 
from tip

(a)

Rotate base

(c)

Pull 
cable

(d) Stiffened section

Joint formed

Joint formed
(b)

Fig. 2. The vine robot has three distinct actuation modes. (a) Through
pressure-driven eversion, the robot can add material to its tip. The robot
can also shorten in length by retracting from the tip. (b) The material for
this growth comes from a spool in a fixed based, which is free to rotate.
(c) By stiffening certain sections while leaving others soft, a joint can be
formed by pulling on a cable. (d) The angle of the joint is determined by the
cable lengths and can be subsequently preserved by stiffening that section.
Repeating (c) and (d) allows other joints to bend.

of the softened segment, creating an effective revolute joint.
When that section is then stiffened, the bend is held in place,
then a different section is softened, and a cable is pulled to
create a new bend. In general, we produce n0 discrete joints
by fabricating n0 robot sections. Because of the ability to
grow and retract, the vine robot can grow a different number
of joints depending on how many have been everted, unlike
conventional robots that have a constant number of joints.
Those joints that have not been everted do not contribute to
the robot shape.

Rotation by cable pulling introduces some mechanical
limitations. Joint rotations near the tip of the robot are
challenging due to small applied moments. Additionally,
there may be a maximum bending angle less than self-
intersection. Bending an inflated beam results in spring-
like behavior where the beam produces a resistance torque
proportional to the angle it is bent [31]. Depending on the
maximum beam wall stiffness, the maximum torque the
jammed layers can resist may depend on the angle of the
joint. For our demonstrations, we choose [�30�, 30�] as an
estimate for the range of controllable angles.

A greater number of joints results in greater dexterity and a
larger workspace. However, there is a trade-off between these
attributes and the time and complexity of robot fabrication,
as well as the complexity of controlling the robot once
fabricated. For many applications with a predictable set of
tasks, the locations of targets may be known ahead of time.
Thus, our primary goal is to minimize the fabrication time
and cost by producing a robot with the fewest number of
joints while still reaching all targets. However, a fixed design
is capable of reaching many more targets than those it was
explicitly designed for, and situations may arise where we
wish to reach targets whose locations are not known ahead of
time. Thus, for a given fixed design, we also evaluate whether
additional target positions/orientations can be achieved.

III. DESIGN OPTIMIZATION

Given the vine robot’s base location, a set of target end
effector locations and orientations, and a set of known
obstacles, we wish to obtain an optimal design of the vine
robot that reaches all targets, avoids all fixed obstacles,
covers the largest target space, and satisfies all hardware
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constraints. The design parameters include the total number
of the potential joints and their locations along the vine robot,
which also determine the length of each link of the robot.
These choices need to be set before the robot is fabricated.

Unlike rigid robot arms for which the design space can be
simply represented by the length of each link, the vine robot’s
design space needs to consider a set of unique characteristics
owing to its ability to grow and retract: (1) Different targets
might require different numbers of links to reach. (2) Any
interior link has a fixed length across different targets while
the length of the terminal link can vary for different targets,
though not exceeding its maximum length (which is equal
to the one it possesses as an interior link). (3) A link can be
interior or terminal for different targets. (4) The number of
links required for a given set of targets is unknown.

Figure 1 illustrates one possible design that can reach four
targets with the desired orientations. This design requires
four potential joints to be placed at 0.44, 0.61, 0.88 and
0.98 meters from the base of the vine robot. For each target,
the vine robot needs to expose a different number of joints
to reach. The length of each link is fixed if the link is not
the terminal one (the most distal one). For the terminal link,
it can grow or shrink arbitrarily within the bounds.

A. Formulating the Optimization

Given a budget of n links of a vine robot, we wish to
determine their lengths ` 2 Rn

+ and a set of bending angles
Q = [qT

1 , q
T
2 , . . . , q

T
m], such that m pairs of target location

and orientation, T = [(t1,�1), . . . , (tm,�m)] can be reached
with the same design while avoiding fixed obstacles o 2 O

and maximizing the workspace. A design is defined solely
by `. A particular configuration q to reach a given target is
not part of the design. The variables of optimization are `
(shared across all targets) and Q = [qT

1 , q
T
2 , . . . , q

T
m], the

collection of all configurations, different for each target.
At first glance, this problem involves optimizing con-

tinuous variables (i.e., link lengths and joint angles) and
solving for a discrete variable—how many joints do we
need for each target? We can bypass answering this discrete
question, thereby avoiding solving a challenging mixed-
integer program, if we exploit the unique aspects of soft
growing robots. Instead of following the conventional rigid
robot design, in which the end-effector is always at the tip of
the robot arm, we allow any point along the vine robot to be
the end-effector. If a point p on the vine robot can reach the
target with the desired orientation, we consider it a successful
design for this target and discard all the materials and joints
beyond p. The fact that the vine robot has the ability to
retract makes our formulation possible. Concretely, we solve
for a vector ` 2 Rn

+, but the optimizer might end up only
using n0 < n links to reach all m targets and yielding a
design with only n0 links. Our method results in a generic
continuous optimization which automatically determines the
optimal number of links required for each target.

1) Constraints: The hardware constraints are specified by
a maximum bending angle at any given joint in the robot:
with the exception of the root joint (i.e., the base of the robot)

which is allowed to rotate freely, bending angles of all other
joints are restricted to [�30�, 30�]. Another constraint is that
the minimum possible length of a link is 0.1 m, while we
do not consider links longer than 1 m.

2) Objective function: The geometric interpretation of a
feasible solution requires targets to lie on the line segment
corresponding to any one of those links, with the link
orientation matching the prescribed target orientation and no
collisions between any link and obstacle. In addition, we
would like the design to maximize the workspace.

a) Target location: The (minimum) distance of the
target to the line segment represented by the link. The
minimum distance from a target tj to link i of the current
estimate of design is

d(`, qj , tj , i) = ktj � t⇤(`, qj , i)k,

where t⇤ is either tj’s projection on link i, or one of link i’s
endpoints, if the projection lies outside the link. Note that to
discourage solutions with targets lying very close to a link
node (which would lead to very small end-effector links), we
prefer the target to lie between 30� 90% of the link length.

b) Target orientation: The absolute difference between
link orientation and prescribed target orientation �j , namely,

o(qj ,�j , i) = |�j �

iX

k=1

qj(k)|,

where i is the link index we are considering and qj is the
current estimate of robot configuration for target j.

These two quantities are weighted by � to balance the
difference in units. The weighted sum represents the cost for
each individual link i, for a given target (tj ,�j),

Ltar(`,Q) =
mX

j=1

mini
�
d(`, qj , tj , i) + � o(qj ,�j , i)

�

ktjk2
.

(1)
Taking the minimum across links yields the cost of the

“active end-effector” link, i.e., the particular link that will be
considered towards reaching the target. These procedures are
repeated across all targets, producing a vector of costs. Those
costs are then weighted by the inverse of the target squared
distance from the origin (thus giving priority to closer targets
which are more difficult to satisfy; this is because the bending
limits force us to use fewer links to reach close targets, thus
fewer degrees of freedom) and summed up to furnish the total
cost. Note that the “active end-effector” link may change
during the process of optimization.

c) Obstacle Violation: When attempting to reach a de-
sired target, a cost will incur if any part of the robot intersects
with an obstacle. We implement a collision checking function
b(`,Q, i, j, k) against two types of obstacles, polygons and
circles. b is a binary function that returns 1 if link i at pose j
is intersecting with obstacle k, and returns 0 otherwise. The
loss function for the obstacle violation can be defined as:

Lobs(`,Q) =

(
c, if 9 i, j, k s.t. b(`,Q, i, j, k) = 1

0, otherwise,
(2)
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where c is a large constant, indicating the penalty of obstacle
violation. We set c = 20 in our implementation.

d) Coverage of workspace: The design should also
maximize the coverage space. Since an analytical solution
for coverage is difficult to obtain, we opt for a Monte Carlo
approximation, where we sample uniformly in the 3D target
space of (tx, ty,�) and check whether each sampled target
is reachable. We define the coverage of a design, g(`), as the
ratio of reachable targets to the total sampled targets. Since
we need to check reachability for a large number of targets
every time we evaluate g(`), we need a very fast routine to
check whether a design can reach a sampled target.

Algorithm 1 checks the reachability using the first n0 links,
where n0 iterates from 2 to |`|, the total number of links in
the design. For each iteration, we determine a target segment
tp, where p is a point on the line extended backward from
t aligned with �, subject to kt � pk =

P|`|
i=n0 `i. We first

check whether the most straight configuration (q = 0) using
the first n0

�1 can intersect tp. If so, adding n0-th link from
the intersection point to t will allow the robot to reach the
target at the desired orientation �. We still will have to check
if the intersection angle is within the joint limit. If not, we
bend the first n0

� 1 links of the robot to the joint limits
(q = 30�or � 30�) and check intersection angle with tp.
If the most bent configuration no longer intersects tp, we
unbend the links one by one starting with the first link. If
at any point, the intersection angle is within the acceptable
bending range, Alg. 1 returns true and exits.

The cost function can be summarized by:

L(`,Q) = wt Ltar(`,Q)+wb Lobs(`,Q)�wg g(`). (3)

Algorithm 1: Reachable Check
Input: target (t,�) and link lengths `
if |t|  `0 then

return |�| < ✏

for n0 = 2 : |`| do

p = (tx �
P|`|

i=n0 `i · cos�, ty �
P|`|

i=n `i · sin�)
q = 0
(b, ✓) = CheckIntersect(t,p, `, q, n0)
if b == false then

continue
if �30� < ✓ < 30� then

return true

if ✓ > 30� then

q = 30�

else

q = �30�

for j = 1 : n0
� 1 do

(b, ✓) = CheckIntersect(t,p, `, q, n0)
if b == true and |✓| < 30� then

return true

qj = 0

return false

Algorithm 2: CheckIntersect
Input: target (t,�), point p, link lengths `, link

configurations q, and number of links used n0

Output: existence of intersection b and angle of
intersection ✓

r = (
P|n0�1|

i=0 `i · cos�,
P|n0�1|

i=0 `i · sin�)
S = tp \ circle(0, |r|)
if S = ; then

return (false, 0)

s0 = closest(t,S)
✓ = arccos(s0, t� p)
return (true, ✓)

Algorithm 3: Adaptive Stochastic Search for Design
Input: objective function L(x), where
x = [`, q1, q2, . . . , qm], initial guess µ and �, max
link budget nmax, learning rate ↵, shape function
S, number of samples K, number of iterations N ,
sampling variance lower bound " = 10�3

for n = 2, . . . , nmax or feasible design found do

Initialize ` to be size n
for i = 1, . . . , N or convergence criterion do

for k = 1, . . . ,K do

xk = µi +�xk, �xk
⇠ N (0,�2

i )
/* �2

means element-wise

multiplication */

Clip xk for constraints
Lk = �L(xk);

Lmin = mink Lk, Lmax = maxk Lk

for k = 1, . . . ,K do

Lk = Lk�Lmin
Lmax�Lmin

;
Sk = S(Lk)

µi+1 = µi + ↵
PK

k=1 Sk�xk

PK
k=1 Sk

�i+1 =
q
(
PK

k=1 S
k(�xk)2 + ") Clip µi+1

for constraints
x⇤ = µN

return x⇤

B. Solving the Optimization

The nature of the cost is highly nonlinear, non-convex,
non-differentiable, and with a plethora of local minima.
For these reasons, we opted for gradient-free, sampling-
based optimization, specifically Adaptive Stochastic Search
[32]. Adaptive stochastic search is a sampling-based method
within stochastic optimization that transforms the original
optimization problem via a probabilistic approximation. The
core concept behind this algorithm is approximating the
gradient of the objective function by evaluating random
perturbations around some nominal value of the variable of
optimization, a concept that also appears under the name
Stochastic Variational Optimization and shares many similar-
ities with natural evolution strategies and the Cross Entropy
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Method [33], [34]. Given the objective function L(·) and
an initial guess solution x, where x = [`, q1, q2, . . . , qm],
we sample K solutions using mean µ = x and variance
�2 (we abuse the notation here to indicate � multiplying
by itself element-wise), evaluate the objective function for
each one of them. and map its value using a shape function
S(·); in our implementation we used S(L) = exp(10L).
We then normalize the values S(L) in [0, 1] and update the
mean and variance of our sampling through an S-weighted
combination of the sampled solutions; thus, the better a sam-
pled solution is, the more it influences the newly calculated
mean and variance. To satisfy the constraints, samples and
updated µ’s are clipped to the allowable range of values.
The procedure is summarized in Alg. 3. While [32] was
developed to accommodate sampling from any distribution
of the exponential family, we opted for Gaussian sampling
for its simplicity. Furthermore, we applied clipping to ensure
constraints are satisfied, and performed normalization of L
to improve convergence of the algorithm. However, there are
no mathematical guarantees of convergence, as addressed in
[32]. For our problem that has a plethora of local minima,
while the sampling nature of Alg. 3 helps overcome some
of these local minima, there is not theoretic guarantee for
global optimality.

The link budget n is also a discrete variable, but we can
avoid formulating a mixed-integer program using a simple
1-D search. That is, we optimize over n by repeating the
aforementioned optimization procedure starting from n = 2
and increasing the budget until a solution that satisfies all
targets/orientations is obtained (see the outer loop in Alg. 3).
This is practical because, due to the low dimensionality
of the optimization problem for each n, a solution can be
obtained relatively quickly. The code is available at https:
//github.com/iexarchos/SoftRobotDesOpt.git

IV. EVALUATION

A. Fabrication of an Optimal Design

We demonstrated the entire process of prototyping a vine
robot from design optimization to hardware fabrication. We
considered a base at (0.0, 0.0) and four targets located at
(0.4, 0.65), (0.8, 0.6), (0.9, 0.4), and (0.6, 0.25) (all units in
meters), with corresponding prescribed end-effector orienta-
tions of 90�, 0�, �30�, and 15�, respectively. The result of
this optimization is shown later in Fig. 6(a), in comparison
to designs with different constraints.

The vine robot consists of a main body containing embed-
ded pouches and a base through which the robot is actuated.
Two cable tendons, on the left and right sides, are routed
along the vine robot length and connected to motorized
spools. The eversion and retraction of the robot are controlled
using a motorized spool in the base. The base is connected to
an air supply, which provides the pressure for growth. The
robot body is fabricated from two LDPE tubes. Chevron-
shaped pouches in the body are formed by heat sealing
the tubes together. Layer stacks were then placed into the
pouches and secured to the vine robot body using double-
sided tape. A 1/8 inch outer diameter plastic tube was routed

Vine robot
base

Motorized 
spool for 
cable

Vine robot body

Tubes connecting pouches to air supply

(a)

(b)

Fig. 3. (a) The vine robot is actuated by two cables running along its
length and controlled via two motorized spools. Pouch pressure is controlled
via tubes connected to each pouch. (b) Vine robot segment lengths were
fabricated using the optimized `. Each color corresponds to a link `i.

to each pouch, allowing for control of each pouch pressure.
By connecting the pouch to the vine robot pressure source,
pouch pressure equaled the vine robot body pressure and the
layers were unjammed. By disconnecting the tube from the
body pressure source, the layers were jammed.

For a specified link budget n, the optimization returns a
sequence of n0 link lengths ` to construct. These link lengths
correspond directly to the lengths of the layer stacks and
pouches to be fabricated. Layers are cut into parallelograms
and assembled into stacks of 14 layers each. We laser cut
the layers from 0.05 mm thick aluminum-sputtered polyester
film. Each pouch has eight layer stacks arranged circumfer-
entially. The optimization in this example yielded a design
consisting of five links, with link lengths 0.44, 0.17, 0.27,
0.10, and 0.11 meters, ordered from the base to the tip.
Fig. 3(b) shows the fabricated vine robot. Fig. 1 shows how
the fabricated robot achieves four targets. One source of error
is how joints on the actual robot, which are formed through
buckling, may occur at different locations than the modeled
revolute joints. Another is difficulty in precise control of joint
angles and last link length. Further quantitative performance
analysis will be performed in future work.

B. Target Reachability Analysis

To assess the algorithm performance in optimizing robot
design and configurations, we tested it on randomly sampled
targets and orientations. Specifically, we varied both the
number of targets, m, and the link budget, n. This introduced
the following difficulty: when picking a set of targets and
orientations randomly, it is unclear whether a failure of
the algorithm to find a solution given a link budget is
due to the algorithm’s performance, or because a feasible
solution satisfying the constraints does not exist for the
given link budget. To avoid this problem, we sampled m
targets and orientations by first sampling a random five-link
solution with m different configurations, and then obtaining
the targets and configurations by selecting points along any
of the links of the robot, along with their respective link
orientation. In this way a feasible solution is guaranteed to
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TABLE I
DESIGN OPTIMIZATION SUCCESS RATE

Link budget (n) # targets (m)
2 3 4 5 6

2 0.5 0.33 0.5 0.2 0.33
3 1. 1. 0.5 0.8 0.67
4 1. 1. 0.75 1. 1.

Fraction of targets satisfied for a given link budget and number of targets.

Fig. 4. Coverage differences between two designs. (a) Without the coverage
function (i.e. removing the last term in Equation 3), if the microwave is
moved from the counter to the island, it is no longer a reachable target.
(b) With the addition of the coverage function, the design has a greater
coverage and can still reach the microwave even if it is moved.

exist as long as the link budget during optimization is n � 5.
The results of this analysis are shown in Table I. For the link
budget above 4, our algorithm has a 100% success rate in
obtaining a solution for a feasible target.

C. Workspace Coverage Analysis

We now demonstrate example workspaces for given
robot designs. We randomly sampled two thousand points
(tx, ty,�) in [0, 1] ⇥ [0, 1] ⇥ [�90�, 90�] and computed the
ratio of reachable targets to total number of sampled points in
the target space. The coverage computation yields a 33.35%
success rate. The design optimized without the coverage
function yields a lower success rate, 27.15%. Fig. 4 illus-
trates the difference between two designs in an environment
representing a kitchen, including an island as an obstacle.

D. Multiple Sequential Targets

Once the design is optimized and fabricated, the robot
can reach a sequence of targets through a series of retracting,
growing, and bending without resetting to the base. However,
different target orderings may result in different strategies
due to obstacles. We implement a simple method that first
interpolates the two configurations qA and qB solved inde-
pendently for two consecutive targets. We check all collision
points between obstacles and interpolated configurations and
select the closet collision point pc from the home base. We
then retract qA until the robot is within |pc|-radius from
the home base. Once the robot retracts and bends over to
configuration qB , it can then grow as needed to reach the
next target. Fig. 5 shows a 2D visualization of a kitchen
space, along with the configurations to reach each target.

E. Trade-off in Design

To demonstrate the utility of the algorithm as a tool to
understand the various designs that could be built given
different constraints, we showcase different designs for the

Fig. 5. Different sequences of reaching the four targets. The point of
retraction is marked by the blue dot. (a) Fridge, top of stove, bottom of
stove, microwave. (b) Bottom of stove, top of stove, microwave, fridge.

Fig. 6. Alternative designs for varying hardware constraints and link
budgets. (a) The original design, described in Sec. IV-A. (b) Using a budget
of 8 links yields approximately the same solution: only 5 of them are used.
(c) If the robot were able to bend 45�, only 3 links are necessary. (d) If
the robot were only able to bend 15�, 6 links are necessary.

same set of targets as those introduced in Section IV-A. The
various designs are shown in Fig. 6. Specifically, we compare
our original design (Fig. 6(a)) to the resulting design if the
link budget, n, is increased from 5 to 8 (Fig. 6(b)) and find
that the solution is approximately the same, and only 5 of
the 8 links are used. In Fig. 6(c), a design is shown for a
robot that is able to bend 45� instead of 30�; the solution
requires only 3 links. Conversely, a robot being able to bend
only 15� would require 6 links, as shown in Fig. 6(d).

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a method to optimize the design
of a soft growing vine robot to reach a set of given targets at
specified approach angles, while avoiding the obstacles and
maximizing the space coverage, such that the design can also
be used to achieve other targets not originally specified. A
sample problem of 4 targets generated a design with 5 links,
which was fabricated and demonstrated to achieve the task.
These results are a key step toward low-cost, bespoke soft
robots for user-defined tasks in home environments.

In the future, we plan to achieve the following objectives:
extend the optimizer to 3D scenarios; exploit other opti-
mization methods to explore the research space; implement
advanced obstacle-avoidance algorithms for navigation in
cluttered environments; and improve the fabrication process
to enable a faster, tighter loop between robot design and
fabrication.
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