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Abstract 

Finding actionable trends in laser-based metal additive manufacturing process monitoring data 

is challenging owing to the diversity and complexity of the underlying physical interactions. A single 

monitoring solution that captures a particular process phenomenon, such as a photodiode that tracks 

melt pool intensity, is not alone capable of evaluating process stability or detecting flaw formation 

with sufficient precision for routine application in industry. In this work, to improve flaw detection 

performance, we adopted a data fusion approach that captures multiple process phenomena. To 

demonstrate this, we acquired data from laser powder bed fusion (LPBF) builds of cylindrical 

specimens produced with different laser spot sizes, emulating defocusing due to process faults such 

as thermal lensing.  The resulting specimens had porosity of varying severity, quantified by post-

build non-destructive X-ray computed tomography, Archimedes density measurements, and 

destructive metallographic characterization. During the build, the melt pool state was monitored with 

two coaxial high-speed video cameras and a temperature field imaging system. Physically intuitive 

low-level melt pool signatures, such as melt pool temperature, shape and size, and spatter intensity 

were extracted from this high-dimensional, image-based sensor data. These process signatures were 

subsequently used as input features in relatively simple machine learning models, such as a support 

vector machine, which were trained to detect laser defocusing, and in addition, predict porosity type 

and severity. The results show that the data fusion approach significantly enhanced system 

performance by reducing the overall false positive rate from ~ 0.1 to ~0.001 without sacrificing the 

true positive rate (~ 0.90). These results were at par with a black-box, deep machine learning 

approach (convolutional neural network).  

Keywords: Laser powder bed fusion, laser defocus, thermal lensing, porosity, high-speed melt pool 

imaging, spatter, melt pool temperature, sensor data fusion.  
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1 Introduction 

1.1 Motivation 

Laser powder bed fusion (LPBF) is an additive manufacturing process in which metal powder is 

deposited (raked or rolled) on a substrate and selectively melted using a laser, layer-upon-layer, to 

create a three-dimensional object (Figure 1) [1]. Despite significant advantages over conventional 

subtractive and formative manufacturing, the use of LPBF parts in mission-critical applications, e.g., 

aerospace and energy generation industries, is  currently limited by inherent process flaws, such as 

porosity and distortion in shape, among others [2].  

In-process monitoring offers an avenue for rapid detection and characterization of flaw formation 

within LPBF parts, as well as facilitates assessment of the impact of flaws on part integrity [3-8]. 

However, finding robust and industrially useful trends within in-process monitoring data is 

challenging due to the complexity of the underlying physical interactions in LPBF [9]. 

 

Figure 1: Schematic representation of the laser powder bed fusion (LPBF) process. 

The aim of this work is to demonstrate that the flaw detection performance improves significantly 

on adopting a data fusion approach. We show that capturing sensor data representative of multiple 

process phenomena and combining the data signatures within relatively simple machine learning 
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methods reduces false positive rates to acceptable levels, thus enhancing performance of the flaw 

detection system, and enabling rapid, robust, and industrially relevant decision-making. 

1.2 Background and Challenges 

Flaw formation in LPBF occurs despite extensive process optimization, process standardization, 

and automation due to uncontrolled variation in the process [10]. These variations can be systematic 

or stochastic in nature [11]. Systematic variation can be further classified into two groups: (i) 

machine-related, and (ii) part geometry- or scan path-related. An example of a frequent machine-

related systematic variation is when gaseous by-products (soot) released from powder fusion builds 

up on the laser optical window. The soot absorbs a portion of the laser energy which causes localized 

heating and thermal expansion of the optical window, changing the focal length of the optical system 

(known as thermal lensing) [12-14]. These anomalies in the laser focus often lead to poor material 

consolidation, which in turn results in lack-of-fusion porosity [14].  

Part geometry and scan path variations lead to uncontrolled variation in part temperature during 

the process, potentially caused by short scan vectors or long interlayer times [11, 15]. These 

machine- and geometry-related variations cause the machine to operate at the edge of its processing 

parameter window, where a low part temperature results in lack-of-fusion porosity, or high part 

temperature increases the keyhole depth resulting in keyhole porosity [16-18]. 

An example of a stochastic flaw is when spatter particles ejected from the interaction of powder 

and laser settle elsewhere on the powder bed. These spatter particles can impede the laser in fusing 

material, and potentially lead to porosity [11, 19]. Additionally, systematic variation often interacts 

with stochastic variation, which increases the frequency and severity of stochastic flaw formation 

mechanisms; it is therefore difficult to treat each cause of variation in isolation. 
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In-process monitoring, and flaw detection is proposed as a potential method to ensure process 

stability, and isolate, characterize (identify) and measure flaw formation [3-8]. The advantage and 

need for in-process monitoring in LPBF is two-fold. First, if flaws can be detected as they form, they 

can potentially be corrected in real-time through a feedback control mechanism. Second, expensive 

post-process characterization, such as X-ray computed tomography and destructive metallography, 

for qualifying part quality can be minimized through substitution with in-process data [20, 21].  

Currently, effective in-process monitoring in LPBF is hampered due to the complexity of the 

underlying physical interactions, and lack of scalability and transferability of the methods developed  

across various materials, machines, and geometries [22]. Indeed, most approaches in the literature 

focus on signatures from one sensing modality that captures a particular phenomenon [4]. For 

example, a photodiode to track melt pool intensity, or a pyrometer to capture melt pool temperature 

[8, 23, 24]. Hence, the existing sensing and monitoring approaches do not effectively capture the 

multi-phenomena nature of LPBF, which leads to degradation in predictive performance.   

There are two main challenges with in-process monitoring in LPBF: (i) a large volume and variety 

of data is often acquired during processing – a Big Data problem, and (ii) difficulty in extracting 

relevant trends from the sensor data for practical decision-making [25]. In this context, a process 

monitoring system should successfully detect an anomaly (high true positive rate), whilst at the same 

time, not produce false alarms (high false positive rate) that lead to a part being scrapped 

unnecessarily. Moreover, the monitoring approach must not cause delays to the LPBF process, nor 

require long-term storage of excessive amounts of data, and should not take so long to analyze the 

data that the practical utility for decision-making diminishes.  

Considering the Big Data challenge in LPBF, making a simple cuboid-shaped part measuring 2.5 

cm × 2.5 cm × 2.5 cm typically requires melting over 5 km of 250,000 individual tracks at laser 
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scanning speeds close to 1 meter per second [10]. For this small part, a typical photodiode-based 

melt pool monitoring system would acquire raw data in the order of 1 GB, and a camera-based melt 

pool monitoring system would acquire >1 TB of data. A process anomaly at any point along that 5 

km of scan tracks in the part could lead to a flaw that inhibits its functionality.  Hence, the second 

challenge is in detecting and tracking robust and industrially relevant trends within in-process 

monitoring data.  

Whilst machine learning has been used extensively for sensor-based monitoring and flaw 

detection research in LPBF [22, 26, 27], the primary difficulty in acting on in-process monitoring 

data lies in the difference between true positive and false positive rates [28]. The ideal monitoring 

system is not one that maximizes true positive rate of flaw detection at all costs, but one that 

minimizes the false positive rate, and additionally, maintains an acceptable true positive rate. 

Detection of actual flaws (true positives) must be sufficiently consistent to ensure significant defects 

are rarely missed. At the same time, false positives (detecting a flaw that is not physically present in 

the part) must be reduced to the point where parts are not rejected unnecessarily, making the system 

uneconomical. In practical LPBF manufacturing, the goal is to produce the best possible quality 

parts and in turn reduce flaw formation, such as porosity. Hence, for a given in-process detection 

system, this means that there are many more opportunities for making false positive errors than for 

making true positive detections.  

  



Page 6 of 52 

 

1.3 Objective and Hypothesis 

The objective of this work is to demonstrate that a significant improvement in flaw detection 

performance is achieved by adopting a data fusion approach which integrates the signatures acquired 

from high-speed imaging cameras and a melt pool temperature field imaging system. These sensors 

capture different phenomena occurring in the laser-material interaction zone, including melt pool 

temperature, the dynamical behavior of the melt pool, and spatter [29].  Through characterization of 

multiple phenomena, i.e., melt pool morphology (size, shape, and intensity), spatter characteristics 

(area, number, and intensity), and melt pool temperature distribution, these signatures can be 

subsequently used as inputs within simple machine learning approaches to predict deviations in the 

laser spot size and severity of porosity.   

The ability to readily extract physically intuitive signatures from high-dimensional and high-

volume imaging data and leveraging these signatures for process monitoring in relatively simple 

machine learning algorithms enables the rapid detection of process faults that can potentially cause 

flaw formation. Moreover, the coupling of physics-based data signatures with tractable models 

makes the approach interpretable, and potentially, transferable across different materials and LPBF 

machines. In other words, precise flaw prediction with both low false positive and high true positive 

rates is achieved by using physics-based features within simple machine learning models with low 

computational burden.  

 As part of this objective, we test two hypotheses: (1) the fusion of multi-phenomena data  

significantly improves detection of processing faults and reduces false positive rates to acceptable 

levels compared to using one type of data signature alone; (2) physically intuitive and low-level 

sensor signatures when used with simple and computationally light machine learning models, can 



Page 7 of 52 

 

detect processing faults and flaws with an accuracy comparable to complex and computationally 

demanding approaches, such as deep learning-based convolutional neural networks.   

To test these hypotheses and demonstrate the effectiveness of the approach we apply it to the 

detection of changes in the laser spot size, a common LPBF machine problem caused by thermal 

lensing  [12-14]. We also use the presented approach to classify the porosity in terms of its type and 

severity. The results are compared with a complex black-box, deep learning-based machine learning 

model (convolutional neural network) that directly uses the raw melt pool images. 

The paper is organized as follows. In Sec. 2, we describe the methods, encompassing the 

experiments conducted, post-processing of builds, in-process monitoring setup consisting of the 

high-speed melt pool imaging and melt pool temperature field imaging sensors, capturing physics-

informed process signatures, and machine learning models used for process monitoring. Sec. 3 

details the results demonstrating the effectiveness of the presented approach in detecting laser 

defocusing, and predicting level of porosity in specimens, as well as discussing the significance of 

these findings. Finally, conclusions are summarized in Sec. 4. 

2 Methods 

This section reports the experimental setup and design of experiments (Sec. 2.1), in-process 

sensor data analysis (Sec. 2.3), and post-process material characterization (Sec. 2.1.3). A detailed 

explanation of the machine learning approach used for detection is provided Sec. 2.4. 
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2.1 Experiment design 

The experiments in this work were designed with the aim of emulating thermal lensing, a 

common type of process failure that causes a change in laser spot size at the build plane, reducing 

energy density, and in turn resulting in lack-of-fusion porosity formation [12-14]. 

2.1.1 Background – Deviation in laser spot size in LPBF 

Flaw formation, including porosity in LPBF has its origin in complex phenomena, such as, 

balling, Marangoni convection, Plateau-Rayleigh effect, spatter, denudation etc. These phenomena 

are fundamentally driven by the laser-material interactions at the melt pool level [19]. In LPBF the 

diameter of the laser beam at the build plane is a critical factor that influences the behavior of the 

melt pool and ultimately the functional quality of a part [30].  

Extensive theoretical and experimental results have shown that the temperature, shape, size, and 

spatter behavior of the melt pool have a consequential effect on solidification rates (microstructure 

evolution), surface integrity, thermomechanical effects (residual stresses and distortion) [19, 31-39]. 

Hence, maintaining an optimal laser beam diameter that remains stable throughout the build is 

critical for producing quality parts. As will become evident in Sec. 2.3, this work leverages 

characteristics of the melt pool and spatter behavior that are evocative of the fundamental physical 

phenomena that govern porosity formation. 

To focus the laser beam on the powder bed, LPBF machines either use a f-theta lens or a 

dynamic-focusing stage. Both systems aim to maintain a constant laser beam diameter on the powder 

bed irrespective of the angle of incidence of the laser beam as it emerges from the galvanometric 

mirrors. The appropriate beam diameter (Φd) is obtained by adjusting the distance between the waist 

of the laser beam and top of the powder bed, termed the laser focus height (𝐿𝑓ℎ).  
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In an LPBF machine, the laser focus height is controlled via a focusing stage within in the laser 

optical train. Ideally, the laser beam is focused such that its waist converges on the powder bed, thus 

maximizing the energy delivered by the beam per unit area, called the areal energy density [J·mm-

2] [40]. This allows the fastest processing speed whilst maintaining a small minimum feature size 

(part resolution). 

The effect of laser focus height on part quality is shown in Figure 2. If the beam is focused 

above the powder bed, then the diameter of the laser beam (area) projected on the powder bed 

increases. Hence, for a fixed laser power, the energy delivered by the laser is spread over a larger 

area, which may lead to incomplete fusion of the powder material (Figure 2(a)) [41].  Insufficient 

fusion manifests in irregular-shaped pores of diameter ranging from 30 µm to 500 µm (and above 

for severe cases). Such pores shown in Figure 2(a) are called lack-of-fusion flaws [42]. A similar 

effect is seen if the focal plane of the laser is below the powder bed, except the laser beam is 

converging rather than diverging when it hits the surface.  

Correct focusing combined with well optimized processing parameters (laser power, velocity, 

and hatch spacing) leads to very little porosity as seen in Figure 2(b). Excessive energy density from 

poorly optimized parameters will lead to keyhole melting, increasing the probability of the formation 

of small pinhole-shaped pores (Figure 2(c)) [43]. Exposure to excessive energy density is also linked 

to pinhole porosity due to escaping gas dissolved in the melt pool (gas porosity)[7]. 

There are two main reasons that the laser focus may depart from its setpoint, changing the laser 

diameter at the build plane. The first reason for the change in laser spot size during a build is an 

effect known as thermal lensing [12-14]. In LPBF machines, a continuous flow of inert gas, typically 

argon or nitrogen, is maintained over the powder bed to avoid oxidation of the material and aid 

removal of process byproducts such as soot and spatter.  



Page 10 of 52 

 

 
Figure 2: Optical micrographs showing different porosity regimes generated through alteration of 

the laser focus height. 

It is difficult to remove all these byproducts. As a result, soot tends to accumulate on the colder 

regions of the machine, such as the optical window. The soot accumulated on the optical window 

will absorb a small amount of the energy supplied by the laser. The amount of energy absorbed, 

while not significant, would heat the optical window causing localized thermal expansion, 

effectively creating another lens in the optical train. This alters the focal length of the system and 

drastically changes the energy density at the build plane. Given that builds often last several hours 

or days, progressive soot build up on the window leads to a gradual change in beam diameter and 

increase in porosity. Thermal lensing can be exacerbated due to disruptions in the gas flow; efficient 

gas recirculation is therefore critical to avoid soot build up.  

In this work, the reasoning for emulating thermal lensing by changing the laser spot size was to 

enable creation of various types of porosity, at different levels of severity (Figure 2) in a controlled 

manner. The multi-phenomena process monitoring approach presented here is applicable to any 

situation where porosity-related flaws are liable to occur in LPBF.  Thermal lensing is a challenging 

phenomenon and practically motivated from our ongoing work with highly regulated, safety-critical 

aerospace and nuclear industries. In these industries, manufacturers operate machines to the strictest 

quality standards and have established stringent standard operating procedures in place. 
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However, flaw formation often occurs despite extensive process optimization [44, 45]. Indeed, 

of all the multitude of possible failure modes identified by industry practitioners, soot build up on 

the optical window (through insufficient cleaning, clogged filter, long build times) was observed to 

be the most likely cause of process failures. Hence, despite established standard operating 

procedures, it is critical to certify, i.e., prove and document process quality, with in-situ data. 

The second predominant reason for laser focus shift is observed in multi-laser systems. When 

two lasers are processing material in close proximity, the hot gas and vapor plume of one melt pool 

can cross the path of the other laser. The changes in density in the gas through which the laser passes 

causes refraction. This localized gradient of refractive index defocuses the beam and leads to a drop 

in energy density delivered to the powder bed. This effect can be potentially mitigated through 

pragmatic planning of the scan paths for each laser. While this work does not involve a multi-laser 

LPBF system, the presented approach can be scaled to such systems in the future. 

In the literature, porosity of different types and severity is often created by changing the process 

parameters, such as laser power and velocity [23, 46]. However, such parameters studies are of 

marginal value to the industry, because, parameters are directly controlled and logged by an internal 

mechanism within the LPBF machine.   

In contrast, stochastic variation in laser focus (laser spot size and height) is difficult to directly 

track in a production environment; a beam profiler cannot be installed on the powder bed during 

operation. Hence, for quality assurance purposes, cumbersome and expensive non-destructive 

examination with X-ray CT is currently required. Accordingly, there is substantial practical value in 

detecting laser focus issues earlier in the manufacturing process chain using in-process sensor data. 
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2.1.2 Build Plan and Test Parts 

Experiments in this work were carried out on a Renishaw AM250 system using the manufacturer 

optimized parameters used shown in Table 1; these parameters were maintained constant for all 

specimens created in this work.  

We emulated the deviation in laser focus by shifting the focal plane above and below the 

substrate as shown in Figure 2 (a1), (b1) and (c1). To mitigate the effect of part location on part 

quality [47], three separate experimental builds were conducted. Each build consisted of nine 

stainless steel 316L cylinders of Φ5 mm and height 10 mm located at randomly assigned positions 

on the build plate. In total 27 cylinders were built in this work. The build locations for the parts on 

each build plate are shown in Figure 3 (a), (b), and (c). The center-to-center distance between the 

cylinders was 50 mm and a different laser focus height was set for each cylinder as shown in Figure 

3. The laser focus height (𝐿𝑓ℎ) ranged from -20 mm to 12 mm in increments of 4 mm. The negative 

sign refers to the beam focused above the powder bed, whereas the positive sign implies the beam 

is focused below the powder bed. The focus height of 0 mm correlates to the beam converging on 

the surface of the powder bed. 

Table 1: Constant processing conditions used to build the cylinders. 

Process Parameters Values [units] 

Laser type and wavelength 200 W fiber laser, wavelength 1070 nm 

Laser power, laser speed, point distance, 

exposure time for the bulk section 

200 W, 750 mm·s-1, 60 µm, 80 µs 

Laser power, laser speed, point distance, 

exposure time for the inner border 

200 W, 444 mm·s-1, 90 µs, 40 µm 

Laser power, laser speed, point distance, 

exposure time for the outer border 

110 W, 200 mm·s-1, 100 µs, 20 µm 

Hatch spacing 110 µm 

Layer thickness 50 µm 

Scanning strategy  Meander-type scanning strategy with 67° rotation 

Build atmosphere Argon 

Material type Stainless Steel 316L 

Powder size distribution 10-45 µm 
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Figure 3: Build plate position of cylinders printed at different laser focus heights (𝐿𝑓ℎ) in (a) Build 

1, (b) Build 2, and (c) Build 3. The position of cylinders across the three builds was randomized to 

account for the effect of position on part quality. The numbers indicate the 𝐿𝑓ℎ, wherein the negative 

and positive values indicate that the laser is focused above and below the powder bed, respectively. 

𝐿𝑓ℎ = 0 mm caused the beam to converge on the powder bed.  

Figure 4(a) tracks the effect of laser focus height (𝐿𝑓ℎ) on laser spot size (Φd). The laser spot 

size was measured using a dual slit laser beam profiler (Ophir Nanoscan 2). The laser spot size is 

quantified as the 1 𝑒2⁄  width of the Gaussian laser beam. From Figure 4, it is evident that the laser 

spot size decreases almost linearly as the laser focal plane is moved closer to the powder bed from 

above. The largest laser spot size (Φd = 421 µm) corresponds to a 𝐿𝑓ℎ = -20 mm where the beam is 

considerably above the powder bed. Inversely, the smallest laser spot size (Φd = 63 µm) was 

measured at the laser focus height of 0 mm, when the laser focal plane was on the powder bed.  

The laser spot size increases again as the focal plane moves further below the powder bed 

beyond 0 mm laser focus height.  While nearly identical spot size can be obtained at different laser 

focus height settings, the characteritics of the laser beam would be different. For example, a spot 

size of ~100 µm is obtained at 𝐿𝑓ℎ = -4 mm and 𝐿𝑓ℎ = +4 mm. In the latter case (𝐿𝑓ℎ = +4 mm), the 

beam is focused below the powder bed and is converging, whereas in the former (𝐿𝑓ℎ = -4 mm) the 
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laser is focused above the powder bed and is diverging. A converging and diverging beam lead to 

drastically different porosity characteriscs as will be explained in Sec. 3. 

Next, we analyzed the effect of laser spot size on energy density delivered to the powder bed. 

The traditional definition of energy density (𝐸𝑣) [J·mm-3], shown in Eqn. (1),  includes only the 

following processing parameters: laser power (𝑃) [W], velocity (𝑣) [mm·s-1], hatch spacing (ℎ) 

[mm], and layer thickness (𝑡) [mm].  

𝐸𝑣 =  
𝑃

𝑣 × ℎ × 𝑡
 (1) 

Since the foregoing process parameters are held constant (Table 1), in this work, the energy density 

is   ~48.5 J·mm-3 for all specimens. Therefore, 𝐸𝑣 does not capture the effect of laser spot size.  Other 

limitations of energy density in the context of LPBF have been noted by Bertoli et al. [48]. 

To overcome this drawback, we modified the energy density relationship from Eqn. (1) to 

include the laser spot size (Φd) [mm]. This modified relationship, shown in Eqn. (2), also 

encompasses the material properties of stainless steel 316L in the form of the thermal diffusivity 

term (𝛼) [mm2·s-1]. Thermal diffusivity is a function of the thermal conductivity (k), material density 

(ρ), and specific heat (Cp); 𝛼 =
𝑘

𝜌𝐶𝑝
 = 35000 mm2·s-1 at 1700 K.  

The modified energy density definition in Eqn. (2) has units [W·mm-2], and is termed energy 

flux density 𝐸𝑣
′  [33]. It quantifies energy flow per unit of area per unit of time.  

𝐸𝑣
′ =  

𝑃

𝑣 × ℎ × 𝑡
×

𝛼

Φd
 (2) 

Figure 4 (b) tracks the energy flux density 𝐸𝑣
′  [W·mm-2] as a function of the laser focus height 

(𝐿𝑓ℎ) and laser spot size (Φd). The highest energy flux density (𝐸𝑣
′ ) is realized when the laser is 

focused on the powder bed. As evident from Figure 4 (b), de-focusing the beam reduces the energy 
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flux density.  A drawback with both 𝐸𝑣 and 𝐸𝑣
′  is that they do not indicate if the beam is diverging 

or converging.  In other words, the energy (flux) density does not have a positive or negative sign to 

indicate the position of the laser beam with respect to the powder bed. Therefore, the results in this 

work (Sec. 3) are presented in terms of laser focus height (𝐿𝑓ℎ) and laser spot size (Φd), and not 

energy flux density 𝐸𝑣
′  or energy density 𝐸𝑣.  

s 

Figure 4: (a) Effect of laser focus height on laser spot size measured using a dual slit laser beam 

profiler. (b) Effect of laser focus height on energy flux density.  
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2.1.3 Materials Characterization 

After processing, the parts were examined with non-destructive X-ray computed tomography 

(XCT) to quantify the effect of change in laser focus height on part porosity (Nikon XTH 225 ST at 

10 µm/voxel resolution). The porosity was quantified using the VGSTUDIO MAX software native 

to the XCT machine. This analysis was further corroborated with Archimedes relative density 

measurements. 

 Next, the cylinders were cross-sectioned along the X-Y and X-Z (build direction) using electro-

discharge machining. These cross-sections were then mechanically ground using SiC sandpaper of 

increasing grit size of 240, 360, 400, 600, 800 and 1200 µm, and finally polished to mirror finish 

using diamond paste of decreasing particle size of 3 µm, 1 µm, and 0.5 µm. The X-Y cross-sections 

of the cylinders were examined using optical microscopy to determine the type of porosity. 

Similarly, the effect of laser focus height on melt pool penetration depth was quantified by 

performing optical microscopy on the X-Z cross-sections of the cylinders. 

2.2 In-process Monitoring  

A schematic of the experimental setup is shown in Figure 5 (a).The sensing array consists of 

two high speed imaging cameras  (Photron FASTCAM SA5) with bandpass optical filters of 700 

nm and 950 nm at sampling rate of 100 kHz [29]. The resulting melt pool morphology data at the 

two wavelengths is exemplified in Figure 5 (b) and (c). 

The temperature field (Figure 5 (d)) is obtained from the high-speed melt pool images captured 

at the two wavelengths. A detailed explanation of the procedure for obtaining the temperature field 

including the calibration of the measurements is described in Ref. [29]. To summarize, the operating 

principle is akin to imaging pyrometry. Consider the intensities of melt pool images acquired from 

Camera 1 and Camera 2 as 𝐼𝜆1 and 𝐼𝜆2, respectively. Planck’s law states that the temperature of a 
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body (T) is proportional to the intensity of radiation (𝐼𝜆), i.e., 𝑇 = 𝜖𝐼𝜆, with emissivity (𝜖) as the 

proportionality constant. However, the emissivity is not constant, and depends on various factors 

including the temperature of the body and its surface finish.  

Ratio pyrometry estimates the temperature (T) of the body by taking the ratio of the intensities 

measured at two different wavelengths 𝐼𝜆1 and 𝐼𝜆2 which has the effect of cancelling out the first-

order emissivity term [23, 49]. The melt pool temperature measurements from this setup were 

subsequently calibrated with a known temperature source. The measurement error is ~5% at 1900K 

which further reduced at higher temperatures [29]. In this work, the high-speed images from Camera 

1 (Figure 5 (b2)) were used to extract melt pool morphology (size, shape, and spatter) signatures. 

Each high-speed video image is of size 128 × 128 pixels with a spatial resolution of 25 µm/pixel.  

 
Figure 5: Schematic representation of the (a) two wavelength high-speed video camera sensing 

setup. (b) and (c) representative high-speed video camera frames collected at 700 nm and 950 nm, 

respectively. (d) is the temperature field image created from the high-speed video camera frames 

collected at the two wavelengths [29]. 
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2.3 Extraction of physics-informed melt pool signatures from sensor data 

In this work, three types of sensor signatures (features) were extracted from the sensor data as 

shown in Figure 6, these are: (i) morphology (shape and size) of the melt pool; (ii) characteristics 

(area, number, and intensity) of the spatter; and (iii) temperature distribution of the melt pool.  

 

Figure 6: Schematic representation of the various physics-based features extracted from the 

different sensing modalities.  

In the high-speed video camera images exemplified in Figure 7 (a), the melt pool consists of a 

body surrounded by spatter signatures, and plume-related features. To extract melt pool morphology, 

i.e., size, shape, and spatter, the k-means image segmentation algorithm was used to remove the 

plume-related noise from the high-speed images [50]. Figure 7 (b) shows the four clusters created 

by the k-means algorithm: background (Cluster 1), plume-related features (Cluster 2), spatter 

(Cluster 3), and melt pool (Cluster 4). Subsequently, 8 pixel-connectivity-based object detection 

algorithm was used to identify the various individual artifacts in the image. The k-means 

segmentation algorithm is available as Python scripts and are capable of rapid deployment with 

minimal computational expense. 
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Figure 7: Approach followed to segment high-speed video camera images. (a) Sample high-speed 

video camera image is segmented into 4 clusters using k-means clustering as shown in (b). (c) 

Segmented image in which only pixels from Cluster 4, i.e., the brightest pixels are retained. 

These pre-processed images (Figure 7 (c)) were analyzed to extract melt pool morphology 

characteristics. Each pre-processed image was divided into five regions (W1 - W5) as shown in 

Figure 8 (a). The rationale is that the melt pool is located in the center region (W5), while the spatter 

is captured in the surrounding regions (W1-W4). The regions W1-W4 are each 64 × 64 pixels and 

the central region W5 is 25 × 25 pixels.  

From the four non-central regions (W1 – W4), three features were extracted; area (𝐴), intensity 

(𝐼), and number (𝑁) of melt pool and spatter artifacts contained in the region. The area of an artifact 

is given as 𝐴 =  𝜋 × 𝐿𝑚𝑎𝑗𝑜𝑟 × 𝐿𝑚𝑖𝑛𝑜𝑟, where  𝐿𝑚𝑎𝑗𝑜𝑟 and 𝐿𝑚𝑖𝑛𝑜𝑟 are the lengths of major and minor 

axes of ellipse fit to the artifact as shown in Figure 8€. This feature provides information about the 

size of the artifacts present in a region. The intensity of an artifact is mathematically formulated as 

𝐼 =  ∑ 𝐼𝑝
𝑃
𝑝=1 , where 𝐼𝑝 is the grey value of pixel 𝑝 in the artifact, and 𝑃 is the total number of pixels 

in the artifact. The feature 𝑁 quantifies the number of artifacts in a region.  

Researchers have shown that spatter formation has a significant effect on porosity formation in 

LPBF parts [34, 51-54]. Using high-speed imaging Nassar et al. [51] observed that spatter formation 

was caused due to the inelastic collision between near and far away particles ejected from the melt 
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pool, and the amalgamation of partially sintered particles. The authors confirmed the formation of 

lack-of-fusion porosity due to spatter formation via scanning electron micrography.  

 

Figure 8: Sample in-process sensor data used for feature extraction. (a) High-speed video camera 

images are divided into 5 windows as shown above. (b) Pixels belonging to melt pool, and spatter 

(highlighted) were used for feature extraction. (c) Melt pool size was determined by fitting an ellipse 

to it and using its axes lengths. (d) Melt pool circularity was calculated by taking a mean and 

standard deviation of the distance of melt pool center from its edge pixel€(e) Melt pool and spatter 

pixels extracted from temperature field images, and the statistical features extracted from them. 
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Esmaeilizadeh et al. [53] compared the quality of parts sintered on virgin powder and spatter-

rich regions of the powder bed. X-ray computed tomography analysis showed that the spatter-rich 

region depicted high levels of porosity compared to those printed on virgin powder. The role of 

spatter in creating flaws is further confirmed in the recent work of Qiu et al. [54]. The authors 

established the correlation between porosity and spatter formation with the help of high-speed 

imaging and computational fluid dynamics modelling. Repossini et al. [34] demonstrated that spatter 

signatures are effective for process monitoring in LPBF. The authors extracted statistical features of 

the spatter signatures and used them in a regression model to detect the onset of porosity.  

The importance of tracking spatter particles in the context of this work is evident on examining 

high-speed video images in Figure 9. These images are acquired with a monochrome camera 

sampling at 10 kHz integrated co-axial to the laser path in our apparatus; this sensor was not used in 

the current work since it acquires data over a short burst, not over the entire build. A sample video 

acquired when the laser was out of focus is given in Appendix C (Video C.1). The sequence of 

images shown in Figure 9 (a) track a spatter particle that has traveled ahead of the laser path, and 

ultimately settled on un-melted powder within the boundary of the part. On subsequent passes of the 

laser, this spatter particle is liable to impede complete melting of the powder. Likewise, in Figure 9 

(b) several spatter particles have settled on previously melted regions of the part. These spatter 

particles are liable to interfere with deposition, as well as melting of powder on subsequent layers.  

Based on prior works in the literature and the observation of spatter (Figure 9), spatter characteristics, 

such as area, intensity, and number were extracted from the high-speed video camera data, and 

subsequently used for process monitoring.  
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Figure 9: (a) Example from high-speed video imaging showing ejection of spatter particles that has 

landed onto un-melted powder within the boundary of the part. (b) spatter particles also land onto 

previously melted material within the part boundary. The video from which this image sequence was 

extracted is given in Appendix C, Video C.1. 

 From the fifth region (W5), placed centrally in the image shown in Figure 8, two additional 

features were extracted, namely, mean, and standard deviation of the circularity of the melt pool. 

These features capture the size and shape of the melt pool [55]. The mathematical representation of 

mean µcirc and standard deviation σcirc of circularity of the melt pool is given in Eqn. (3). 

 
𝜇𝑐𝑖𝑟𝑐  =  

1

𝑁𝑒𝑑𝑔𝑒
∑ 𝑑𝑖

𝑁𝑒𝑑𝑔𝑒

𝑖=1

 

 

𝜎𝑐𝑖𝑟𝑐 =  √
∑ (𝑑𝑖 − 𝜇𝑐𝑖𝑟𝑐 )

2𝑁𝑒𝑑𝑔𝑒

𝑖=1

𝑁𝑒𝑑𝑔𝑒
 

(3) 

Here 𝑁𝑒𝑑𝑔𝑒 is the number of edge pixels of the melt pool, and 𝑑𝑦 is the Euclidean distance from 

the center of the melt pool to an edge pixel as shown in Figure 8(d). To elaborate, the mean circularity 

(µcirc) is representative of the melt pool size, and the standard deviation (σcirc) of circularity captures 

the melt pool shape (uniformity).  
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Prior works have established that melt pool morphology (shape and size) has a significant effect 

on part porosity. For instance, Khairallah et al. [19] established that penetration is low at high laser 

velocities, thereby leading to balling. This balling effect was indicative of partial fusion of the 

powder particles which ultimately leads to severe lack-of-fusion porosity. Guo et al. [39] studied the 

variation in melt pool dimensions (length, width, and depth) using in-process high-speed X-ray 

imaging. It was observed that under low energy density conditions the melt pool dimensions were 

extremely small resulting in impartial fusion of powder particles and eventually lack-of-fusion 

porosity. Similar observations regarding the melt pool behavior under low energy density conditions 

were made by Li et al. [56] using a volume of fluid-based three phase model. Based on these prior 

research works, the melt pool morphological features in terms of its circularity were used in this 

work. 

 Lastly, from the melt pool temperature field images (Figure 8(b)), the following low-level 

statistical features were extracted: mean, standard deviation, skewness, minimum, and maximum of 

temperature values. These features were extracted to encapsulate the temperature distribution of the 

melt pool region.   

2.4 Machine Learning Algorithms 

Two machine learning tasks were undertaken in this work as summarized in Table 2. The aim 

of Task 1 is to detect systematic drift in the laser focus by classifying the laser spot size as a function 

of the physics-based process signatures described in Sec. 2.3. The idea is to notify the operator of an 

impending shift in laser spot size so that an appropriate corrective action can be taken.  

Task 2 consists of distinguishing the type of porosity using the extracted sensor signatures. As 

it will be elucidated further in Sec. 3.1, the following regimes of porosity are observed from the 

materials characterization analysis: (i) severe lack-of-fusion porosity, (ii) lack-of-fusion porosity, 
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(iii) negligible (optimal) porosity, and (iv) keyhole porosity. To avoid confounding, we did not use 

melt pool images from the contour region in our machine learning analysis; only meltpool images 

from the bulk part were used.   

Table 2: Different levels at which the laser spot size was classified in this work. 

Task 1 ‒ Determine laser spot size deviation 

Classification levels Laser spot size (Φd) [µm] 

9-way 
421 vs. 340 vs. 260 vs. 175 vs. 104 (optimal) vs. 63 vs. 105 vs. 185 

vs. 268 

Task 2 ‒ Determine type of porosity 

Classification levels Porosity type 

4-way Severe lack-of-fusion vs. lack-of-fusion vs. optimal vs. keyhole 

2.4.1 Model types and characteristics 

Researchers have primarily used two approaches for machine learning-based monitoring: (i) 

feature-driven, and (ii) raw data-driven. To elaborate, feature-based machine learning approaches 

contain characteristics of the in-process sensor data, such as melt pool size and temperature which 

are subsequently used as inputs in machine learning models. In contrast, raw data-driven approaches 

use unprocessed in-process sensor data directly with deep learning models. In this work, the feature-

driven and raw data-driven machine learning models were compared. 

In feature-driven machine learning approaches the sensor signatures described in Sec. 2.3 are 

used as inputs to different machine learning models, namely, support vector machines (SVM), 

multilayer perceptron (MLP), k-nearest neighbors (KNN), and random forest (RF) [57-60]. The melt 

pool morphology and spatter characteristics, and temperature distribution features were used 

together and separately as inputs to the various machine learning models to predict drift in laser spot 

size and porosity.  

On the other hand, the raw data-based monitoring approaches rely on deep learning models to 

extract features implicitly and predict flaw formation or process drifts. Some of the widely used deep 
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learning models are convolutional neural networks (CNN) [61-67], recurrent neural networks [68-

71], generative adversarial neural networks [72, 73], and autoencoders [74, 75]. In this work, a CNN 

was used as the representative deep learning model. While the CNN can learn complex relationships, 

the large number of learnable parameters (>200,000) to tune the CNN make it intractable and 

difficult to interpret. A summary of the CNN architecture is provided in Figure 10. Similar CNN 

models have been implemented in our previous works [55, 76].  

 

Figure 10: The architecture of the convolutional neural network (CNN) used in this work. 

Despite demonstrated success in recent additive manufacturing literature, the complexity and 

lack of interpretability of deep learning models hampers their ability to transferability across 

different part shapes and materials [55, 74]. These black-box deep learning models provide no 

physical insight into the features extracted from the sensor data and hence cannot be related to the 

process physics. Furthermore, the deep learning models are computationally intensive and require 

extensive input-output labeled data for training.  

In addition to simple machine learning and deep learning models, we also evaluated 

conventional statistical models that do not include any active learning step. The statistical models 

used were the ridge regression-based classifier (RRC) and the nonlinear logistic regression classifier 
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(NLR). The subpar performance of these models indeed motivated the use of machine learning 

models. 

A summary of the parameters used in the machine learning models is reported in Table 3. A 

preliminary assessment of the performance of the models tested in this work was evaluated in terms 

of the F1-score as it considers both the Type I (false alarm or false positive) error and the Type II 

(failing to detect or false negative) error [77]. The false positive rate (FPR, Type I error rate) and 

false negative rate (FNR, Type II error rate) were also used as a metric to compare the various 

models. In addition, the receiver operating characteristic (ROC) curves and area under the curve 

(AUC) were used for further quantitative analysis of the prediction performance of the machine 

learning models.  

Table 3: Summary of the hyperparameters used in various machine learning models. 

Machine learning model Summary 

Support Vector Machine 

(SVM) 

- Soft margin classifier 

- Nonlinear kernel: Radial basis 

- L2 Regularization 

Multilayer perceptron (MLP) 

- Number of hidden layers = 1 

- Number of neurons = Based on classification task’s 

complexity 

- Activate function = ReLU 

- Batch size = 200 

- Learning rate = 0.001 

- L2 Regularization 

Random Forest (RF) 

- Number of trees = Based on classification task’s complexity 

- Spilt criterion = Gini impurity 

- Bootstrap samples = 80% 

- Maximum features used at each split = (number of input 

features)1/2 

K-nearest neighbors (KNN) 

- Number of neighbors = Based on classification task’s 

complexity 

- Weighting function = inverse distance 

- Distance metric = Manhattan or Euclidean distance (based 

on classification task’s complexity) 



Page 27 of 52 

 

2.4.2  Model training and testing 

For predicting deviation in laser spot size (Task 1), approximately 12,000 data points (sensor 

signatures) for each of the 9 classes were used (108,000 total input vectors). The dataset was first 

spilt into training and testing subsets, wherein 65% of the data (7800 data points per class; 70,200 

total) was used for training, and the remainder 35% of the data (4200 per class; 37800 total) were 

isolated for testing. The machine learning models results presented in this work are based on the 

testing dataset which is unseen by the trained models. An identical training and testing procedure 

was applied for the 4-class porosity classification study (Task 2) with the exception that 6,000 data 

points were used per class with 65% (3900 data points per class) for training, and 35% (2100 data 

points per class) for testing. 

 The training dataset was used for hyperparameter optimization for the various machine learning 

models. For the hyperparameter training, a 10-fold cross-validation technique was used [78]. The 

hyperparameter optimization used a sequential Bayesian hyperparameter optimization approach to 

avoid the combinatorial grid-search method which is time consuming and computationally intensive 

[79].  

3 Results 

This section is organized as follows. In Sec. 3.1, we quantify the effect of change in laser spot 

size (Φd) on type and severity of porosity. The effect of laser spot size on melt pool penetration depth 

is provided in Sec. 3.2. In Sec. 3.3, we correlate the melt pool morphology and temperature field 

with varying laser spot size and porosity. Finally, in Sec. 3.4 we use the features extracted from 

high-speed video camera and temperature field images to predict the deviation in laser spot size 

(machine learning Task 1) and the type of porosity (machine learning Task 2). 
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3.1 Effect of laser spot size on porosity 

3.1.1 Severity of porosity from X-ray CT analysis and Archimedes relative density 

Nondestructive X-ray CT (XCT) analysis was used to quantify the effect of laser spot size on 

severity of porosity in terms of the defect volume ratio (DVR). The DVR is the ratio of the volume 

of voids present in a sample and the volume of the total sample; it is obtained from the VGSTUDIO 

MAX software. Additionally, the samples were subjected to the conventional Archimedes relative 

density measurements.  

Figure 11 (a) depicts the change in DVR and Archimedes relative density as a function of 

varying laser spot sizes. The DVR ranges from 0% to 2% and the corresponding relative density 

ranges from 98% to 90%. It was observed that build position (location) did not have a significant 

effect on porosity. For example, for the cylinders that were built with laser in-focus (nominal 

condition), i.e., the laser was focused on the build plate (𝐿𝑓ℎ = 0 mm), resulted in porosity with 

standard deviation of 0.07% across the three builds. Thus, confirming that laser focus height (or laser 

spot size) has a more pronounced effect on porosity in comparison to part location on the build plate.  

Cylinders built with the laser focused above the substrate (Φd = 421 µm, 𝐿𝑓ℎ = -20 mm to Φd = 

175 µm, 𝐿𝑓ℎ = -8 mm) have higher DVR (more porosity) in comparison to the cylinders built with 

laser focused below the substrate. As will be evident from the optical microscopy analysis described 

in the forthcoming section (Sec. 3.1.2), severe lack-of-fusion porosity was observed when the laser 

was focused above the powder bed. When the laser was focused at or slightly below the powder bed, 

the energy density was sufficient to increase the amount of keyhole porosity. Cylinders with keyhole 

porosity have a low DVR (high density) because they typically have a smaller diameter in 

comparison to lack-of-fusion pores. These observations are confirmed from the XCT images in the 

X-Y plane shown in Figure 11 (b1), (c1) and (d1).  
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Figure 11 (b2), (c2), and (d2) show X-Z plane XCT slices of the cylinder built with the laser 

focus height of -20 mm, -16 mm, and -12 mm resulting in laser spot size of Φd = 421 µm, Φd = 340 

µm, and Φd = 260 µm, respectively. It is apparent that the lack-of-fusion porosity transcends the X-

Y plane and is present across layers in the X-Z plane as well. Therefore, the poor hatch fusion within 

a layer, is compounded by poor fusion between multiple layers.  

3.1.2 Type of porosity from optical microscopy 

The cylinders were characterized using optical microscopy to determine the type of porosity 

formed as a result of changing laser spot size. Figure 12 shows the X-Y plane optical micrographs 

of the cylinders. The cylinders built with the laser focused above the substrate (𝐿𝑓ℎ = -12 mm to 𝐿𝑓ℎ 

= -20 mm), resulting in corresponding laser spot size of Φd = 260 µm to Φd = 421 µm, exhibit severe 

lack-of-fusion porosity. Instances of balling are also observed along the contour of these specimens. 

The severe lack-of-fusion flaws can be attributed to the reduction in the applied energy density as 

the laser beam is spread over a larger area [41, 55, 80]. The lack-of-fusion porosity is mitigated as 

the laser focal plane approaches the substrate.  

Cylinders that were built with the laser focused at or slightly below the substrate (𝐿𝑓ℎ = 0 mm 

to 𝐿𝑓ℎ = +8 mm) exhibit keyhole porosity due to the excessive applied energy density [19, 33, 43]. 

Further shifting the laser focal plane below the substrate reintroduces lack-of-fusion porosity as the 

powder is not sufficiently melted. For example, the cylinder built at 𝐿𝑓ℎ = +12 mm exhibits an onset 

of lack-of-fusion porosity as the laser beam is again spread over a larger area. 
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Figure 11: Effect of laser spot size on type of porosity and pore severity. Results of the X-ray 

computed tomography (XCT) of the cylinders. (a) Defect to volume ratio (DVR) and Archimedes 

density of the cylinders built under varying laser spot size, and laser focus height. (b1) and (b2) are 

the XCT images of the cylinder built at 421 µm laser spot size (highest DVR) in the X-Y and X-Z 

planes, respectively showing severe lack-of-fusion porosity. (c1) and (c2) are the XCT images of the 

cylinder built at 104 µm laser spot size (ideal) in the X-Y and X-Z planes, respectively. (d1) and (d2) 

are the XCT images of the cylinder built at 63 µm laser spot size in the X-Y and X-Z planes, 

respectively. Color bars are the pore diameters in mm. 
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Figure 12: Effect of laser spot size on type of porosity and pore severity. Optical micrographs of 

cylinders in the X-Y plane built under different laser focus heights. Cylinders that were built at laser 

focus height above the substrate (-20 mm to -8 mm) exhibit severe lack-of-fusion porosity and balling 

on the contours (highlighted in light blue color). Cylinders that were built at laser focus height below 

the substrate (0 mm to +12 mm) keyholing porosity (highlighted in peach color). Lowest amount of 

porosity is seen in the cylinder built at the optimal laser focus height of -4 mm. 
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3.2 Effect of laser spot size on melt pool penetration depth 

The X-Z cross-sections of the cylinders were polished and etched using Adler’s reagent. Figure 

13 shows the representative optical micrographs of cylinders built at varying laser spot sizes. Etching 

the parts reveals the effect of laser spot size on the melt pool penetration and characteristics of pore 

formation. 

 
Figure 13: Effect of laser spot size on meltpool penetration.  X-Z plane optical micrographs of 

cylinders deposited at (a) 260 µm, (b) 63 µm, (c) 268 µm, and (d) 104 µm. Melt pool penetration 

depth is observed to significantly vary with laser spot size. Φd = laser spot size, 𝐿𝑓ℎ = laser focus 

height. 
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Figure 13 (a) and (c) show that laser spot size of ~260 µm results in low melt pool penetration 

depth and is correlated to lack-of-fusion porosity. Contrarily, when the laser spot size is significantly 

reduced to 63 µm (𝐿𝑓ℎ = 0 mm), a drastic increase in melt pool penetration is observed as shown in 

Figure 13 (b). This over penetration of the melt pool eventually leads to keyhole porosity, as 

demarcated with dark yellow boxes in Figure 13 (b). Ideal melt pool penetration depth is observed 

when the laser spot size is maintained at Φd ~104 µm corresponding to 𝐿𝑓ℎ = -4 mm (Figure 13 (d)). 

Accordingly, the cylinders deposited at this laser spot size exhibit no porosity. 

3.3 Effect of laser spot size on melt pool signatures 

3.3.1 Melt pool morphology and spatter characteristics 

It is established from previous works that change in applied energy density and part geometry 

influences the melt pool and spatter characteristics in LPBF [23, 55, 81-83]. The high-speed camera 

frames (Figure 14) were analyzed to quantify the effect of change in laser spot size on melt pool and 

spatter in terms of their size, shape, frequency, and location.  

When the laser is focused slightly above the powder bed (Φd = 104 µm, 𝐿𝑓ℎ = -4 mm), the melt 

pool has a near-circular shape with minimal spatter (Video A.2, Appendix A). On the contrary, when 

the laser was focused considerably below the powder bed, i.e., 𝐿𝑓ℎ = +12 mm, prominent spatter 

artifacts were observed (Video A.4, Appendix A); this operating region corresponds to lack-of-

fusion porosity.  

In the region where keyhole formation was observed, i.e., 𝐿𝑓ℎ = 0 mm (Video A.3, Appendix 

A), 𝐿𝑓ℎ = +4 mm, and 𝐿𝑓ℎ = +8 mm, the melt pool is relatively compact with reduced spatter. In 

contrast, when the laser was focused above the substrate (𝐿𝑓ℎ = -8 mm to 𝐿𝑓ℎ = -20 mm), wherein 

severe lack-of-fusion was observed apart from significant presence of spatter, the melt pool size is 
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relatively diffuse and ill-defined (especially at 𝐿𝑓ℎ = -16 mm and 𝐿𝑓ℎ = -20 mm). A sample high-

speed video acquired at 𝐿𝑓ℎ = -20 mm is given in Appendix A (Video A.1). 

 

Figure 14: Representative high-speed video camera frames collected while building cylinders under 

varying laser spot sizes (Φd) and laser focus height (𝐿𝑓ℎ). Sample high-speed videos from the four 

above-shown regimes, viz. severe lack-of-fusion porosity, keyhole porosity, optimal porosity, and 

lack-of-fusion porosity, are given Appendix A. 

The foregoing visual observations are quantified in Figure 15 (a) and (b), where the melt pool 

area (A) and number of spatter artifacts (N) is tracked as a function of the laser spot size, respectively. 

Both these features show similar non-linear behavior with respect to the laser spot size. For example, 

in Figure 15 (a), when the laser is focused above the powder bed (𝐿𝑓ℎ = -12 mm to 𝐿𝑓ℎ = -20 mm) 
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the melt pool area (A) is nearly 100 pixels2 compared to 30 pixels2 at the optimal setting (𝐿𝑓ℎ = -4 

mm). As the laser is focused under the powder bed for 𝐿𝑓ℎ = 0 mm, the melt pool area reduces to 

less than 20 pixels2 corresponding to keyhole formation. However, when the laser is focused shifted 

further below the powder bed, the size of the melt pool increases again as the beam is spread out. 

 
Figure 15: Effect of change in laser spot size on (a) area of melt pool and spatter and (b) number of 

occurrences of artifacts in high-speed video camera images. Error bar is 1 standard deviation, and 

1000 samples were used. 

3.3.2 Melt pool temperature distribution 

The effect of laser spot size on melt pool temperature is summarized in Figure 16. It is evident 

from visual comparison that the melt pool temperature is relatively lower when the laser is focused 
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above the powder bed (𝐿𝑓ℎ = -12 mm to 𝐿𝑓ℎ = -20 mm) compared to when it is focused below the 

powder bed (𝐿𝑓ℎ = 0 mm to 𝐿𝑓ℎ = +8 mm). These correspond to lack-of-fusion and keyhole 

formation, respectively. Sample temperature field videos acquired at 𝐿𝑓ℎ = -20 mm and 𝐿𝑓ℎ = 0 mm 

are given in Appendix B as Video B.1 and Video B.3, respectively. The mean melt pool temperature 

is again reduced when the laser beam is focused considerably below the powder bed (Φd = 268 µm, 

𝐿𝑓ℎ = +12 mm) (Video B.4, Appendix B). 

 

Figure 16: Representative temperature field images of cylinders built under different laser spot sizes 

(Φd) and laser focus height (𝐿𝑓ℎ). Sample temperature field videos from the four above-shown 

regimes, viz. severe lack-of-fusion porosity, keyhole porosity, optimal porosity, and lack-of-fusion 

porosity, are given Appendix B. 

A quantitative comparison of the mean melt pool temperature as a function of laser spot size is 

presented in Figure 17. The lowest mean melt pool temperatures of ~2300 °C to 2500 °C are 
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observed when the laser is focused above the powder bed (𝐿𝑓ℎ = -12 mm to 𝐿𝑓ℎ = -20 mm) 

corresponding to a laser spot size of Φd = 421 µm to Φd = 175 µm. Accordingly, the lack-of-fusion 

porosity is most severe under these conditions as there is insufficient energy melt material 

significantly below the surface.  This is despite the melt pool temperature significantly exceeding 

the melting point of stainless steel 316L (~1400 °C) [29].   

 
Figure 17: Effect of change in laser spot size on mean temperature of melt pool extracted from the 

temperature field images. Error bar is 1 standard deviation, and 1000 samples were used. 

The mean melt pool temperature increases almost linearly as the focal plane approaches the 

powder bed (Φd = 104 µm, 𝐿𝑓ℎ = -4 mm) and correlates to a reduction in lack-of-fusion porosity 

(Video B.2, Appendix B).  The highest mean melt pool temperature of ~2800 °C (almost twice the 

melting temperature of SS 316L) is observed when the laser is focused at the build plane (Φd = 63 

µm, 𝐿𝑓ℎ = 0 mm) and is linked to keyhole porosity. A significant drop in melt pool temperature is 

observed as the focal plane of the laser deviates considerably below the powder bed to 𝐿𝑓ℎ = +12 

mm.  

A key point in Figure 17 is that the melt pool temperature of ~2750 °C results in minimal 

porosity as well as keyhole porosity. Figure 17 thus exemplifies that using the melt pool temperature 
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alone to predict the state of the process would not be sufficient; the shape (morphology) of the melt 

pool and the spatter behavior must also be accounted. In other words, there is a need to combine 

process signatures that capture the melt pool morphology, spatter characteristics, and melt pool 

temperature to improve process monitoring. The need is underscored in the forthcoming Sec. 3.4. 

3.4 Prediction of laser spot size deviation (Task 1) and type of porosity (Task 2) 

First, the melt pool morphology and temperature extracted from the high-speed camera and 

temperature field images were used separately, as well as together as inputs to various machine 

learning models to predict the laser spot size and the type of porosity. Figure 18 (a) and (b) show the 

correlation between three of the features extracted from the high-speed camera and temperature field 

images in terms of three different laser spot sizes (421 µm, 104 µm, and 268 µm), respectively. 

Although, the features amiably cluster the different laser spot sizes, considerable overlap between 

the clusters is evident due to the inherent non-linearity (Figure 15 and Figure 17). It is difficult, if 

not impossible, to demarcate these clusters with simple statistical regression analysis. 

 
Figure 18: Correlations between features extracted from (a) temperature field images and (b) high-

speed video camera images in terms of three laser focus heights-20 mm, -4 mm, and +12 mm. The 

three laser focus heights can be demarcated based on these features, but some overlap and 

nonlinearity are evident necessitating the use of machine learning models. 
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 Hence, machine learning models are needed as they are capable of demarcating these regimes 

as they can create nonlinear decision boundaries [84]. To further illustrate this point, Table 4 reports 

the classification accuracy of the conventional statistical models ‒ ridge regression-based classifier 

(RRC) and nonlinear logistic regression classifier (NLR) for distinguishing the type of porosity and 

laser spot size in terms of the F1-score. The false positive rate (FPR) and false negative rate (FNR) 

are reported in Table 5. From Table 4 it is apparent that the conventional statistical models yield an 

F1-score in the range of 70% to 85%, noting that the prediction accuracy is considerably improved 

when both melt pool morphology and spatter characteristics, and temperature features are combined.  

To further improve this prediction accuracy, the following machine learning models were 

tested: multilayer perceptron (MLP), random forest (RF), support vector machine (SVM), k-nearest 

neighbors (KNN), and deep learning convolutional neural network (CNN). We reiterate that the 

CNN does not use the physics-based melt pool features (Sec. 2.4) but employs the raw melt pool 

images directly. Indeed, the relatively simple SVM machine learning model resulted in a F1-score 

of 0.95 in 9-way classification when the melt pool morphology and spatter, and temperature are used 

together. In contrast, the same SVM model provides a F-score of 0.84 and 0.65, respectively, when 

either the melt pool morphology and spatter, or temperature filed are used in isolation.  This 

prediction fidelity was found to be at par to the complex convolutional neural network (CNN) that 

uses the raw melt pool images instead of the physics-based data signatures [55]. Considering 

computational and interpretability advantages, using low-level, intuitive, and process physics-based 

features with relatively simple machine learning models is a viable alternative to CNN. 

 Figure 19 (a) and (b) reinforce the two key results reported in Table 4 for laser spot size and 

type of porosity classification, respectively. First, using physically intuitive features with simple 

machine learning models, such as SVM, performs at par to complex deep learning CNN (Hypothesis 
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1) resulting in F1-score of ~95%. Second, combining the melt pool morphology and spatter 

signatures (A) and melt pool temperature features (B) considerably improves the classification 

accuracy of both the machine learning tasks. 

Table 4: Laser spot size and type of porosity classification results using various machine learning 

and conventional statistical models. The classification fidelity is reported for the test dataset in terms 

of the F1-score. 

Task 1 ‒ determine laser spot size deviation 

Sensor features RRC NLR KNN RF MLP SVM CNN 

(A) Melt pool morphology and 

spatter signatures 
0.51 0.57 0.81 0.82 0.80 0.84 0.97 

(B) Melt pool temperature 

distribution 
0.43 0.57 0.58 0.64 0.67 0.67 0.96 

A+B (data fusion) 0.67 0.82 0.87 0.89 0.95 0.95 0.96 

Task 2 ‒ determine type of porosity 

Sensor features RRC NLR KNN RF MLP SVM CNN 

(A) Melt pool morphology and 

spatter signatures 
0.71 0.76 0.96 0.97 0.96 0.87 0.95 

(B) Melt pool temperature 

distribution 
0.60 0.62 0.85 0.87 0.89 0.75 0.92 

A+B (data fusion) 0.77 0.84 0.97 0.98 0.98 0.94 0.94 

 

Table 5: Laser spot size and type of porosity classification results using ridge regression-based 

classifier (RRC), nonlinear logistic regression (NLR) k-nearest neighbors (KNN), multilayer 

perceptron (MLP), random forest (RF), support vector machine (SVM), and convolutional neural 

network (CNN). The classification fidelity is reported for the test dataset in terms of the false positive 

rate (FPR) and false negative rate (FNR). A = melt pool morphology and spatter signatures, B = 

melt pool temperature distribution, A+B = data fusion.  

Task 1 ‒ determine laser spot size deviation 

Sensor 

features 
RRC NLR KNN MLP RF SVM CNN 

FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR 
A 0.02 0.19 0.07 0.39 0.02 0.19 0.02 0.20 0.02 0.17 0.02 0.16 0.002 0.03 

B 0.05 0.41 0.05 0.41 0.05 0.41 0.04 0.32 0.04 0.36 0.04 0.32 0.001 0.05 

A+B 0.01 0.12 0.02 0.17 0.01 0.12 0.006 0.05 0.01 0.10 0.005 0.04 0.002 0.05 

Task 2 ‒ determine type of porosity 

Sensor 

features 

RRC NLR KNN MLP RF SVM CNN 

FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR 

A 0.09 0.28 0.07 0.22 0.02 0.06 0.03 0.06 0.02 0.03 0.04 0.12 0.006 0.06 

B 0.13 0.39 0.13 0.37 0.06 0.15 0.04 0.13 0.05 0.11 0.08 0.24 0.02 0.07 

A+B 0.07 0.22 0.05 0.15 0.01 0.06 0.01 0.04 0.01 0.04 0.01 0.05 0.01 0.05 
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Figure 19: Graphical representation of the performance of different models used to classify the (a) 

laser spot size and (b) type of porosity in terms of F1-score. RRC = ridge regression classifier, NLR 

= nonlinear logistics regression classifier, SVM = support vector machine classifier, CNN = 

convolutional neural network classifier.  

Table 5 reports the laser focus height prediction accuracy in terms of false positive rate (FPR) 

and false negative rate (FNR) of various machine learning models. Again, a notable improvement in 

the laser focus height prediction accuracy (reduced FPR and FNR) is observed when the features 

extracted from the high-speed video camera and temperature field images are used together. With 

the exemplar SVM model, the FPR with the melt pool morphology (A) and temperature signatures 

(B) was 0.02 and 0.04 respectively. This FPR reduced to 0.005 when both types of features were 

combined. A similarly significant reduction in FNR is observed using data fusion. 

Further, plotted in Figure 20 are the receiver operating characteristics (ROC) curves and area 

under the curve (AUC) of the SVM model while performing laser spot size prediction using melt 

pool morphology and spatter characteristics, and temperature features by themselves and together. 

The plot in Figure 20 (d), suggest that the sensor data fusion yields AUC values very close to 1.00 

when the SVM is applied to demarcate between laser spot size. Figure 20 (c) shows that the sensor 
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data fusion yields significantly improved performance compared to treating the data separately 

(Figure 20 (a) and (b)). The fused data shows very low false positive rates (~10-3) whilst maintaining 

an acceptable true positive rate (~0.9). At the same true positive rate, the melt pool morphology or 

temperature feature methods have a false positive rate of ~0.1 when analyzed separately. In other 

words, for an in-focus system the data fusion method would be capable of only raising a false alarm 

every 1 in 1000 predictions, whilst still flagging 9 out of 10 focus problems correctly. Depending on 

the application, this level of performance gives a machine operator significant confidence in the 

detection system, enabling routine industrial deployment of in-situ monitoring systems. 

 
Figure 20: Receiver operating characteristic (ROC) curve and area under the curve (AUC) of 9-

way laser spot size classification using Support Vector Machine (SVM). ROC curves when (a) only 

melt pool morphology features were used (F1-score = 0.84), (b) only melt pool temperature features 

were used (F1-score = 0.67), and (c) both melt pool morphology and temperature features were 

used (F1-score = 0.95). (d) AUC values of SVM when different feature sets were used for laser spot 

size classification.  
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4 Conclusions 

 In this work, we developed and applied an approach for in-process monitoring of the laser 

powder bed fusion (LPBF) additive manufacturing process using data acquired from a high-speed 

video camera and a melt pool temperature imaging system. The novelty of the approach is that it 

combines multiple physics-informed process signatures concerning the melt pool morphology, 

spatter characteristics, and melt pool temperature distribution with computationally light machine 

learning models.  

The results affirm two hypotheses: (i) using data representative of multiple process 

phenomena, as opposed to one type of signature, significantly improves prediction of process 

anomalies and flaw formation; and (ii) the use of pragmatic physics-informed process signatures in 

simple machine learning models, such as support vector machine (SVM) and multilayer perceptron 

(MLP), is as effective as a complex, black-box deep learning convolutional neural network (CNN) 

for flaw detection.  

Combining the melt pool morphology and spatter characteristics with melt pool temperature 

distribution features significantly improved the detection performance. Out of the various data-

driven models tested, the statistical models had the least prediction fidelity (F1-score < 70%), while 

the CNN, MLP and SVM showed comparable results with F1-score of ~95%. The receiver operating 

characteristic curve analysis highlighted the advantage of data fusion; the false positive rates reduced 

from ~0.1 when treating data signatures independently to ~10-3 when signatures were fused without 

sacrificing the true positive rate (~0.9). This marks a significant step forward towards deployment 

of industrially relevant and practically viable LPBF in-process monitoring systems. 
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Appendices 

Appendix A: Representative high-speed videos 

Video A.1: High-speed video acquired under the laser spot size that yielded severe lack-of-fusion 

porosity. File name: HSV_severe_lack_of_fusion_porosity.avi 

Video A.2: High-speed video acquired under the laser spot size that yielded the lowest porosity. File 

name: HSV_lowest_porosity.avi 

Video A.3: High-speed video acquired under the laser spot size that yielded keyhole porosity. File 

name: HSV_keyhole_porosity.avi 

Video A.4: High-speed video acquired under the laser spot size that yielded the lack of fusion 

porosity. File name: HSV_lack_of_fusion_porosity.avi 

Note: The pixel values in the above-mentioned videos are intensity readings. 

Appendix B: Representative temperature field videos 

Video B.1: Temperature field video acquired under the laser spot size that yielded severe lack-of-

fusion porosity. File name: Temperature _severe_lack_of_fusion_porosity.avi 

Video B.2: Temperature field video acquired under the laser spot size that yielded the lowest 

porosity. File name: Temperature _lowest_porosity.avi 

Video B.3: Temperature field video acquired under the laser spot size that yielded keyhole porosity. 

File name: Temperature _keyhole_porosity.avi 

Video B.4: Temperature field video acquired under the laser spot size that yielded the lack of fusion 

porosity. File name: Temperature _lack_of_fusion_porosity.avi 

Note: The pixel values in the above-mentioned videos are temperature readings in degree Celsius 

(°C). 

Appendix C: High-speed spatter video 

Video C.1: High-speed video acquired from near-coaxial camera that elucidates the spatter 

characteristics that were observed when the laser was out of focus. File name: 

Laser_out_of_focus.avi 
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