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ARTICLE INFO ABSTRACT

Keywords: Recombinant Escherichia coli grown in large-scale fermenters are used extensively to produce plasmids and
Bioprocess monitoring biopharmaceuticals. One method commonly used to control culture growth is predefined glucose feeding, often
Kia

an exponential feeding profile. Predefined feeding profiles cannot adjust automatically to metabolic state
changes, such as the metabolic burden associated with recombinant protein expression or high-cell density
associated stresses. As the culture oxygen consumption rates indicates a culture’s metabolic state, there exist
several methods to estimate the oxygen uptake rate (OUR). These common OUR methods have limited appli-
cation since these approaches either disrupt the oxygen supply, rely on empirical relationships, or are unable to
account for latency and filtering effects. In this study, an oxygen transfer rate (OTR) estimator was developed to
aid OUR prediction. This non-disruptive OTR estimator uses the dissolved oxygen and the off-gas oxygen con-
centration, in parallel. This new OTR estimator captures small variations in OTR due to physical and chemical
manipulations of the fermenter, such as in stir speed variation, glucose feeding rate change, and recombinant
protein expression. Due its sensitivity, this non-disruptive real-time OTR estimator could be integrated with feed

Oxygen transfer rate
Oxygen uptake rate
Feeding

Bioreactor

control algorithms to maintain the metabolic state of a culture to a desired setpoint.

1. Introduction

Escherichia coli are used extensively in industry to produce both
biopharmaceuticals and plasmids (Baeshen et al., 2015; Walsh, 2018).
E. coli can grow rapidly on inexpensive media and are easily modified
genetically (Swartz, 2001). In current practice, most industrial and
benchtop fermenters use simple control strategies, specifically, closed
loop proportional-integral-differential (PID) control for environmental
variables such as pH, temperature, and dissolved oxygen (DO). Glucose
feeding for fed-batch cultures commonly uses a preset exponential
feeding schedule (Korz et al., 1995). Yet, these feeding practices are
often developed to operate without any input from common on-line
sensor measurements, such as the DO and off-gas oxygen concentra-
tions (Chen et al., 1995). Both DO and off-gas oxygen concentrations are
indicative of culture metabolic state. Specifically for E. coli, efficient
growth and recombinant protein production occurs when glycolysis and
the tricarboxylic acid (TCA) cycle are balanced (Gonzalez et al., 2017;
Korz et al., 1995; Wolfe, 2005; Xu et al., 1999). When the glycolysis flux
is higher than the TCA cycle maximum flux, acetate accumulates, even
in the presence of sufficient oxygen (Sharma et al., 2007). This
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metabolic state is commonly called overflow metabolism (Johnston
et al., 2003; Xu et al., 1999). Further, acetate accumulation is known to
inhibit growth and recombinant protein production yield (Sharma et al.,
2007; Xu et al., 1999). Thus, overflow metabolism is best avoided for
high cell density cultures (Korz et al., 1995). To avoid overflow meta-
bolism, the glycolytic flux, via controlled glucose feeding, need to bal-
ance the TCA cycle flux.

Currently, there are no direct method to measure the metabolic state
of a culture, so surrogates are used, such as the growth rate, glucose
consumption rate, and oxygen uptake rate (OUR). Standard practices
require off-line assessment of cell densities over time to evaluate growth
rates. There are new tools to measure glucose on-line; however, most
fermentations still rely on off-line glucose measurements to assess the
glucose consumption rate. There are several approaches to obtain OUR,
which can be divided into three approaches: 1) dynamic, 2) global mass
balance, and 3) stationary liquid mass balance (Martinez-Monge et al.,
2019; Pappenreiter et al., 2019). These three main methods all have
drawbacks due to underlying assumptions or operational difficulties
(Bandyopa and Humphrey, 1967; Doi et al., 2020; Fontova et al., 2018;
Goldrick et al., 2018; Martinez-Monge et al., 2019; Seidel et al., 2021;
Van’t Riet, 1979). For example, the dynamic method is disruptive as it
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Nomenclature
o fitting parameter.
@ kea fitting parameter, normalized to Cy.
a fitting parameter.
oy fitting parameter, normalized to C;;.
Yo inlet oxygen concentration (% oxygen).
Yo,i inlet oxygen concentration at calibration (% oxygen).
V1 bubble exiting liquid oxygen concentration (% oxygen).
Vo headspace oxygen concentration (% oxygen).
V3 off-gas sensor oxygen concentration (% oxygen).
CL liquid oxygen concentration (mg/L).
C* liquid oxygen saturation constant (mg/L).
vl liquid oxygen saturation constant at calibration (mg/L).
DO dissolved oxygen (% saturation).
Hg(s) Laplace transform of transfer function for yy to ys.
hg(0) transfer function for yq to ys.
kia volumetric oxygen mass transfer coefficient (h™?).
kia volumetric oxygen mass transfer coefficient (h™?),

normalized to C*cal.

Mg mass flow rate (L/min).

N stir speed (rpm).

oD optical density, used as measure of cell density.

OTR oxygen transfer rate (g/L-h).

OTRayg OTR determined from measured yo and ys, time-averaged
by default.

OTRgrs OTR calculated by the RLS-OTR algorithm.

OUR oxygen uptake rate (g/L-h).

P Pressure (bar).

do2 cell specific oxygen consumption rate (g O,/g cell-h).

R universal gas constant (0.08314 L-bar/mol-K).

RLS recursive least squares.

T temperature (°C or K).

Vi liquid volume.

Vs headspace volume.

X cell density (OD at 600 nm).

requires the oxygen gas flow to be stopped. Most industrial facilities will
not use this method during production due to the high risk of culture
loss, and will instead rely on volumetric oxygen mass transfer coefficient
(kpa) values determined in buffer and extrapolated to production con-
ditions (Doi et al., 2020). The global mass balance method uses the
difference between the inlet and outlet gas concentrations, thus requires
two on-line gas sensors (Fontova et al., 2018; Patel and Thibault, 2009).
The stationary liquid mass balance method assumes steady-state and
uses the difference between the liquid oxygen saturation constant (C*)
and the measured DO (Martinez-Monge et al.; Pappenreiter et al., 2019).
All three of these standard methods lack the capability to account for
latency and filtering effects.

The underlying principle to reliably and precisely estimate OUR is an
accurate assessment of k;a; however, real-time k;a measurements have
been unreliable (Ducommun et al., 2000; Eyer et al., 1995; Nienow,
2015). One early approach to estimate k;a was the empirical Van’t Riet
(1979) equation. This approach estimates k;a from the power per vol-
ume ratio, superficial gas velocity and three empirical constants ob-
tained for a particular vessel (Van’t Riet, 1979). Goldrick et al. (2018)
used kja to control the glucose feeding augmented with the van’t Riet
(1979)) equation and off-line glucose measurements (Goldrick et al.,
2018; Van't Riet, 1979); however, they were forced to smooth the ox-
ygen transfer rate (OTR) values to predict OUR. Subsequently, any
time-dependent details regarding real-time OUR information were lost.
Fontova et al. (2018) calculated OUR in real-time using a modified
global mass balance method (alternated the gas sensor between the inlet
and outlet streams); yet, assumed a constant kpa value (Fontova et al.,
2018). They noted this constant kja assumption caused error in the OUR
estimates at later culture times. And, Doi et al. (2020) measured kjaps
and kjacop using the gas-out method in buffer for several bioreactor
configurations (Doi et al., 2020). However, their approach neglected the
interaction of cell secretions on kja over the culture duration.

In order to obtain accurate real-time kja estimates, the signal
filtering and delays need to be described mathematically. First, the off-
gas measurement is heavily filtered by gas mixing in the headspace of
the bioreactor. Second, the off-gas signal is delayed due to time required
for the oxygen to travel from the liquid surface to the off-gas sensor. OTR
is directly related to the volumetric coefficient, kya, such that if kja is
known, OTR can be estimated directly. Unfortunately, kia is a complex
parameter that depends on stir speed, impeller shape and dimension,
bioreactor shape and dimensions, chemical characteristics of the media,
viscosity, temperature, among many other parameters (Aroniada et al.,
2020; Campbell et al., 2020). There is also evidence that kja changes
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over the course of a fermentation (Patel and Thibault, 2009). A math-
ematical method to estimate kpa in real-time would allow for OTR es-
timates, OUR calculations, and subsequent metabolic state assessment.

In this study, a non-disruptive kja estimator will be described that
uses only commonly available sensors (off-gas and DO). This sensitive
kpa estimator can continuously estimate kja in real-time. These real-time
kpa estimate can then be used to determine OTR in real-time, which
subsequential can be used to calculate OUR over the culture time. A
recursive least squares (RLS) approach was used, in conjugation, with a
first-order gas mixing model to fit a simple model to the observed data,
which is summarized as the RLS-OTR algorithm. Two recombinant
E. coli fermentations were conducted to validate the sensitivity of the
OTR estimator to fed-batch fermentation conditions. First, a fermenta-
tion with a predefined constant exponential feeding profile was used to
assess the responsiveness of the OTR estimator to small glucose pulses.
The second fermentation was used to assess the effect of large glucose
perturbations on the OTR estimator, by causing the cells to enter the
overflow metabolic state. Further, the OTR estimator was challenged by
step changes in the inlet oxygen concentration. These recombinant
cultures were induced and the capability to estimate OTR in stressed
cultures was evaluated.

2. Materials and methods
2.1. Bacterial strain and plasmids

E. coli MG1655 were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). The plasmid pTVP1GFP (gift
from A. Villaverde) encodes the VP1 capsid of foot-and mouth disease
(Liu et al., 2006) fused to green fluorescent protein (GFP) (Garcia--
Fruitos et al., 2007). E. coli MG1655 were transformed with the
pTVP1GFP plasmid (Baig et al., 2014).

2.2. Culture conditions

E. coli MG1655 pTVP1GFP were cultured in a minimal medium
described previously (Korz et al., 1995; Sharma et al., 2007). Frozen
stock (1 mL, stored at —80 °C) were thawed and added to the minimal
medium containing 40 mg/L ampicillin (ThermoFisher). Cells were
grown overnight in a shaker incubator (C24, New Brunswick Scientific,
Inc.) at 37 °C and 250 rpm. Cell densities (OD) were obtained at 600 nm
with a spectrophotometer (Spectronic 30 Genesys), where 1 OD is
equivalent to 0.45 g dry cell weight per liter. Samples were diluted with
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deionized water to obtain absorbance readings in the linear range
(0-0.45 OD). The shake flasks at approximately 2.5 OD, and still in the
exponential phase, were used to inoculate the fermenters.

2.3. Fermenter operation

Fermentations were conducted in a 5-L BioStatB fermenter (Sarto-
rius, Bethlehem, PA). Defined batch medium and feed medium were
described previously in Korz et al. (1995) with the modifications
described by Sharma et al. (2007). The temperature and pH were
controlled by the BiostatB DCU controller. The pH and temperature
during the fermentations were maintained at 6.90 and 37 °C, respec-
tively. A solution of 20 % ammonium hydroxide was used for pH control.
All  cultures were induced with 1.0mM IPTG (iso-
propyl-p-thiogalactopyranoside) in the fed-batch phase at approxi-
mately 35 OD. Silicone tubing (LS14, Cole-Parmer) was used for all
connections with the bioreactor, which resulted in a maximum flowrate
of 20 mL/min. The pre-defined exponential feed rate was 0.28 h™! for
both fermentations; however, the second fermentation had several
planned glucose feeding perturbations.

2.4. Data collection

Matlab (Mathworks, US) was used to collect data and designate
setpoints for stir speed and the feed rates, as well as perform the RLS-
OTR calculations. The stir speed was used to maintain a DO setpoint
of 60 %, unless stated otherwise. The BiostatB pump speeds are dis-
cretized into 2 % increments, thus, a pump dithering protocol was used
to smooth this quantization. The MFCS OPC software (Sartorius) was
used to communicate between Matlab and the MFCS data acquisition
software (Sartorius). Gas flow rates (0-5 L/min) to the bioreactor was
controlled using GFC 17 mass flow controllers (Aalborg, Germany). The
off-gas measurements, such as pressure, gas temperature, and oxygen
concentration, were collected by a BlueInOne Ferm 1050 (BlueSens,
Germany).

3. Theory and calculations

The OTR estimator uses the input oxygen concentration (yo), off-gas
sensor oxygen concentration (ys), oxygen concentration in the liquid
(Cp) measured as DO, volumetric gas flow rates (Mp), liquid volume (V1),
and stir speed (N) measurements from the bioreactor to calculate in real-
time kja. OTR is then estimate from kia, and subsequentially could be
used to determine OUR. The RLS-OTR algorithm calculations are sum-
marized following the theoretical equations.

3.1. OTR via off-gas measurements

Fig. 1A shows the physical locations within the fermenter for the
parameters used to estimate kja. The oxygen mole ratio y; of gas are
shown as it passes through the bioreactor (shown as the molar oxygen
percentage (%) in subsequent figures): y, for the input gas, y; for bub-
bles as these leave the media, y, for the fully mixed headspace gas, and
ys for the off-gas sensor measurement. Note that in this present work, yo
is calculated from the mass flow of the input gas sources. This approach
could be modified to use a inlet gas sensor measurement, if available.
OTR can, in theory, be calculated directly from mole ratios y, and y;
described in Eq. (1); however, a direct measurement of y; is generally
not possible.

M:P
OTR = =L (yo — 1)

ViRT W

where P is the headspace pressure, T is temperature, and R is the uni-
versal gas constant. In the global mass balance method, y; is simply
replaced in Eq. (1) with the off-gas sensor measurement y3 (Patel and
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Fig. 1. Bioreactor schematic and RLS-OTR algorithm flow diagram. A) Biore-
actor schematic with positions of key parameters indicated. y, — oxygen con-
centration entering the bioreactor (inlet oxygen concentration, % oxygen); y1—
oxygen concentration in the bubbles exiting the liquid (% oxygen); y,— oxygen
concentration of the gas leaving the bioreactor (% oxygen); ys— oxygen con-
centration at the off-gas sensor (% oxygen); M¢ — mass flowrate of yo; Vi-liquid
volume; Vy-headspace volume; and N-stir speed (rpm). B) Calculation flow
diagram for the RLS-OTR algorithm. Data is acquired from the bioreactor and
off-gas sensor and processed by the RLS-OTR algorithm in Matlab. A Savitsky-
Golay (SG) filter is used to reduce signal noise. The reduced noise data is then
convolved to determine y;. A second SG filter is used to calculate the final
OTR estimate.

Thibault, 2009) and shown as

MP
OTRavg =3 o (2)

I _
ViRT 0 7
The global mass balance method to determine OTR represents a time-
averaged estimate of OTR (written here as OTRayg), since it neglects the
filtering effects of headspace mixing and the sensor dynamics. To ac-
count for these latency and filtering effects, in this work, the headspace
and sensor dynamics are explicitly modeled. The headspace mixing is
modeled as
dy: _ My

dr *vz(yz—%)

3
where V; is the headspace volume. The off-gas sensor dynamics are
modeled as a first order reaction

dy371

= —()’3 —y)

dt T )

where 75 is the time constant associated with the sensor. The transport
delay for gas to move from the bioreactor to the sensor was found to be
negligible for the current system, yet this effect could be readily added to
the model for larger systems or shared off-gas sensors. From Eq. (3) and
Eq. (4), the Laplace-domain transfer function from y; to ys is given by

1

(()s+ 1 )ims 1) ©

g(s) =
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where y3 can be estimated by H,(s) * y;. Note: this notation represents
the time domain input signal b; is filtered by the system represented by
Hg(s) to give time-domain output signal ys.

3.2. OTR via oxygen concentration measurements

OTR can also be theoretically calculated from the liquid oxygen
concentration (Cp), as shown in Eq. (6).

OTR = ka(C* — Cp) (6)
where kra is the volumetric mass transfer coefficient, and C* is the
saturation oxygen concentration. C* depends on the inlet gas oxygen
concentration (yo). How Cy, changes with time is a function of OTR and
OUR given by Eq. (7) (neglecting dilution effects).

dc,,

i )

= kya(C* = C) — OUR

Thus, if k;a is known, OTR can be calculated directly from the liquid
oxygen concentration using Eq. (6). Unfortunately, k;a depends on
many physical parameters that vary through time. There are several
methods to estimate k;a, such as the Van’t Riet’s (1979) equation. In this
work, k;a will be modeled as linearly related to stir speed (N)

k[la:ao-'ra](N—No) (8)
where Nj is an arbitrary constant used to center the model (Wang et al.,
2014). The parameters ao and a; are continuously calibrated to account
for the dependence of k;a on other unmeasurable physical parameters.

3.3. OTR via DO sensor measurements

At the beginning of a fermentation trial, the input gas oxygen con-
centration is yo cq;, the corresponding saturated oxygen concentration of
the media is C;;, and the DO measurement is calibrated to 100 % at this
concentration. DO measurements do not suffer from the headspace
mixing and slower sensor dynamics of off-gas measurements, so esti-
mating OTR from dissolved oxygen is more responsive than using the
global mass balance off-gas calculation. Due to the calibration with air,
DO measurements are related to oxygen concentration by, and not
identical to the liquid concentration (Cp)

D
CL:C* 0

00 ©

If the input oxygen concentration is changed, then by Henry’s law,
the saturation concentration is
w Yo

cal
Yo.cal

c=cC (10)

Substituting Eq. (8), Eq. (9) and Eq. (10) into Eq. (6) allows OTR to
be estimated online

_ Yo DO
OTR = N — N -
@+ ) <y0.ca1 100)

(€8]

where ay = C a0 and @y = C, 1. If @p and @; are known, then OTR can
be calculated from percentage DO measurements without the needed to
know C7;. Eq. (11) suggests the definition

kia=a,+a (N —N) 12)

which differs from k.a by a factor of C.
3.4. Matching OTR off-gas and OTR dissolved oxygen

The OTR value is identical whether calculated from oxygen mole
ratios Eq. (1) or from dissolved oxygen concentrations Eq. (11).
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Therefore, setting Eq. (1) and Eq. (11) equal allows one to solve for the
unmeasurable oxygen concentration y; as

— = Yo DO
N — N, -
(ot °))<yo,ml 100)

where the ¥, indicates that the quantity is calculated from DO rather
than measured directly. Since H,(s) x y; predicts the off-gas measure-

ViRT

M;P (13)

3’\1 =Yo—

ment y3 based on DO measurement, H,(s) ¥, is set equal to y3 and
rearrange where the unknown parameters @, and @; are placed on the
right hand side of the equation, given as

VIRT [ y DO _
(Hg(s) * yo =3 ) = Hl(s) * (AIJ/P (}%‘ﬁ) )ao + H,(s)

VIRT Yo DO —
' (MfP (V=) (yn_,- 100) )“‘

Eq. (14) can be solved using least squares for the unknown param-
eters ap and a;. Conceptually, the parameters @, and @; are fit so that
OTR calculated from DO using Eq. (8) matches the ideal OTR from Eq.
(1) without ever having direct access to the unmeasurable signal y;.

14)

3.5. Recursive least squares formalism

In the present work, the @y and @; parameters are calculated on-line
using the recursive least squares (RLS) algorithm, which allows the
parameters to account for the effects of other slowly evolving parame-
ters on kya. For more detail on RLS, see Sections 3.5 and 3.6 and Simon
(2006). Since Eq. (14) is only a function of two variables, @y and a7, this
calculation method will be referred to as the RLS-OTR algorithm, and
represented as OTRgys to indicate that the RLS-OTR algorithm was used
(Fig. 1B). My, P, V1, and T are all assumed to be relatively constant for
this calculation. The matrices used for the RLS algorithm method are:

Ax=Y (15)
M,P
Y= |:V] d 7 (He(s) 30 _}’3)} (16)
_ Y _Do , Ny [ 2o DO
A= |:Hg <y07i 100) H,(s)* (N — No) <y0,[ 100) a7z
x=[a al (18)

Where @ and @7 are approximated by solving the linear set or equations
given as Eq. (14) to Eq. (18). With @y and @7 estimated from the data and
transformed to solve for y;. This allows one to solve for k;a by Eq. (12)
and OTRgs by Eq. (11). Fig. 1B shows the overall logic flow diagram for
the RLS-OTR algorithm.

3.6. RLS algorithm

The time varying signals A[¢], x[t]. and Y[t] are defined as the sample
of A, x, and Y, respectively, at time t. To initialized the RLS algorithm, A
[0], Y[0], and x[0] were set to sized zero matrix as shown in Egs. (19),
(20) and (21):

Al0] =[0 0] (19)
Y[0] = [0] (20)
x[0]=[0 O] (21)

To implement the RLS algorithm, a forgetting factor, 4, the Kalman
gain matrix, k[t|, and a matrix P[t] were needed. For this work, 1 = 0.95
was selected; however, this parameter could be tuned to specific appli-
cations. The k[t] and P[t] matrices were initialized to k[0] and P[0] as
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shown in Egs. (22) and (23):
k0] =[0 0]

o= 4

The k[t] and P[t] equations were then calculated on-line using Eqgs.
(24), (25) and (26) to estimate x[t], which contained the estimates of the
fitting parameters, @, and ;.

(22)

(23)

_ Pt — 1]A]]
K = APy - AT (24)
Pil= A7'Pt—1]+ K[JAT[AA Pt —1] (25)
xt] = x[t — 1] + k[ (Y[r] — A [t]x[r — 1]) (26)

4. Results and discussion

Two fermentations were conducted to characterize and compare the
developed OTR estimator (OTRgys) with a standard OTR (OTRayg)
calculation method provided by the Bluesens (Germany) off-gas sensor
software. In this work, OTRyg is a modified version of the global mass
balance method, as the inlet oxygen concentration is calculated instead
of measured (Patel and Thibault, 2009). The first fermentation used a
constant exponential feed profile with an exponential rate (u =
0.28 k1) that was maintained the entire fermentation. The second
fermentation used the same predefined exponential feed profiles, but the
glucose feed pump was pulsed to create substantial perturbations. The
constant exponential feed fermentation was used to evaluate the OTR
estimator sensitivity to small glucose pulses. The perturbed exponential
feed fermentations characterized the OTR estimator responses to step
changes in the inlet oxygen concentration and to overflow metabolism.
Since both fermentations were induced to express the recombinant
protein, the capability to estimate kia for stressed cells was character-
ized (Bentley and Kompala, 1989).

The growth and glucose feed pump flow rate profiles for the two
experimental fed-batch fermentations are shown in Fig. 2. Both cultures
performed well and reached over 100 OD (128 and 106 OD, respec-
tively, for the constant and perturbed exponential feed protocols). The
cultures had different inoculum concentrations that resulted in shifted
feed profiles for the transition from batch to fed-batch modes. The
glucose feed started when the initial media glucose (5g/L) was
depleted, which aligned with the cell densities reaching approximately 5
OD. The transition from batch to fed-batch occurred at 9-h for the
constant exponential feed fermentation and at 12.4-h for perturbed
exponential feed fermentation. Induction was at 13 h (25.2 OD) for the
constant exponential feed and 17 h (37.5 OD) for the perturbed expo-
nential feed culture. The initial stir speed was 600 rpm for both cultures
which resulted in high DO values.

The RLS-OTR algorithm was used to determine kja, and then OTR
(OTRRws). For comparison, the global mass-transfer OTR (OTRayg) pre-
sented in Eq. (2) was calculated, as well. These OTR comparisons are
shown for the constant exponential feed cultures in Fig. 3. Since RLS-
OTR calculations are dependent on yg, y3, DO, and stir speed, these
time profiles have also been included in Fig. 3. As the cell density
increased it was necessary to enrich the inlet gas stream with oxygen in
order to maintain the DO. Unfortunately, the manually selected initial
enrichment levels only required the oxygen mass flow controllers to
operate near its lower calibration range. The low enrichment levels
caused yo to oscillate. Thus between 10 and 14 h (Fig. 3C), and as a
result, the corresponding OTR estimates were not reliable during this
time (Fig. 3A). These step changes in the y profile are readily observ-
able (Fig. 3C). Once the oxygen mass flow controller was set to higher
gas flow rates (>20 % enrichment), the OTR estimates stabilized. Over
the course of the experiment, both algorithms were able to make OTR
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Fig. 2. Growth and glucose feed rate profiles for the constant and perturbed
exponential fed-batch recombinant E. coli fermentations. A) Cell density (OD);
B) feed pump rate (% of maximum speed, where 100 % equals 20 mL/min). The
first fermentation used a constant predefined exponential feed rate to control
the culture growth rate to 0.28 h™!. The fed-batch phase began at 9 h with
induction at 13 h. Antifoam additions are indicated by the purple triangles
above panel A. The second fermentation used a predefined exponential feed
rate to control the growth rate to 0.28 h™'; however, large glucose flow rate
changes were used to perturb the culture. The fed-batch phase began at 12.4 h
with induction at 15 h. Antifoam additions are indicated by the purple triangles
(constant) or orange diamonds (perturbed) above panel A.

estimates despite the high degree of variability in the DO and stir speed,
and both algorithms predicted OTR to increase with increasing cell
densities. When the inlet gas composition changes, the OTR,yg estimate
spikes, as can be clearly observed at hours 16, 17, and 17.5 h. These
spikes could be reduced or eliminated by replacing the yo with Hy(s) * yo
in the global balance method Eq. (2), so that the inlet gas measurement
is filtered similarly to ys3. OTRgrs is minimally affected by changes in
inlet gas, because this algorithm already accounts for headspace filtering
and sensor dynamics. At the resolution of the entire fermentation, it is
difficult to fully appreciate the latency and filtering effects captured by
OTRggs, but not by OTRan.

To highlight the differences in the OTRgrrs and OTR,yg responses, the
time period from 15.4 to 15.65 h (15 min) is shown in Fig. 4 for the
constant exponential feed fermentation. For the time period shown, the
pump speed value for the predefined exponential feed profile was 17 %
(3.4 mL/min). Due to the operational limits of the BiostatB DCU pumps,
only even-numbered percentages can be obtained, despite an odd-
numbered setting. To approximate odd-numbered percentages, a dith-
ering algorithm was developed that alternates between consecutive
even-numbers. The OTR response to 2 % pump speed changes were
captured by the OTRyys algorithm as slope changes, shown in Fig. 4A. As
the predefined exponential profile was set to be 0.28 h™, the feed rate is
considered to be below the maximum TCA cycle flux of 0.30 h™! (Xu
et al., 1999). At this point in the culture, the cells were in the oxidative
metabolic state for pump speeds of 16 % and 18 %. Consequently, small
changes in the glucose flux, controlled by the glucose feed pump flow
rate, resulted in OUR changes due to the TCA cycle, and these OUR
changes are detected as OTR changes. In the present work, OUR is
essentially equal to OTR because the magnitude of the dC;,/dt term in Eq.
(7) is very small in comparison to OUR and OTR. In the following
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method (OTRgay). B) Glucose feed pump flow rate; C) Inlet (yo) and off-gas
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speed. The fed-batch phase began at 9 h and induction occurred at 13 h.
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indicated by purple triangles above panel A. The grey boxes highlight the times
to be presented in Figs. 4 and 5.
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Fig. 4. OTR responses to small glucose flux variations for the constant expo-
nential fed-batch culture. A) OTR estimated using the RLS-OTR algorithm
which accounts for latency and filtering effects (OTRgis) and OTR estimated
using the modified global mass balance method (OTR,y,). B) Glucose feed pump
flow rate; C) Inlet (yo) and off-gas sensor (y3) oxygen concentrations; D) Dis-
solved oxygen (DO); and E) stir speed. To approximate 17 % feeding, the pump
was dithered between 16 % and 18 %, as the controller was only capable of
even numbered intervals. The vertical dashed lines indicate when the glucose
feed pump flow rate was increased and the dotted line indicates when the
glucose feed pump flow rate was decreased.

discussion, we will treat OTR and OUR as equal. That is, an increase in
OUR is associated with an equal increase in OTR, and vice versa. When
the glucose feed pump was increased from 16 % to 18 % at 15.42 h, the
OTRgys increased immediately until the glucose pump flow rate was
decreased. When the glucose pump feed flow rate was decreased from
18 % to 16 % at 15.44 h, OTRgys decreased due to OUR decreasing.
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These OTR responses confirm the culture was in oxidative metabolism.
The OTR,y; method noticeably lags the pump flow rate changes, which
would confound OTR being used for feed control, as the likelihood of
overfeeding is possible during the lag. The RLS-OTR algorithm demon-
strated its capability to detect small OUR changes for cultures in an
oxidative metabolic state.

Since high-cell density E. coli cultures require air enrichment with
oxygen to maintain acceptable DO values, an OTR estimator must have
the capability to provide accurate estimates across oxygen concentration
step changes. Fig. 5 shows the OTR, glucose feed pump flow rate, and
inlet and outlet oxygen concentrations from 16 to 17.5 h for the constant
exponential feed fermentation. At this scale, the close alignment of the
glucose pump and the inlet oxygen concentration changes can be
observed. For the first inlet oxygen concentration step change at
approximately 16.1 h, there was a coinciding glucose pump flow rate
decrease. Yet, the OTRgys profile quickly responded and adjusted to the
inlet gas concentration change and decreased due to the lower glucose
flux. In contrast, the OTRayg profile dramatically increased (over-
shooting by 5-fold) and took approximately 6 min to stabilize.
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Fig. 5. OTR responses to oxygen enrichment for the constant exponential fed-
batch culture. A) OTR estimated using the RLS-OTR algorithm which accounts
for latency and filtering effects (OTRg.s) and OTR estimated using the modified
global mass balance method (OTR,,,). B) Glucose feed pump flow rate; C) Inlet
(yo) and off-gas sensor (y3) oxygen concentrations. The vertical dashed line
indicates an example where the glucose feed pump flow rate was increased and
the dotted line indicates an example where the glucose feed pump flow rate was
decreased. The vertical red lines indicate when the oxygen enrich-
ment increased.

98

Journal of Biotechnology 358 (2022) 92-101

Additionally, the glucose flow rate changes between 16.3 and 16.4 h
were captured by the OTRpys algorithm, whereas the OTR,y; method
resulted in a lagged profile. Further, the 2" and 3™ inlet gas concen-
tration step changes also resulted in overshooting and delayed behavior
for the OTR,yg method, while the OTRgys algorithm was responsive to
the glucose flux variations. Thus, the OTRgys algorithm is capable of
accurate OTR predictions across inlet oxygen concentration step
changes.

Cultures in overflow metabolism would not have observable OUR
changes due to sudden increases or decreases in the glucose flow since
the TCA cycle is saturated (Korz et al., 1995). For glucose pump flow rate
decreases to elicit an OTR response, excess glucose must first be
consumed, such that the glucose flux falls below the maximum TCA
cycle flux (Carneiro et al., 2013; Korz et al., 1995; Pepper et al., 2014;
Wang et al., 2014). This overflow phenomena would be observed as a lag
in the OTR response following a glucose flux decrease. Only once the
cells consume all the excess glucose, the OUR will decrease, observed as
a OTR decrease under control DO. The perturbed exponential feed
fermentation was conducted to characterize the RLS-OTR algorithm
response to a shift from overflow to oxidative metabolic states. OTR
profiles calculated by the RLS-OTR algorithm and global mass transfer
equation (OTRgyg) are shown in Fig. 6 for the entire fermentation. The
glucose feed pump flow rates are shown, as the glucose flux directly
impacts the metabolic state of the culture. Also, yo, y3, DO, and stir
speeds are shown in Fig. 6, as these are used in the RLS-OTR algorithm,
and yo and y3 are used by the OTR,yz method. The minimum oxygen
enrichment was set to 20 % to eliminate the oscillation in by encoun-
tered during the constant exponential feed fermentation. At first glance,
the OTR,yg values appear more stable than those from the RLS-OTR
algorithm; however, the closer examination shows that the OTRyg es-
timate is filtering out important culture dynamics.

To evaluate the RLS-OTR algorithm under a metabolic shift, the
glucose feed pump flow rates were varied for the constant exponential
feed profile setpoints. The small glucose flux variations used were be-
tween 15 and 20 h failed to put the culture into overflow metabolism.
The larger glucose flux variation after 20 h were able to cause overflow
metabolism. In order to visual these OTR responses, Fig. 7 highlights the
time period from 22 to 22.6 h. The culture remained in oxidative
metabolism during an initial glucose flux step increase at 22.08 h. The
subsequent glucose flux step increase at 22.17 h pushed the culture into
overflow metabolism, as observed in the OTRgys response by the flat
(saturated) profile. When the glucose feed pump flow rate was decreased
at 22.26 h, the OTRgys profile remained elevated, indicating that the
TCA cycle remained saturated. Then at 22.3 h, the OTRgyg profile
decreased, indicating the excess glucose had been consumed and OUR
was decreasing. The next glucose pulse at 22.34 h caused OTRpg profile
to increase, and overflow metabolism was reached by 22.42 h, as indi-
cated by the flat OTRgs profile. When the glucose feed pump flow rate
was decreased at 22.5 h, the culture was again in overflow metabolism
until 22.58 h, at which time the excess glucose was consumed and
OTRgys decreased. For OTR,yg method, it was not possible to clearly
define these metabolic phase shifts, as the OTR,yg responses lagged the
glucose flux changes by > 3 mins.

It is well-accepted that expression of a recombinant protein causes a
metabolic burden. In the dynamic method for kia estimation, it is
assumed qop is a constant (Bandyopa and Humphrey, 1967;
Martinez-Monge et al., 2019; Pappenreiter et al., 2019). The metabolic
assessment capability gained by the RLS-OTR algorithm to measure OTR
in real-time can allow for qoy to be assessed as well. The qp2 profiles
obtained for the constant and perturbed exponential feed cultures were
obtained by dividing OTRgys by the predicted biomass. The predicted
biomass was modeled as an exponential function to fit the off-line cell
density measurements. Fig. 8 shows the qog value profiles for these two
fermentations, post-induction. For both fermentations, the qoy values
ranged between 0.06 and 0.3 g Oy/g cell-h and increased post-induction
with very similar profiles. Literature ranges for E. coli are between 0.32
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Fig. 7. OTR responses to shifts between oxidative and overflow metabolic
states for the perturbed exponential fed-batch culture. A) OTR estimated using
the RLS-OTR algorithm which accounts for latency and filtering effects
(OTRg;s) and OTR estimated using the modified global mass balance method
(OTR,y). B) Glucose feed pump flow rate; C) inlet (yo) and off-gas sensor (ys)
oxygen concentrations; D) Dissolved oxygen (DO); and E) stir speed. The feed
rate was purposely pulsed up and down to characterize the OTR response to
overflow and oxidative metabolism. The vertical dashed lines indicate when the
glucose feed pump flow rate was increased and the dotted line indicates when
the glucose feed pump flow rate was decreased.

and 0.38 g Oy/g cell-h (Shuler et al., 2017); however, it is not clear if
these literature cultures were under glucose feed control or what media
was used. Glucose limited cultures would have lower qpy values
compared to cultures grown with excess glucose; cultures in rich media
would have higher qpp values. For fed-batch E. coli, qoz has been
observed to range from 0.019 to 0.16 g O»/g cell-h for recombinant, but
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uninduced E. coli (Lin et al., 2001). Several models have been developed
for oxygen consumption by E. coli (Anane et al., 2017; Seidel et al., 2021;
Zeng and Yang, 2019), yet none these studies accounted the effects of
the metabolic burden associated with recombinant protein expression
on qp2. The increasing post-induction qg2 values observed in this work
indicate that the metabolic burden was increasing, as cells required
higher amounts of oxygen under a steady growth rate. The RLS-OTR
algorithm will allow for qp2 to be evaluated in real-time, where dy-
namics due to feed rates and associated metabolic burden can be
characterized.

The relationship between kja and stir speed is shown in Fig. 9 for
both cultures. Each data point represents the calculation of kja gener-
ated using the @y and a7 estimates. The relationship between the esti-
mated kpa and stir speed changes over the course of the fermentation, so
kpa is different for the same stir speed at different times in the fermen-
tation. Also, the slope of the kja versus stir speed shifts throughout the
fermentations. This shift in kya is due to many culture events, such as cell
secretion build-up, base addition accumulation, dissolved gases, anti-
foam additions, and submersion of additional impellers, all of which are
difficult to quantify in real-time. It is clearly visible for the constant feed
fed-batch cultures that the kpa-stir speed relationship was different
before and after induction, as shown by the red to orange colored data
points (Fig. 9A). Additionally, despite these cultures being well matched
with respect to growth rates and cell density, the on-line estimator in-
dicates that the kja was significantly different even 1-2h post-
induction, as shown by the unequal ka values in green hues. At later
times post-induction, the kja values are more similar (purple hues), most
likely due to the combination of base and antifoam additions. Interest-
ingly, the perturbed fed-batch culture kja and stir speed have several
excursions off a linear relationship (Fig. 9B). These excursions corre-
spond in time to the occurrence of high or low glucose flow rates. If the
van’t Riet equation were used only, for example, these curves would be a
single line (Van't Riet, 1979). The RLS-OTR algorithm on-line estimator
allows for calculation of kja without separately quantifying all the in-
puts that effect the kja. Further, the RLS-OTR algorithm for kja esti-
mates is sensitive to culture changes, which will make it a value tool for
closed-loop feed control.

5. Conclusions

An RLS-OTR algorithm was developed and used to estimate kja and
OTR on-line and in real-time using standard industrial sensors, i.e., DO
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and off-gas. A first-order model of gas mixing was coupled to the sensor
dynamics, the inlet gas concentration and DO measurements. This
resulted in a linear set of equations that could be estimated using a least-
squares technique. The RLS-OTR algorithm was able to account for la-
tency and filtering effects that occur between the inlet oxygen and the
off-gas oxygen measurements. This resulted in an accurate, generaliz-
able method to estimate OTR on-line and in real-time.

The RLS-OTR algorithm was compared to the OTR,yg, the global mass
balance method for estimating OTR. The algorithms were challenged by
small and large glucose feed rate variations. Additionally, the effects of
step changes to the inlet oxygen sparge were evaluated. It was observed
that the RLS-OTR algorithm was responsive to small glucose flux vari-
ations when the culture was in an oxidative metabolic state. In contrast,
OTRayg had noticeable lags. The global mass balance equation uses only
the inlet and off-gas oxygen concentrations to estimate OTR, a slight
modification of the global mass balance method (Martinez-Monge et al.,
2019), and thus lacks the capability to account for latency and filtering
effects. The effects of filtering and latency become more pronounced and
problematic in systems with larger headspaces and greater distances
between the fermenter and the off-gas sensor. Conversely, the RLS-OTR
method was able to account for headspace volume or distance between
fermenter to off-gas sensor. Thus, the RLS-OTR algorithm could be
implemented in large production vessels with a shared off-gas sensor.

The kpa and stir speed relationship was determined to be variable,
which was expected; nonetheless, the real-time k;a estimator was able to
adjust throughout the fermentation, unlike the van’t Riet correlation. As
it is well-documented that kja depends on many factors that change
during a fermentation beyond geometry, such as viscosity, impeller
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geometry, amount of soluble material in the media, antifoam additions
etc. (Aroniada et al., 2020; Campbell et al., 2020), a dynamically
updated kpa estimator is desired. While it is difficult to directly relate the
changes seen in these experiments to any one factor, this study clearly
shows the shift in the kpa-stir speed relationship over the course of the
fermentations (Fig. 9). The feed pulse fermentations demonstrated that
the RLS-OTR algorithm is capability of producing a real-time signal that
contains information about the metabolic state of the culture. Infor-
mation regarding the metabolic state of the culture would allow for
improved feed control and lower waste product build up. Accordingly,
the RLS-OTR algorithm in the future would be integrated into a feed
control algorithm.

Funding

This work was supported in part by the National Science Foundation
[IIP-1624641 and CBET-1218345]; and the Advanced Mammalian Bio-
manufacturing Innovation Center (AMBIC) industrial membership fees.

CRediT authorship contribution statement

Marshall Trout: Conceptualization, Methodology, Investigation,
Software, Writing — original draft. Sarah Harcum: Formal analysis,
Visualization, Resources, Supervision, Writing — review & editing.
Richard Groff: Conceptualization, Software, Resources, Supervision,
Writing — review & editing.

Conflicts of interest
The authors declare that they have no conflict of interest.
Data Availability

Data and Matlab programs can be made available upon request to the
corresponding author.

Acknowledgments

Thomas Caldwell and Daniel Odenwelder for culture techniques,
Swadeel Gaad, Shahin Lashkari, Mohammad Mayyan, Matthew Pepper,
Li Wang for past work on the kia/OTR estimator. The pTVP1GFP
plasmid was generously provided by E. Garcia-Fruitos and A. Villaverde,
Universitat Autonoma de Barcelona. The graphical abstract was created
using Biorender.com.

References

Anane, E., Lopez, D.C.C., Neubauer, P., Bournazou, M.N.C., 2017. Modelling overflow
metabolism in Escherichia coli by acetate cycling. Biochem. Eng. J. 125, 23-30.
Aroniada, M., Maina, S., Koutinas, A., Kookos, I.K., 2020. Estimation of volumetric mass
transfer coefficient (kja) - review of classical approaches and contribution of a novel

methodology. Biochem. Eng. J. 155.

Baeshen, M.N., Al-Hejin, A.M., Bora, R.S., Ahmed, M.M.M., Ramadan, H.A.I., Saini, K.S.,
Baeshen, N.A., Redwan, E.M., 2015. Production of biopharmaceuticals in E. coli:
current scenario and future perspectives. J. Microbiol. Biotechnol. 25, 953-962.

Baig, F., Fernando, L.P., Salazar, M.A., Powell, R.R., Bruce, T.F., Harcum, S.W., 2014.
Dynamic transcriptional response of Escherichia coli to inclusion body formation.
Biotechnol. Bioeng. 111, 980-999.

Bandyopa, B., Humphrey, A.E., 1967. Dynamic measurement of volumetric oxygen
transfer coefficient in fermentation systems. Biotechnol. Bioeng. 9, 533.

Bentley, W.E., Kompala, D.S., 1989. A novel structured kinetic modeling approach for the
analysis of plasmid instability in recombinant bacterial cultures. Biotechnol. Bioeng.
33, 49-61.

Campbell, K., Wang, J., Daigger, G.T., 2020. Filamentous organisms degrade oxygen
transfer efficiency by increasing mixed liquor apparent viscosity: mechanistic
understanding and experimental verification. Water Res. 173.

101

Journal of Biotechnology 358 (2022) 92-101

Carneiro, S., Ferreira, E.C., Rocha, 1., 2013. Metabolic responses to recombinant
bioprocesses in Escherichia coli. J. Biotechnol. 164, 396-408.

Chen, Q., Bentley, W.E., Weigand, W.A., 1995. Optimization for a Recombinant E. coli
Fed-Batch Fermentation. Appl. Biochem. Biotechnol. 51/52, 449-461.

Doi, T., Kajihara, H., Chuman, Y., Kuwae, S., Kaminagayoshi, T., Omasa, T., 2020.
Development of a scale-up strategy for Chinese hamster ovary cell culture processes
using the k(L)a ratio as a direct indicator of gas stripping conditions. Biotechnol.
Prog.

Ducommun, P., Ruffieux, P.A., Furter, M.P., Marison, I., von Stockar, U., 2000. A new
method for on-line measurement of the volumetric oxygen uptake rate in membrane
aerated animal cell cultures. J. Biotechnol. 78, 139-147.

Eyer, K., Oeggerli, A., Heinzle, E., 1995. Online gas-analysis in animal-cell cultivation 2.
Methods for oxygen-uptake rate estimation and its application to controlled feeding
of glutamine. Biotechnol. Bioeng. 45, 54-62.

Fontova, A., Lecina, M., Lopez-Repullo, J., Martinez-Monge, 1., Comas, P., Bragos, R.,
Cairo, J.J., 2018. A simplified implementation of the stationary liquid mass balance
method for on-line OUR monitoring in animal cell cultures. J. Chem. Technol.
Biotechnol. 93, 1757-1766.

Garcia-Fruitos, E., Martinez-Alonso, M., Gonzalez-Montalban, N., Valli, M.,
Mattanovich, D., Villaverde, A., 2007. Divergent genetic control of protein solubility
and conformational quality in Escherichia coli. J. Mol. Biol. 374, 195-205.

Goldrick, S., Lee, K., Spencer, C., Holmes, W., Kuiper, M., Turner, R., Farid, S.S., 2018.
On-line control of glucose concentration in high-yielding mammalian cell cultures
enabled through oxygen transfer rate measurements. Biotechnol. J. 13.

Gonzalez, J.E., Long, C.P., Antoniewicz, M.R., 2017. Comprehensive analysis of glucose
and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
C-13 metabolic flux analysis. Metab. Eng. 39, 9-18.

Johnston, W.A., Stewart, M., Lee, P., Cooney, M.J., 2003. Tracking the acetate threshold
using DO-transient control during medium and high cell density cultivation of
recombinant Escherichia coli in complex media. Biotechnol. Bioeng. 84, 314-323.

Korz, D.J., Rinas, U., Hellmuth, K., Sanders, E.A., Deckwer, W.D., 1995. Simple fed-batch
technique for high cell-density cultivation of Escherichia coli. J. Biotechnol. 39,
59-65.

Lin, H.Y., Mathiszik, B., Xu, B., Enfors, S.0O., Neubauer, P., 2001. Determination of the
maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-
batch cultivations of Escherichia coli. Biotechnol. Bioeng. 73, 347-357.

Liu, Y., Hu, R., Zhang, S., Zhang, L., Wei, X., Chen, L., 2006. Expression of the foot-and-
mouth disease virus VP1 protein using a replication-competent recombinant canine
adenovirus type 2 elicits a humoral antibody response in a porcine model. Viral
Immunol. 19, 202-209.

Martinez-Monge, 1., Roman, R., Comas, P., Fontova, A., Lecina, M., Casablancas, A.,
Cairo, J.J., 2019. New developments in online OUR monitoring and its application to
animal cell cultures. Appl. Microbiol. Biotechnol. 103, 6903-6917.

Nienow, A.W., 2015. Mass transfer and mixing across the scales in animal cell culture.
Anim. Cell Cult. 137-167.

Pappenreiter, M., Sissolak, B., Sommeregger, W., Striedner, G., 2019. Oxygen uptake rate
soft-sensing via dynamic kla computation: cell volume and metabolic transition
prediction in mammalian bioprocesses. Front. Bioeng. Biotechnol. 7.

Patel, N., Thibault, J., 2009. Enhanced in situ dynamic method for measuring kja in
fermentation media. Biochem. Eng. J. 47, 48-54.

Pepper, M.E., Wang, L., Padmakumar, A., Burg, T.C., Harcum, S.W., Groff, R.E., leee,
2014. A CMI (cell metabolic indicator)-based controller for achieving high growth
Rate Escherichia coli cultures. 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
2911-2915.

Seidel, S., Maschke, R.W., Werner, S., Jossen, V., Eibl, D., 2021. Oxygen mass transfer in
biopharmaceutical processes: numerical and experimental approaches. Chem. Ing.
Tech. 93, 42-61.

Sharma, S.S., Campbell, J.W., Frisch, D., Blattner, F.R., Harcum, S.W., 2007. Expression
of two recombinant chloramphenicol acetyltransferase variants in highly reduced
genome Escherichia coli strains. Biotechnol. Bioeng. 98, 1056-1070.

Shuler, M.L., Kargi, F., DeLisa, M.P., 2017. Bioprocess Engineering-Basic Concepts, third
ed. Prentice Hall, Boston.

Simon, D., 2006. Optimal State Estimation. Wiley and Sons, NJ.

Swartz, J.R., 2001. Advances in Escherichia coli production of therapeutic proteins. Curr.
Opin. Biotechnol. 12, 195-201.

Van't Riet, K., 1979. Review of measuring methods and results in nonviscous gas-liquid
mass-transfer in stirred vessels. Ind. Eng. Chem. Process Des. Dev. 18, 357-364.
Walsh, G., 2018. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 36, 1136-1145.

Wang, L., Pepper, M.E., Padmakumar, A., Burg, T.C., Harcum, S.W., Groff, R.E., leee,
2014. A real-time adaptive oxygen transfer rate estimator for metabolism tracking in
Escherichia coli cultures. 2014 36th Annu. Int. Conf. Ieee Eng. Med. Biol. Soc.
6191-6194.

Wolfe, A.J., 2005. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12-50.

Xu, B., Jahic, M., Enfors, S.0., 1999. Modeling of overflow metabolism in batch and fed-
batch cultures of Escherichia coli. Biotechnol. Prog. 15, 81-90.

Zeng, H., Yang, A., 2019. Modelling overflow metabolism in Escherichia coli with flux
balance analysis incorporating differential proteomic efficiencies of energy
pathways. BMC Syst. Biol. 13.


http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref1
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref1
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref2
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref2
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref2
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref3
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref3
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref3
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref4
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref4
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref4
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref5
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref5
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref6
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref6
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref6
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref7
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref7
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref7
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref8
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref8
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref9
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref9
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref10
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref10
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref10
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref10
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref11
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref11
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref11
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref12
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref12
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref12
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref13
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref13
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref13
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref13
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref14
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref14
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref14
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref15
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref15
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref15
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref16
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref16
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref16
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref17
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref17
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref17
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref18
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref18
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref18
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref19
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref19
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref19
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref20
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref20
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref20
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref20
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref21
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref21
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref21
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref22
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref22
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref23
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref23
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref23
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref24
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref24
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref25
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref25
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref25
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref25
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref26
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref26
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref26
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref27
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref27
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref27
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref28
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref28
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref29
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref30
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref30
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref31
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref31
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref32
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref33
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref33
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref33
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref33
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref34
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref35
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref35
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref36
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref36
http://refhub.elsevier.com/S0168-1656(22)00213-9/sbref36

	Sensitive real-time on-line estimator for oxygen transfer rates in fermenters
	1 Introduction
	2 Materials and methods
	2.1 Bacterial strain and plasmids
	2.2 Culture conditions
	2.3 Fermenter operation
	2.4 Data collection

	3 Theory and calculations
	3.1 OTR via off-gas measurements
	3.2 OTR via oxygen concentration measurements
	3.3 OTR via DO sensor measurements
	3.4 Matching OTR off-gas and OTR dissolved oxygen
	3.5 Recursive least squares formalism
	3.6 RLS algorithm

	4 Results and discussion
	5 Conclusions
	Funding
	CRediT authorship contribution statement
	Conflicts of interest
	Data Availability
	Acknowledgments
	References


