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Prediction of recoater crash in laser powder bed fusion additive manufacturing 

using graph theory thermomechanical modeling 

 

 

Abstract 

The objective of this work is to predict a type of thermal-induced process failure called recoater 

crash that occurs frequently during laser powder bed fusion (LPBF) additive manufacturing.  Rapid 

and accurate thermomechanical simulations are valuable for LPBF practitioners to identify and 

correct potential issues in the part design and processing conditions that may cause recoater 

crashes. In this work, to predict the likelihood of a recoater crash (recoater contact or impact) we 

develop and apply a computationally efficient thermomechanical modeling approach based on 

graph theory. The accuracy and computational efficiency of the approach is demonstrated by 

comparison with both non-proprietary finite element analysis (Abaqus), and a proprietary LPBF 

simulation software (Autodesk Netfabb). Based on both numerical (verification) and experimental 

(validation) studies, the proposed approach is found to be 5 to 6 times faster than the non-

proprietary finite element modeling and has the same order of computational time as a commercial 

simulation software (Netfabb) without sacrificing prediction accuracy.  

Keywords: Recoater Crash, Laser Powder Bed Fusion, Graph Theory, Thermomechanical 

Modeling. 
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1  Introduction 

 

The objective of this work is to predict a type of thermal-induced process failure called 

recoater crash (recoater impact or contact) that occurs frequently during laser powder bed fusion 

(LPBF) metal additive manufacturing. In LPBF thin layers of powder are deposited (raked or 

rolled) and selectively melted using energy from a laser to form a three-dimensional part [1]. A 

schematic of the LPBF process is shown in Figure 1.   

The LPBF process can significantly improve functional performance of components used in 

strategic applications ranging from aerospace to biomedical industries [2, 3]. For instance, using 

LPBF to make an aircraft engine decreased the number of parts from 855 to 12, and increased fuel 

efficiency as well as engine power by 20% [4].  However, high process failure rates and 

inconsistent part quality currently afflict the throughput of LPBF [5-8]. Precision-oriented 

industries are therefore hesitant to use LPBF for making safety-critical parts [9-11]. Hence, to 

ensure broader use of LPBF parts, potential causes of flaw formation must be understood, 

predicted, and mitigated. 

 
Figure 1: A schematic of the laser powder bed fusion (LPBF) additive manufacturing process. 
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Flaw formation in LPBF parts is chiefly influenced by the spatiotemporal temperature 

distribution – thermal history – as they are being printed [1]. It is estimated that thermal-induced 

deformations (distortion) are responsible for nearly 70% of LPBF build failures [12, 13]. To 

explain further, to make an LPBF part, a laser melts individual tracks of material at scanning speeds 

close to 1,000 mm·s-1. Consequently, the heating and cooling cycles often exceed 105 degrees °C·s-

1 with meltpool temperature nearing the boiling point of the material [14-17]. The thermal history 

is a complex function of the part shape, material properties, and over 50 processing parameters 

[18-20]. Therefore, parameters optimized by empirical testing of simple-shaped coupons may not 

work when used for making complex parts [21]. 

Recoater crash is a type of frequently occurring build failure that is directly related to the 

thermal history [12, 13]. The aftermath of a recoater crash is shown in Figure 2 (top) which depicts 

an LPBF build plate consisting of Inconel 718 parts of different shapes. All these parts were built 

under identical processing conditions, which are detailed in Sec. 4.1. Near the left edge of the build 

plate are five arch-shaped parts; four of these five parts failed to build due to a recoater crash. 

Uneven heating and cooling during the process causes the part to deform. Consequently, its 

top surface extends (raises) above the thin layer of powder. This phenomenon is called 

superelevation. In Figure 2 (bottom), superelevation is evident during printing of the arch and N-

shaped parts [22]. If the superelevation (deformation) of the part in the vertical direction exceeds 

the clearance between the recoater and powder bed (typically between 20 to 50 µm), the part will 

interfere with the recoater as it attempts to deposit a new layer of powder. The resulting contact of 

the part with the recoater may damage the part; fine features are particularly vulnerable. A recoater 

crash may also damage the recoater itself requiring its replacement.  Further, often following a 
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crash, the recoater drags debris from the failed part across the build plate, damaging other parts in 

the vicinity. It is common to discard an entire build due to a recoater crash.  

 

Figure 2: (Top) The build plate used for the experimental validation in this work, note the failed 

arch-shaped parts and damage to the lattice-like N-shaped part. (Bottom) The superelevation of 

the arches and N-shaped part leads to a subsequent recoater crash. 
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In Figure 2 (top), it is observed that the arch-shaped parts built with support structures did not 

fail, unlike their counterparts without supports. The arches without supports tend to retain heat, 

leading to the uneven temperature distribution. Supports, by providing a conduit for rapid 

conduction mitigate heat retention in the part, and thus curtail superelevation. The foregoing 

example from Figure 2 illustrates the consequential effect of part design on build quality in LPBF.  

Thermal-induced failures, including recoater crashes, can be prevented through pragmatic 

design of the part geometry and optimization of processing conditions (placement and orientation 

of parameters, parameter selection, among others) [12, 23]. Currently, practitioners resort to an 

empirical build-and-test approach to avoid recoater crashes – an expensive and time-consuming 

process. Moreover, such empirical optimization efforts are only valid for a particular build plan 

because the addition or removal of parts from the build plate changes the thermal history [24]. In 

the context of Figure 2, fast and accurate thermal simulations that can replace trial-and-error 

experiments are critical for reducing build failures and facilitating production-level scaling of 

LPBF parts.    

In this work recoater crashes are predicted using a graph theory-based computational 

thermomechanical modeling approach. We test this approach through verification (Sec. 3) and 

experimental validation (Sec. 4) studies following procedures recommended in the literature [25]. 

In the verification studies (Sec. 3), we compare predictions deformation and recoater crash 

predictions obtained from the graph theory-based model, with non-proprietary finite element-

derived predictions (implemented in Abaqus with identical assumptions).  Experimental validation 

is reported in the context of the arch-shaped objects (with and without supports) exemplified in 

Figure 2 (top). For the experimental validation, the graph theory predictions are compared with 
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both non-proprietary models and commercial LPBF modeling software (Netfabb). Netfabb is a 

non-linear FE-based thermo-mechanical simulation package. 

We reiterate that the focus is to predict recoater crashes, which are caused by out of plane 

deformation of the part in the z-direction (vertical build direction). Accordingly, the deformation 

predictions reported in this work are restricted to those in the z-direction that occur during printing. 

However, apart from recoater crashes, deformation of the part during printing is also responsible 

for other types of build failures, such as shearing of anchoring supports during the process.  Indeed, 

after printing the part may also crack or warp (deform) in three dimensions when it is separated 

from the build plate due to thermal-induced residual stresses.  This work does not report results 

for failure of supports, nor does it predict warping when the part is removed from the build plate. 

In the forthcoming Sec. 1.2, we place this work in the context of the existing literature in 

thermomechanical modeling in LPBF. 
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The finite element (FE) method is a widely used approach for predicting thermal-induced 

deformation in LPBF. Gouge et al. [25-27], Luo et al. [28], DebRoy et al. [29], Bandyopadhyay 

et al. [14], Wei et al. [16], and Schoinochoritis et al. [30] have recently published comprehensive 

review articles on thermomechanical modeling in AM.  Based on various computational strategies, 

the available thermomechanical models to predict thermal-induced deformation in AM are 

categorized as shown in Figure 3, and described herewith.  

 
Figure 3: Modeling approaches to predict thermal-induced deformation categorized based on the 

computational technique. 

(1) Coupled thermomechanical models 

In coupled thermomechanical modeling the nonlinear thermal and mechanical equations are 

solved at every time step of the entire simulation.  In other words, the thermal history and 

mechanical responses (residual stress, and deformation) are computed simultaneously [25, 31-37]. 

The coupled thermomechanical FE model can provide precise thermal and mechanical solutions 

compared to the decoupled thermomechanical model albeit at the cost of computational efficiency. 
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In this context, Ganeriwala et al. developed a coupled discrete finite-difference thermomechanical 

model [38]. 

(2) Decoupled thermomechanical model 

In this commonly applied modeling approach, a thermal simulation of the LPBF part are 

conducted over several time steps, and then the thermal history predictions over this longer horizon 

is used to estimate the mechanical response [39-46]. The thermal and mechanical aspects are thus 

considered independent (decoupled); while the thermal history influences the mechanical 

response, the mechanical response is assumed to have no effect on the thermal response. 

Commercial LPBF simulation software such as Autodesk Netfabb, Amphyon, Simufact, and 

Additive Print implement this approach [47]. 

The benefit of decoupled thermomechanical modeling is that the computation is more efficient 

than coupled thermomechanical approach and provides reasonable prediction accuracy. However, 

the decoupled thermomechanical model loses fidelity when the distortion is sufficiently severe to 

change the boundary conditions. A change in boundary conditions can result from substantial 

change in the shape of the part, such as separation of anchoring supports, cracking and 

delamination which fundamentally changes the thermal conduction pathway.  

This work also uses a decoupled thermomechanical modeling approach. It sequentially 

couples a meshfree, graph theory-based thermal model with a FE mechanical model. The graph 

theory modeling approach is discussed in detail in the forthcoming Sec. 2. 

(3) Meshfree approaches 

Apart from innovations in adaptive meshing and other computational simplifications to FE 

simulations,  researchers have explored meshfree techniques to reduce the computational expense 

[34, 48]. For example, Peng et al. introduced a thermal circuit network (TCN) model to predict the 
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thermal history of a part. Then using the thermal history from the TCN model is coupled with FE 

to predict thermomechanical behavior such as thermal stress, residual stress and distortion [47, 

49]. The commercial software Sunata uses the TCN model [47]. While these models require less 

computation time than FE methods due to their mesh-free nature, they remain to be explored 

further for complex shapes. The graph theory approach for thermal analysis is also a mesh-free 

method.  

(4) AI-based approaches 

Researchers have recently implemented an AI-based approach in AM to predict thermal 

history, residual stress, and thermal-induced distortion. For example, Chowdhury et al. [50] 

developed an artificial neural networ-based model to investigate thermal-induced deformation. 

They used the model prediction to compensate for the geometric dimensional inaccuracy which 

occurs due to thermal-induced deformation. Francis et al. [51] introduced a recurrent neural 

network-based deep learning approach to predict thermal-induced distortion from sensor data. 

While, this deep learning machine learning approach offers automated feature learning and 

facilitates highly accurate distortion prediction.  

However, machine learning approaches require high-performance computing with large 

physical memory (>100 GB) to incorporate a large amount of testing data (big data) during the 

training of the model [51, 52]. To reduce data dependency, Zhu et al.[52] proposed a physics-

informed neural network framework (scientific machine learning) that couples the fundamental 

thermal physics of LPBF with data-driven machine learning models to predict meltpool-level 

phenomena. The resulting neural network is not only compact, but also incorporates the physical 

aspects of the process, such as material properties, and mass and heat transfer behavior of the 

meltpool.  
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2 Approach 

The approach consists of five steps shown in Figure 4. First, in Step 1 – Step 3 the temperature 

distribution in the part after the end of each layer is predicted using the graph theory thermal model. 

Our previous work demonstrated that the graph theory approach reduces computation time by a 

factor of 5 for obtaining the thermal history compared to non-proprietary FE analysis [53-57]. As 

an example, in Ref. [53] the graph theory approach was verified with exact analytical solutions, 

finite element and finite difference methods for a variety of two-, and three-dimensional 

benchmark heat transfer problems. In Ref. [57] the approach was validated in the context of a large 

Φ160 mm × 25 mm impeller part with in-situ temperature measurements. Considering these prior 

works, in this paper, 

 we eschew detailed explanation of the graph theory approach, and provide a brief background 

of the concept in Sec. 2.1. 

 
Figure 4: Schematic representation of graph theory approach in the context of the LPBF process.  
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In the second phase, Steps 4 and 5, the mechanical response, i.e., deformation in the z-

direction) leading to recoater crash is predicted. For this purpose, the temperature distribution 

predictions obtained from graph theory at the end of a layer (Step 3) are exported to an uniform 

grid finite element mesh for predicting the distortion. The decoupled approach implemented in this 

work assumes that the thermal distribution influences the mechanical response, but the mechanical 

response does not influence the thermal history. The prediction of recoater crash is accomplished 

in Steps 4 and 5. 

 

The thermal history of a part being printed in the LPBF process is predicted by solving the 

continuum heat diffusion equation [26].  

 

𝜌𝑐𝑝⏞

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)

⏞            
𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛

T(𝑥, 𝑦, 𝑧, 𝑡)  = E𝑉⏞

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 
(1) 

Here, the material density is ρ [kg·mm-3], specific heat 𝑐𝑝 [J·kg-1·K-1], thermal conductivity k 

[W·mm-1·K-1], T (x, y, z, t) is the instantaneous temperature at location (x, y, z) at time t. The 

second derivative term in the heat equation captures the effect of shape on the temperature 

distribution. This second derivative is called the continuous Laplacian [2]. On the right-hand side 

is the energy density Ev [W·mm-3]; E𝑉 = 
𝑃

v×h×t×τ
 is defined as the amount of energy supplied by 

the laser to melt a unit volume of powder. The volumetric energy density is a function of laser 

power (P) [W], scanning velocity (v) [m·s-1], spacing between two consecutive laser tracks (h), 

[m], and layer thickness (t), [m], and time between layers (τ) [s].   

To solve the heat diffusion equation boundary and initial conditions are added as follows: 

 
T(𝑥, 𝑦, 𝑧, 𝑡 = 0) = Tp  (Initially) (2) 
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𝑘
∂T

∂n
+ ℎT = ℎTP =  0  (On boundary) 

In Eq.(2), h [W·mm-2·K-1] is the heat transfer coefficient, n is the outward normal vector at 

the boundary, and TP [K] is the temperature of the surroundings.  The boundary condition describes 

heat loss to the surroundings for ℎ ≠ 0; for ℎ = 0 the boundaries are insulated (no heat loss).   

The heat diffusion equation and the accompanying conditions are simplified by studying only 

one heating cycle at a time and by replacing the heat source term E𝑉  with an initial temperature 

distribution.  In Eqn. (3), below, the continuous Laplacian  is represented as ∇2 and the thermal 

diffusivity as  𝛼 =
𝑘

𝜌𝑐𝑝
 [m2 

·s
-1] 

∂T (𝑥,𝑦,𝑧,𝑡) 

∂𝑡
− 𝛼∇2T(𝑥, 𝑦, 𝑧, 𝑡)   = 0 (For one heating cycle) 

T(𝑥, 𝑦, 𝑧, 𝑡 = 0) = T0(𝑥, 𝑦, 𝑧) = Tm(𝑥, 𝑦, 𝑧)   (Initially) 

∂T (𝑥,𝑦,𝑧,𝑡) 

∂𝑛
= 0   (On boundary) 

(3) 

Shifting the heat source to the initial condition is reasonable for the LPBF where the laser scan 

is rapid compared to the long dwell time before the next layer is melted.  The initial temperature 

distribution T0(𝑥, 𝑦, 𝑧) contains the peak temperature Tm which is the melting temperature of the 

material applied to the newly melted layer, and the initial temperature in the remainder of the body 

is the temperature distribution from the previous heating cycle. Another feature of this 

simplification is that the efficiency of transfer of laser energy into the material is not needed, as 

the energy delivered to the body is determined by the temperature of the newly melted layer.  

Lastly, the above boundary condition has been changed to the insulated condition to accommodate 

the graph theory method.  Heat loss at the boundaries is addressed separately, outside of the 

spectral graph method but within each deposition and heating cycle, as discussed later in Section 

2.2. We note that the forgoing simplification is common to thermal modeling in LPBF [25, 26]. 
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The graph theory approach approximates the continuous Laplacian with the Laplacian matrix L, 

in effect, ∇2= −L [53]. The solution is obtained by discretizing the heat diffusion equation over N 

nodes and by replacing the continuous temperature with a discrete temperature vector (T),   

∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
+ αLT(𝑥, 𝑦, 𝑧, 𝑡)  = 0  

The above is a first-order, ordinary linear differential equation, with solution [61], 

T(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒−𝛼𝐿𝑡Tm  

(4) 

The eigenvector matrix (ϕ) and eigenvalue matrix (Λ) of the Laplacian matrix (L) are found 

by solving the eigenvalue equation Lϕ =  ϕΛ.   

T(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒−𝛼(ϕΛϕ
−1)𝑡Tm  (5) 

As the Laplacian matrix is symmetric and positive semi-definite, the eigenvalues (Λ) are non-

negative, and the eigenvector matrix (ϕ) is orthogonal [58-61]. As the transpose of an orthogonal 

matrix is the same as its inverse, i.e., ϕ−1 =  ϕ′.   

Making the foregoing substitution in Eq.  (5) gives, 

T(𝑥, 𝑦, 𝑧, 𝑡)  = 𝑒−𝛼(𝛟𝚲𝛟
′)𝑡Tm  (6) 

The term 𝑒−𝛼(ϕΛϕ
′)𝑡 is simplified via a Taylor series expansion and substituting ϕ ϕ′ = I,  

𝑒−𝛼(ϕΛϕ
′)𝑡 = I −

ϕΛ𝛼𝑡ϕ′

1!
+
(ϕΛ𝛼𝑡ϕ′)2

2!
−
(ϕΛ𝛼𝑡ϕ′)3

3!
+ ⋯ 

=  I −
ϕΛ𝛼𝑡ϕ′

1!
+
(ϕΛ𝛼𝑡ϕ′)(ϕΛ𝛼𝑡ϕ′)

2!
−
(ϕΛ𝛼𝑡ϕ′)(ϕΛ𝛼𝑡ϕ′)(ϕΛ𝛼𝑡ϕ′)

3!
+ ⋯ 

= I −
ϕΛ𝛼𝑡ϕ′

1!
+
ϕ′(Λ𝛼𝑡)2ϕ′

2!
−
ϕ(Λ𝛼𝑡)3ϕ′

3!
+ ⋯ 

𝑒−𝛼(ϕΛϕ
′)𝑡 = ϕ𝑒−𝛼(Λ)𝑡ϕ′ 

(7) 

Substituting, 𝑒−𝛼(ϕΛϕ
′)𝑡 = ϕ𝑒−𝛼Λ𝑡ϕ′ into Eq. (6) gives,  

∴ T(𝑥, 𝑦, 𝑧, Δt) = ϕ𝑒−𝛼𝑔ΛΔtϕ′Tm(𝑥, 𝑦, 𝑧) = ϕ𝑒
−𝛼𝑔Λτϕ′Tm(𝑥, 𝑦, 𝑧) (8) 
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Eqn. (8) is the graph theory solution to the discrete heat diffusion equation as a function of 

the eigenvalues (Λ) and eigenvectors (ϕ) of the discrete Laplacian Matrix (L), constructed on a 

discrete set of nodes [53]; and Δt  = τ is the time between layers or inter-layer time. Notably, the 

solution is free of matrix inverse computations is semi-analytic, it is analytic in time and discrete 

(numeric) in space.  To avoid truncation errors, the entire eigen spectrum consisting of n (number 

of nodes) eigenvectors (ϕ) and eigenvalues (Λ) are considered.  

A parameter is introduced in Eqn. (9) to tune the units of the graph theory solution. We call 

this parameter a gain factor 𝑔 (m-2). The gain factor depends on material properties and node 

density which influences the diffusion rate of the graph theory solution. A thorough analysis of the 

effect of gain factor 𝑔 is investigated in our previous work [55]. The term Δt is the time step.  In 

this work, Tm is the melting point of Inconel 718, T0 = ~1400 ℃. To reduce the computational 

burden, we simulate the deposition and melting of several layers. This technique called the super 

layer or meta-layer approach is commonly used in LPBF as it reduces the simulation time, 

compared to a layer-by-layer approach while without drastically degrading computational 

accuracy [40, 62-64].  

The graph theory approach for predicting the thermal history has three salient aspects that 

facilitate rapid computation of the thermal history: (1) it is mesh-free; (2) involves only matrix 

transpose and multiplication and not matrix inversion, and (3) does not require stepping through 

time in the simulation as the time step Δt can be set to any value.    

The largest amount of computation in the graph theory approach is expended in the eigen 

decomposition of the Laplacian matrix (L) (over 70% of the total time). The computation cost to 

perform the eigen-decomposition of the Laplacian matrix is O(rn2), where r is the ratio of nonzero 
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elements, and n is the number of nodes [65]. However, L is symmetric, diagonally dominant with 

negative off-diagonal elements (M-matrix), and positive semi-definite. These properties facilitate 

rapid computation of the eigenvectors and eigenvalues in Matlab.  The manner in which the graph 

theory approach is adapted for thermal modeling in LPBF, and subsequently combined with finite 

element modeling for mechanical analysis, is described in Steps 1 through 5. In closing this section, 

we have compared the graph theory solution with the exact analytical solution (Green’s functions), 

finite difference (FD) and finite element (FE) methods for benchmark heat transfer problems in 

Ref. [53, 66].  

 

Step 1: Discretization of the geometry into nodes   

The entire (desired) part geometry, in the form of a STEP file, is transformed into a FE mesh which 

also generates a set of discrete nodes. The position of these nodes is recorded in terms of their 

spatial coordinates (x, y, z).  

Step 2: Network graph construction  

A fixed number of N nodes are sampled randomly from the FE-generated nodes obtained from 

Step 1. In this work, the random sampling is adjusted such that a constant volumetric density of 

nodes (n nodes·mm-3) is selected. These nodes are then used to obtain the thermal history using 

graph theory. The temperature history of the node located at (x, y, z) at a simulation time step ∆𝑡 

is T(x, y, z, ∆𝑡).  The spatiotemporal temperature distribution obtained from graph theory 

simulation for the whole part is stored in a tensor T.  

The N randomly sampled nodes, are binned into their respective layers and a network graph 

is constructed by connecting these nodes based on their spatial distance. The link connecting the 
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nodes is known as an edge. Nodes in layers where the material is deposited are termed active 

nodes, and those nodes that belong in layers that are yet to be deposited are termed inactive nodes. 

Next, to avoid the non-physical effects of connecting nodes that are far away from each other 

only connect a fixed number of nearest nodes within the ɛ-neighborhood of a node. Consider an 

active node 𝜋𝑖 at the center of a sphere of radius 𝜖  (mm). The active nodes that fall inside or on 

the surface of the sphere are called the neighbors of 𝜋𝑖. The radius of the sphere is termed as 

neighborhood distance (𝜖) and is a tunable parameter.  The neighborhood distance defines the 

spatial discretization in the method and is roughly equivalent to the grid spacing in finite difference 

methods or the element size in finite element methods. The neighborhood distance is chosen based 

on the geometry of the part to be modeled. A guideline is to set the neighborhood distance no 

greater than the dimension of the finest feature in a part, called the characteristic length [55]. The 

characteristic length is defined as the distance that separates the neighboring geometries from 

being connected physically. The neighborhood distance should be smaller than the characteristic 

length.  In effect, the neighborhood distance prevents nodes being connected across powder.  In 

this work, we set ε = 2 mm for all parts studied.  

To further reduce the computation burden we make the network graph sparse by removing 

edges. This is done by connecting the node 𝜋𝑖 to its fifteen nearest nodes with an edge. These 

parameters are identical to our previous work [54, 56, 57].  Next, the Euclidean distance between 

two connected nodes (e.g., node 𝜋𝑖 and a node 𝜋𝑗  whose spatial Cartesian coordinates are 

𝑐𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) and  𝑐𝑗(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), respectively) is computed, and weight ai,j is assigned to each edge 

based on the Gaussian function (also called the heat kernel),  
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𝑑 (𝑐𝑖 , 𝑐𝑗) = ‖𝑐𝑖 − 𝑐𝑗‖
2
= (𝑥𝑖 − 𝑥𝑗)

2 + (𝑦𝑖 − 𝑦𝑗)
2 + (𝑧𝑖 − 𝑧𝑗)

2 . 

𝑎𝑖,𝑗 =  𝑒
−𝑑 (𝑐𝑖 ,𝑐𝑗)

𝜎2      ∀ 𝑖 ≠   𝑗, 𝑑(𝑐𝑖 , 𝑐𝑗) ≤ ε 

 𝑎𝑖,𝑗 = 0, otherwise 

lim
𝑐𝑖−𝑐𝑗→0

𝑎𝑖,𝑗 = 1; lim
𝑐𝑖−𝑐𝑗→∞

𝑎𝑖,𝑗 = 0 

 

(9) 

In other words, nodes beyond the neighborhood distance are not connected and no node is allowed 

to connect to itself. Further, the edge weight depends on the relative distance between the nodes 

and is between 0 and 1. The larger the edge weight between two nodes, the proportionally greater 

is the heat transfer between them. The quantity σ2 in Eq. (9) is the variance obtained from the 

standard deviation of the Euclidean distance 𝑑(𝑐𝑖 , 𝑐𝑗) between all node pairs.   

Next, an adjacency or similarity matrix is formed by placing ai,j in row i and column j,  

A = [ai,j]. 

   

A =

[
 
 
 
 
0 𝑎1,2 𝑎1,3 ⋯ 𝑎1,N

𝑎2,1 0 𝑎2,3 ⋯ 𝑎2,𝑁
𝑎3,1
⋮
𝑎N,1

𝑎3,2
⋮
𝑎N,2

0
⋮
𝑎N,3

⋯
⋱
⋯

𝑎3,𝑁
⋮
0 ]
 
 
 
 

 

 

(10) 

The adjacency matrix is an N × N symmetric matrix, hence, ai,j = aj,i, where N represents the number 

of randomly sampled nodes. A degree matrix, D is formed by summing the rows of the adjacency 

matrix A and placing the sums in the ith diagonal. The diagonal entries 𝑑𝑖∙ are positive and off-

diagonal entries are zero.  

   

𝑑𝑖∙ =∑𝑎𝑖,𝑗

𝑁

𝑗=1

 

D = [
𝑑1∙ 0 0
0 ⋱ 0
0 0 𝑑N∙

] 

(11) 
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The discrete graph Laplacian matrix is constructed as,  

L = D − A 

   

L =

[
 
 
 
 
+𝑑1∙ −𝑎1,2 −𝑎1,3 ⋯ −𝑎1,N

−𝑎2,1 +𝑑2∙ −𝑎2,3 ⋯ −𝑎2,𝑁
−𝑎3,1
⋮

−𝑎N,1

−𝑎3,2
⋮

−𝑎N,2

+𝑑3∙
⋮

−𝑎N,3

⋯
⋱
⋯

−𝑎3,𝑁
⋮

+𝑑N∙ ]
 
 
 
 

 

 

(12) 

The Laplacian matrix falls under the category of a Stieltjes matrix as all its elements are real, 

it is symmetric and diagonally dominant with all off-diagonal elements non-positive. The 

Laplacian matrix is positive semi-definite. As a consequence of these properties of the Laplacian 

matrix, the eigenvalues (Λ) and eigenvectors (Ф) can be rapidly obtained by solving the eigenvalue 

problem LФ =  ФΛ within Matlab.  

Step 3: Simulate layer deposition and predict the temperature distribution 

In this step, in every cycle, a new layer is deposited on the top of the previously deposited 

layers at its melting temperature (Tm). The heat on the top layer diffuses to the rest of the part via 

edges connecting the various nodes.  The temperature at each node is determined at each time step 

Δt and stored in the temperature vector T(𝑥, 𝑦, 𝑧, Δt).  

The time between layers (TBL) is the time between the start of laser scanning of one layer to 

the start of scanning the next consecutive layer; it is the sum of the time it takes to scan a layer and 

recoat a fresh layer. For simulation, the TBL is divided into small timesteps Δt.  

The temperature at a node T(𝑥, 𝑦, 𝑧, Δt) at time step Δt is a function of eigenvectors (ϕ) and 

eigenvalues (Λ) of the Laplacian matrix (L), determined by solving the first-order linear differential 

equation as discussed in the context of Sec 2.1.  
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T(𝑥, 𝑦, 𝑧, Δt) = ϕ𝑒−𝛼𝑔ΛΔtϕ′T0(𝑥, 𝑦, 𝑧) = ϕ𝑒
−𝛼𝑔ΛΔtϕ′T𝑚 (13) 

Here initial temperature distribution T0(𝑥, 𝑦, 𝑧) contains newly melted material at, Tm which 

is the melting point of Inconel 718, about 1400 ℃; and the remainder of the body is at the 

temperature from the end of the previous heating cycle.  To reduce the computational burden, we 

simulate the deposition and melting of several layers. This technique called the super layer or meta-

layer approach is commonly used in LPBF as it reduces the simulation time, compared to a layer-

by-layer approach while without drastically degrading computational accuracy [40, 62-64].  

To adjust the units to the solution of the heat equation, a parameter called gain factor 𝑔 is 

introduced in Eq. (8). The effect of the gain factor 𝑔 is discussed in depth in our previous work; it 

influences the diffusion rate [55]. The gain factor is contingent on the material type and node 

density. In this work, we set 𝑔 = 2 × 106 m-2. This value is identical to those used in our previous 

work with Inconel 718 [56].   

In Eq. (8) the temperature of a node T(𝑥, 𝑦, 𝑧, Δt) is obtained by heat conduction within the 

body. As noted in Section 2.1, heat loss due to convection and radiation at the boundary is 

addressed within each heating cycle, but by a process outside of the graph theory method.  Heat 

loss is included by applying lumped capacitive theory to the temperature at nodes on the boundary, 

as follows 

T𝑏 = 𝑒
−ℎ̃𝜏 (T𝑏𝑖 − T𝑝) + T𝑝 (14) 

Here,  the temperature of the surroundings T𝑝 is considered as constant, T𝑏𝑖 is the boundary 

node temperature obtained by the heat diffusion alone in Eq. (8), T𝑏 is the resulting boundary node 

temperature  incorporating  convection and radiation heat loss, τ is the dimensionless time between 

layer depositions, and ℎ̃ is the normalized cumulative coefficient of heat loss for convection (via 
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Newton’s law of cooling)  and radiation (via Stefan-Boltzmann law) from the boundary nodes to 

the surrounding powder and air.  After convection and radiation are adjusted at boundary nodes, 

the temperature at various nodes obtained from graph theory at each node located at position (x, y, 

z) at time step Δt is T(𝑥, 𝑦, 𝑧, Δt). This spatiotemporal temperature distribution over time is stored 

as a tensor T. 

Step 4: Predicting Distortion using FE 

Step 4 is the bridge between the thermal history obtained using graph theory and the 

mechanical analysis from FE.  The temperature (thermal history) at each node at the end of each 

layer stored in the tensor T from Step 3 is mapped (transferred) to its exact location on the FE 

mesh of the part generated in Step 1 for mechanical analysis. A linear interpolation function was 

used to map the thermal history spatially and temporally. Such an interpolation is often employed 

in the AM modeling literature though it introduces a small error in the model prediction [67]. Since 

the focus of this work is to predict recoater crashes, which occur when the deformation in the top 

layer of a part exceeds the clearance between the recoater and top of the powder bed (40 µm), we 

assume that elastic and thermal-induced strains dominate, and plastic strain is ignored. These 

assumptions is used frequently in the literature [68, 69].  

The unidirectional relationship between the thermal and mechanical problems is an 

assumption that is widely applied in the LPBF field. Based on small deformation theory, as 

elucidated by  Michaleris et al. [25, 26], this approach is valid when there are no major faults, such 

as cracking, the collapse of the supports, and separation of the part from the build plate. Such 

failures would not only alter the shape of the part but also change the heat conduction pathway, 

leading to considerable changes in the temperature profile.   
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 In FE analysis, the thermal-induced deformation {U} is computed according to the following 

equations for elastic materials [47, 70]. The bottom face of the part is considered to be constrained 

(attached) to the substrate.  A combination of displacement and traction boundary conditions is 

enforced to the entire part. The bottom face is in a fixed condition (i.e., u = v = w =  0) which 

means displacements in x, y, and z directions are zero. Where u, v, and w are the displacement 

components in x, y, and z directions. Traction boundary conditions T(n) is enforced at the specific 

nodes using thermal history. Moreover, the free surfaces (i.e., the surfaces between part and 

powder, and the top surface) are given traction free conditions, T(n) = 0.  The deformation of a 

node is obtained according to Eq. (15). 

{U} =  [K]−1{FT} (15) 

where {U} is the displacement vector; [K] the element stiffness matrix; and {FT} is the thermal load 

vector. These are obtained per Eq. (16) and Eq. (17),  

[K] = ∫[B]T[H][B] · dv (16) 

{FT} = ∫[B]
T[H] 𝛼(Δ𝐓) · dv 

(17) 

Where the domain of integration is the volume of an element, [B] is the strain-displacement matrix, 

[H] is the elasticity matrix, α is the vector of thermal expansion coefficients, and Δ𝐓 is the 

temperature difference between two nodes. For linear elastic isotropic materials, the elasticity 

matrix [H] is given by Eq. (18). 
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[H] = 
E

(1+𝜈)(1−2𝜈)

[
 
 
 
 
 
 
 
1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1−2ν

2
0 0

0 0 0 0
1−2ν

2
0

0 0 0 0 0
1−2ν

2 ]
 
 
 
 
 
 
 

 (18) 

where E is the modulus of elasticity [N·m-2] and ν is the Poisson’s ratio. The strain-displacement 

matrix [B] depends on the shape of the finite element used for analysis. In this study, we used 

eight-node hexahedral elements.  The strain-displacement matrix for a hexahedral element is given 

by Eq. (19). This 8 node hexahedral mesh was chosen, as it is also used in the popular commercial 

LPBF simulation software, Netfabb.  

[B] = [B1 B2 B3 B4 B5 B6 B7 B8] 

[Bi] = 

[
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑦
0

0 0
𝜕𝑁𝑖

𝜕𝑧

0
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑧
0

𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0 ]
 
 
 
 
 
 
 
 
 

 

(19) 

where Ni is the shape function and is computed by Eq. (20). 

Ni = 
1

8
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)(1 + 𝜁𝜁𝑖) (20) 

where 𝜉𝑖 , 𝜂𝑖  𝑎𝑛𝑑 𝜁𝑖 denote the natural coordinates of node i; i = 1, 2, 3,…,8. In this analysis, it is 

assumed that the mechanical properties of the part are isotropic, and the elastic material behavior 

is considered only. Interpolation is used to scale temperature-dependent material properties 

between the build chamber temperature and the melting point. 
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Step 5: Obtain the thermal history and deformation for the entire part 

Steps 3 and 4 are repeated until the entire part is finished, noting that the subsequent layers 

are simulated as being deposited on top of the previously deposited and deformed layer. Hence, 

the deformation of subsequent layers accounts for, and is in turn influenced by, dislocations in 

previous layers.  

We reiterate that the proposed thermomechanical model is developed based on small 

deformation theory [25, 26]. The approach is valid when the LPBF part formation process is free 

of major flaws such as cracking, disintegration of the supports from the part or the build plate, and 

part separation from its original position on the build plate. Moreover, it ignores potential for 

deformation compensation due to the subsequent material deposition. As summarized in Sec. 1.2, 

this assumption is also common in FE-based commercial solutions, such as Netfabb.   
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3 Verification  

 

We applied the graph theory-based approach to predict deformation in the z-direction in two 

LPBF test parts (Figure 5). The verification procedure pertains to comparing both the thermal 

history and mechanical deformation predictions obtained from the decoupled solution from the 

proposed graph theory-based approach, termed graph theory (deformation), with a coupled 

thermomechanical FE model implemented in Abaqus. The coupled thermomechanical FE-based 

simulation serves as the ground truth to calibrate as well as evaluate the graph theory results. The 

comparison of the graph theory solution and the coupled thermomechanical FE solution is made 

in terms of the root mean squared error (RMSE) and mean absolute percentage error (MAPE) of 

the deformation predictions.  

The coupled thermomechanical FE model was obtained using the DFLUX routine in Abaqus 

per the procedure widely used in the LPBF literature [71, 72]. The mechanical analysis phase (Step 

4) of the graph theory approach is identical to the corresponding coupled thermomechanical FE-

based analysis. Identical assumptions were imposed in both the coupled thermomechanical FE-

based model and graph theory model, including the use of super-layers or meta-layers to ease the 

computational burden.  

Both models also maintain identical mechanical boundary conditions and hexahedral mesh 

elements. The mechanical analysis part of the graph theory model uses the mesh element C3D8R 

in Abaqus (8-node linear brick, reduced integration, hourglass control). The coupled 

thermomechanical FE analysis uses the similar C3D8T mesh element (8-node thermally coupled 

brick, trilinear displacement, and temperature). We note that both element types are identical in 

shape, except that C3D8R does not facilitate thermal analysis. 
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To verify the graph theory-based solution with the coupled thermomechanical FE model two 

test parts were considered as shown in Figure 5. These are termed the C-shaped part without 

supports, Figure 5(a); and C-shaped part with supports, Figure 5(b). The C-shaped part without 

supports in Figure 5(a) has a large overhang feature, whose underside is not supported. The 

overhang region tends to accumulate heat leading to thermal-induced deformation, often leading 

to a recoater crash.  

 

Figure 5: (a) C-shaped part without supports, (b) C-shaped part with supports. 

The practical context for using the C-shaped parts as exemplar objects is further illustrated in 

Figure 6, which shows an LPBF knee implant. To prevent excessive heat accumulation at the 

overhang region and subsequent distortion, supports were built under the overhanging feature. 

Supports also anchor the part to the substrate so to avoid dislocation due to the lateral force of the 

recoater.  To prevent the part from collapsing under its own weight, supports were built under the 

overhanging feature.  However, these supports were too thin to prevent heat retention in the 

overhang region. Hence, after the build, the overhang area manifested overheating, resulting in 

coarse-grained microstructure and poor surface finish, which made the implant potentially unsafe 

for clinical use.  
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Figure 6: LPBF knee implant with thin supports showing overheating at the overhang region [57]. 

 

The simulation parameters, material properties are shown in Table 1. The powder properties 

used in this analysis are of Inconel 718. The model calibration was performed based on the C-

shaped part without supports and followed the recommendations of Gouge et al. [25, 26]. First, 

the thermal history predictions (thermal solution) obtained from graph theory were verified with 

its corresponding thermal solution obtained from the coupled thermomechanical FE simulation. 

Next, the thermal solution from graph theory was used as an input to the decoupled mechanical 

FE model to predict layer-by-layer deformation. The graph theory (deformation) solution was 

subsequently verified with the coupled thermomechanical FE-based simulation.  In effect, the 

coupled thermomechanical FE model served as the ground truth.  

Two parameters need to be calibrated in the approach. With super layer thickness fixed at 0.5 

mm based on prior work, the first parameter is the number of nodes per unit volume in graph theory 

(node density, nodes·mm-3) for thermal analysis in Step 1 – Step 3 [56]. The second parameter is 

the FE mesh element size for the prediction of deformation in Step 4. We note that an extensive 

convergence study for the coupled thermomechanical FE model was conducted to ascertain the 

element size. Five element sizes were studied, ranging from 2 mm × 2 mm × 2 mm to 0.3 mm × 

0.3 mm × 0.3 mm, as summarized in Table 2.   
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Table 1: Summary of material properties and simulation parameters for graph theory and the 

coupled thermomechanical FE models [56, 73, 74]. 

Material properties and simulation parameters Values 

Material Inconel 718 

Density, 𝜌 [kg·m-3] 8,230  

Thermal conductivity, k [W ·m−1 ·K−1] 11.1 

Specific heat, Cp [J ·kg−1 ·K−1] 435 

Thermal diffusivity (α) [m2s-1] 3.2 × 10-6  

Expansion coefficient [℃-1] 12.1 × 10-6 

Young’s modulus [N·m-2] 2 × 1011 

Poisson’s ratio 0.3 

Melting Point, Tm [℃] 1,400  

Build chamber temperature, Tamb [℃] 110  

Convection coefficient wall to powder, hw [W·m-2· C-1] 25 (C-shaped parts) 15 (arches) 

Convection coefficient substrate (sink), hs [W·m-2· C-1] 5000 (C-shaped parts), 2500 (arches) 

Layer thickness [mm] 0.040 

Super layer thickness [mm] 0.5  

Gain factor, g [m-2] 2 × 106 

Time between layers, TBL [sec] 
10 sec for both C-shaped parts, varies for 

arches based on experiment, see Ref. [56] 

Computational hardware 
Intel(R) Core (TM) i5-7500 CPU @ 

3.40GHz with 16 GB RAM 

Figure 7 shows the thermal history and maximum deformation in the z-direction (build 

direction) as a function of the layer height at a specific location (x = 4 mm, y = 1 mm, z mm) on 

the C-shaped part without supports; the origin is on the left front vertex of the part. The result 

obtained using the graph theory (red line) is overlaid on the temperature and deformation 

predictions from the coupled thermomechanical FE simulation (ground truth, black line), in Figure 

7(a) and Figure 7(b), respectively. The results in Figure 7(a) show that the surface temperature 

predictions obtained from the graph theory thermal model converge to the coupled 

thermomechanical FE solution with the increase of the node density. Increasing the node density 

is advantageous to prediction accuracy as shown in recent work at the expense of the computation 

time [55].  
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The thermal history predictions at the end of each layer obtained from graph theory were 

imported into an FE model to obtain the mechanical solution. With the decrease in element size, 

model accuracy improves as is evident in Figure 7(b). As there is a tradeoff between the element 

size and the computation time, an element size of 0.5 mm × 0.5 mm × 0.5 mm was considered in 

this work based on convergence studies.  The top surface temperature at a specific spatial location 

after completion of a layer was predicted using the graph theory approach. The solution was 

calibrated with respect to the temperature predicted by the coupled thermomechanical FE model 

as a function of the node density (nodes·mm-3) with mesh size was set at 0.5 mm × 0.5 mm × 0.5 

mm. Based on the calibration, we selected the node density as 5.0 (nodes.mm-3) that yields MAPE 

~1% and RMSE ~7 °C with respect to the coupled thermomechanical FE model. 

  
Figure 7: Calibration of (a) graph theory thermal model for node density as the number of nodes 

per mm3 and (b) coupled thermomechanical FE model for mesh element size in mm. The asterisk* 

represents the origin (x = 0, y = 0, z = 0) of the C-shaped parts.  
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Table 2: Effect of the number of nodes on graph theory thermal prediction and element size on 

deformation prediction using FE. 

Variables Number of nodes MAPE (%) RMSE (℃) 
Computation 

time (s) 

 

Thermal 

history 

1540 (selected) 1 7 11 

1295 3 17 10 

1230 6 48 9 

1080 9 62 8 

 

 

 

Deformation 

Element size (mm) MAPE (%) RMSE (µm) Computation 

time (s) 
2 × 2 × 2 8 76 6 

1 × 1 × 1 3 30 16 

0.5 × 0.5× 0.5 (selected) 1 5 57 

0.4 × 0.4 × 0.4 0.15 1 92 

0.3 × 0.3 × 0.3 0 0 756 

 

The part geometry as shown in Figure 5(a) was converted into a FE mesh. The mesh consisted 

of 2,624 elements (3705 nodes) having an approximate element size of 0.5 mm × 0.5 mm × 0.5 

mm. These nodes were extracted from the FE model and employed in the graph theory model for 

predicting deformation, as described in Steps 2 through 5 in described in Sec. 3.1 (Figure 4). 

3.4.1 Thermal History Prediction  

The temperature predictions from the graph theory approach were obtained with node density 

set at 5 nodes·mm-3. Shown in Figure 8(a) is the average surface temperature prediction at the end 

of the layer. Likewise, reported in Figure 8(b) and Figure 8(c) are the surface temperature at two  

specific locations, namely, (x = 4 mm, y = 1 mm, z mm) and (x = 7 mm, y = 1 mm, z mm), 

respectively. The temperature predictions using the graph theory (red line) are overlaid on the 

temperature predictions from the coupled thermomechanical FE simulation (ground truth, black 

line).  
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Figure 8: Thermal history of the C-shaped part without supports. (a) Average surface temperature 

measured at the end of the layer. (b) & (c) Surface temperature at a specific location (4, 1, z) mm 

and (7, 1, z) mm, respectively. The red line in the figure represents the thermal history predicted 

using the graph theory approach with ± 1 standard deviation over 10 replications, whereas the 

black line is the thermal history predicted using the coupled thermomechanical FE model which 

is considered as the ground truth. 

 The error in the graph theory thermal prediction with respect to the coupled thermomechanical 

FE model for the average surface temperature in Figure 8(a) is ~ 2% (MAPE) and ~16 °C (RMSE). 

Similarly, for the chosen location (x = 4 mm, y = 1 mm, z mm) reported in Figure 8(b) the MAPE 

and RMSE are ~ 1% and ~ 7 °C, respectively. At location (x = 7 mm, y = 1 mm, z mm) reported 

in Figure 8(c) the MAPE and RMSE are ~ 2% and ~ 12 °C, respectively.  

The graph theory thermal prediction is bounded with ± 1 standard deviation over ten 

replications. The graph theory thermal simulation converged in ~ 6 seconds while the coupled 

thermomechanical FE reached the solution in ~ 58 seconds. The temperature distribution of the 

complete part obtained from the coupled thermomechanical FE, graph theory (Thermal), and 

Netfabb simulations is shown in Figure 9.  
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Figure 9: Qualitative comparison of thermal history predictions at the completion of the part from 

(a) coupled thermomechanical FE model, (b) graph theory (Thermal) model, and (c) Netfabb. 

3.4.2 Deformation Prediction  

 The maximum top surface deformation predicted using graph theory is shown in Figure 10(a), 

and closely tracks the deformation obtained from the coupled thermomechanical FE simulation. 

The results are summarized in Table 3 and Table 4.  The average deformation in each layer is 

shown in Figure 10(b). Next, shown in Figure 10(c) and Figure 10(d) are the deformations as a 

function of layer height at the specific locations (4 mm, 1 mm, z mm) and (7 mm, 1 mm, z mm), 

respectively. Layers 188 to 225 undergo considerable deformation due to heat accumulation in the 

overhang region. 

 From Figure 10(a) and Figure 10(b), we note that the deformation in the z-direction exceeds 

the layer thickness (40 µm) at a build height of 7 mm, indicating the possibility of a recoater crash. 

In these studies, the typical error in the graph theory approach in predicting deformation with 

respect to the coupled thermomechanical FE model is ~ 4-6% (MAPE) and ~ 0-9 µm (RMSE). 

The deformation results for the C-shaped part in Figure 10, Table 3 and Table 4 are restricted 

to graph theory and FE model; results from Netfabb were not included due to the following reason. 

The C-shaped part was simulated (no actual part was built) with a constant time between layers 

(TBL) of 10 seconds (Table 1). In practice, the time between layers is not constant, but varies 

proportionally to the X-Y scanned area of the part. The Netfabb software determines the TBL for 
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every layer; based on the part geometry, processing parameters, and machine type; it does not 

provide the freedom to set a constant TBL.  Hence, the quantitative comparison of deformation 

between the proposed model and the Netfabb is not feasible for the model verification with C-

shaped part without supports, and C-shaped part with supports reported in the forthcoming section 

(Sec. 3.5). This limitation is precluded for model validation (Sec. 4), where actual parts were built. 

The TBL used in the graph theory model matches the experiment, and hence a quantitative 

comparison of deformation from FE, graph theory, and Netfabb is viable.  

 

Figure 10: Comparison of predicted deformation of C-shaped part without supports between the 

coupled thermomechanical FE model and the graph theory-based approach showing (a) maximum 

deformation of each layer, (b) average layer deformation, and (c) & (d) deformation measured at 

(4, 1, z) mm, and (7, 1, z) mm, respectively, along the build direction.  
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Table 3: Graph theory (Deformation) model performance for C-shaped part without supports in 

terms of MAPE, RMSE, and computation with respect to coupled thermomechanical FE model. 

The MAPE and RMSE are estimated based on the maximum deformation of each layer. 

 

Variables 

Coupled 

thermomechanical FE 

Model 

 

Graph theory (Deformation) model 

Node density 

(nodes/mm3) 

11.30 5.0 4.5 4.0 3.5 

Node count 3705 1540 1295 1230 1080 

MAPE (%) Ground truth 6.30 11.11 13.31 14.89 

RMSE (µm) Ground truth 8.81 20.79 25.29 25.05 

Computation time (s) 57.10 10.93 9.77 9.04 7.95 

 

Table 4: Graph theory model performance for the estimation of deformation in terms of MAPE, 

RMSE, and computation with respect to coupled thermomechanical FE analysis for C-shaped part 

without supports. 

Description 
MAPE 

(%) 

RMSE 

(µm) 

Computation time (s) 

Thermo-mechanical 

coupled FE model 
Graph theory 

Maximum layer 

deformation (Figure 10(a)) 6.30 8.81 

 

57.10 

 

10.93 

Average layer deformation 

(Figure 10(b)) 6.09 4.83 

Deformation at (4, 1, z) 

mm (Figure 10(c)) 5.90 1.26 

Deformation at (7, 1, z) 

mm (Figure 10(d)) 3.94 0.48 
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 The C-shaped part with supports, Figure 5(b), was simulated using identical boundary 

conditions, material properties, and the simulation parameters of the C-shaped part without 

supports. Similar to the C-shaped part without supports, the geometry was converted into FE mesh. 

The mesh consisted of 2,752 elements (3885 nodes) having a size of 0.5 mm × 0.5 mm × 0.5 mm.  

3.5.1 Thermal History Prediction  

      The coupled thermomechanical FE and graph theory thermal history predictions of the average 

surface temperature are overlaid in Figure 11 (a). The thermal predictions at two specific locations, 

namely, (4 mm, 1 mm, z mm), and (17 mm, 1 mm, z mm) are also overlaid in Figure 11(b) and 

Figure 11(c), respectively. The error in the thermal history of the graph theory approach in 

comparison to the coupled thermomechanical FE solution for average surface temperature is 

MAPE 2% and RMSE 23°C. At location (4 mm, 1 mm, z mm) the error in comparison to the 

coupled thermomechanical FE model is 1% (MAPE) and 10 °C (RMSE). At the second location 

(17 mm, 1 mm, z mm), the error is 3% (MAPE) and 28 °C (RMSE). The graph theory thermal 

simulation converged in ~7 seconds while the coupled thermomechanical FE simulation in ~61 

seconds.  

Shown in Figure 12 is a qualitative comparison of temperature distribution on the completion 

of the C-shaped part with supports obtained from the coupled thermomechanical FE model, graph 

theory thermal model, and Netfabb. Comparing Figure 11(a) and Figure 8(a) we note that the C-

shaped part with supports depicts a more gradual decrease in surface temperature in contrast to the 

C-shaped part without supports. Further, the temperature of the final layer of the C-shaped part 

with supports is almost 200 ℃ lower than its counterpart without supports.  
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Figure 11:  Thermal history of the C-shaped part with supports showing (a) average surface 

temperature at the end of each layer; (b) & (c) are the temperatures measured at two different 

coordinates for different layer heights of z (4 mm, 1 mm, z mm), and (17 mm, 1 mm, z mm), 

respectively. 

 
Figure 12: Qualitative comparison of the thermal history predictions at the completion of the part 

from (a) coupled thermomechanical FE model, (b) graph theory (Thermal) model, and (c) Netfabb. 

3.5.2 Deformation Prediction  

The deformation of the C-shaped part with supports was predicted using the coupled 

thermomechanical FE model and the graph theory (Deformation) approach at different locations. 

The results are depicted in Figure 13 and summarized in Table 5 and Table 6.  

For the scenarios tested, the graph theory approach predicted the deformation in the z-

direction with MAPE ~ 9% and 4 µm RMSE. The computation time of the graph theory approach 

was ~ 12 seconds compared to ~ 61 seconds with the coupled thermomechanical FE model. The 

benefits of using supports are evident in comparing  Figure 13(a) and Figure 13(b), for the C-

shaped part with supports alongside Figure 10(a) and Figure 10(b), respectively. The maximum 

and average layer deformation in the C-shaped part with supports is significantly less than 40 µm. 
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In other words, the C-shaped part with supports mitigates the tendency for a recoater crash by 

avoiding heat retention in the overhang region. The supports act as conduits to conduct the heat 

away from the overhang region. The prediction error (i.e., the MAPE and the RMSE) decreases 

with the increase of the node density (node per mm3) as evident in Table 5.  

 
Figure 13: Comparison of deformation predictions for C-shaped part with supports between the 

coupled thermomechanical FE and the graph theory (Deformation) approaches.  
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Table 5: Graph theory (Deformation) model performance for the C-shaped part with supports in 

terms of MAPE, RMSE, and computation time with respect to the coupled thermomechanical FE 

model. The MAPE and RMSE are estimated based on the maximum deformation of each layer. 

Variables 

Coupled 

thermomechanical FE 

Model 

Graph theory (Deformation) model 

Node density (nodes/mm3) 11.30 5.0 4.5 4.0 3.5 

Node count 3885 1620 1460 1295 1140 

MAPE (%) Ground truth 3.74 8.04 13.78 17.02 

RMSE (µm) Ground truth 1.28 2.07 2.58 3.67 

Computation time (s) 60.70 11.56 11.10 9.83 8.59 

 

Table 6: Graph theory model performance for the estimation of deformation in terms of MAPE, 

RMSE, and computation with respect to coupled thermomechanical FE analysis for C-shaped part 

with supports. 

Description MAPE (%) 
RMSE 

(µm) 

Computation time (s) 

Thermo-

mechanical 

coupled FE model 

Graph 

theory 

Maximum layer deformation  

(Figure 13(a)) 
3.74 1.28 

 

60.70 

 

11.56 

Average layer deformation  

(Figure 13(b)) 
3.02 3.47 

Deformation at (4, 1, z) mm  

(Figure 13(c)) 
8.77 0.68 

Deformation at (17, 1, z) mm  

(Figure 13(d)) 
8.76 1.25 
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4 Validation 

 

To validate the graph theory (deformation) approach for predicting recoater crashes, 

experiments were conducted on an open architecture LPBF platform at Edison Welding Institute, 

Ohio. These are detailed in Ref. [56]. The schematic and pictures of the setup are shown in Figure 

14. The material was Inconel 718. The build required about 10 hours to complete.  The system was 

integrated with a thermal camera inside the chamber to acquire the surface temperature 

measurements of the part as it was being built. The thermal camera was inclined at 80° to the 

horizontal.  The thermal camera (Micro Epsilon, model TIM 640) had a spectral range of 8 to 14 

µm (longwave infrared spectrum), and an optical resolution of 640 pixels × 480 pixels. The spatial 

resolution was ~20 pixels per mm2.  

The thermal camera was triggered to capture images of the powder bed only when the laser 

was actively melting a layer. The thermal camera stopped recording when the laser finished 

scanning a layer. In other words, the camera was turned on only when the laser was active. The 

thermal camera was calibrated to an absolute temperature scale using a reference thermocouple 

measurement [56].   

The graph theory approach is applied to predict recoater crashes of the arch-shaped parts 

shown in Figure 15. There are two types of arch-shaped parts, namely, arches built with supports 

and those without supports. These parts are analogous to the C-shaped parts with and without 

supports studied in Sec. 3. As shown in Figure 15, all the arches have the same length of 40 mm 

and height of 26 mm, and base width of 5 mm but have varying gauge thicknesses (t) from 0.5 mm 

to 2.5 mm in steps of 0.5 mm. As first discussed in the context of Figure 2, all the arches without 
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supports, except the arch with gauge thickness t = 1.5 mm, failed during printing due to recoater 

crash.  

 
Figure 14: The schematic of the and photograph of the LPBF setup. A longwave infrared thermal 

camera located above the build plate and inclined at 80° to the horizontal plane is used to capture 

the part surface temperature during the build process [56]. 

 

Figure 15: The layout of the build plate, and arch-shaped geometries (with and without supports) 

with varying gauge thicknesses, t = 0.5, 1.0, 1.5, 2.0, and 2.5 mm. 

The arches are labeled per their gauge thickness, as follows: the arch with thickness t = 0.5 

mm is labeled as A05; t = 1.0 mm as A10; t = 1.5 mm as A15; and so on. The arches with supports 

are labeled as SA05, SA10, and so on.  Each arch consists of 650 layers at a layer height of 40 µm. 

The clearance between the recoater and powder bed is also 40 µm. The arches A05 and A10 had 

recoater crashes at layer 556 and 548, respectively, corresponding to the build height of 22 mm; 

arches A20 and A25 crashed at a build height of 23 mm corresponding to layer 574. Arch A15 did 

not experience a recoater crash as it was protected by neighboring arches.  
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To explain further, the superelevation of the arches on either side of A15 (A10 and A20) lifted 

the recoater blade and created sufficient clearance to prevent contact with the part. Representative 

thermal camera frames corresponding to the layers where the unsupported arches underwent 

recoater crashes are shown in Figure 16.  

These recoater crash events are evident from the infrared thermal image. After the recoater 

crash event of arch A10 at layer 548, higher thermal intensity is recorded in its location compared 

to the rest of the arches at that same layer. To explain further, following the breakage of the arch 

A10 due to the recoater crash, the laser scans an area of the powder bed without a solid part 

underneath. Since compared to a solid part, powder is a poor conductor of heat, the temperature of 

the powder bed increases. The same heat retention phenomena are also evident with the recoater 

crashes of the arches A05, A20, and A25 corresponding to layers 556 and 574. Indeed, the debris 

from arch A10 is observed at layer 574 in the thermal image, nearly 25 layers after the recoater 

crash.   Ten arches (five arches with supports and five arches without supports) were simulated 

(one at a time). For brevity, the results of four representative arches A10, A20, A25, and SA25 are 

reported. The boundary conditions, material properties, and simulation parameters are reported in 

Table 1.  

 
Figure 16: IR camera images of recoater crash incidents at layers 548, 556, and 574 corresponding 

to arches A10, A05, and A25 & A20. Note that the relative intensity of the failed arches is higher 
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compared to the other arches due to heat retention following the recoater crash The debris of the 

crashed arch A10 is still evident in the subsequent layers. Image from Yavari et al. [56]. 

 

In Figure 17, the surface temperature at the end of a layer is predicted using the graph theory, 

and results from the coupled thermomechanical FE models are overlaid on the experimental data. 

It is observed that both the graph theory thermal model and coupled thermomechanical FE model 

track the experimental thermal observation up to the point of the recoater crash. The thermal 

prediction results are summarized in Table 7. The graph theory approach predicts the temperature 

distribution within MAPE 5%, and 20 °C RMSE in less than 4 minutes. In comparison the FE 

model requires 30 minutes to reach the same level of error.  

In Figure 17(b)-(c), the mismatch in the observed temperature, and FE and graph theory 

predictions in the vicinity of layer 200 for the arches without supports is likely due to the super 

layer assumption. As explained in Sec. 2.2, the FE and graph theory approach make the super layer 

assumption to simplify computation, in this work the super layer thickness (Table 1) was fixed at 

0.5 mm (12.5 layers). As a result of the super layer assumption, when the cross-section of the part 

changes rather rapidly around the layer 200 mark (beginning of arch-section), both the FE and 

graph theory model are reticent in capturing this change. This deficiency can be overcome by 

reducing the super layer thickness, albeit at the cost of computation time.    

A qualitative comparison of the thermal prediction of two types of arches – arch without 

supports (A25), and arch with supports (SA25) – at three different build heights is shown in Figure 

18. The thermal fields of the FE, graph theory (Thermal), and Netfabb models show that the arch 

without supports (A25) accumulates heat as it builds up. At one point, the heat retention caused 

enough deformation in the build direction to interfere with the recoater which ultimately caused 
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the recoater crash. Meanwhile, for the arch with supports (SA25), the supports created a conductive 

path between the thin legs and the base that prevented heat accumulation. As a result, heat-induced 

deformation is relatively low and no subsequent recoater crash occurred. 

 

Figure 17: The surface temperature observed during experiments (blue line) overlaid on the 

coupled thermomechanical FE model (black), and graph theory (red) thermal history predictions 

for four representative arches (a) A10, (b) A20, (c) A25, and (d) SA25.  
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Figure 18: Qualitative comparison of the thermal history predictions for arches 2.5 mm with 

(SA25) and without (A25) supports at the completion of three different build heights from coupled 

thermomechanical FE model, graph theory, and Netfabb. 

Table 7: Coupled thermomechanical FE and graph theory thermal model performance for the 

estimation of thermal history in terms of MAPE, RMSE, and computation, with respect to 

experimental data. 

Part 

Number of Nodes 

MAPE 

before the first 

crash 

(Layer 548) (%) 

RMSE 

before the first 

crash (°C) 

 

Computation 

Time (s) 

 

FE Graph 

theory 

FE Graph 

theory 

FE Graph 

theory 

FE Graph 

theory 

A10  (Figure 17(a)) 17,576 1,920 4.40 3.66 19.85 15.40 1523 193 

A20 (Figure 17(b)) 20,932 2,155 5.80 3.98 29.05 20.12 1601 214 

A25 (Figure 17(c)) 23,611 2,260 4.19 3.57 26.63 18.32 1683 224 

SA25 (Figure 17(d)) 26,554 2,635 2.13 2.03 12.99 8.82 1716 273 
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Deformation predictions from the coupled thermomechanical FE, graph theory, and Netfabb 

models are shown in Figure 19 and reported in Table 8 and Table 9. The qualitative comparison 

of deformation predictions from the coupled thermomechanical FE, graph theory, and Netfabb 

approaches is shown in Figure 20. As is evident, the arches without supports (A10, A20, and A25 

in Figure 19(a), Figure 19(b), and Figure 19(c)) deform considerably. When the part reaches nearly 

23 mm in height, the deformation exceeds the clearance of 40 µm between the recoater and powder 

bed, increasing the likelihood of a recoater crash. Meanwhile, the arch with supports, SA25 shows 

the deformation in the vertical build direction remains below 40 µm as the supports create a 

conductive path to prevent heat retention. Hence, a recoater crash is unlikely to occur for SA25. 

In Table 8, the layer at which a recoater crash is likely to occur is predicted using graph theory, 

and the results are compared with those from coupled thermomechanical FE and Netfabb. The 

graph theory approach correctly predicts the moment of the recoater crash for all the unsupported 

arches, as well as correctly anticipates that a recoater crash is unlikely to occur for the supported 

arches. The graph theory approach predicted that a recoater crash would occur about 12 layers 

before the recoater crash is observed in the experiment in the unsupported arches except for the 

case of the arch A10. Similar results are reported by both the FE and Netfabb models. Moreover, 

the computation time of the graph theory approach ranges from 3 to 4 minutes, similar to Netfabb. 

In comparison the FE approach requires over 25 minutes. The graph theory approach predicts 

deformation within 4 µm of the FE predictions (ground truth). 
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Figure 19: Deformation predictions of each layer using coupled thermomechanical FE (black), 

graph theory-based (red), and Netfabb (green) models corresponding to the arches (a) A10, (b) 

A20, (c) A25, and (d) SA25. The recoater crash occurs when deformation exceeds the layer height 

of 40 µm (red dotted). 
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Figure 20: Qualitative comparison of the deformation predictions at three different build heights 

using coupled thermomechanical FE model, graph theory (Deformation), and Netfabb models of 

the arch without supports A25 and arch with supports SA25.  

Table 8: Summary of experimental recoater crash, and the recoater crash predictions obtained from 

coupled thermomechanical FE, graph theory (Deformation), and Netfabb approaches, 

respectively. The number in the parentheses is the computation time in seconds.  

Part 

Layer at which 

recoater crash 

was observed in 

the experiment   

Layer of recoater crash prediction 

Coupled 

thermomechanical FE 

Graph theory 

(Deformation) 
Netfabb 

A05 556 

Crash predicted at 

Layer 538  

(1512 seconds 

computation time) 

550 (189) 

550 (207) 

A10 548 562 (1523) 562 (193) 560 (229) 

A15 No crash 562 (1536) 562 (211) 550 (239) 

A20 574 562 (1601) 562 (214) 560 (246) 

A25 574 550 (1683) 562 (224) 550 (252) 

SA25, and all 

other 

supported 

arches 

No crash No crash (1716) No crash (273) No crash (351) 
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Table 9: Summary of Node density, Node count, Mean Percentage Error (MAPE), Root Mean 

Square Error (RMSE), and computation time for the coupled thermomechanical FE model, graph 

theory (Deformation), and Netfabb simulations. 

Part 
  

Variables  

Coupled 

thermomechanical 

FE model 

 

Graph theory  

 

Netfabb 

A05 

Node count 19930 1795 16668 

MAPE (%) Ground truth 13.79 12.61 

RMSE (µm) Ground truth 2.54 3.34 

Computation time (s) 1512 189 207 

A10 

Node count 21588 1920 24370 

MAPE (%) Ground truth 18.8 9.80 

RMSE (µm) Ground truth 2.90 2.30 

Computation time (s) 1523 193 229 

A15 

Node count 23348 2035 26764 

MAPE (%) Ground truth 18.28 10.29 

RMSE (µm) Ground truth 2.78 3.77 

Computation time (s) 1536 211 239 

A20 

Node count 25123 2155 30686 

MAPE (%) Ground truth 13.00 10.80 

RMSE (µm) Ground truth 2.60 2.20 

Computation time (s) 1601 214 246 

A25 

Node count 26678 2260 24896 

MAPE (%) Ground truth 15.40 13.00 

RMSE (µm) Ground truth 3.90 3.20 

Computation time (s) 1683 224 252 

SA25 

Node count 26964 2635 40323 

MAPE (%) Ground truth 8.40 5.27 

RMSE (µm) Ground truth 1.60 1.09 

Computation time (s) 1716 273 351 
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5 Conclusions and Future Work 

This work presented a novel graph theory-based approach for thermomechanical modeling in 

the laser powder bed fusion (LPBF) process. The approach was applied to predict a commonly 

occurring type of thermal-induced deformation failure in LPBF called recoater crash. The 

advantage of this approach is its computational efficiency when compared to a coupled 

thermomechanical FE model. This approach enables the user to rapidly identify part design and 

processing conditions for avoiding recoater crashes before the part is printed. This work provides 

an opportunity to evolve from cumbersome and expensive empirical testing to a physics-based 

strategy for process optimization in LPBF, thus reducing the time-to-market for LPBF parts.  

Specific contributions of this work are as follows: 

1. The approach was verified with two LPBF test parts. The deformation in the vertical 

direction was predicted using the graph theory approach and the predictions were 

compared with the coupled thermomechanical FE analysis which was considered as the 

ground truth. It was found that the deformation predictions obtained from the graph theory 

approach closely agreed with the coupled thermomechanical FE solutions. The calculated 

errors were less than 10% (MAPE), and 10 µm (RMSE). The key result is that the 

deformation predictions from the graph theory approach converge about 5 times faster 

than the coupled thermomechanical FE approach.   

2. Experimental validation was carried out by building arch-shaped parts. Two types of 

arches were built, namely, arches with supports and arches without supports. The approach 

correctly predicted the likelihood of recoater crashes in arches without supports. The 

results agreed with both coupled thermomechanical FE modeling and commercial 

software (Autodesk Netfabb). The Netfabb simulation environment is a decoupled 
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thermo-mechanical solver, developed based on the non-linear FE method for simulation 

of the AM process. The graph theory approach converged approximately 6 times faster 

than the coupled thermomechanical FE approach (5 minutes vs 30 minutes) with 

prediction error less than 4 µm. The computation time of the graph theory approach is 

similar are to Netfabb.  

We will endeavor to answer the following questions in our forthcoming works: 

• What is the effect of the thermal history on residual stress? How much would the part 

distort when removed from the build plate? What is the likelihood of supports failure on 

account of thermal deformation? 

• What is the effect of thermal-induced deformation on the geometric aspects, such as 

circularity, planarity, straightness, etc.? Subsequently, how should the part design be 

changed to compensate for thermal deformation.  

• What is the effect of thermal history on sub-millimeter flaws, such as hot spots, cracking, 

and lack-of-fusion?  

Lastly, to accommodate fine features and support structures, we are currently establishing an 

adaptive node generation approach in graph theory, wherein fine features are populated with higher 

density of nodes (smaller neighborhood radius ε), and larger features are populated with low 

density nodes. 
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