Thermal Modeling of Directed Energy Deposition Additive Manufacturing using Graph Theory

Structured Abstract

Purpose of this paper

The objective of this work is to develop, apply, and validate a mesh-free graph theory-based
approach for rapid thermal modeling of the directed energy deposition (DED) additive
manufacturing process.

Design/methodology/approach

In the current work, we develop a novel mesh-free graph theory-based approach to predict the
thermal history of the DED process. Subsequently, we validated the graph theory predicted
temperature trends using experimental temperature data for DED of titanium alloy parts (Ti-6Al-
4V). Temperature trends were tracked by embedding thermocouples in the substrate. The DED
process was simulated using the graph theory approach, and the thermal history predictions were
validated based on the data from the thermocouples.

Practical implications

The DED process is particularly valuable for near-net shape manufacturing, repair and
remanufacturing applications. However, DED parts are often afflicted with flaws, such as cracking
and distortion. In DED, flaw formation is largely governed by the intensity and spatial distribution
of heat in the part during the process, often referred to as the thermal history. Accordingly, fast
and accurate thermal models to predict the thermal history are necessary to understand and
preclude flaw formation.

Findings

The temperature trends predicted by the graph theory approach have mean absolute percentage
error of ~11% and root mean square error of 23 °C when compared to the experimental data.
Moreover, the graph theory simulation was obtained within 4 minutes using desktop computing
resources, which is less than the build time of 25 minutes. By comparison, a finite element-based
model required 136 minutes to converge to similar level of error.

Research limitations/implications
We use data from fixed thermocouples when printing thin-wall DED parts. In the future we will
incorporate infrared thermal camera data from large parts.

Originality/value

This paper presents a new mesh-free computational thermal modeling approach based on graph
theory (network science) and applies it to DED. The approach eschews the tedious and
computationally demanding aspect of finite element modeling and allows rapid simulation of the
thermal history in additive manufacturing. While graph theory has been applied to thermal
modeling of laser powder bed fusion (LPBF), there are distinct phenomenological differences
between DED and LPBF that necessitate substantial modifications to the graph theory approach.

Keywords: Thermal Modeling, Directed Energy Deposition, Titanium Alloy, Graph Theory.
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1 Introduction
1.1 Objective and Motivation

The objective of this work is to develop, apply, and validate a mesh-free graph theory-based
approach for rapid prediction of the temperature distribution in parts made using the directed
energy deposition (DED) additive manufacturing process. In the DED process, as exemplified in
Figure 1, metal powder is sprayed onto a substrate and melted using energy from a laser. The
relative motion of the laser and substrate results in a three-dimensional geometry [1]. The DED
process is particularly valuable for rapid repair or upgrading of damaged or legacy components,
enabling the affordable addition of complex features. The process can also enhance existing parts

with protective wear or thermal barrier coatings [2, 3].
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Figure 1: Schematic of the DED process. Metal powder is sprayed via nozzles and fused onto a
substrate by a laser beam.

However, the DED process has a tendency to create flaws, such as cracks, distortion, and non-
uniform (heterogeneous) microstructure [4, 5]. Despite significant advantages over conventional
subtractive and formative manufacturing, safety-critical industries such as aerospace and defense
are reticent in adopting the DED process due to the lack of consistent part properties.
Consequently, there is an ongoing effort to understand the causal linkage between fundamental

process phenomena, flaw formation, and physio-mechanical properties of the part in DED [4, 6].



In the DED process, the temperature distribution inside the part during deposition, typically
called the thermal history or temperature field, influences flaw formation, such as microstructural
heterogeneity, porosity, and deformation [7]. The temperature distribution is a function of the part
geometry, process parameters, and material properties [8]. Accordingly, fast and accurate
approaches to predict the thermal history in DED prior to printing the part are required for
understanding and preventing flaw formation. In addition, these approaches should enable new
critical functions including, but not limited to, predicting the final geometry of the part, process
optimization and model-based process control, as depicted in Figure 2 [9, 10]. Hence, there is a
strong need to approximate (simulate) the thermal history of DED parts before manufacturing is

completed, beginning with the designed (ideal) geometry.

For example, the rapid prediction (simulation) of thermal history is valuable for identifying
and remedying potential red-flag problems, such as overheating, before the part is printed.
Consequently, different process tool path strategies, part orientation, and process parameter
combinations can be tested and optimized in silico using thermal simulations. Thus, reducing the

time and experimental effort required for process optimization.
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Figure 2: Fast and accurate modeling of the thermal history is central to quality assurance of DED.
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1.2 Challenges and Novelty

Recent review articles emphasize the need for accurate and fast computational approaches to
predict part thermal history in DED [7-9, 11, 12]. These review papers also summarize validation
efforts by various researchers. The main challenge in part-scale thermal modeling of the DED
process is that mesh-based finite element (FE) thermal models are relatively slow with
computation time extending to hours if not days for a multi-layered practical part [13-15]. While
commercial thermal simulation software for other additive manufacturing processes, such as laser
powder bed fusion, have reduced the computation effort, development of such tools for DED is in

their nascency. The novelty of this work is as follows:

e All current approaches for thermal modeling in DED use the finite element method. This
research addresses the foregoing challenge by devising a mesh-free graph theory-based
computational thermal modeling approach to predict the temperature distribution in DED parts.
The graph theory approach has previously been published in the context of the laser powder
bed fusion (LPBF) process [16-18]. The approach is verified to be five to ten times faster than
finite element modeling, enabling the prediction of thermal history using desktop computing
in the context of the LPBF process.

e This paper develops, applies, and validates the graph theory approach in the context of the
DED process. As will be explained in Sec. 4, the considerable phenomenological differences
between the LPBF and DED processes necessitates significant changes to the graph theory

approach for application to the latter.

The rest of this paper is organized as follows. Sec. 2. summarizes the salient literature in
thermal modeling in DED from the context of FE modeling. In Sec. 3, we detail the experimental

methodology for the acquisition of temperature data during DED manufacturing of titanium alloy



thin wall parts. Next, in Sec. 4, the graph theory approach for thermal modeling in DED is
described in depth. In Sec. 5 the temperature trends predicted using the graph theory approach are
validated with experimental trends and compared to the FE-based predictions published in the

literature [19, 20]. Conclusions and avenues for future work are delineated in Sec. 6.

2 Literature Review

Recent review articles emphasize the need for accurate and fast computational approaches to
predict part thermal history in DED [7-9, 11, 12] . These review papers also summarize validation
efforts by various researchers. Michaleris pioneered FE-based techniques for thermal modeling of
AM processes, including DED [21] . Michaleris proposed and tested two material deposition
methods [22] : (1) quiet element, and (2) inactive element. In the quiet element method, the entire
part is meshed, but elements representing undeposited material are assigned infinitesimal thermal
conductivity values. In the inactive element approach, the deposition process is mimicked by
activating elements at each time step. The graph theory approach proposed in this work uses the

inactive element technique to simulate the DED process.

Three major approximations for incorporating convective heat losses in DED have been
studied [7-9, 11, 12]. First, as commonly implemented in FE-based modeling of the welding
process, researchers have considered convective heat loss to be negligible in DED [23-27]. Second,
heat loss through free convection is assumed to occur uniformly over all surfaces [28-34]. Third,
accelerated heat loss due to forced convection is considered on all free surfaces as a result of the
carrier gas flow [35, 36]. Notably, an effort to develop a measurement-based forced convection
model was proposed and tested by Heigel et al. [19, 20]. Heigel and co-workers further compared

their proposed model with other assumed convection regimes [37]. Heigel and co-workers



demonstrated that a forced convection model will produce more accurate simulation results than a

model that considers only free convection or no convection at all.

Accordingly, in the present work, a combination of free and forced convection regimes are
considered. As will be explained in Sec. 4.3, heat loss due to forced convection is assumed for all
part surfaces over which there is a predominant flow of carrier gas. Heat loss due to free convection
is assumed at surfaces that are not directly affected by the carrier gas, such as the bottom and sides

of the substrate.

3 Methods

3.1 Experimental Builds

Data for this work was provided by Heigel et al. and is described in Ref. [19, 20]. Single-
track thin walls were deposited with an Optomec MR-7 DED system. In a single-track thin wall
part, material in a layer is deposited in a single pass, i.e., a layer has only one hatch. The material
used is ASTM standard Ti-6Al-4V powder. Parts were manufactured on a 6.4 mm thick Ti-6Al-
4V substrate clamped on one end according to the schematic in Figure 3. Argon shielding gas was
used during the DED process at a rate of 30 L/min. The laser used in the process is a 500 W IPG
Photonics fiber laser with a beam diameter of 1.5 mm. 62 layers were deposited with a nominal

hatch thickness of 0.173mm.

Two thin-walled parts labeled as Case A and Case B (Figure 3), are studied in this work. The
processing conditions for the two cases are summarized in Table 1. We have chosen to study these
two parts as the process parameters are identical in all respects, except the dwell time between
layers. The dwell time governs the cooling behavior in DED and has a consequential effect on the

evolved microstructure and properties [38, 39].



The parts are designed to have dimensions 37.2 mm x 3 mm % ~11 mm (vertical height) and
consist of 62 layers deposited onto a Ti-6Al-4V substrate with dimensions 76.2 mm x 25.4 mm %
6.4 mm (LxWxH) [19, 20]. Each thin wall is built on a separate substrate, which is clamped at one
end. The deposition direction alternates for each layer; The laser travels in one direction for odd-
numbered layers and the opposite direction for even-numbered layers. After a layer is completed,
the laser is disabled to cease powder sintering. Powder flow does not stop during this period to
ensure consistent deposition for subsequent layers. While the nominal laser power is set at 500 W,

the actual power delivered using a power probe and ascertained the power to be between 410 W

and 415 W [19, 20]. The process parameter distinctions between the cases are as follows.
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Figure 3. A schematic of the clamped substrate in relation to the thin wall. Shown also are the thermocouple
locations for measuring temperature, namely, TC A for Case A and TC B for Case B.

Table 1. Process conditions for Case A and Case B reported in Ref. [19, 20].

Case Case A Case B
Measured Laser Power (P) [W] 415 410
Laser scan speed (V) [mxs™'] 8.5 x1073
Powder delivery rate [gxs!] 5 x1072
Number of Layers 62
Programmed dwell time between layers [s] 20 0
Wall height [m] 10.7 x10°3 11.2 x10°
Measured wall length [m] 37.2 x1073 39.2 x1073
Measured wall width [m] 2.2 X103 3.0 x1073
Measured Layer thickness [m] 1.7 x10* 1.8 x10*
Laser spot size [m] 1.5 x107
Distance between the nozzle tip and top of substrate - Standoff 11.4 x103
Distance [m] )
Approximate Build Time [minutes] 26 | 5




Case A: Thin wall built with a programmed 20-second dwell time between layers.

The thin wall part is built with a programmed 20-second dwell time between the deposition
of each layer. The 20-second dwell time refers to the added pause after the laser has reached the
start position of the next layer before the deposition is initiated. During this period, the laser is not
sintering the passing powder. The added dwell time between each of the 62 layers in Case A results
in a total build time of approximately 26 minutes, which is substantially longer than the 5 minute

build time of Case B, which is described below.

Case B: Thin wall built without programmed dwell time.

The thin wall part is deposited without any programmed dwell time. However, there is an
inherent pause of 3 seconds between the end of one layer and the beginning of the next as the
deposition head repositions to the subsequent layer’s origin. In our simulations, we have included
this inherent process-related dwell time of 3 seconds between layers. The build time for Case B is

reported to be approximately 5 minutes.

3.2 Temperature Measurements

Temperature measurements were acquired using two Omega GG-K-30 type K thermocouples.
In Figure 3, the thermocouple marked TC A is used for thin wall Case A and is located on the top
surface of the substrate. The second marked TC B, used for thin wall Case B, is located at the
center of the bottom surface of the substrate. These thermocouples are spot welded to the substrate
and aluminum foil tape is used to shield the top thermocouple (TC A) from forced convection

effects. The respective temperature signatures are shown in Figure 4.



The 20-second dwell time in Case A results in a pronounced cyclical trend in the temperature
signature. The difference in dwell time allows the part in Case A to cool longer before the
deposition of new layers, which reduces the peak temperature to 200 °C for Case A, compared to
nearly 500 °C for Case B. The small-scale fluctuations in temperature in both Case A and B (Figure
4) are caused by the laser moving across the build, layer by layer. The local maxima occur when

the laser is heating the part, and the local minima occur when the laser disabled during the

programmed dwell period.

Further, because Case A had a 20-second dwell time between layers, large fluctuations in
temperature are observed as significant cooling occurs between layers. In practice, such steep
temperature gradients may lead to interlayer delamination in the part. In this work, the dwell time
was added to test the ability of the model to respond to process changes. We note that no
delamination or interlayer gaps were observed in the part used for Case A. Case B shows similar
rapid cooling behavior, however because the dwell time between layers is shorter (3 seconds), the

temperature fluctuations between layers is less pronounced.
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Figure 4: The temperature signatures obtained for the two thin wall cases from the thermocouple
measurements. Case A has a 20-second dwell time between layers, while Case B has a 0-second
dwell time programed between layers.



The gradual decline towards the end of both builds A and B is explained as follows. As each
layer is deposited, the distance between the current deposited layer and point of measurement in
the substrate increases, and convective and radiative heat losses dominate conductive heat transfer
to the substrate. In addition, energy from the laser diffuses over a greater distance as the part builds,
reducing the intensity of thermal energy applied to the thermocouple as the build progresses.
Finally, the increased thermal mass of the part later in the build also damps temperature

fluctuations.

In the experiments herein, absolute temperature is obtained at a single point with a
thermocouple. While a thermal camera can provide thermal measurements over a larger area, the
temperature reported by a thermal camera are relative trends, and not absolute temperature. In
addition, the movement of the part relative to the fixed position of an infrared camera in DED
machines is liable to cause image blurring, which is further exacerbated as the part grows in size.
Hence, the preferred measurement approach for tracking the thermal history in DED is to use a
thermocouple embedded inside the part or on the substrate. The tradeoff is that the thermocouple

only provides a single point temperature measurement [40, 41].

Finally, we note that the graph theory model is focused on obtaining the part-level temperature
distribution. The part-level temperature distribution is the key to predicting distortion from
thermal-induced residual stresses. On the other hand, meltpool-level thermal distribution is
important for predicting the part-level microstructure. In other words, the focus of this work is to
quickly determine the global part thermal history with reasonable accuracy, and not the local

meltpool temperature distribution.
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4 Thermal Modeling in Additive Manufacturing using Graph Theory

4.1 Background

The graph theory approach was previously applied to predict the thermal history of parts
manufactured using the laser powder bed fusion (LPBF) metal AM process [16-18]. However,
certain heat transfer-related assumptions made in the context of the LPBF process to aid
computation in our previous work must be altered for the DED process [16]. Figure 5 outlines the
salient thermal phenomena in DED [42]. In Figure 5 the phenomena labeled 3, 4, and 5 are present
in DED (including wire-arc and powder DED) and are not commonly present in other metal-based
AM processes, such as LPBF.

For example, as shown in Figure 5, unlike in LPBF the part in DED is surrounded not by metal
powder but by an inert gas. As a result, heat is transferred to the surroundings through convection
and radiation from all surfaces. Convection in DED involves both free and forced convection, as
the metal powder is delivered to the substrate via a flowing inert carrier gas, such as Argon in this
work. In LPBF, the non-sintered powder acts as an insulating medium and drastically slows heat
loss from the sides of the part. Hence, heat loss in LPBF predominantly occurs on the top surface
of the part through radiation, free and forced convective heat transfer at the meltpool [43-45]. Heat
loss in the rest of the LPBF part occurs largely through conduction, although heat loss through free
convection occurs at the part-powder boundaries through air gaps in the surrounding powder.

In the context of Figure 5, LPBF heat losses from the substrate driven by the 5" (free
convective heat transfer) and 6™ (conduction) phenomena would be negligible in practice.
Consequently, for a comprehensive model of part-level thermal history in DED, it is necessary to
account for heat loss through conduction, free and forced convection, and radiation. Accordingly,

in the present work, a combination of free and forced convection regimes are considered for
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modeling the DED process. As will be explained in Sec. 4.3, heat loss due to forced convection is
assumed for all part surfaces over which there is a predominant flow of carrier gas. Heat loss due
to free convection is assumed at surfaces that are not directly affected by the carrier gas, such as

the bottom and sides of the substrate.

Salient Thermal Phenomena in DED.
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transfer. Phenomena labeled 3, 4, 5, are largely absent in LPBF.

Furthermore, the laser heat source-related assumptions in LPBF do not carry over to the DED
process because the scan velocity and spot size (beam diameter) of the laser, volumetric rate of
material deposition, and layer thickness are considerably different [44, 46]. In LPBF, movement
of the laser is achieved using a pair of electrically controlled mirror galvanometers. By contrast,
in DED, the laser head is translated by the physical motion of CNC-based axes. Consequently, the
scan velocity of the laser in DED is many times slower compared to LPBF — the scan speed of the
laser in LPBF is typically 200 to 1000 mm-s™'; In DED, the scan speed is on the order of 10 mm-s’
!, Further, the typical layer thickness is around 50 pm in LPBF, compared to ~100 pm to 200 um
for DED. Lastly, the laser beam diameter in the DED process is typically nearer to the 500 um

range compared to ~50 um to 100 um in LPBF [46].
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From a thermal modeling perspective, the higher laser scan velocity and smaller layer
thickness of LPBF are advantageous for reducing computation time. Researchers often simulate
the deposition of multiple layers at a time in LPBF (called the super-layer or meta-layer
assumption) to reduce computation time [47, 48]. For example, Williams ef al. [47] used the meta-
layer assumption in an FE-model to predict thermal-induced deformation in LPBF. Meta-layers
ranging from 12 to 50 times the actual layer thickness (50 um) are simulated. Williams et al. [47]
showed that their model predicts distortion within 5% of measurements, despite simulating the
deposition of ~15 layers simultaneously. The slow scan speed and large laser spot size of DED
creates a meltpool which has a large diameter and penetrates deeper into the previous layers
compared to LPBF. Consequently, the super-layer assumption is not viable in DED. Moreover, in
our previous work applying graph theory for thermal modeling in LPBF, the laser was considered
as a point source of heat [16-18]. In the current work, the double ellipsoid model originally
developed by Goldak is used to approximate the shape, temperature, and depth of penetration of

the meltpool [49, 50].

4.2 The graph theory solution to the heat diffusion equation

To predict the temperature distribution, it is necessary to solve the continuum heat diffusion
equation [51]. In DED, and in metal AM in general, FE analysis is used to solve the heat diffusion

equation and obtain the temperature history [52].

Material Laplacian '
Progi:ties aT(X, y, 2, t) 92 92 92 Input Ene:ﬁy Density (1)
pPCp ot - <ax2 + 3y? + aZZ>T(x,y,z, t) = E,
p
where E, = ht

In Eqn. (1), T is the temperature rise above the ambient temperature. Solving the heat diffusion

equation with the accompanying boundary conditions (shown in Eq. (2)) results in the temperature
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T(x,y,z,t) at a location (x, y, z) at a time at instant t, which is the thermal history for a part. The

term E, called energy density [J-m™], is the energy supplied by the laser to melt a unit volume of
material. The energy density E, = % is a function of laser power (P) [W], distance between

adjacent passes of the laser (%) [m], relative translational velocity of the part (v) [m-s™'], and the
layer thickness (f) [m]; These are the controllable parameters of the process. The material
properties required to solve this equation are density p [kg-m™], specific heat ¢, [J-kg"- K], and

thermal conductivity & [W-m-K™'].
The accompanying initial and boundary conditions are given by,

T(x,y,z,0) = T, (initial condition)

aT
R 2
=0 (on boundary) (2)

where 7 is the outward normal vector at the boundary and T. is the ambient temperature of the
environment. Although this boundary condition is for zero heat loss, the effect of external heat loss
by convection and radiation is implemented later as an adjustment to the graph theory method and

1s discussed in Sec. 4.3.

Part shape is embedded in the heat equation through the second derivative term, called the
Continuous Laplacian. The graph theory approach reduces the computational burden by solving a

discrete version of the heat diffusion equation, which eliminates the meshing steps of FE analysis.

As with existing FE approaches, the laser energy density Ey, in Eq. (1) is replaced by an initial
temperature distribution caused by the laser, T, (x, y, z). An estimate of the laser power needed to
raise the metal temperature from ambient T, to the initial temperature is given by an energy

balance, as follows:
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pvhtc,(T, — T,) =P

3)
2 (To— To) =

cppvht

Here pvht is the rate of mass deposited [kg - s']. Then the heat diffusion equation and the

accompanying conditions become,

o AR P 4
ot “\axzTayz T a2) T @)

T(x,y,z,t =0) =T,(x,y,z) (initial condition)

aT
il (5)
Fm 0 (on boundary)

where a = k/(pcy) is the thermal diffusivity, a [m? -s™']. The boundary condition T, depend on the
shape and temperature of the meltpool and is estimated using Goldak’s double ellipsoid model,

described in Sec. 4.3.3.

Next, the heat diffusion equation is discretized over N nodes by replacing the negative

continuous Laplacian with the discrete Laplacian matrix (L):

aT
— LT = 0; 6
6t+a 0; (6)

The eigenvector matrix (¢) and eigenvalue matrix (A) of the Laplacian matrix (L) are found
by solving the eigenvalue equation L = ¢A. As the Laplacian matrix is symmetric and positive
semi-definite, as described later in Sec. 4.3, the eigenvalues (A) are non-negative, and the
eigenvector matrix (¢) is orthogonal [53-56]. Because the transpose of an orthogonal matrix is
the same as its inverse, that is, ™1 = ¢’ and ¢ ¢’ = I, where 1 is the identity matrix, then the
eigenvalue equation L = bA may be post-multiplied by ¢’ to obtain L = ¢pAd’. Substituting
L = ¢Ad’ in Eqn. (6) gives:
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oT 7
Z+a(@Ap) T = 0; )
at
Eqn. (7) is a first order, ordinary linear differential equation, with solution [61],
T = o-a(erd)t . ®)
The term e ~%(®A®')t i simplified via a Taylor series expansion and substituting ¢ ¢’ =1,
e—a(chq)')t — (I)e—a(A)t(I)r )
Substituting, e~ ¥(®A®)t = e=aAtg into Eqn. (8) gives,
T= (I)e_aAt(I), T, (10)

Eqn. (10) is the graph theory solution to the discrete heat diffusion equation as a function of the
eigenvalues (A) and eigenvectors (¢) of the Laplacian matrix (L), constructed on a discrete set of
nodes. The graph theory approach has two inherent advantages over FE analysis, (i) elimination
of mesh-based analysis; And (ii) Elimination of matrix inversion steps. To explain further, while
FE analysis requires matrix inversion at each time-step for solving the heat diffusion equation, the
graph theory approach relies on matrix multiplication and transposes, shown in Eq. (9), which

greatly reduces the computational burden.
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4.3 Application of the Graph Theory Approach to Thermal Modeling of the DED Process

4.3.1 Steps in the Approach
The graph theory approach as applied to the DED process is explained in the context of Figure

6. The initial inputs to the model are as follows:

e Part geometry: Part shape in .stl form; hatch (bead) thickness, spacing and width; direction of
deposition.

e Processing parameters: laser power (P) (for obtaining meltpool temperature) and velocity (V),
dwell time between layers.

e Material Properties: specific heat (Cp); thermal conductivity (k); thermal diffusivity (o)

e Model parameters: block size and number of nodes,
Layers to follow ) Deposited
H . Layer
S S
-9 ik
§ 1 ~
B /
=
S .@
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Step 1- Convert the part into a set of discrete nodes
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* Heat loss due to forced convection (lumped radiation,
free and forced convection) to surroundings
* Deposition of a new layer

* Heatinga layer, block by block
» Diffusion of the heat through the part

Figure 6. Representation of the four steps in the graph-theoretic approach for thermal modeling of
the DED process.
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Step 1: Hatch-by-hatch discretization of the part geometry.

The process is simulated hatch-by-hatch (bead by bead). For this purpose the size (shape,
length, breadth, and height) and direction of the hatch is taken into consideration. Each hatch is
further divided into discrete blocks (volumes) with a fixed height and length, with breadth equal
to the actual hatch width. The discretization of the process into hatches is shown in Figure 7.

In the DED process, the laser travel is a continuous motion problem. To simplify the motion
of the laser to aid calculation speed, the single track or hatch that composes each deposited layer
were broken into five equal size blocks. In this work, the block size is chosen to match with the
dimensions of the part. These discrete blocks are 7.84 mm long, 3 mm wide, and 0.1806 mm thick
in this work. The width of the block is equal to the width of an ideal deposited hatch, and its
thickness is equal to the layer thickness. This block-by-block progress of the DED process is
similar to the inactive element technique used in FE simulations which are currently used by
commercial software [21, 32, 51]. Since the laser scan velocity is 8.5 mm-s" and the length of

each block is 7.84 mm long, the time to step between blocks 1s 0.922 s.
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Figure 7. Hatch-by-hatch (bead-by-bead) build scheme used in DED simulation using graph
theory. Each hatch is discretized into blocks, and each block is further discretized into nodes. Each
block is the same height as the layer thickness, and the block width is equal to the bead width. The
blocks are added in the direction of the hatch, thus the size of the hatch and its build direction are
taken into consideration.
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The deposited part is composed of 310 blocks while the substrate is formed by 2520 blocks
for a total of 2830 blocks in the model. By keeping each block of identical size, the effective energy
applied is consistent across the newly fused layer. Each block is randomly populated with N
number of nodes. The number of nodes per unit volume (called node density) is uniform
throughout. The number of nodes is analogous to the size of elements in the context of FE analysis.
In the finite element method, increasing the number of elements by decreasing element size
increases the model precision, and a sequence of model solutions will converge to a ‘best’ solution.
If the element size becomes too large, the solution will provide poor precision.

In a similar sense, a large node density results in the part being discretized using more nodes,
thus improving the convergence accuracy albeit, at the tradeoff of computational time. In this work
we test the effect of node density at three levels. The three node densities are tested for Case A
and Case B, these are: 0.235 nodes-mm~, 0.470 nodes-mm™, and 0.706 nodes-mm=. As will be
reported in Sec. 5, in the context of Figure 12 and Table 7, these tested node densities converged
to an appreciable degree to the experimental data, with the node density of 0.706 nodes-mm™
providing the most accurate prediction. The discretization process results in each node having a
unique Cartesian (X, y, z) coordinate, i.e., the location of each node is spatially defined within the
part.

When the laser heats a block, all of its nodes appear at the same time. The justification for this
is to simulate the material deposition when the deposition head is above the block. In this

representation of the DED process, making the blocks smaller will improve the simulation

accuracy of the model at the expense of computation time. Since the nodes are populated in a
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random manner, there is a degree of stochasticity in the model predictions. We quantify this
uncertainty by repeating the simulations three times for each case.
Step 2: Constructing a network graph from the cloud of discrete nodes created in Step 1.

Each node is connected to its nearest neighboring nodes within a radius (¢). Consider € [mm]
as describing the radius of a sphere with a node at its center. Nodes that fall within the volume of
the sphere are connected to the node at the center of the sphere. Nodes that are outside of the sphere
are not connected. This step is completed throughout the entire cloud of nodes, which results in a

complex web of connections called a network graph.

Consider two nodes, 7; and 7;, whose spatial Cartesian coordinates are ¢; = (x;, ¥;, 2;) and
¢ = (xj,Y;,z;), respectively; m; and 7r; are connected by an edge having weight a; ; if the distance
between them is less than €. The distance between 7; and a node 7; whose spatial Cartesian

coordinates ¢ = (x5, 2) is the Euclidean distance lci — ¢l =

V& — x)2 + (vi — ¥;)? + (z; — z)?. The edge weight a; ; is given by,
e eill? 2 (11)
aj=ye o° if(cl- — cj) <&
0 otherwise

In Eqn. (11), o is the standard deviation of all the pairwise distances between nodes, and the
exponential term is the Gaussian function that scales the pairwise distance between the nodes in
the part between 0 and 1. The neighborhood distance ¢ is a heuristic tunable parameter in the graph
theory model that needs to be calibrated (only once) for a material type. The calibration procedure

for € 1s described in Sec. 4.3.4 .

The matrix formed by calculating a;; is called the adjacency matrix, A = [ai ]-], which is a

positive symmetric matrix.
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0 a, %3 = @GN

a,; 0 Q23 = Qzn
A=|as1 az; 0 <+ Az N (12)
ani 4anz ANz 0

From the adjacency matrix, the degree h; of a node m; is calculated by summing the corresponding

i™ row (or column) of A. The degree matrix (H) is obtained in the following manner.

N
hi- = z ai’j

j=1
hy, 0 0 (13)
H=|0 - o]
0 0 hy

In the degree matrix H, all the off-diagonal entries are zero and the diagonal entries d; are

positive. The graph Laplacian at node 7; is defined as: L;; £ h; — a;;, and the Laplacian matrix is

obtained L. = [li j]. The discrete graph Laplacian matrix is as follows:

[ +h1 _a1,2 _a1,3 o _al,N]
—ay; thy T023 . —azn
L = —a3'1 _a3’2 -|-h3 cee _a3’N (14)
—an, —Aanz —anz T thy

Finally, the Eigenspectra of the graph Laplacian matrix (L) will be computed as L = A ,

where ¢ are the eigenvectors and A are the eigenvalues of L [57].

Step 3: Block-by-block simulation of a layer

Figure 7 demonstrates the block-by-block heating scheme used in this work to discretize the
continuous motion of the laser. The DED simulation progresses by heating the nodes in a block,
before proceeding to the nodes in the next block. Constant heat input was maintained by only
heating one block at any time. In other words, a time step involves heating of nodes inside a block,

one block at a time.
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Step 3(a): Heat loss through conduction

After a block is heated by the laser, the heat is allowed to diffuse through the network graph
that was constructed in Step 2. Conduction is the sole mode of heat transfer between the nodes.
The only active nodes during this step are located within layers and blocks that have already been
deposited. Other nodes that are in subsequent blocks and layers remain inactive and, therefore, are
unable to transfer heat. After the heat diffuses from the block previously heated by the laser, the
deposition of the next block is simulated. This process is repeated for every block and every layer

in the part.

The mathematical implications of the approach will be summarized here by only including
the final derived equation, shown in Eqn. (15). After the time required to heat each block, in this
case t, = 0.922 s, has passed, the temperature of each active node is stored in the temperature

matrix Tp.

The temperature following heat loss through conduction (T,) is defined as a function of the
Laplacian eigenvectors (¢) and eigenvalues (A) of the network graph of active nodes, where Ty is
the meltpool temperature, and g is a tunable parameter called the gain factor. The gain factor (g)
scales the rate of thermal diffusivity or heat flux between nodes. A higher gain factor increases the
rate of thermal diffusion through the part, i.e., the larger the gain factor, the faster the heat will
dissipate through the part by conduction. The procedure to calibrate the gain factor is reported in
Sec. 4.3.4.

To = Ge 00T, as)
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Step 3(b): Heat loss through convection
To accommodate the heat loss through convection and radiation, these terms were combined
into a single forced convection term and were applied using Newtons law of cooling on the

identified surface boundary nodes. The approach is as follows.

Heat loss through conduction between the nodes is followed in tandem with heat loss through
forced and free convection from the nodes on the surface of the part. The temperature distribution
after heat loss through forced and free convection, and through clamp conduction, takes place for

the duration of the time 7, and is calculated as,

Tb = Tce_ﬁtb

h (16)
pLC,

B =

Where h is the heat transfer coefficient [W-m™2-K™'], p is the material density [kg':m>], and L

(= 7.84 x107 m) is the length of the block, and C is the specific heat [J-kg™!- °C "] which is not a
constant, but temperature-dependent in this work. The derived coefficient, g, is called the inverse
time constant [s']. The heat transfer coefficient h has two parts, to include both free and forced
convection. Heat loss due to forced convection is applied to the sides of the part and top of the
substrate as the carrier argon gas flows over these surfaces. Free convection is dominant on the
sides and bottom of the substrate, where there is no active gas flow. The heat transfer coefficients

are discussed in depth in Sec. 4.3.4.

In Steps 3(a) and 3(b), for simplicity, we described the heating of only those blocks in the
topmost layer. However, in DED the block in the prior layers immediately below the block being

currently heated is also at an elevated temperature as the laser penetrates the existing part. The
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heating of nodes in the blocks immediately below an actively heated block on the top layer is

implemented using Goldak’s double ellipsoid model, detailed in the forthcoming Sec. 4.3.2.

Step 3(c). Obtaining the temperature at the end of a layer after dwell time.

For each block-by-block iteration of step 3(a) and (b), the temperature of every node is
recorded in a vector Tj,. This is repeated until an entire layer is simulated. After the process reaches
the end of the layer, heat is allowed to dissipate by conduction immediately followed by convection
in time steps of 1 second, iteratively for a period equal to the dwell time (t;). Different size time

steps have previously been explored for the spectral graph method in our related work [17].

For this work, based on extensive offline studies, a time step of 1 second provided adequate
precision. In this work, t; was 20 seconds for Case A, and 3 seconds for Case B. Therefore, Egs.
(17) and (18) were iterated 20 times for Case A and 3 times for Case B with time ¢ =1 s to simulate

the total dwell time between layers.

Toe = Ge™ NPT, (17)

T = Tyce Pt (18)

Step 4: Steps 3(a), (b), and (c) are looped until the last layer is built. The temperature of each node

at each time step is recorded in a vector T, which contains the thermal history of the part.

4.3.2 Model Assumptions

The spectral graph method involves some additional simplifying assumptions because the
method is built on the solution of a linear differential equation. These assumptions are common in
FE-based part level thermal modeling in AM, including LPBF and DED [51]. First, it is assumed
that material properties, such as density (p), do not change as the material changes state from

particulate matter to a liquid (meltpool formation) then back to a solid. This assumption allows the
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use of effective (average) values of the properties. Second, the latent heat of melting and
solidification is not included in the model. However, in keeping with literature, the thermal
diffusivity of the material (a, a function of specific heat C,, and conductivity, k) is considered to

be temperature dependent.

Lastly, a common practice in the thermal modeling literature in AM is to assume that the
thermal gradients are decoupled from the mechanical response (part deformation) [51]. To explain
further, the thermal simulation of AM parts, including LPBF and DED, are conducted over several
time steps. The thermal history predictions over this longer horizon are then used to estimate the
mechanical response [47, 58-64]. The thermal and mechanical aspects are thus considered
independent (decoupled); While the thermal history influences the mechanical response, the
mechanical response is assumed to have no effect on the thermal response. This assumption has
its genesis in the computational thermomechanics of welding literature, as detailed by Goldak and
Alkhaghi [50]. Commercial thermal simulation software such as Autodesk Netfabb, Amphyon,
Simufact, and Additive Print implement the decoupled modeling approach [65].

The benefit of decoupled thermomechanical modeling is that the computation is more efficient
than a coupled thermomechanical approach while providing reasonable prediction accuracy.
However, the decoupled thermomechanical model loses fidelity when the distortion is sufficiently
severe to change boundary conditions. Based on small deformation theory, as elucidated by
Michaleris and co-workers [51], this decoupling assumption is valid when there are no major
faults, such as severe cracking or separation of the part from the build plate. Such failures would
not only alter the shape of the part but also change the heat conduction pathway, leading to
considerable changes in the temperature profile. In other words, a change in boundary conditions

can result from substantial change in the shape of the part which fundamentally changes the
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thermal conduction pathway. This work assumes the thermal and mechanical responses are

decoupled.

4.3.3 Modeling the Laser Heat Source using Goldak’s Double Ellipsoid Model

As depicted in Figure 8, in DED, not only is the current layer processed by the laser at an
elevated temperature but also material in prior layers below the laser path is reheated. Therefore,
apart from considering only the nodes at the surface at a higher temperature, To, it is necessary to
initiate the sub-surface nodes with an elevated temperature.

The temperature at the surface as well as the temperature of prior layers is a function of the
material properties and meltpool temperature. Goldak’s double ellipsoid model in Eqn. (19) is used

to quantify the temperature reached by the sub-surface nodes [49, 50, 66],

\'’
To(x,y,z t) =C-P e‘ﬁx(x“‘x/m)

(19)

1
2mk+/x?% + y? + z?2

In Eqn. (19), Ty(x,y, z t) is the temperature at time ¢ on account of the heat supplied by the
laser; x, y, and z are local coordinates of the meltpool. P is the laser power, k is the thermal
conductivity, and C is a dimensionless scaling factor. The laser velocity and thermal diffusivity are
represented by V and a, respectively. Each variable is defined with the appropriate values and
units in Table 2. The scaling factor C effects the meltpool temperature; Figure 9 demonstrates the

effect of the scaling factor as a function of the meltpool location along the x-axis, with y = 0 and

z=0.

A characteristic of the model is that the temperature asymptotes to infinity at the center of the
meltpool. The meltpool temperature is taken as the intersection of the vertical line drawn from the

trailing edge of the beam (x = -0.75 mm) with the temperature curve. In this work, the liquidus
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temperature for Ti-6Al1-4V is assumed to be 1630 °C. Based on the literature, we demarcate three

meltpool temperatures (To), namely To = 1900 °C, To = 2200 °C, and T = 2450 °C.

Reheated

Trai_ling Edge TOP VIEW Sublayers
- Melt pool
Trailing Edge
g tdg periphery

Figure 8: The effect of meltpool temperature on the sub-surface layers, and the periphery of the
meltpool.

Table 2. Variable definitions for Equation (19) [19, 20].

Variable Units Value
C Dimensionless 0.125 to 0.191
Laser Power (P) (W] 415
Laser Velocity (V) [m-s] 8.5x10?
Thermal Conductivity (k) [W-m K] 6.8
Thermal diffusivity (a) [m?s] 2.7228 x 106
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Figure 9. The effect of the scaling factor C on the meltpool temperature, as a function of the
meltpool length.

Various researchers estimate the average meltpool temperature in the processing of Ti-6Al-
4V in the region of 2000 °C to 2100 °C (Table 3). The literature shows that the meltpool
temperature in DED of Ti-6Al-4V exceeds melting temperature of the material (~1630 °C). Hence,
three different meltpool temperatures are considered in this work and shown in Figure 9: 1900 °C,
2200 °C, and 2450 °C, which represent the range of meltpool temperature values observed and
measured in the literature. We note that researchers have also observed that small areas of the

meltpool can reach superheating temperature [67-69].

To estimate the sub-surface depth penetrated by the laser, we plot Eqn. (19) as a function of
the depth (z), with x = 0, and y = 0 starting from the middle of the top layer; The sub-surface
temperature curves for different values of the scaling factor C (meltpool temperature) are shown
in Figure 10. For simulation purposes, we only consider blocks up to a depth immediately below

the current block and whose temperatures reach at least 20% of the liquidus temperature (1630
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°C). For the various curves, the temperature reaches 326 °C (20% of the liquidus) around the

seventh sub-layer, approximately 1.25 mm below the top surface.

Table 3. Summary of meltpool temperatures found by other researchers in the literature.

Geometry Laser Scan Method Meltpool | Ref.
Power (P) | Velocity (V) Temperature
[W] [mm-s'] (To) [°C]
Thin Wall 300 12.7 Pyrometer ~1850 [70]
Single Track 2000 10.6 Thermocouple 1865 + 190 | [71]
Thin Wall 290 12.7 Pyrometer 1900-2000 | [68]
L-shaped Thin Wall 450 10.6 IR Camera 2485+ 161 | [72]
Cylinders 350 16.9 Pyrometer 2100 — 2500 | [67]
Rectangular Thin Wall 300 2.0 Quiet Element FE ~2450 [73]
Cube 800 10.0 In-house FE Code 2500 [74]
Thin Wall 425 8.5 Inactive Element FE 1800 - 2000 | [21]
hn Iy Zy Ty 2 Iy I
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Figure 10: The temperature reaches 20% of the liquidus at a depth of 1.25 mm from the top surface.
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4.3.4 Heat Loss due to Radiation and Convection, and Model Calibration

(a) Calibrating Model Parameters € and g

Case A was used for calibrating the parameters of the graph theory method, namely, the
neighborhood size (¢) and gain factor (g) in Eqn. (15) and Eqn. (17). Case A was chosen for
calibration given the prominent temperature cycles, as evidenced in Figure 4. An iterative grid
search was performed to calibrate the gain factor and neighborhood size. The combination of
neighborhood size and gain factor that resulted in the lowest Mean Absolute Percentage Error
(MAPE) in Case A was selected and subsequently applied without any modification for Case B.
This calibration process was repeated for different node densities and meltpool temperatures based
on Case A and held constant thereafter. In other words, these simulation parameters need to be

calibrated once for a particular material and node density.

Table 4 reports the gain factor (g) and neighborhood size (¢) that minimize the MAPE for
Case A for a given density of nodes and melt pool temperature assumption. Calibration of the gain
factor g was conducted at three different node densities, corresponding to one, two, and three nodes
within each block. An important observation is that approximately 90% of all nodes are located in
the substrate with the remaining 10% located in the actual part. This is because the volume of the
substrate (12,387 mm?) is nearly 10 times as large as the part (1227 mm?). A large proportion of
the computation effort is therefore required to compute the edge connections for the nodes in the
substrate; Heigel et al. [19, 20] reduce computation time by simulating only half of the part volume

while the current method simulates the entire part.
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Table 4. Three node densities, and correspondin,

simulation parameters € and g.

. in Factor
Nodes Total . ) Neigh = TaCt=0 o To =
Nodes in | Nodes | Node Density | borhoo | Ty = 0 0
per Number Substrate | in Part | (nodes/mm?®) | d Size, | 1900 °C 2200 2450
Block | of nodes ¢ (mm) | (mm?) °C °C
(mm?) | (mm?)
1 2830 2520 310 0.2355 4.5 8 10 12
2 5660 5040 620 0.4709 4.75 1 1.5 1.95
3 8490 7560 930 0.7064 5.5 0.12 0.15 0.17

(b) Heat Transfer Coefficients
Three heat transfer coefficients in the DED simulation are fixed in the calibration step and
are held constant throughout all ensuing simulation cases, irrespective of node density or melt pool
temperature. Table 5 reports the heat transfer coefficients used in this work along with the
corresponding salient thermal phenomena in DED that describes them in Figure 11; Values used

by Heigel et al. are also provided for comparison purposes [19].

Figure 11: The portioning of the heat transfer coefficients into forced and free, and due to the
clamp. The top surface of the substrate, and sides of the part are subjected to heat loss due to forced
convection. The sides and bottom of the substrate loses heat on account of free convection.

Because the DED process builds new parts by moving the heat source and shielding gas,
convection boundary conditions must be considered. Referring to Figure 11, argon gas in the DED
process propels titanium powder particles into the laser beam and melt pool. The argon gas

continues to flow down the sides of the thin wall while the deposition takes place. Although the
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sides of the thin wall and top surface of the substrate experience heat loss due to forced convection,
the same cannot be assumed for the sides and bottom surface of the substrate. This necessitates a
separate consideration of each boundary condition and the use of two distinct heat transfer

coefficients.

A forced heat convection coefficient (hforced) 1S used to describe the forced convection loss
caused by the flowing argon shielding gas on the sides of the part and top surface of the substrate.
A free heat convection coefficient (hfee) describes the remaining free convection loss experienced

at the sides and bottom surface of the substrate. The forced heat transfer coefficient is
approximated as 10xhgee. In Table 5, these heat losses are encapsulated under the broad term Aeat

transfer coefficients, because, apart from conductive and convective heat transfer, heat loss also
occurs through radiation. The portion of the part closest to the deposition nozzle experiences the
largest heat loss due to forced convection from the carrier gas (= 60 W-m?2-K™!), which reduces in
a non-linear manner (= 25 W-m?2-K!") further away from the tip. In this work, the forced heat
transfer is held constant ~ 50 W-m2-K™!,

Table 5. Equivalent heat transfer coefficients used in graph theory method.

Heat Transfer Equivalent Heat Corresponding Salient | Equivalent Heat Transfer
Coefficient Transfer Thermal Phenomena | Coefficient Value in Heigel’s

Coefficient used (refer to Figure 5) Model [19]

in this work [W-m?2-K']

[W-m2xK]
Forced Heat 50 3), @) Radlatlye and 60 (near the top of the wall)
Transfer forced convection heat .

. decreasing to 25 near the
Coefficient transfer between the part
bottom of the wall

htorced = 10X hiree and gas
Free heat transfer 5 (5) Free convective heat | 10
Coefficient transfer between the (on the top surface and side
hfree substrate, part and gas of the substrate )
Clamp heat loss 980 (6), Heat loss at N/A. Only half the clamp
Coefficient Substrate-Clamp volume is simulated.
hclamp ~ 20 x hforced interface.
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The last heat transfer coefficient used is called the clamp coefficient (hciamp). As previously
described in the experimental setup (Figure 3), the substrate was clamped at one end. The surfaces
of the substrate in contact with the clamp have an extra loss since the clamp acts as a large heat
sink. Therefore, this extra thermal pathway must be considered in the simulation. Simulating the
effect of the clamp by populating its geometry with nodes (in graph theory) and elements (in FE)
substantially increases the computation time. We simulate the entire thin wall part and substrate,
and account for the heat loss at the clamp without simulating the geometry of the clamp. This is
done by assuming that the surfaces of the substrate in contact with the clamp have an elevated loss
given by a coefficient that is 20 times larger than that of the forced heat loss coefficient (hciamp =

20 x hforced)-

The clamp heat loss is set to a large value to simulate metal-to-metal contact between the
substrate and the clamp. Above 7 = 100 W-m™xK"!, the temperature of the interface approaches
ambient temperature Ta, and heat conduction through the part governs heat loss from the part. As
such, the exact convection coefficient for this portion of the model is not consequential, so long as
it is a large value. The value 20 x hfreea Was selected as it was much larger than any of the
convection coefficients and was also large enough to ensure that the boundary in the clamp region

was close to the ambient temperature, Ta, for the entire simulation.

(c) Transient Material Properties

In the current work, thermal diffusivity (o) is modeled as a function of temperature. To

calculate thermal diffusivity (¢ = p%), we use the values of thermal conductivity (k) and specific
14

heat (C,) values in Table 6 provided by Heigel et a/ [19, 20]. For all calculated thermal diffusivity

values presented in the table, a density (p) = 4.43 x 10° [kg'm>] was used for Ti-6Al-4V.
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A linear function with temperature as the independent variable is fitted to the a values. At
the end of a layer, the average temperature of the layer after deposition (T [°C]) is obtained, from
which the thermal diffusivity value for the next layer (a(T)) is ascertained. The linear equation is
a(T) = 0.0042T + 2.612. The density of the material is considered to be constant.

Table 6. Temperature-dependent thermal properties for Ti-6Al-4V from Ref. [19, 20].

T [°C] k [W-m™!-°C1] Cp [J'kg!-°C1] Calculated o [m*s]
20 6.6 565 2.64
93 7.3 565 2.92
205 9.1 574 3.58
250 9.7 586 3.74
315 10.6 603 3.97
425 12.6 649 4.38
500 13.9 682 4.60

(d) Temperature measurement location

In the simulation, the location of the point where the thermal history is measured must be
identical to the location of the thermocouples in the experiment in order to validate the graph
theory approach. In the graph theory approach, the location of each node is identified by its
Cartesian coordinates. A node closest to the sensor location, called the sensor node, was identified
and its Cartesian coordinates were modified to match those of the sensor location prior to thermal

simulation.

The sensor node was placed at a depth of 0.1 mm below the surface of the substrate to mimic
the effect of the aluminum tape used to shield the thermocouples from forced convection losses.
This node location is identified and shown in Figure 3. After thermal simulation, the thermal
history of the sensor nodes were plotted against the experimental data reported by Heigel et al [19,

20].
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(e) Measurement of error
Errors between the experimental thermal history and graph theory simulation were calculated by
comparing the measured temperature to the graph theory predicted temperature at all instances in
time. Two different methods of calculating errors were used in this work. Eqns. (20) and (21) show
the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), respectively.
We note that the MAPE and RMSE error quantification metrics consider error for the entire

thermal history over n-time steps, not simply the error at a single point.

(20)

100% <~ |T;,— T
MAPE = x Z

e2y)

In both equations, n is the number of instances in time that were compared over the duration of
deposition (n = 1800 for Case A, n = 900 for Case B); i is the current instant in time, T; is the

measured temperature, and T; is the graph theory simulated temperature.
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5 Results

The simulations were conducted in the MATLAB environment on a desktop personal
computer with an AMD Ryzen Threadripper 3970X, @3.7 GHz CPU with 128 GB RAM onboard
memory. Table 7 shows the corresponding errors and computation times for all simulations as a
function of node density and meltpool temperature (To). The simulation is repeated three times for
each scenario, and the uncertainty is quantified in terms of the standard deviation of the repetitions.
Figure 12 presents the simulation results and thermal history for Case A and Case B with different

node densities for the representative meltpool temperature To = 2200 °C.

The computation time increases in a nonlinear manner as a function of the number of nodes,
with diminishing improvement in precision in terms of MAPE and RMSE. For the simulation
using one node per block (0.235 nodes/mm?) for Case A with To = 2200 °C, the MAPE was found
to be approximately 10.5% and RMSE was 22 °C (viz., 1/10'" of the recorded peak temperature of
200 °C). The key result is that the computation time is ~4 minutes. For Case B, the error increases
to 12% MAPE and 70 °C RMSE (1/7" of the peak temperature of 500 °C). With FE analysis,
implemented by Heigel et al. [19, 20], the result is reported to take approximately 135 minutes

using the inactive element method.

In Figure 12 the rise in temperature observed in the initial part of the build from the
experimental data is consistently higher than the graph theory predictions. Further, in the graph
theory predictions, the time-location of the maximum temperature occurs later than the
experimental data. Several sources of error offer explanation as to the difference between the graph
theory simulation and the measured values from the experiment. This error is produced in part by
the gain factor (g) in Eq. (15) and (17), which influences the rate of heat diffusion in the graph

theory approach.

36



Table 7. Summary table for Case A and Case B simulation. The number in the
parentheses is the standard deviation over 3 replications.

Graph Theory approach
with different assumed meltpool temperatures To
Build C " FE model
Time | Node t‘.’mp“ To= 1900 °C To= 2200 °C To= 2500 °C reported in
(min) | Density ‘%llr‘;‘; Ref. [19, 20]
(nodes/mm?) (min) MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE (%)
(%) O (%) O (%) O
0.235 4 13.10 25.92 10.75 23.21 10.13 21.48
< ) (1.36) (1.62) (1.95) (2.84) (4.48) (6.88) 10.4
2| 26 0.470 23 9.80 22.82 7.65 18.77 7.55 17.67 (computation
S ) (0.61) (0.99) (1.28) (2.05) (2.34) (3.75) time 136
0.706 79 7.95 20.70 6.60 18.39 5.98 16.54 minutes)
) (1.62) (1.65) (1.10) (1.41) (2.59) (2.89)
0235 4 26.54 114.37 17.33 75.04 10.49 48.46
" ) (2.57) | (11.48) | (1.61) (5.25) (2.82) | (11.63) 2.4
Y 5 0.470 73 24.45 105.21 12.70 59.50 10.48 49.46 (computation
S ) (1.89) (8.23) (0.54) (2.42) (0.90) (3.58) time 136
0.706 79 22.56 97.95 12.48 57.80 12.38 53.28 minutes)
) (0.47) (1.61) (0.88) (3.76) (0.54) (3.09)
0.2355 nodes/mm? 0.4709 nodes/mm? 0.7064 nodes/mm?
200
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Figure 12. Graph theory simulation results for Case A and Case B for different node densities with
To = 2200 °C. The accuracy of prediction improves with increasing node density at the cost of
computation time.
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As discussed in Sec. 4.3.4, g and ¢ values were selected such that the error (MAPE) was
minimized over the entire thermal history predicted by the graph theory approach for Case A when
fitted to the corresponding experimental data. Since the rise time is a small fraction of the time
domain, the gain factor (g), which is optimized over the entire time domain, somewhat favors the
latter and longer duration of the temperature history at the expense of the initial rise. Another
source of error is the free and forced convection assumption. The free (hsec) and forced convection
coefficients (hforced) are linked (hforced = 10%hgee) and further connected to the heat loss at the clamp
(hetamp = 20 X hforced). Hence, an error in these heat transfer coefficients will propagate throughout

the model.

Other sources of error include meltpool shape and temperature assumption used for the laser,
stemming from Goldak’s equation (Eq. (19), and the discretization of laser path as a block-by-
block progression. These assumptions limit the accuracy of the model as a tradeoff to promote fast

simulation, which was a key aim of the graph theory approach.

Lastly, the error between the experimental thermal history and graph theory simulation were
found to be larger for Case B than for Case A. This is to be expected as the simulation parameters
were calibrated based on experimental observations from Case A and directly applied to Case B.
In converse, Heigel ef al. calibrate their model parameters with Case B and apply them to Case A.
As the deposition progresses, higher temperatures will be observed in the newly deposited layers.
This is because as the height of the wall increases, its thin cross-section impedes the conduction

of heat into the substrate.

The accumulation of heat in the upper layers is observed in the simulated spatiotemporal
thermal history of the thin wall, exemplified in the images shown in Figure 13. Furthermore, in

the graph theory simulations for Case A, the dwell time allows the heat to diffuse into the chamber
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via convection and radiation, and into the substrate via conduction. In Case B, the accumulation
of heat is severe in the top layers as the dwell time is not sufficient to dissipate the heat. Unlike FE
analysis, where elements have a physical volume, in the graph theory approach the volume of the
part is discretized as point nodes. In Figure 13, some regions of the part have no nodes, hence there
are empty spaces in the temperature distribution. In our future work, we intend to interpolate the

temperature in these areas where there are no nodes.

Next, we compared the FE-based predictions published by Heigel et al. [19, 20] with graph
theory-predicted trends in Figure 14 for the representative case of 0.4709 nodes per mm® and
meltpool temperature To = 2200 as it entails a reasonable tradeoff between computation time and
accuracy. The graph theory approach for Case A predicts the experimental trends more precisely
than the FE solution. Again, this is because the parameters for the graph theory approach are
calibrated based on Case A trends. The performance of the FE approach is much improved for
Case B compared to Case A, as the data from Case B was used by Heigel ef al. to calibrate their

FE model.
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Figure 13: Snapshots of the graph theory-based simulation for Case A and Case B. The lack of

dwell time in Case B leads to accumulation of heat in the top layers of the part. Because nodes
take no physical space in this representation, some white spaces can be seen in this image.
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Figure 14: The comparison of the experimental data, with FE and graph theory predictions. The
FE results are obtained from the work of Heigel ef al. [19, 20].
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6 Conclusions and Future Work

The objective of this work was to develop, apply, and validate a graph theory-based approach
for thermal modeling in the directed energy deposition (DED) process. The graph theory method
was validated with experimental temperature data for titanium alloy (Ti-6Al1-4V) [19, 20]. Using
the graph theory thermal modeling approach, practitioners can rapidly simulate the thermal history
of DED components. This physical insight into the temperature distribution will be valuable for
optimizing process conditions, such as laser power, part orientation and tool path, before the part
is printed to avoid failures resulting from overheating. The approach can consequently reduce the
need for an expensive build-and-test empirical optimization strategy, and thereby accelerate the

time-to-market of DED parts.

The test parts are thin wall geometries with length ~37.2 mm, width ~3 mm, and vertical build
height ~11 mm. The thin wall labeled Case A was deposited with a 20-second programmed dwell
time between layers and the thin wall labeled Case B was deposited with no dwell time between
layers. The build time for Case A is close to 26 minutes and 5 minutes for Case B. Several
simulation scenarios were tested, including varying the resolution (number of nodes) and assumed
melt pool temperature. Summarized below are results from a representative scenario that balances

accuracy and computation time.

e For Case A, the graph theory approach predicts the temperature distribution with mean
absolute percentage error (MAPE) less than 7% within 24 minutes of computation using
desktop computing resources. The error is ~12% for Case B with the same computation time
of 24 minutes. In comparison, the MAPE error reported by Heigel et al. using their FE-

based model was ~10.5% (Case A) and 2.5% (Case B), with computation time 136 minutes.
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e The simulation time can be reduced to as little as 4 minutes by sacrificing resolution of the
simulation (reducing the number of nodes); The prediction error increases to ~ 10% for Case

A and 17% for Case B.

The results substantiate the ability of the graph theory approach for fast approximation of the
thermal history in DED. Several improvements to the graph theory model are currently being
investigated to improve the model accuracy without sacrificing computational efficiency. These
include modeling the laser as a heat source as opposed to a fixed temperature boundary condition,
integrating the convection boundaries into the graph Laplacian matrix, allowing variable node
density, and enabling increased accuracy in thermodynamically relevant regions near the laser
source. In our future research, we will extend this work to the DED of complex part geometries
using both in-situ measurement of local meltpool temperature and global part temperature. Finally,
we will endeavor to relax the decoupled thermal-mechanical assumption endemic to almost all FE-

based simulations of DED.
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