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Thermal Modeling of Directed Energy Deposition Additive Manufacturing using Graph Theory 

Structured Abstract 

Purpose of this paper 

The objective of this work is to develop, apply, and validate a mesh-free graph theory-based 

approach for rapid thermal modeling of the directed energy deposition (DED) additive 

manufacturing process.  

Design/methodology/approach 

In the current work, we develop a novel mesh-free graph theory-based approach to predict the 

thermal history of the DED process. Subsequently, we validated the graph theory predicted 

temperature trends using experimental temperature data for DED of titanium alloy parts (Ti-6Al-

4V). Temperature trends were tracked by embedding thermocouples in the substrate. The DED 

process was simulated using the graph theory approach, and the thermal history predictions were 

validated based on the data from the thermocouples.  

Practical implications  

The DED process is particularly valuable for near-net shape manufacturing, repair and 

remanufacturing applications. However, DED parts are often afflicted with flaws, such as cracking 

and distortion. In DED, flaw formation is largely governed by the intensity and spatial distribution 

of heat in the part during the process, often referred to as the thermal history. Accordingly, fast 

and accurate thermal models to predict the thermal history are necessary to understand and 

preclude flaw formation.  

Findings 

The temperature trends predicted by the graph theory approach have mean absolute percentage 

error of ~11% and root mean square error of 23 °C when compared to the experimental data. 

Moreover, the graph theory simulation was obtained within 4 minutes using desktop computing 

resources, which is less than the build time of 25 minutes. By comparison, a finite element-based 

model required 136 minutes to converge to similar level of error.  

Research limitations/implications  

We use data from fixed thermocouples when printing thin-wall DED parts. In the future we will 

incorporate infrared thermal camera data from large parts. 

Originality/value 

This paper presents a new mesh-free computational thermal modeling approach based on graph 

theory (network science) and applies it to DED. The approach eschews the tedious and 

computationally demanding aspect of finite element modeling and allows rapid simulation of the 

thermal history in additive manufacturing.  While graph theory has been applied to thermal 

modeling of laser powder bed fusion (LPBF), there are distinct phenomenological differences 

between DED and LPBF that necessitate substantial modifications to the graph theory approach.  

Keywords: Thermal Modeling, Directed Energy Deposition, Titanium Alloy, Graph Theory.    
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1 Introduction 

1.1 Objective and Motivation 

The objective of this work is to develop, apply, and validate a mesh-free graph theory-based 

approach for rapid prediction of the temperature distribution in parts made using the directed 

energy deposition (DED) additive manufacturing process. In the DED process, as exemplified in 

Figure 1, metal powder is sprayed onto a substrate and melted using energy from a laser. The 

relative motion of the laser and substrate results in a three-dimensional geometry [1]. The DED 

process is particularly valuable for rapid repair or upgrading of damaged or legacy components, 

enabling the affordable addition of complex features. The process can also enhance existing parts 

with protective wear or thermal barrier coatings [2, 3].  

 
Figure 1: Schematic of the DED process. Metal powder is sprayed via nozzles and fused onto a 

substrate by a laser beam. 

However, the DED process has a tendency to create flaws, such as cracks, distortion, and non-

uniform (heterogeneous) microstructure [4, 5]. Despite significant advantages over conventional 

subtractive and formative manufacturing, safety-critical industries such as aerospace and defense 

are reticent in adopting the DED process due to the lack of consistent part properties. 

Consequently, there is an ongoing effort to understand the causal linkage between fundamental 

process phenomena, flaw formation, and  physio-mechanical properties of the part in DED [4, 6].  
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 In the DED process, the temperature distribution inside the part during deposition, typically 

called the thermal history or temperature field, influences flaw formation, such as microstructural 

heterogeneity, porosity, and deformation [7]. The temperature distribution is a function of the part 

geometry, process parameters, and material properties [8]. Accordingly, fast and accurate 

approaches to predict the thermal history in DED prior to printing the part are required for 

understanding and preventing flaw formation. In addition, these approaches should enable new 

critical functions including, but not limited to, predicting the final geometry of the part, process 

optimization and model-based process control, as depicted in Figure 2 [9, 10]. Hence, there is a 

strong need to approximate (simulate) the thermal history of DED parts before manufacturing is 

completed, beginning with the designed (ideal) geometry. 

For example, the rapid prediction (simulation) of thermal history is valuable for identifying 

and remedying potential red-flag problems, such as overheating, before the part is printed. 

Consequently, different process tool path strategies, part orientation, and process parameter 

combinations can be tested and optimized in silico using thermal simulations. Thus, reducing the 

time and experimental effort required for process optimization.  

 
Figure 2: Fast and accurate modeling of the thermal history is central to quality assurance of DED.  
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1.2 Challenges and Novelty 

Recent review articles emphasize the need for accurate and fast computational approaches to 

predict part thermal history in DED [7-9, 11, 12]. These review papers also summarize validation 

efforts by various researchers. The main challenge in part-scale thermal modeling of the DED 

process is that mesh-based finite element (FE) thermal models are relatively slow with 

computation time extending to hours if not days for a multi-layered practical part [13-15]. While 

commercial thermal simulation software for other additive manufacturing processes, such as laser 

powder bed fusion, have reduced the computation effort, development of such tools for DED is in 

their nascency. The novelty of this work is as follows: 

• All current approaches for thermal modeling in DED use the finite element method. This 

research addresses the foregoing challenge by devising a mesh-free graph theory-based 

computational thermal modeling approach to predict the temperature distribution in DED parts. 

The graph theory approach has previously been published in the context of the laser powder 

bed fusion (LPBF) process [16-18]. The approach is verified to be five to ten times faster than 

finite element modeling, enabling the prediction of thermal history using desktop computing 

in the context of the LPBF process.  

• This paper develops, applies, and validates the graph theory approach in the context of the 

DED process. As will be explained in Sec. 4, the considerable phenomenological differences 

between the LPBF and DED processes necessitates significant changes to the graph theory 

approach for application to the latter.  

The rest of this paper is organized as follows. Sec. 2. summarizes the salient literature in 

thermal modeling in DED from the context of FE modeling. In Sec. 3, we detail the experimental 

methodology for the acquisition of temperature data during DED manufacturing of titanium alloy 
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thin wall parts. Next, in Sec. 4, the graph theory approach for thermal modeling in DED is 

described in depth. In Sec. 5 the temperature trends predicted using the graph theory approach are 

validated with experimental trends and compared to the FE-based predictions published in the 

literature [19, 20]. Conclusions and avenues for future work are delineated in Sec. 6.   

2 Literature Review  

Recent review articles emphasize the need for accurate and fast computational approaches to 

predict part thermal history in DED [7-9, 11, 12] . These review papers also summarize validation 

efforts by various researchers. Michaleris pioneered FE-based techniques for thermal modeling of 

AM processes, including DED [21] . Michaleris proposed and tested two material deposition 

methods [22] : (1) quiet element, and (2) inactive element. In the quiet element method, the entire 

part is meshed, but elements representing undeposited material are assigned infinitesimal thermal 

conductivity values. In the inactive element approach, the deposition process is mimicked by 

activating elements at each time step. The graph theory approach proposed in this work uses the 

inactive element technique to simulate the DED process. 

Three major approximations for incorporating convective heat losses in DED have been 

studied [7-9, 11, 12]. First, as commonly implemented in FE-based modeling of the welding 

process, researchers have considered convective heat loss to be negligible in DED [23-27]. Second, 

heat loss through free convection is assumed to occur uniformly over all surfaces [28-34]. Third, 

accelerated heat loss due to forced convection is considered on all free surfaces as a result of the 

carrier gas flow [35, 36].  Notably, an effort to develop a measurement-based forced convection 

model was proposed and tested by Heigel et al. [19, 20]. Heigel and co-workers further compared 

their proposed model with other assumed convection regimes [37]. Heigel and co-workers 
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demonstrated that a forced convection model will produce more accurate simulation results than a 

model that considers only free convection or no convection at all. 

Accordingly, in the present work, a combination of free and forced convection regimes are 

considered. As will be explained in Sec. 4.3, heat loss due to forced convection is assumed for all 

part surfaces over which there is a predominant flow of carrier gas. Heat loss due to free convection 

is assumed at surfaces that are not directly affected by the carrier gas, such as the bottom and sides 

of the substrate. 

3 Methods 

3.1 Experimental Builds 

Data for this work was provided by Heigel et al. and is described in Ref. [19, 20].  Single-

track thin walls were deposited with an Optomec MR-7 DED system. In a single-track thin wall 

part, material in a layer is deposited in a single pass, i.e., a layer has only one hatch. The material 

used is ASTM standard Ti-6Al-4V powder. Parts were manufactured on a 6.4 mm thick Ti-6Al-

4V substrate clamped on one end according to the schematic in Figure 3. Argon shielding gas was 

used during the DED process at a rate of 30 L/min. The laser used in the process is a 500 W IPG 

Photonics fiber laser with a beam diameter of 1.5 mm. 62 layers were deposited with a nominal 

hatch thickness of 0.173mm.  

Two thin-walled parts labeled as Case A and Case B (Figure 3), are studied in this work. The 

processing conditions for the two cases are summarized in Table 1. We have chosen to study these 

two parts as the process parameters are identical in all respects, except the dwell time between 

layers. The dwell time governs the cooling behavior in DED and has a consequential effect on the 

evolved microstructure and properties [38, 39].  
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The parts are designed to have dimensions 37.2 mm × 3 mm × ~11 mm (vertical height) and 

consist of 62 layers deposited onto a Ti-6Al-4V substrate with dimensions 76.2 mm × 25.4 mm × 

6.4 mm (L×W×H) [19, 20]. Each thin wall is built on a separate substrate, which is clamped at one 

end. The deposition direction alternates for each layer; The laser travels in one direction for odd-

numbered layers and the opposite direction for even-numbered layers. After a layer is completed, 

the laser is disabled to cease powder sintering. Powder flow does not stop during this period to 

ensure consistent deposition for subsequent layers. While the nominal laser power is set at 500 W, 

the actual power delivered using a power probe and ascertained the power to be between 410 W 

and 415 W [19, 20]. The process parameter distinctions between the cases are as follows. 

 
Figure 3. A schematic of the clamped substrate in relation to the thin wall. Shown also are the thermocouple 

locations for measuring temperature, namely, TC A for Case A and TC B for Case B.  

Table 1. Process conditions for Case A and Case B reported in Ref. [19, 20]. 
Case Case A Case B 

Measured Laser Power (P) [W] 415 410 

Laser scan speed (V) [m×s-1] 8.5 ×10-3 

Powder delivery rate [g×s-1] 5 ×10-2 

Number of Layers  62 

Programmed dwell time between layers [s] 20 0 

Wall height [m] 10.7 ×10-3 11.2 ×10-3 

Measured wall length [m] 37.2 ×10-3 39.2 ×10-3 

Measured wall width [m] 2.2 ×10-3 3.0 ×10-3 

Measured Layer thickness [m] 1.7  ×10-4 1.8 ×10-4 

Laser spot size [m] 1.5 ×10-3 

Distance between the nozzle tip and top of substrate - Standoff 

Distance [m] 
11.4 ×10-3 

Approximate Build Time [minutes] 26 5 
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Case A: Thin wall built with a programmed 20-second dwell time between layers. 

The thin wall part is built with a programmed 20-second dwell time between the deposition 

of each layer. The 20-second dwell time refers to the added pause after the laser has reached the 

start position of the next layer before the deposition is initiated. During this period, the laser is not 

sintering the passing powder. The added dwell time between each of the 62 layers in Case A results 

in a total build time of approximately 26 minutes, which is substantially longer than the 5 minute 

build time of Case B, which is described below.  

Case B: Thin wall built without programmed dwell time.  

The thin wall part is deposited without any programmed dwell time. However, there is an 

inherent pause of 3 seconds between the end of one layer and the beginning of the next as the 

deposition head repositions to the subsequent layer’s origin. In our simulations, we have included 

this inherent process-related dwell time of 3 seconds between layers. The build time for Case B is 

reported to be approximately 5 minutes. 

3.2 Temperature Measurements 

Temperature measurements were acquired using two Omega GG-K-30 type K thermocouples. 

In Figure 3, the thermocouple marked TC A is used for thin wall Case A and is located on the top 

surface of the substrate. The second marked TC B, used for thin wall Case B, is located at the 

center of the bottom surface of the substrate. These thermocouples are spot welded to the substrate 

and aluminum foil tape is used to shield the top thermocouple (TC A) from forced convection 

effects. The respective temperature signatures are shown in Figure 4.  
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The 20-second dwell time in Case A results in a pronounced cyclical trend in the temperature 

signature. The difference in dwell time allows the part in Case A to cool longer before the 

deposition of new layers, which reduces the peak temperature to 200 °C for Case A, compared to 

nearly 500 °C for Case B. The small-scale fluctuations in temperature in both Case A and B (Figure 

4) are caused by the laser moving across the build, layer by layer. The local maxima occur when 

the laser is heating the part, and the local minima occur when the laser disabled during the 

programmed dwell period.  

Further, because Case A had a 20-second dwell time between layers, large fluctuations in 

temperature are observed as significant cooling occurs between layers. In practice, such steep 

temperature gradients may lead to interlayer delamination in the part. In this work, the dwell time 

was added to test the ability of the model to respond to process changes. We note that no 

delamination or interlayer gaps were observed in the part used for Case A. Case B shows similar 

rapid cooling behavior, however because the dwell time between layers is shorter (3 seconds), the 

temperature fluctuations between layers is less pronounced.  

 
Figure 4: The temperature signatures obtained for the two thin wall cases from the thermocouple 

measurements. Case A has a 20-second dwell time between layers, while Case B has a 0-second 

dwell time programed between layers.  
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The gradual decline towards the end of both builds A and B is explained as follows. As each 

layer is deposited, the distance between the current deposited layer and point of measurement in 

the substrate increases, and convective and radiative heat losses dominate conductive heat transfer 

to the substrate. In addition, energy from the laser diffuses over a greater distance as the part builds, 

reducing the intensity of thermal energy applied to the thermocouple as the build progresses. 

Finally, the increased thermal mass of the part later in the build also damps temperature 

fluctuations. 

In the experiments herein, absolute temperature is obtained at a single point with a 

thermocouple. While a thermal camera can provide thermal measurements over a larger area, the 

temperature reported by a thermal camera are relative trends, and not absolute temperature. In 

addition, the movement of the part relative to the fixed position of an infrared camera in DED 

machines is liable to cause image blurring, which is further exacerbated as the part grows in size. 

Hence, the preferred measurement approach for tracking the thermal history in DED is to use a 

thermocouple embedded inside the part or on the substrate. The tradeoff is that the thermocouple 

only provides a single point temperature measurement [40, 41].  

Finally, we note that the graph theory model is focused on obtaining the part-level temperature 

distribution. The part-level temperature distribution is the key to predicting distortion from 

thermal-induced residual stresses. On the other hand, meltpool-level thermal distribution is 

important for predicting the part-level microstructure. In other words, the focus of this work is to 

quickly determine the global part thermal history with reasonable accuracy, and not the local 

meltpool temperature distribution. 
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4 Thermal Modeling in Additive Manufacturing using Graph Theory 

4.1 Background  

The graph theory approach was previously applied to predict the thermal history of parts 

manufactured using the laser powder bed fusion (LPBF) metal AM process [16-18]. However, 

certain heat transfer-related assumptions made in the context of the LPBF process to aid 

computation in our previous work must be altered for the DED process [16]. Figure 5 outlines the 

salient thermal phenomena in DED [42]. In Figure 5 the phenomena labeled 3, 4, and 5 are present 

in DED (including wire-arc and powder DED) and are not commonly present in other metal-based 

AM processes, such as LPBF.   

For example, as shown in Figure 5, unlike in LPBF the part in DED is surrounded not by metal 

powder but by an inert gas. As a result, heat is transferred to the surroundings through convection 

and radiation from all surfaces. Convection in DED involves both free and forced convection, as 

the metal powder is delivered to the substrate via a flowing inert carrier gas, such as Argon in this 

work. In LPBF, the non-sintered powder acts as an insulating medium and drastically slows heat 

loss from the sides of the part. Hence, heat loss in LPBF predominantly occurs on the top surface 

of the part through radiation, free and forced convective heat transfer at the meltpool [43-45].  Heat 

loss in the rest of the LPBF part occurs largely through conduction, although heat loss through free 

convection occurs at the part-powder boundaries through air gaps in the surrounding powder.  

In the context of Figure 5, LPBF heat losses from the substrate driven by the 5th (free 

convective heat transfer) and 6th (conduction) phenomena would be negligible in practice. 

Consequently, for a comprehensive model of part-level thermal history in DED, it is necessary to 

account for heat loss through conduction, free and forced convection, and radiation. Accordingly, 

in the present work, a combination of free and forced convection regimes are considered for 
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modeling the DED process. As will be explained in Sec. 4.3, heat loss due to forced convection is 

assumed for all part surfaces over which there is a predominant flow of carrier gas. Heat loss due 

to free convection is assumed at surfaces that are not directly affected by the carrier gas, such as 

the bottom and sides of the substrate. 

 
Figure 5. Salient thermal phenomena in DED include conductive, convective, and radiative heat 

transfer. Phenomena labeled 3, 4, 5, are largely absent in LPBF. 

Furthermore, the laser heat source-related assumptions in LPBF do not carry over to the DED 

process because the scan velocity and spot size (beam diameter) of the laser, volumetric rate of 

material deposition, and layer thickness are considerably different [44, 46]. In LPBF, movement 

of the laser is achieved using a pair of electrically controlled mirror galvanometers. By contrast, 

in DED, the laser head is translated by the physical motion of CNC-based axes. Consequently, the 

scan velocity of the laser in DED is many times slower compared to LPBF – the scan speed of the 

laser in LPBF is typically 200 to 1000 mm·s-1; In DED, the scan speed is on the order of 10 mm·s-

1. Further, the typical layer thickness is around 50 μm in LPBF, compared to ~100 μm to 200 μm 

for DED. Lastly, the laser beam diameter in the DED process is typically nearer to the 500 μm 

range compared to ~50 μm to 100 μm in LPBF [46].  
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From a thermal modeling perspective, the higher laser scan velocity and smaller layer 

thickness of LPBF are advantageous for reducing computation time. Researchers often simulate 

the deposition of multiple layers at a time in LPBF (called the super-layer or meta-layer 

assumption) to reduce computation time [47, 48].  For example, Williams et al. [47] used the meta-

layer assumption in an FE-model to predict thermal-induced deformation in LPBF. Meta-layers 

ranging from 12 to 50 times the actual layer thickness (50 μm) are simulated. Williams et al. [47] 

showed that their model predicts distortion within 5% of measurements, despite simulating the 

deposition of ~15 layers simultaneously. The slow scan speed and large laser spot size of DED 

creates a meltpool which has a large diameter and penetrates deeper into the previous layers 

compared to LPBF. Consequently, the super-layer assumption is not viable in DED. Moreover, in 

our previous work applying graph theory for thermal modeling in LPBF, the laser was considered 

as a point source of heat [16-18]. In the current work, the double ellipsoid model originally 

developed by Goldak is used to approximate the shape, temperature, and depth of penetration of 

the meltpool [49, 50]. 

4.2 The graph theory solution to the heat diffusion equation 

To predict the temperature distribution, it is necessary to solve the continuum heat diffusion 

equation [51]. In DED, and in metal AM in general, FE analysis is used to solve the heat diffusion 

equation and obtain the temperature history [52]. 

𝜌𝑐𝑝⏞

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)

⏞            
𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛

T(𝑥, 𝑦, 𝑧, 𝑡)  = E𝑉⏞
𝐼𝑛𝑝𝑢𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

 
(1) 

where     E𝑉 = 
P

𝑣ℎ𝑡
  

In Eqn. (1), T is the temperature rise above the ambient temperature. Solving the heat diffusion 

equation with the accompanying boundary conditions (shown in Eq. (2)) results in the temperature 
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T(𝑥, 𝑦, 𝑧, 𝑡) at a location (x, y, z) at a time at instant 𝑡, which is the thermal history for a part. The 

term E𝑉, called energy density [J·m-3], is the energy supplied by the laser to melt a unit volume of 

material. The energy density E𝑉 =
P

𝑣ℎ𝑡
 is a function of laser power (P) [W], distance between 

adjacent passes of the laser (h) [m], relative translational velocity of the part (v) [m·s-1], and the 

layer thickness (t) [m]; These are the controllable parameters of the process. The material 

properties required to solve this equation are density 𝜌 [kg·m-3], specific heat 𝑐𝑝 [J·kg-1·K-1], and 

thermal conductivity k [W·m-1·K-1]. 

 The accompanying initial and boundary conditions are given by, 

T(𝑥, 𝑦, 𝑧, 0) = 𝑇𝑎 (initial condition) 

∂T

∂𝑛
=  0 (on boundary) 

 

(2) 

where n is the outward normal vector at the boundary and Ta is the ambient temperature of the 

environment. Although this boundary condition is for zero heat loss, the effect of external heat loss 

by convection and radiation is implemented later as an adjustment to the graph theory method and 

is discussed in Sec. 4.3. 

 Part shape is embedded in the heat equation through the second derivative term, called the 

Continuous Laplacian. The graph theory approach reduces the computational burden by solving a 

discrete version of the heat diffusion equation, which eliminates the meshing steps of FE analysis.  

As with existing FE approaches, the laser energy density E𝑉 in Eq. (1) is replaced by an initial 

temperature distribution caused by the laser, T𝑜(𝑥, 𝑦, 𝑧). An estimate of the laser power needed to 

raise the metal temperature from ambient Ta to the initial temperature is given by an energy 

balance, as follows: 
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𝜌𝑣ℎ𝑡𝑐𝑝(To − Ta) = P 

∴ (To − Ta) =  
P

 𝑐𝑝𝜌𝑣ℎ𝑡
  

(3) 

Here 𝜌𝑣ℎ𝑡 is the rate of mass deposited [kg · s-1]. Then the heat diffusion equation and the 

accompanying conditions become,  

∂T

∂ 𝑡
− 𝛼 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)T = 0 (4) 

𝑇(𝑥, 𝑦, 𝑧, 𝑡 = 0) = T𝑜(𝑥, 𝑦, 𝑧)    (initial condition) 

∂T

∂𝑛
=  0     (on boundary) 

 

(5) 

where α = k/(ρcp) is the thermal diffusivity, α [m2 ·s-1]. The boundary condition T𝑜 depend on the 

shape and temperature of the meltpool and is estimated using Goldak’s double ellipsoid model, 

described in Sec. 4.3.3.  

Next, the heat diffusion equation is discretized over N nodes by replacing the negative 

continuous Laplacian with the discrete Laplacian matrix (L):  

∂T

∂𝑡
+ αLT = 0; (6) 

The eigenvector matrix (ϕ) and eigenvalue matrix (Λ) of the Laplacian matrix (L) are found 

by solving the eigenvalue equation Lϕ =  ϕΛ. As the Laplacian matrix is symmetric and positive 

semi-definite, as described later in Sec. 4.3, the eigenvalues (Λ) are non-negative, and the 

eigenvector matrix (ϕ) is orthogonal [53-56].  Because the transpose of an orthogonal matrix is 

the same as its inverse, that is, ϕ−1 =  ϕ′ and  ϕ ϕ′ = I, where I is the identity matrix, then the 

eigenvalue equation Lϕ = ϕΛ may be post-multiplied by ϕ′ to obtain L =  ϕΛϕ′.  Substituting 

L =  ϕΛϕ′ in Eqn. (6) gives: 
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𝜕T

𝜕𝑡
+ 𝛼(ϕΛϕ′) T = 0;  

Eqn. (7) is a first order, ordinary linear differential equation, with solution [61], 

T = 𝑒−𝛼(ϕΛϕ
′)𝑡  T𝑜 

 

(7) 

(8) 

The term 𝑒−𝛼(ϕΛϕ
′)𝑡 is simplified via a Taylor series expansion and substituting ϕ ϕ′ = I,  

𝑒−𝛼(ϕΛϕ
′)𝑡 = ϕ𝑒−𝛼(Λ)𝑡ϕ′ (9) 

Substituting, 𝑒−𝛼(ϕΛϕ
′)𝑡 = ϕ𝑒−𝛼Λ𝑡ϕ′ into Eqn. (8) gives,  

T = ϕ𝑒−𝛼Λ𝑡ϕ′ T𝑜 
(10) 

Eqn. (10) is the graph theory solution to the discrete heat diffusion equation as a function of the 

eigenvalues (Λ) and eigenvectors (ϕ) of the Laplacian matrix (L), constructed on a discrete set of 

nodes. The graph theory approach has two inherent advantages over FE analysis, (i) elimination 

of mesh-based analysis; And (ii) Elimination of matrix inversion steps. To explain further, while 

FE analysis requires matrix inversion at each time-step for solving the heat diffusion equation, the 

graph theory approach relies on matrix multiplication and transposes, shown in Eq. (9), which 

greatly reduces the computational burden. 
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4.3 Application of the Graph Theory Approach to Thermal Modeling of the DED Process 

4.3.1 Steps in the Approach 

The graph theory approach as applied to the DED process is explained in the context of Figure 

6. The initial inputs to the model are as follows: 

• Part geometry: Part shape in .stl form; hatch (bead) thickness, spacing and width; direction of 

deposition.  

• Processing parameters: laser power (P) (for obtaining meltpool temperature) and velocity (V), 

dwell time between layers.   

• Material Properties: specific heat (Cp); thermal conductivity (k); thermal diffusivity (α) 

• Model parameters: block size and number of nodes,  

 
Figure 6. Representation of the four steps in the graph-theoretic approach for thermal modeling of 

the DED process. 
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Step 1: Hatch-by-hatch discretization of the part geometry. 

The process is simulated hatch-by-hatch (bead by bead). For this purpose the size (shape, 

length, breadth, and height) and direction of the hatch is taken into consideration. Each hatch is 

further divided into discrete blocks (volumes) with a fixed height and length, with breadth equal 

to the actual hatch width. The discretization of the process into hatches is shown in Figure 7. 

In the DED process, the laser travel is a continuous motion problem. To simplify the motion 

of the laser to aid calculation speed, the single track or hatch that composes each deposited layer 

were broken into five equal size blocks. In this work, the block size is chosen to match with the 

dimensions of the part.  These discrete blocks are 7.84 mm long, 3 mm wide, and 0.1806 mm thick 

in this work. The width of the block is equal to the width of an ideal deposited hatch, and its 

thickness is equal to the layer thickness. This block-by-block progress of the DED process is 

similar to the inactive element technique used in FE simulations which are currently used by 

commercial software [21, 32, 51].  Since the laser scan velocity is 8.5 mm‧s-1
 and the length of 

each block is 7.84 mm long, the time to step between blocks is 0.922 s.  

 
Figure 7. Hatch-by-hatch (bead-by-bead) build scheme used in DED simulation using graph 

theory. Each hatch is discretized into blocks, and each block is further discretized into nodes. Each 

block is the same height as the layer thickness, and the block width is equal to the bead width. The 

blocks are added in the direction of the hatch, thus the size of the hatch and its build direction are 

taken into consideration.  
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The deposited part is composed of 310 blocks while the substrate is formed by 2520 blocks 

for a total of 2830 blocks in the model. By keeping each block of identical size, the effective energy 

applied is consistent across the newly fused layer. Each block is randomly populated with N 

number of nodes. The number of nodes per unit volume (called node density) is uniform 

throughout. The number of nodes is analogous to the size of elements in the context of FE analysis. 

In the finite element method, increasing the number of elements by decreasing element size 

increases the model precision, and a sequence of model solutions will converge to a ‘best’ solution. 

If the element size becomes too large, the solution will provide poor precision. 

In a similar sense, a large node density results in the part being discretized using more nodes, 

thus improving the convergence accuracy albeit, at the tradeoff of computational time. In this work 

we test the effect of node density at three levels. The three node densities are tested for Case A 

and Case B, these are: 0.235 nodes·mm-3, 0.470 nodes·mm-3, and 0.706 nodes·mm-3. As will be 

reported in Sec. 5, in the context of Figure 12 and Table 7, these tested node densities converged 

to an appreciable degree to the experimental data, with the node density of 0.706 nodes·mm-3 

providing the most accurate prediction.  The discretization process results in each node having a 

unique Cartesian (x, y, z) coordinate, i.e., the location of each node is spatially defined within the 

part.  

When the laser heats a block, all of its nodes appear at the same time. The justification for this 

is to simulate the material deposition when the deposition head is above the block. In this 

representation of the DED process, making the blocks smaller will improve the simulation 

accuracy of the model at the expense of computation time. Since the nodes are populated in a 
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random manner, there is a degree of stochasticity in the model predictions. We quantify this 

uncertainty by repeating the simulations three times for each case. 

Step 2: Constructing a network graph from the cloud of discrete nodes created in Step 1.  

Each node is connected to its nearest neighboring nodes within a radius (ɛ). Consider ɛ [mm] 

as describing the radius of a sphere with a node at its center. Nodes that fall within the volume of 

the sphere are connected to the node at the center of the sphere. Nodes that are outside of the sphere 

are not connected. This step is completed throughout the entire cloud of nodes, which results in a 

complex web of connections called a network graph.  

Consider two nodes, 𝜋𝑖 and 𝜋𝑗, whose spatial Cartesian coordinates are 𝑐𝑖 ≡ (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and 

𝑐𝑗 ≡ (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), respectively; 𝜋𝑖 and 𝜋𝑗 are connected by an edge having weight 𝑎𝑖,𝑗 if the distance 

between them is less than 𝜖. The distance between 𝜋𝑖 and a node 𝜋𝑗  whose spatial Cartesian 

coordinates 𝑐𝑗 ≡ (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) is the Euclidean distance ‖𝑐𝑖 − 𝑐𝑗‖ =

√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2. The edge weight 𝑎𝑖,𝑗 is given by, 

𝑎𝑖,𝑗 = { 𝑒
−
‖𝑐𝑖− 𝑐𝑗‖

2

𝜎2  if(𝑐𝑖 − 𝑐𝑗)
2
≤ 𝜀

0 otherwise

 

 

(11) 

In Eqn. (11), σ is the standard deviation of all the pairwise distances between nodes, and the 

exponential term is the Gaussian function that scales the pairwise distance between the nodes in 

the part between 0 and 1. The neighborhood distance ɛ is a heuristic tunable parameter in the graph 

theory model that needs to be calibrated (only once) for a material type. The calibration procedure 

for ɛ is described in Sec. 4.3.4 .    

The matrix formed by calculating 𝑎𝑖𝑗 is called the adjacency matrix, A = [𝑎𝑖𝑗], which is a 

positive symmetric matrix. 
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A =

[
 
 
 
 
0 𝑎1,2 𝑎1,3 ⋯ 𝑎1,N

𝑎2,1 0 𝑎2,3 ⋯ 𝑎2,𝑁
𝑎3,1
⋮
𝑎N,1

𝑎3,2
⋮
𝑎N,2

0
⋮
𝑎N,3

⋯
⋱
⋯

𝑎3,𝑁
⋮
0 ]
 
 
 
 

 

 

(12) 

From the adjacency matrix, the degree ℎ𝑖 of a node 𝜋𝑖 is calculated by summing the corresponding 

𝑖th row (or column) of A. The degree matrix (H) is obtained in the following manner.  

   

ℎ𝑖∙ =∑𝑎𝑖,𝑗

𝑁

𝑗=1

 

H = [
ℎ1∙ 0 0
0 ⋱ 0
0 0 ℎN∙

] 

(13) 

 In the degree matrix H, all the off-diagonal entries are zero and the diagonal entries 𝑑𝑖 are 

positive. The graph Laplacian at node 𝜋𝑖 is defined as: 𝐿𝑖𝑗 ≝ ℎ𝑖 − 𝑎𝑖𝑗, and the Laplacian matrix is 

obtained L = [𝑙𝑖𝑗]. The discrete graph Laplacian matrix is as follows: 

   

L =

[
 
 
 
 
+ℎ1∙ −𝑎1,2 −𝑎1,3 ⋯ −𝑎1,N

−𝑎2,1 +ℎ2∙ −𝑎2,3 ⋯ −𝑎2,𝑁
−𝑎3,1
⋮

−𝑎N,1

−𝑎3,2
⋮

−𝑎N,2

+ℎ3∙
⋮

−𝑎N,3

⋯
⋱
⋯

−𝑎3,𝑁
⋮

+ℎN∙ ]
 
 
 
 

 

 

(14) 

Finally, the Eigenspectra of the graph Laplacian matrix (L) will be computed as Lϕ = Λϕ , 

where ϕ are the eigenvectors and Λ are the eigenvalues of L [57].  

Step 3: Block-by-block simulation of a layer 

Figure 7 demonstrates the block-by-block heating scheme used in this work to discretize the 

continuous motion of the laser. The DED simulation progresses by heating the nodes in a block, 

before proceeding to the nodes in the next block. Constant heat input was maintained by only 

heating one block at any time. In other words, a time step involves heating of nodes inside a block, 

one block at a time.  
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Step 3(a): Heat loss through conduction 

After a block is heated by the laser, the heat is allowed to diffuse through the network graph 

that was constructed in Step 2. Conduction is the sole mode of heat transfer between the nodes. 

The only active nodes during this step are located within layers and blocks that have already been 

deposited. Other nodes that are in subsequent blocks and layers remain inactive and, therefore, are 

unable to transfer heat. After the heat diffuses from the block previously heated by the laser, the 

deposition of the next block is simulated. This process is repeated for every block and every layer 

in the part.  

The mathematical implications of the approach will be summarized here by only including 

the final derived equation, shown in Eqn. (15). After the time required to heat each block, in this 

case tb = 0.922 s, has passed, the temperature of each active node is stored in the temperature 

matrix T𝑏.  

The temperature following heat loss through conduction (T𝑐) is defined as a function of the 

Laplacian eigenvectors (ϕ) and eigenvalues (Λ) of the network graph of active nodes, where T0 is 

the meltpool temperature, and g is a tunable parameter called the gain factor. The gain factor (g) 

scales the rate of thermal diffusivity or heat flux between nodes. A higher gain factor increases the 

rate of thermal diffusion through the part, i.e., the larger the gain factor, the faster the heat will 

dissipate through the part by conduction. The procedure to calibrate the gain factor is reported in 

Sec. 4.3.4. 

T𝑐 = ϕ𝑒
−𝛼gΛ𝑡𝑏ϕ′T0 

(15) 

 

  



23 

 

Step 3(b): Heat loss through convection 

To accommodate the heat loss through convection and radiation, these terms were combined 

into a single forced convection term and were applied using Newtons law of cooling on the 

identified surface boundary nodes. The approach is as follows. 

Heat loss through conduction between the nodes is followed in tandem with heat loss through 

forced and free convection from the nodes on the surface of the part. The temperature distribution 

after heat loss through forced and free convection, and through clamp conduction, takes place for 

the duration of the time tb, and is calculated as,  

T𝑏 = T𝑐𝑒
−𝛽𝑡𝑏  

 

𝛽 =
ℎ

𝜌𝐿𝐶𝑝
 

(16) 

Where ℎ is the heat transfer coefficient [W·m-2·K-1], 𝜌 is the material density [kg·m-3], and 𝐿 

( = 7.84 ×10-3 m) is the length of the block, and 𝐶 is the specific heat [J‧kg-1‧ oC -1] which is not a 

constant, but temperature-dependent in this work. The derived coefficient, 𝛽, is called the inverse 

time constant [s-1]. The heat transfer coefficient ℎ has two parts, to include both free and forced 

convection. Heat loss due to forced convection is applied to the sides of the part and top of the 

substrate as the carrier argon gas flows over these surfaces. Free convection is dominant on the 

sides and bottom of the substrate, where there is no active gas flow. The heat transfer coefficients 

are discussed in depth in Sec. 4.3.4. 

In Steps 3(a) and 3(b), for simplicity, we described the heating of only those blocks in the 

topmost layer. However, in DED the block in the prior layers immediately below the block being 

currently heated is also at an elevated temperature as the laser penetrates the existing part. The 
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heating of nodes in the blocks immediately below an actively heated block on the top layer is 

implemented using Goldak’s double ellipsoid model, detailed in the forthcoming Sec. 4.3.2.  

Step 3(c). Obtaining the temperature at the end of a layer after dwell time. 

For each block-by-block iteration of step 3(a) and (b), the temperature of every node is 

recorded in a vector T𝑏. This is repeated until an entire layer is simulated. After the process reaches 

the end of the layer, heat is allowed to dissipate by conduction immediately followed by convection 

in time steps of 1 second, iteratively for a period equal to the dwell time (𝑡𝑑). Different size time 

steps have previously been explored for the spectral graph method in our related work [17].  

For this work, based on extensive offline studies, a time step of 1 second provided adequate 

precision. In this work, 𝑡𝑑 was 20 seconds for Case A, and 3 seconds for Case B. Therefore, Eqs. 

(17) and (18) were iterated 20 times for Case A and 3 times for Case B with time 𝑡 =1 s to simulate 

the total dwell time between layers. 

T𝐿𝑐 = ϕ𝑒
−𝛼gΛ𝑡ϕ′T𝑏 (17) 

T𝐿𝑓 = T𝐿𝑐𝑒
−𝛽𝑡 (18) 

Step 4: Steps 3(a), (b), and (c) are looped until the last layer is built. The temperature of each node 

at each time step is recorded in a vector T, which contains the thermal history of the part.   

4.3.2 Model Assumptions 

The spectral graph method involves some additional simplifying assumptions because the 

method is built on the solution of a linear differential equation. These assumptions are common in 

FE-based part level thermal modeling in AM, including LPBF and DED [51]. First, it is assumed 

that material properties, such as density (𝜌), do not change as the material changes state from 

particulate matter to a liquid (meltpool formation) then back to a solid. This assumption allows the 
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use of effective (average) values of the properties. Second, the latent heat of melting and 

solidification is not included in the model. However, in keeping with literature, the thermal 

diffusivity of the material (𝛼, a function of specific heat 𝐶𝑝 and conductivity, 𝑘) is considered to 

be temperature dependent.    

Lastly, a common practice in the thermal modeling literature in AM is to assume that the 

thermal gradients are decoupled from the mechanical response (part deformation) [51].  To explain 

further, the thermal simulation of AM parts, including LPBF and DED, are conducted over several 

time steps. The thermal history predictions over this longer horizon are then used to estimate the 

mechanical response [47, 58-64]. The thermal and mechanical aspects are thus considered 

independent (decoupled); While the thermal history influences the mechanical response, the 

mechanical response is assumed to have no effect on the thermal response. This assumption has 

its genesis in the computational thermomechanics of welding literature, as detailed by Goldak and 

Alkhaghi [50]. Commercial thermal simulation software such as Autodesk Netfabb, Amphyon, 

Simufact, and Additive Print implement the decoupled modeling approach [65].  

The benefit of decoupled thermomechanical modeling is that the computation is more efficient 

than a coupled thermomechanical approach while providing reasonable prediction accuracy. 

However, the decoupled thermomechanical model loses fidelity when the distortion is sufficiently 

severe to change boundary conditions. Based on small deformation theory, as elucidated by 

Michaleris and co-workers [51], this decoupling assumption is valid when there are no major 

faults, such as severe cracking or separation of the part from the build plate. Such failures would 

not only alter the shape of the part but also change the heat conduction pathway, leading to 

considerable changes in the temperature profile. In other words, a change in boundary conditions 

can result from substantial change in the shape of the part which fundamentally changes the 
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thermal conduction pathway. This work assumes the thermal and mechanical responses are 

decoupled.  

4.3.3 Modeling the Laser Heat Source using Goldak’s Double Ellipsoid Model 

As depicted in Figure 8, in DED, not only is the current layer processed by the laser at an 

elevated temperature but also material in prior layers below the laser path is reheated. Therefore, 

apart from considering only the nodes at the surface at a higher temperature, T0, it is necessary to 

initiate the sub-surface nodes with an elevated temperature.  

The temperature at the surface as well as the temperature of prior layers is a function of the 

material properties and meltpool temperature. Goldak’s double ellipsoid model in Eqn. (19) is used 

to quantify the temperature reached by the sub-surface nodes [49, 50, 66], 

T0(x, y, z, 𝑡) = C · P
1

2π𝑘√x2 + y2 + z2
𝑒−

V
2𝛼
×(x+√x2+y2+z2)

 (19) 

 
 

In Eqn. (19), T0(x, y, z, 𝑡) is the temperature at time t on account of the heat supplied by the 

laser; x, y, and z are local coordinates of the meltpool. P is the laser power, 𝑘 is the thermal 

conductivity, and C is a dimensionless scaling factor. The laser velocity and thermal diffusivity are 

represented by V and 𝛼, respectively. Each variable is defined with the appropriate values and 

units in Table 2. The scaling factor C effects the meltpool temperature; Figure 9 demonstrates the 

effect of the scaling factor as a function of the meltpool location along the x-axis, with y = 0 and 

z = 0.  

A characteristic of the model is that the temperature asymptotes to infinity at the center of the 

meltpool. The meltpool temperature is taken as the intersection of the vertical line drawn from the 

trailing edge of the beam (x  = -0.75 mm) with the temperature curve. In this work, the liquidus 
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temperature for Ti-6Al-4V is assumed to be 1630 °C. Based on the literature, we demarcate three 

meltpool temperatures (T0), namely T0 = 1900 °C, T0 = 2200 °C, and T0 = 2450 °C.  

 
Figure 8: The effect of meltpool temperature on the sub-surface layers, and the periphery of the 

meltpool. 

Table 2. Variable definitions for Equation (19) [19, 20].  

Variable Units Value 

C Dimensionless 0.125 to 0.191 

Laser Power (P) [W] 415  

Laser Velocity (V) [m‧s-1] 8.5 × 10-3  

Thermal Conductivity (k) [W‧m-1K-1] 6.8  

Thermal diffusivity (𝛼) [m2‧s-1] 2.7228 × 10-6   
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Figure 9. The effect of the scaling factor C on the meltpool temperature, as a function of the 

meltpool length. 

Various researchers estimate the average meltpool temperature in the processing of Ti-6Al-

4V in the region of 2000 °C to 2100 °C (Table 3). The literature shows that the meltpool 

temperature in DED of Ti-6Al-4V exceeds melting temperature of the material (~1630 °C). Hence, 

three different meltpool temperatures are considered in this work and shown in Figure 9: 1900 °C, 

2200 °C, and 2450 °C, which represent the range of meltpool temperature values observed and 

measured in the literature. We note that researchers have also observed that small areas of the 

meltpool can reach superheating temperature  [67-69].   

To estimate the sub-surface depth penetrated by the laser, we plot Eqn. (19) as a function of 

the depth (z), with x = 0, and y = 0 starting from the middle of the top layer; The sub-surface 

temperature curves for different values of the scaling factor C (meltpool temperature) are shown 

in Figure 10. For simulation purposes, we only consider blocks up to a depth immediately below 

the current block and whose temperatures reach at least 20% of the liquidus temperature (1630 
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°C). For the various curves, the temperature reaches 326 °C (20% of the liquidus) around the 

seventh sub-layer, approximately 1.25 mm below the top surface.  

Table 3. Summary of meltpool temperatures found by other researchers in the literature. 
Geometry Laser 

Power (P) 

[W] 

Scan 

Velocity (V) 

[mm·s-1] 

Method Meltpool 

Temperature 

(T0) [°C] 

Ref. 

Thin Wall 300 12.7 Pyrometer ~1850 [70] 

Single Track 2000 10.6 Thermocouple 1865 ± 190 [71] 

Thin Wall 290 12.7 Pyrometer 1900-2000  [68] 

L-shaped Thin Wall 450 10.6 IR Camera 2485 ± 161 [72] 

Cylinders 350 16.9 Pyrometer 2100 – 2500  [67] 

Rectangular Thin Wall 300 2.0 Quiet Element FE  ~2450 [73] 

Cube 800 10.0 In-house FE Code  2500  [74] 

Thin Wall 425 8.5 Inactive Element FE 1800 - 2000 [21] 

 

 

Figure 10: The temperature reaches 20% of the liquidus at a depth of 1.25 mm from the top surface.  
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4.3.4 Heat Loss due to Radiation and Convection, and Model Calibration 

(a) Calibrating Model Parameters ɛ and g 

Case A was used for calibrating the parameters of the graph theory method, namely, the 

neighborhood size (ɛ) and gain factor (g) in Eqn. (15) and Eqn. (17). Case A was chosen for 

calibration given the prominent temperature cycles, as evidenced in Figure 4. An iterative grid 

search was performed to calibrate the gain factor and neighborhood size. The combination of 

neighborhood size and gain factor that resulted in the lowest Mean Absolute Percentage Error 

(MAPE) in Case A was selected and subsequently applied without any modification for Case B. 

This calibration process was repeated for different node densities and meltpool temperatures based 

on Case A and held constant thereafter. In other words, these simulation parameters need to be 

calibrated once for a particular material and node density.  

 Table 4 reports the gain factor (g) and neighborhood size (ε) that minimize the MAPE for 

Case A for a given density of nodes and melt pool temperature assumption. Calibration of the gain 

factor g was conducted at three different node densities, corresponding to one, two, and three nodes 

within each block. An important observation is that approximately 90% of all nodes are located in 

the substrate with the remaining 10% located in the actual part. This is because the volume of the 

substrate (12,387 mm3) is nearly 10 times as large as the part (1227 mm3). A large proportion of 

the computation effort is therefore required to compute the edge connections for the nodes in the 

substrate; Heigel et al. [19, 20] reduce computation time by simulating only half of the part volume 

while the current method simulates the entire part.   
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Table 4. Three node densities, and corresponding simulation parameters ɛ and g. 

Nodes 

per 

Block 

Total 

Number 

of nodes 

Nodes in 

Substrate 

Nodes 

in Part 

Node Density 

(nodes/mm3) 

Neigh

borhoo

d Size, 

ɛ (mm) 

Gain Factor (g) 

T0 = 

1900 oC 

(mm-2) 

T0 = 

2200 
oC 

(mm-2) 

T0 = 

2450 
oC 

(mm-2) 

1 2830 2520 310 0.2355 4.5 8 10 12 

2 5660 5040 620 0.4709 4.75 1 1.5 1.95 

3 8490 7560 930 0.7064 5.5 0.12 0.15 0.17 

(b) Heat Transfer Coefficients  

 Three heat transfer coefficients in the DED simulation are fixed in the calibration step and 

are held constant throughout all ensuing simulation cases, irrespective of node density or melt pool 

temperature. Table 5 reports the heat transfer coefficients used in this work along with the 

corresponding salient thermal phenomena in DED that describes them in Figure 11; Values used 

by Heigel et al. are also provided for comparison purposes [19].  

 
Figure 11: The portioning of the heat transfer coefficients into forced and free, and due to the 

clamp. The top surface of the substrate, and sides of the part are subjected to heat loss due to forced 

convection. The sides and bottom of the substrate loses heat on account of free convection. 

Because the DED process builds new parts by moving the heat source and shielding gas, 

convection boundary conditions must be considered. Referring to Figure 11, argon gas in the DED 

process propels titanium powder particles into the laser beam and melt pool. The argon gas 

continues to flow down the sides of the thin wall while the deposition takes place. Although the 
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sides of the thin wall and top surface of the substrate experience heat loss due to forced convection, 

the same cannot be assumed for the sides and bottom surface of the substrate. This necessitates a 

separate consideration of each boundary condition and the use of two distinct heat transfer 

coefficients.  

A forced heat convection coefficient (hforced) is used to describe the forced convection loss 

caused by the flowing argon shielding gas on the sides of the part and top surface of the substrate. 

A free heat convection coefficient (hfree) describes the remaining free convection loss experienced 

at the sides and bottom surface of the substrate. The forced heat transfer coefficient is 

approximated as 10×hfree. In Table 5, these heat losses are encapsulated under the broad term heat 

transfer coefficients, because, apart from conductive and convective heat transfer, heat loss also 

occurs through radiation. The portion of the part closest to the deposition nozzle experiences the 

largest heat loss due to forced convection from the carrier gas (= 60 W·m-2·K-1), which reduces in 

a non-linear manner (= 25 W·m-2·K-1) further away from the tip. In this work, the forced heat 

transfer is held constant ~ 50 W·m-2·K-1
.  

Table 5. Equivalent heat transfer coefficients used in graph theory method. 

Heat Transfer 

Coefficient 

Equivalent Heat 

Transfer 

Coefficient used 

in this work 

 [W·m-2×K-1] 

Corresponding Salient 

Thermal Phenomena  

(refer to Figure 5) 

Equivalent Heat Transfer 

Coefficient Value in Heigel’s 

Model [19] 

[W·m-2·K-1] 

Forced Heat 

Transfer 

Coefficient 

hforced ≈ 10× hfree 

50 (3), (4) Radiative and 

forced convection heat 

transfer between the part 

and gas 

60 (near the top of the wall) 

decreasing to 25 near the 

bottom of the wall 

Free heat transfer 

Coefficient 

hfree 

5 (5) Free convective heat 

transfer between the 

substrate, part and gas 

10 

(on the top surface and side  

of the substrate ) 

Clamp heat loss 

Coefficient 

hclamp ≈ 20 × hforced 

980 (6), Heat loss at 

Substrate-Clamp 

interface. 

N/A. Only half the clamp 

volume is simulated. 
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The last heat transfer coefficient used is called the clamp coefficient (hclamp). As previously 

described in the experimental setup (Figure 3), the substrate was clamped at one end. The surfaces 

of the substrate in contact with the clamp have an extra loss since the clamp acts as a large heat 

sink. Therefore, this extra thermal pathway must be considered in the simulation. Simulating the 

effect of the clamp by populating its geometry with nodes (in graph theory) and elements (in FE) 

substantially increases the computation time. We simulate the entire thin wall part and substrate, 

and account for the heat loss at the clamp without simulating the geometry of the clamp. This is 

done by assuming that the surfaces of the substrate in contact with the clamp have an elevated loss 

given by a coefficient that is 20 times larger than that of the forced heat loss coefficient (hclamp ≈ 

20 × hforced).  

The clamp heat loss is set to a large value to simulate metal-to-metal contact between the 

substrate and the clamp. Above h = 100 W·m-2×K-1, the temperature of the interface approaches 

ambient temperature Ta, and heat conduction through the part governs heat loss from the part. As 

such, the exact convection coefficient for this portion of the model is not consequential, so long as 

it is a large value. The value 20 x hforced was selected as it was much larger than any of the 

convection coefficients and was also large enough to ensure that the boundary in the clamp region 

was close to the ambient temperature, Ta, for the entire simulation. 

(c) Transient Material Properties 

In the current work, thermal diffusivity (α) is modeled as a function of temperature. To 

calculate thermal diffusivity (𝛼 =
𝑘

𝜌C𝑝
), we use the values of  thermal conductivity (k) and specific 

heat (Cp) values in Table 6 provided by Heigel et al [19, 20]. For all calculated thermal diffusivity 

values presented in the table, a density (𝜌) = 4.43 × 103 [kg‧m-3] was used for Ti-6Al-4V.  
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A linear function with temperature as the independent variable is fitted to the 𝛼 values. At 

the end of a layer, the average temperature of the layer after deposition (𝑇̅ [°C]) is obtained, from 

which the thermal diffusivity value for the next layer (α(𝑇̅)) is ascertained. The linear equation is 

α(𝑇̅) = 0.0042𝑇̅ + 2.612. The density of the material is considered to be constant. 

Table 6. Temperature-dependent thermal properties for Ti-6Al-4V from Ref. [19, 20]. 

T [oC] k [W‧m-1‧ oC-1] Cp [J‧kg-1‧ oC -1] Calculated α [m2‧s-1] 

20 6.6 565 2.64 

93 7.3 565 2.92 

205 9.1 574 3.58 

250 9.7 586 3.74 

315 10.6 603 3.97 

425 12.6 649 4.38 

500 13.9 682 4.60 

 

(d) Temperature measurement location 

In the simulation, the location of the point where the thermal history is measured must be 

identical to the location of the thermocouples in the experiment in order to validate the graph 

theory approach. In the graph theory approach, the location of each node is identified by its 

Cartesian coordinates. A node closest to the sensor location, called the sensor node, was identified 

and its Cartesian coordinates were modified to match those of the sensor location prior to thermal 

simulation.  

The sensor node was placed at a depth of 0.1 mm below the surface of the substrate to mimic 

the effect of the aluminum tape used to shield the thermocouples from forced convection losses. 

This node location is identified and shown in Figure 3. After thermal simulation, the thermal 

history of the sensor nodes were plotted against the experimental data reported by Heigel et al [19, 

20].  
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(e) Measurement of error 

Errors between the experimental thermal history and graph theory simulation were calculated by 

comparing the measured temperature to the graph theory predicted temperature at all instances in 

time. Two different methods of calculating errors were used in this work. Eqns. (20) and (21) show 

the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), respectively. 

We note that the MAPE and RMSE error quantification metrics consider error for the entire 

thermal history over n-time steps, not simply the error at a single point. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
×∑|

𝑇𝑖 − 𝑇̂𝑖
𝑇𝑖

|

𝑛

𝑖=1

 (20) 

In both equations, 𝑛 is the number of instances in time that were compared over the duration of 

deposition (n = 1800 for Case A, n = 900 for Case B); 𝑖 is the current instant in time, 𝑇𝑖 is the 

measured temperature, and 𝑇̂𝑖 is the graph theory simulated temperature.  

  

𝑅𝑀𝑆𝐸 = √∑
(𝑇𝑖 − 𝑇̂𝑖)

2

𝑛

𝑛

𝑖=1

 (21) 



36 

 

5 Results  

The simulations were conducted in the MATLAB environment on a desktop personal 

computer with an AMD Ryzen Threadripper 3970X, @3.7 GHz CPU with 128 GB RAM onboard 

memory. Table 7 shows the corresponding errors and computation times for all simulations as a 

function of node density and meltpool temperature (T0). The simulation is repeated three times for 

each scenario, and the uncertainty is quantified in terms of the standard deviation of the repetitions. 

Figure 12 presents the simulation results and thermal history for Case A and Case B with different 

node densities for the representative meltpool temperature T0 = 2200 °C. 

The computation time increases in a nonlinear manner as a function of the number of nodes, 

with diminishing improvement in precision in terms of MAPE and RMSE. For the simulation 

using one node per block (0.235 nodes/mm3) for Case A with T0 = 2200 °C, the MAPE was found 

to be approximately 10.5% and RMSE was 22 °C (viz., 1/10th of the recorded peak temperature of 

200 °C). The key result is that the computation time is ~4 minutes. For Case B, the error increases 

to 12% MAPE and 70 °C RMSE (1/7th of the peak temperature of 500 °C). With FE analysis, 

implemented by Heigel et al. [19, 20], the result is reported to take approximately 135 minutes 

using the inactive element method. 

In Figure 12 the rise in temperature observed in the initial part of the build from the 

experimental data is consistently higher than the graph theory predictions. Further, in the graph 

theory predictions, the time-location of the maximum temperature occurs later than the 

experimental data. Several sources of error offer explanation as to the difference between the graph 

theory simulation and the measured values from the experiment. This error is produced in part by 

the gain factor (g) in Eq. (15) and (17), which influences the rate of heat diffusion in the graph 

theory approach.   
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Table 7. Summary table for Case A and Case B simulation. The number in the 

parentheses is the standard deviation over 3 replications. 

  
  

Graph Theory approach 

with different assumed meltpool temperatures T0 

 

Build 

Time 

(min) 
Node 

Density 

(nodes/mm3) 

Comput

ation 

Time 

(min) 

T0 = 1900 oC T0 = 2200 oC T0 = 2500 oC 

FE model 

reported in 

Ref. [19, 20] 

MAPE 

(%) 

RMSE 

(oC) 

MAPE 

(%) 

RMSE 

(oC) 

MAPE 

(%) 

RMSE 

(oC) 

MAPE (%) 

C
as

e 
A

 

26 

0.235 4 
13.10 

(1.36) 

25.92 

(1.62) 

10.75 

(1.95) 

23.21 

(2.84) 

10.13 

(4.48) 

21.48 

(6.88) 10.4 

(computation 

time 136 

minutes) 

0.470 23 
9.80 

(0.61) 

22.82 

(0.99) 

7.65 

(1.28) 

18.77 

(2.05) 

7.55 

(2.34) 

17.67 

(3.75) 

0.706 79 
7.95 

(1.62) 

20.70 

(1.65) 

6.60 

(1.10) 

18.39 

(1.41) 

5.98 

(2.59) 

16.54 

(2.89) 

C
as

e 
B

 

5 

0.235 4 
26.54 

(2.57) 

114.37 

(11.48) 

17.33 

(1.61) 

75.04 

(5.25) 

10.49 

(2.82) 

48.46 

(11.63) 2.4 

(computation 

time 136 

minutes) 

0.470 23 
24.45 

(1.89) 

105.21 

(8.23) 

12.70 

(0.54) 

59.50 

(2.42) 

10.48 

(0.90) 

49.46 

(3.58) 

0.706 79 
22.56 

(0.47) 

97.95 

(1.61) 

12.48 

(0.88) 

57.80 

(3.76) 

12.38 

(0.54) 

53.28 

(3.09) 

 

 
Figure 12. Graph theory simulation results for Case A and Case B for different node densities with 

T0 = 2200 °C. The accuracy of prediction improves with increasing node density at the cost of 

computation time.  
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As discussed in Sec. 4.3.4, g and ε values were selected such that the error (MAPE) was 

minimized over the entire thermal history predicted by the graph theory approach for Case A when 

fitted to the corresponding experimental data. Since the rise time is a small fraction of the time 

domain, the gain factor (g), which is optimized over the entire time domain, somewhat favors the 

latter and longer duration of the temperature history at the expense of the initial rise. Another 

source of error is the free and forced convection assumption. The free (hfree) and forced convection 

coefficients (hforced) are linked (hforced ≈ 10×hfree) and further connected to the heat loss at the clamp 

(hclamp ≈ 20 × hforced). Hence, an error in these heat transfer coefficients will propagate throughout 

the model.  

Other sources of error include meltpool shape and temperature assumption used for the laser, 

stemming from Goldak’s equation (Eq. (19), and the discretization of laser path as a block-by-

block progression. These assumptions limit the accuracy of the model as a tradeoff to promote fast 

simulation, which was a key aim of the graph theory approach. 

Lastly, the error between the experimental thermal history and graph theory simulation were 

found to be larger for Case B than for Case A. This is to be expected as the simulation parameters 

were calibrated based on experimental observations from Case A and directly applied to Case B. 

In converse, Heigel et al. calibrate their model parameters with Case B and apply them to Case A. 

As the deposition progresses, higher temperatures will be observed in the newly deposited layers. 

This is because as the height of the wall increases, its thin cross-section impedes the conduction 

of heat into the substrate.  

The accumulation of heat in the upper layers is observed in the simulated spatiotemporal 

thermal history of the thin wall, exemplified in the images shown in Figure 13. Furthermore, in 

the graph theory simulations for Case A, the dwell time allows the heat to diffuse into the chamber 
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via convection and radiation, and into the substrate via conduction. In Case B, the accumulation 

of heat is severe in the top layers as the dwell time is not sufficient to dissipate the heat. Unlike FE 

analysis, where elements have a physical volume, in the graph theory approach the volume of the 

part is discretized as point nodes. In Figure 13, some regions of the part have no nodes, hence there 

are empty spaces in the temperature distribution. In our future work, we intend to interpolate the 

temperature in these areas where there are no nodes.  

Next, we compared the FE-based predictions published by Heigel et al.  [19, 20] with graph 

theory-predicted trends in Figure 14 for the representative case of 0.4709 nodes per mm3 and 

meltpool temperature T0 = 2200 as it entails a reasonable tradeoff between computation time and 

accuracy. The graph theory approach for Case A predicts the experimental trends more precisely 

than the FE solution. Again, this is because the parameters for the graph theory approach are 

calibrated based on Case A trends. The performance of the FE approach is much improved for 

Case B compared to Case A, as the data from Case B was used by Heigel et al. to calibrate their 

FE model.  
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Figure 13: Snapshots of the graph theory-based simulation for Case A and Case B. The lack of 

dwell time in Case B leads to accumulation of heat in the top layers of the part. Because nodes 

take no physical space in this representation, some white spaces can be seen in this image. 

 
Figure 14: The comparison of the experimental data, with FE and graph theory predictions. The 

FE results are obtained from the work of Heigel et al. [19, 20].  
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6 Conclusions and Future Work  

The objective of this work was to develop, apply, and validate a graph theory-based approach 

for thermal modeling in the directed energy deposition (DED) process. The graph theory method 

was validated with experimental temperature data for titanium alloy (Ti-6Al-4V) [19, 20]. Using 

the graph theory thermal modeling approach, practitioners can rapidly simulate the thermal history 

of DED components. This physical insight into the temperature distribution will be valuable for 

optimizing process conditions, such as laser power, part orientation and tool path, before the part 

is printed to avoid failures resulting from overheating. The approach can consequently reduce the 

need for an expensive build-and-test empirical optimization strategy, and thereby accelerate the 

time-to-market of DED parts.  

The test parts are thin wall geometries with length ~37.2 mm, width ~3 mm, and vertical build 

height ~11 mm. The thin wall labeled Case A was deposited with a 20-second programmed dwell 

time between layers and the thin wall labeled Case B was deposited with no dwell time between 

layers. The build time for Case A is close to 26 minutes and 5 minutes for Case B. Several 

simulation scenarios were tested, including varying the resolution (number of nodes) and assumed 

melt pool temperature. Summarized below are results from a representative scenario that balances 

accuracy and computation time.  

• For Case A, the graph theory approach predicts the temperature distribution with mean 

absolute percentage error (MAPE) less than 7% within 24 minutes of computation using 

desktop computing resources. The error is ~12% for Case B with the same computation time 

of 24 minutes. In comparison, the MAPE error reported by Heigel et al. using their FE-

based model was ~10.5% (Case A) and 2.5% (Case B), with computation time 136 minutes.  
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• The simulation time can be reduced to as little as 4 minutes by sacrificing resolution of the 

simulation (reducing the number of nodes); The prediction error increases to ~ 10% for Case 

A and 17% for Case B.  

The results substantiate the ability of the graph theory approach for fast approximation of the 

thermal history in DED. Several improvements to the graph theory model are currently being 

investigated to improve the model accuracy without sacrificing computational efficiency. These 

include modeling the laser as a heat source as opposed to a fixed temperature boundary condition, 

integrating the convection boundaries into the graph Laplacian matrix, allowing variable node 

density, and enabling increased accuracy in thermodynamically relevant regions near the laser 

source. In our future research, we will extend this work to the DED of complex part geometries 

using both in-situ measurement of local meltpool temperature and global part temperature. Finally, 

we will endeavor to relax the decoupled thermal-mechanical assumption endemic to almost all FE-

based simulations of DED.  
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