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Figure 1: We introduce audio data narratives, which combine textual data representations and data sonification. Based on
identified design principles and relevant auditory processing characteristics, we propose a heuristics-based approach to auto-

matically generating a narrative given a time-series dataset.

ABSTRACT

Online data visualizations play an important role in informing pub-
lic opinion but are often inaccessible to screen reader users. To
address the need for accessible data representations on the web
that provide direct, multimodal, and up-to-date access to the data,
we investigate audio data narratives —which combine textual de-
scriptions and sonification (the mapping of data to non-speech
sounds). We conduct two co-design workshops with screen reader
users to define design principles that guide the structure, content,
and duration of a data narrative. Based on these principles and
relevant auditory processing characteristics, we propose a dynamic
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programming approach to automatically generate an audio data
narrative from a given dataset. We evaluate our approach with 16
screen reader users. Findings show with audio narratives, users gain
significantly more insights from the data. Users describe data nar-
ratives help them better extract and comprehend the information
in both the sonification and description.
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1 INTRODUCTION

Online data visualizations are increasingly used, by both domain
experts and general audiences, to communicate important insights
from complex data [44]. Insights gained from data visualization
can help people make important decisions concerning health (e.g.,
COVID-19) and finances (e.g., stock trends), guide policy makers
and scientists in understanding natural phenomena, and support
communication in journalism, etc.

Data visualizations are effective in amplifying cognition for data
exploration [14]. Much of the guidelines and tools used for creating
data visualizations have been investigated for producing effective
visual graphics, which poses a significant disadvantage to those
that cannot benefit from visual consumption [26, 65]. Recent work
has highlighted some of the challenges faced by people who are
Blind and/or Visually Impaired (BVI), as primarily screen reader
users, when accessing data visualizations on the web [35, 48, 65, 66].
Screen reader users access data visualizations in alternative ways
using additional and/or different modalities (e.g., primarily speech
and audio). Towards improving screen reader users’ access to non-
visual data representations, in this work, we investigate audio data
narratives —which combine textual data representations and data
sonification. Our work is driven by the need for accessible data
representations that provide rich and direct access to the data, are
updatable, and are robust to access on the web by screen reader
users [48].

Image descriptions, presented as alternative text or alt text, and
tabular data are among the most common alternative represen-
tations that are accessible to screen reader users on the web, as
recommended by web accessibility guidelines such as WCAG [74].
A limitation of descriptions, or more generally textual representa-
tions, is that they do not provide direct access to the data [65] and
instead only capture the author’s interpretation of the data, rather
than supporting the reader in making their own interpretation [66].
The level and quality of description can also vary widely [35]. Com-
pounded with these issues is the fact that descriptions often require
human authoring for them to be done well. With data charts that are
updated automatically, descriptions can become outdated, creating
a mismatch with the information presented visually [35, 66]. Lastly,
textual representations rely on speech modalities which can pose
a high cognitive load to interpret compared to a direct perceptual
interface, especially when communicating graphical and highly
spatial information [28].

Data sonification is an alternative representation that addresses
some of the challenges with textual representations by providing
more direct access to the data. Sonification is the mapping of re-
lationships in data into perceived relations in an acoustic signal,
taking advantage of human’s auditory perceptual capabilities to
make the relationships comprehensible [34]. Much of the work
on sonification has focused on the low-level data inquiries, by in-
vestigating auditory parameters that make the information more
perceivable [11, 49, 53, 71]. Considerably less work has focused on
additional information that contributes to higher level communica-
tion goals (e.g., trend identification, predictions, decision-making)
[5]. Communication is the primary purpose of visualizations pre-
sented for casual consumption such as in the news and articles on
the web. To improve data communication with audio graphs using
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real-world datasets, more focus is needed on understanding how
to support the user in interpreting the sounds in the graph and
making connections between perceptual and conceptual levels to
gain meaningful insights from the data.

With visual graphics, several studies have assessed the benefits
of tight integration between text and visualization through different
spatial layouts, data annotations, and interactions [36, 73, 81]. Data
narratives are increasingly used to aid narrative communication
of findings to non-domain experts by helping to clearly highlight
and emphasize one or more intended messages in the data [7, 60].
Segel et al. describe narrative visualization as "tours through vi-
sualized data" which can be organized in a linear or non-linear
sequence or "they can also be interactive, inviting verification, new
questions, and alternative explanations" [64]. Data narratives have
mostly been explored with visual graphics. We posit that effective
narrative techniques can be extended and applied to also improve
consumption of audio graphics. A data representation that more
tightly integrates descriptions as a narrative to guide the reader,
with data sonification to provide direct access to the data, could im-
prove data communication through accessible modalities for screen
reader users.

In this work, we introduce audio data narratives and explore
their benefits and tradeoffs for data communication purposes. We
conducted two virtual workshops with BVI co-designers to define
design principles that guide the structure, content, and duration of
an audio data narrative. As a starting point, our design investigation
focuses on improving communication of time-series data. Temporal
data is among the most common data types, typically presented
visually through a line chart [8], and much prior work investigating
auditory mappings for sonification have set forth guidelines for
time-series data [12]. We apply these design principles driven by
findings from the co-design workshops and prior work in auditory
perception, to develop a heuristics-based algorithm for automati-
cally generating an audio data narrative given a time-series dataset.
Figure 1 provides an overview of our approach.

To evaluate how our approach with audio data narratives sup-
ports data communication of real-world datasets, we conduct an
evaluation with sixteen BVI screen reader users. We find the audio
data narrative representation, which interleaves both description
and sonification, helps users gain a more complete gist of the data
when compared to a standard sonification representation (control).
The control representation has the same description but presented
first rather than interleaved with the sonification. Users draw more
insights from the sonification when consuming the information
in narrative form. The audio data narratives are especially helpful
for communicating complex real-world datasets that have more
than two trend reversals [54], but their benefits are lesser with
more simple datasets. Users describe their preference for audio data
narratives in helping them better extract and comprehend the in-
formation in the sonification when gaining a gist of the data. Based
on the evaluation findings, we believe, audio data narratives are a
promising approach to provide automatic and up-to-date access to
data visualizations on the web.
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2 RELATED WORK

First, we review important considerations on auditory perception
to inform effective information encodings. Additionally, we review
related work on data representations accessible to screen reader
users focusing on the use of speech and non-speech modalities.

2.1 Auditory Perception & Encoding

There are three perceptual tasks central to auditory cognitive pro-
cessing: segmentation, localization, and categorization [46]. Given
a sensory stream, the auditory system segments multiple poten-
tial sound sources into distinct sources to form a coherent spatial
scene of the environment. Bregman termed the task of analyzing a
mixture of sounds auditory scene analysis [9]. The auditory system
makes sense of an auditory stream by 1) making use of primitive
processes of auditory grouping, and 2) leveraging known schemas
incorporating our knowledge of familiar sounds. Both processing
mechanisms involve bottom-up and top-down processes. This task
has similarities with visual processing where given a visual scene,
the visual system must partition the scene into one or more objects
and foreground and background [40]. However, given the temporal
nature of hearing and the fact that sounds are transient, supporting
memory and minimizing workload is particularly important for
audition [46].

In perceiving and categorizing complex patterns as a whole, the
auditory system, like haptics and vision, has the ability of auditory
gestalt formation [33]. Organization of sound components into a
meaningful element is referred to as an auditory object [70]. A
number of gestalt principles have been shown to apply in auditory
perception, these include: grouping by timbre, frequency proxim-
ity of sound events, good continuation of sound events, common
fate, and closure [20, 33]. Effective data representations can take
advantage of the auditory perceptual system capabilities to make
the information more comprehensible and reduce workload.

2.2 Natural Language Descriptions of Data

Image descriptions or alternative text, often referred to as alt text,
is the most common way in which BVI users encounter graphical
representations. Alt text provides a textual alternative to graphical
content. When accessing an image with alt text, if it is available, it
is presented to the users’ assistive technology. With screen read-
ers, alt text would be read aloud or, if not present, an image may
just be announced as "image" with no description of its content.
The Web Content Accessibility Guidelines (WCAG) provide gen-
eral guidelines for the creation of alt text [74], while the National
Center for Accessible Media (NCAM) provides more specific guide-
lines for describing STEM images including data charts [30]. Using
the NCAM guidelines, Morash et al. developed and evaluated a
template-based description generator for data charts which lead to
more standardized word usage and structure [49]. To address chal-
lenges with human authoring of image descriptions and provide
access to up-to-date information, other approaches have investi-
gated automating image descriptions combining computer vision
and natural language processing. These approaches have been in-
vestigated for general-purpose images (e.g. in social media, web
search) [28, 75] as well as for describing specific types of data visu-
alizations and data features [17, 23, 38, 51].
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An important consideration with natural language descriptions,
is that meaningful information may be strongly reader-specific [47].
BVI users’ preferences on image descriptions can vary depending
on the media source and information-seeking goals [67]. Prior stud-
ies investigating BVI users’ experiences with descriptions of data
graphics have shown that while descriptions support the user in
gaining a general overview, they are not comprehensive enough
in supporting a rich and detailed understanding [65, 77] and that
there is a gap in supporting the user in confidently generating their
own insights [66]. Lungard et al. investigate a model of semantic
content to better guide the content of image descriptions and posi-
tion natural language as a data interface coequal with visualization
[47].

A last consideration with descriptions is that while textual repre-
sentations can accurately describe information, such presentation
tends to be more verbose, error prone to interpret, and require more
cognitive load than a perceptual interface that directly renders the
same information through touch or vision [29]. In this work, we in-
vestigate how shortcomings from natural language descriptions can
be addressed with complementary information provided through
data sonification (and vice versa).

2.3 Tabular Data Representations

For data-driven content, in addition to image descriptions, guide-
lines also recommend including the source data in tabular form.
While tabular representations provide direct access to the data,
there are several limitations including: overloaded speech feedback
[59] and working memory [37 ,68], and lack of an overall picture of
the data structure [59, 65, 66]. Speech and non-speech sounds have
been used to improve navigation and comprehension of 2D tabular
representations by significantly reducing workload and providing
a better overview of the information [37, 59, 68]. To address the
challenges with textual representations while providing more direct
access to the data, in this work, we explore audio data narratives
and assess the benefits of more tightly integrating both textual
representations and non-speech sounds.

2.4 Data Sonification

Sonification is another method that exploits sound to make data
graphics more accessible by transforming data relations into per-
ceived relations in an acoustic signal [34]. Sonification has been
investigated for communicating a variety of data such as time-
series data [12, 21, 42], georeferenced data [80], and mathematical
functions [2, 56, 77]. Recently we have seen a number of these tech-
nologies used in practice such as in the Desmos graphing calculator
[18] used in education to support both visual and audio representa-
tions of mathematical functions, Apple’s audio graph accessibility
API [6] that allows specification of audio graphs and sonified data,
and the SAS Graphics Accelerator [62] which allows importing
tabular data and exploration through a variety of sonified graphs.
Auditory displays can deliver high amounts of detail but there are
multiple mapping possibilities and few standards in place [63]. In
considering mapping possibilities for data communication, Sawe et
al. recommend striking a balance between four key but interrelated
elements: fidelity to the data, level of complexity, aesthetics, and
accessibility. Prior works have also investigated the effectiveness of
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specific data to audio mappings for sonification displays; providing
recommendations on pitch and time mapping, choosing distinct
timbres [12], polarity mapping [71], the use of rhythmic clicks for
context [52], reference tones and white noise [53], and duration
[53] (See a more general review and guidelines in [34]). Much of
this work on sonification has focused on the low-level data tasks,
by investigating auditory parameters that make the information
more perceivable.

To better support high-level task interactivity, Zhao et al. pro-
posed a framework for Auditory Information Seeking Actions
(AISAs) [79]. The framework includes Gist, Navigate, Filter, and
Details-on-Demand. Gist is the first step in obtaining an overview
of the data, to guide further exploration. In Zhao et al’s work, a
common sonification exploration strategy used by BVI users to
obtain a gist of georeferenced data was to break down the data into
smaller ranges and then sweep each range in a consistent order to
systematically build an overview [79]. This strategy was more effec-
tive than repeated sweeps of the entire map and could be explained
by the limited working memory capacity with auditory stimuli,
especially when investigating complex data. Brown et al. also re-
ported sighted users’ systematic isolation of specific regions was
helpful in understanding sonified line graphs [11]. Similar to other
kinds of graphics, with sonification, good strategies also need to be
learned [33, 79]. Working with BVI novices unfamiliar with soni-
fication, Zhao recommended training on specific auditory sweep
and pattern recognition strategies [79]. For casual data consump-
tion on the web, providing such one-on-one training on successful
exploratory strategies might not be as feasible. In this work, we
investigate audio data narratives to improve communication and
interpretation of auditory graphs through sonification. A narrative
can help contextualize the information and support the user in their
interpretation.

3 CO-DESIGN WORKSHOPS

To identify important considerations when creating an audio data
narrative for data communication using sonification and descrip-
tions, we conducted two virtual workshops with BVI co-designers
who were primarily screen reader users. Our goal was to work
with co-designers to lead discussions and generate ideas on how
we might make auditory graphs easier to navigate and interpret
through a narrative. All workshops were conducted online through
the Zoom video conferencing platform and lasted between 90 and
120 minutes.

3.1 Participants

Four co-designers were recruited through snowball sampling to par-
ticipate in two recurrent group design workshops. All co-designers
were working professionals residing in the United States, with an in-
terest in data accessibility. All co-designers identified as blind and/or
visually impaired and used screen readers as their primary assistive
technology. The median age was 26.5 (SD = 17.9, range = 40).
Two co-designers had a strong preference for tactile graphics when
consuming data graphics while the remaining two co-designers had
a stronger preference for audio-based methods such as sonification.
Additionally, two members of the research team participated as
facilitators during both workshops. One facilitator was sighted, and
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the second facilitator identifies as blind and uses a screen reader as
their primary assistive technology.

3.2 Materials & Methods

Before the workshops, the research team met with each co-designer
individually to explain the goal of the co-design workshops, answer
any questions, and understand any accessibility needs. Physical
and digital materials that were used to support different workshop
activities were shared with all co-designers one week in advance.
Physical materials were mailed to co-designers; these included
tactile graphics, tactile prototyping materials (e.g., wikki stix, pipe
cleaners). Digital materials included a detailed agenda for each
workshop, background information, and sample datasets. For each
dataset, we provided three different data representations: a textual
description, a tabular representation and a sonified representation.

The first workshop focused on the brainstorming and ideation
stages of the design process. The goal of the activities for this work-
shop were to encourage conversation about different available data
representations (tactile, speech, and audio), discuss preferences and
tradeoffs between representation types, and to formulate a list of
guidelines for when each representation was useful or preferred.
The workshop began with co-designers individually familiarizing
and exploring each of five different datasets provided through both
physical (tactile graphic) and digital representations (tabular data
and graph sonification). Co-designers were encouraged to think
about the story behind the data and how they might share that
story to their peers, including non-experts. After individual explo-
ration participants discussed their insights as a group. Facilitators
prompted questions for users to reflect on information available
with each of the different data representations and co-designers’
preferences based on what they were interested in learning from the
data. The workshop concluded with a brainstorming activity where
facilitators prompted co-designers to propose prototype ideas to
improve the sonification representation. In addition to the materi-
als provided, some co-designers made use of additional software
tools: Audacity (audio-editing tool), the SAS Graphics Accelerator
[62], Desmos graphing calculator [18] to explore prototypes of the
proposed ideas. Throughout the discussions between participants,
the facilitator took notes and at the end shared a collective sum-
mary of prototype design suggestions based on the co-designers’
feedback. We include sample prototypes from the workshops in
Supplementary Materials.

Between the first and second workshops, the research team gen-
erated prototype alternatives that were discussed in the first work-
shop. Continuing the conversation over email, facilitators provided
a summary of what was learned from the workshop and answers
to any of co-designers’ questions that could not be answered at
the time of the workshop. The second workshop focused on the
prototyping stage of the design process. The workshop focused
on critiquing the different prototype probes that were generated
from the first workshop and prompting co-designers to suggest any
improvements. The workshop again concluded with a summary of
the main insights learned and discussion of remaining questions.
After the workshop, facilitators transcribed observation notes and
meeting recordings from both workshops. Open coding was used
to organize the data and identify common findings.
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3.3 Observations & Findings

Prototypes generated from the workshops primarily explored the
use of data sonification and speech narration. Observations from
the workshops point to important design considerations. When
exploring a complex dataset, co-designers found it most helpful to
break down exploration of the graph sonification by segments (F1).
When sharing dataset insights with the group, co-designers would
provide contextual information verbally (e.g., axis values, trend
shape) and play smaller relevant segments of the sonification. This
exploration strategy, similarly, discussed in prior work with both
BVI and sighted users [11, 79], was described by co-designers as
being helpful for “keeping track of how far along the time-series [ am
at any given moment”. With simpler datasets that conveyed fewer
trend reversals or that were cyclical “with no dramatic changes”,
co-designers suggested “just play the whole series without a break...
You can keep track of where you are in the series”. The number of
trend reversals as well as number of data points has been reported
in prior sonification studies as increasing complexity and impacting
global integration [15, 54].

Co-designers cautioned on maintaining a balance between too
many and too few segments (F2); with co-designers suggesting,
“determining what length of time a person can retain in memory”.
Regarding the content of each segment, co-designers suggested the
segment should either help identify relevant patterns in the audio
or provide a systematic breakdown by time periods depending on
the purpose of the visualization (F3).

In combining sonification with descriptions, co-designers em-
phasized the need for descriptions always preceding any presenta-
tion of the audio (F4), “I feel strongly that the audio [sonification]
should never precede the description... otherwise, it’s like looking
at a graph with no markers on it” Co-designers described the nar-
ration as helpful for creating an expectation before listening to
the audio [33], “for explaining, identifying specific values that are
significant, or making a comment about the general pattern and the
significance of it”. Co-designers also strongly suggested avoiding
any overlap between the speech and sonification (F5). Overlapping
of the narration with sonification was described as increasing the
mental demand for what to focus on, but perhaps at the cost of
losing context. One co-designer suggested, overlap should only be
used “if there isn’t anything interesting [that] you’re trying to call
out within the series”.

As investigated in prior work, co-designers also found it helpful
to include rhythmic clicks or beats to mark passing of time along
the x-axis [33] (F6). This was helpful for providing a more granular
marking of time, in addition to the narrative segments. Co-designers
had different preferences on sound characteristics (e.g., pitch range,
timbre, tempo, etc.), suggesting that these characteristics would
be better personalized by the user (F7). Though as discussed from
prior work some ideal ranges have been reported for parameters
such as tempo, pitch, and duration [12, 24] which can be helpful in
providing a starting point for novice users.

4 DESIGN PRINCIPLES FOR AUDIO DATA
NARRATIVES

We summarize takeaways from the co-design and their connection
to prior work to define audio data narratives for time-series data.
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An audio data narrative is composed of sonification segments and
verbal descriptions. Given a time-series dataset, a data narrative
should include the following:

D1. The description segment precedes (and does not over-
lap) the data segment to provide context, structure and set
the expectation for the upcoming data sequence. With audio,
users’ interpretation is influenced by the expectation created by con-
textual cues [1, 49]. Co-designers described the preceding speech
as important to help guide their attention by setting the context for
how to interpret the sounds. The description should avoid overlap-
ping with the sonification to mitigate mental load.

D2. The structure of the description segment is consistent
across the narrative and describes at minimum the start and
end point for the upcoming data sonification segment. Addi-
tionally, the description can provide external context to explain the
data or highlight key points in the upcoming segment.

D3. The sonification segments maintain consistent trends,
maintaining the rhythmic pattern. Co-designers grouped soni-
fication segments based on minimal trend changes. In prior work,
the number of trend reversals has also been suggested as the fun-
damental psychological unit in line graphs [15] as a higher number
of trend reversals in a sequence impacts global integration [54].
Temporal resolution changes at the sub-milliseconds level are per-
ceived as pitch changes, while temporal changes at the sub-seconds
level are perceived as rhythm [19]. The impact of trend reversals
on graph comprehension has been attributed to rhythmic theory
that patterned sequences of notes are comprehended more easily
than less structured and random combinations [19].

D4. The narrative maintains a moderate number of over-
all segments. Users can focus on a limited number of items in the
overall picture [1]. Too long of an auditory signal and too many
trend reversals, increases the number of items to remember [15].
Based on our co-design findings, providing too many segments
could also impact workload by requiring the user to constantly
switch attention between speech and non-speech sounds.

D5. The sonification segments maintain a moderate dura-
tion. Sonification segments should be neither too short nor too
long. Target identification in an auditory stream is mediated by
top-down processes rather than bottom-up (pre-attentively) [22].
This means that buildup of trends from a stream of tones requires
more time, compared to pre-attentive pitch changes in the order of
milliseconds. Users need a few seconds (in order of 3 to 5 seconds)
to perceive overall changes in rhythm [22]. With an auditory stream
that is too short, it might be difficult to extract or understand the
pattern in the data. Similarly, an auditory stream that is too long
might exceed how much information can be held in working mem-
ory. Prior work has suggested keeping the duration of an auditory
graph up to 10-12 seconds, with a duration per note of 50-10 msec
[53].

5 GENERATING DATA NARRATIVES

Findings from the co-design workshop suggested that data nar-
ratives could help BVI users better comprehend auditory graphs
and lead to meaningful insights. To support our goal of providing
up-to-date and accurate access to the data, we investigated how the
process of generating the data narratives could be automated.
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We pose the problem as a temporal segmentation problem, where
our goal is, given a set of data points, find a narrative composed of
speech and sonification segments. Driving the algorithm outcomes
are heuristics based on the identified design principles (Section 4).
A heuristic approach to generating narratives, as opposed to a more
data-driven approach, was more suitable since discussions in the
co-design did not necessarily identify a ground truth. More impor-
tantly, a heuristic approach allows more customization as well as
the possibility of easily defining and including additional heuristics
depending on the application context being used. However, a disad-
vantage is that different heuristics might need to be investigated for
different data visualization types whereas a data-driven approach
could provide a more general solution. Here we limit our scope to
single timeseries datasets. With the defined heuristics, we solve
this optimization problem using dynamic programming. In the next
subsections, we describe each step and how we define the problem.

5.1 Identifying Boundary Points

To define the narrative segments, we first need to identify where
a segment could begin and end. To identify candidate boundary
points, we define units (u1, ..., uyp), and use the Perceptually
Important Points Algorithm (PIP), which provides a reduced set of
points that most contribute to the overall shape of the time-series
[25, 72]. Units are a set of points in the data that cannot be broken
down further (u; = [pi, pi+1])- Since we want to keep together
points that form a consistent pattern, these points are the most
likely to be the points where a segment begins or ends.

5.2 Data Segmentation with Dynamic
Programming

Next, we want to combine units into segments (s1, ..., s;) that
compose an optimal narrative (Nj). Given n units (u1, ..., un),
there are 2" possible subsets. To solve this problem, we define cost
functions based on principles identified in Section 4 and solve this
problem using dynamic programming [32]. An optimal narrative
will be composed of a collection of segments which maximizes the
cost function.

For a given narrative composed of segments (Nj = s, ..., Sm),
our algorithm identifies the optimal segment boundaries. Units
are processed in order, and the cost of a segment (s; =
{ug, - .. ur, ..., us})is evaluated against the cost of splitting the seg-
ment into smaller segments (s; ={ug, ... ur}, Si+18= {Ur+1, ... Us}).
The algorithm proceeds recursively, keeping track of the best cost
as well as the optimal partial narrative. At the end, the optimal
narrative will have the lowest cost. We define three cost functions:

C1. Consistency cost. To maintain segments with minimal trend
reversals that maintain the rhythmic pattern in the sonification
(D3), we define a consistency cost proportional to the difference in
angle between adjacent units [15].

Cconsistency (Nj) = Zf(sl)

i=1X

s—1
Fsi)=f (g us}) = > glu. ugsr)

k=1K
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g(uk, ”k+1) — {07 if L (uk) -7 (uk+1) < .ﬁl
£ (ug) — £(ugyq) , otherwise
where fig= /9.

C2. Duration cost. A narrative maintains a moderate duration
for each segment (D5), not too short (at least 3 seconds) and not
too long (ideally within 12 seconds). We calculate the duration of
a given segment (dur(s;)) based on the number of data points and
sonification tempo. Extremely short segments (below Tj,,,,) are
strongly penalized since we do not want a segment close to zero.
For segments above Typper, we include a linear increase in cost
since we do not have a strict cut-off. For segments in the ideal range
between Ty and Typper, we define a quadratic loss function.

m
Cduration (NJ) = Z Cauration (51)
i=1K
117dur(si) + TIOW”, if dur(si) < Towem
2

Borx (dur (s;) — 0.5Tupper + 15T ower) s
if Tiower <dur(si) < Tupper

40 dur (s;) — 10), if dur(s;) = Tupper
where Tjgyer = 3, Tupper = 12, and Bog= 0.075.

C3. Number of segments cost. To prioritize a moderate number
of segments (num(N)) in a narrative (N) between njg,,e, = 2, and
Nyupper = 4 (D4), we use a quadratic loss function with a minimum
at 3. At minimum we want one segment, so anything below 1Xs
strongly penalized.

Cauration (si) =

num (Nj) —3@2? if num(Nj) > 1K

Crumber (N]) = {[ oo, otherwise

Final cost. The final cost of a narrative (N;) is the weighted as the
sum of the individual cost functions (C1, C2, C3). For the datasets
shown in Figure 2, we use the following hyperparameter values:
Gconsistency = 0.05, Apymper = 2.0, and agyrarion = 1.0. We
chose these parameters through experimentation.

Ctotal (Nj) = Qconsistency X Cconsistency (Nj)
+ Aduration X Cduration (Nj)
+ pumber X Cnumber (NJ)

Applying this segmentation process, Figure 2 shows the results
for four different datasets. The simple datasets have 115 and 120
data points while the complex datasets have 270 and 281 data points.
Appendix Figure A.1 provides additional samples generated with
our approach.

5.3 Sonification Parameters and Generation

With the identified optimal segments, the next step is generating
the sonification. For the sonification, we use a frequency mapping
paradigm [53]. A piano sound font is used for the timbre, the pitch
range is set between MIDI notes 30 to 127, and the tempo is set
to 400 beats per minute [12]. We use a positive polarity mapping,
such that the dataset maximum value corresponds to the maximum
pitch frequency.

5.4 Speech Generation

With identified sonification data segments, the last step is determin-
ing the descriptions which precede each data segment (s;) in the
narrative (D1). The first description segment always contains the
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a) Simple Datasets
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b) Complex Datasets
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Figure 2: Sample datasets and the segments identified by the algorithm (marked by dashed lines). These datasets were used in
the evaluation and included a) Simple datasets with two segments, and b) Complex datasets with four segments.
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Figure 3: Our evaluation included two conditions. a) In the
Control condition, the verbal description was presented all
together in one segment followed by one complete segment
of the corresponding data sonification. b) In the Narrative
condition, the verbal description was interleaved between
segments of the corresponding data sonification.

dataset title and a legend that provides context to the maximum and
minimum pitch and its corresponding value in the dataset (Figure
1). To compose the description preceding each segment, we use
sentence templates. The speech descriptions provide at minimum
the value of the start and end points (D2). Additionally, if there is
a maxima or minima point in the upcoming segment, we include
it in the description. The following are two representative speech
templates:

e In [time-period-start], [dimension] was [value-start] and
then it [slope (increased / decreased)] to [value-end] in [time-
period-end].

e In [time-period-start], [dimension] was [value-start] and
then it [slope (increased / decreased)] to all-time [high / low]
of [value-end] in [time-period-end].

Finally, the sonification and description segments are stitched
together in sequential order. Figure 1 shows the narrative output for
a dataset on COVID positivity rate. Additional samples are provided
in Appendix 1.

6 EVALUATION

We conducted a study to understand the benefits and limitations of
data sonification narratives in contrast to the standard approach
of presenting auditory graphs through sonification. We were inter-
ested on whether data narratives help users better understand the
data tones and thus influence the kind of insights users gain.

6.1 Experimental Conditions

The study was conducted as a repeated measures 2x2Kwithin-
subjects study design. A balanced Latin square design was used to
reduce order effects. Participants were presented with an auditory
graphic in one of two ways (Factor 1). In the Control condition
(Figure 3a), the verbal description was presented all together in one
segment followed by one complete segment of the corresponding
data sonification. In the Narrative condition (Figure 3b), the verbal
description was interleaved between segments of the correspond-
ing data sonification. This condition evaluated the output from the
generation pipeline described in Section 5.

In addition to varying how the information was presented, we
included datasets from two levels of varying complexity (Factor
2). The datasets used for the study are shown in Figure 2. In the
Narrative condition, the simple datasets included two segments (115
and 120 data points), while the complex case included four segments
(270 and 281 data points). The datasets varied in the number of
points and trend reversals present, which prior sonification studies
have reported as factors that impact global integration [15, 54].

6.2 Measures

6.2.1 Data insights (quantity, type & quality). To assess what users
understood from a gist of the data representation, we asked users
to provide a description of the overall trend(s) or pattern(s) in the
data and what insights they gained from the data [55]. Prior insight-
based evaluations have defined a data insight as “an individual
observation about the data by the participant, a unit of discovery”
[61]. For an initial gist, we asked users to provide an answer after
listening to the representation no more than two times.
Additionally, we were interested in making the distinction
whether users were simply recalling and repeating information
given in the description or generating new insights based on what
they understood from both the description and the sonification.
Thus, we also coded the quality of an insight as Exact (information
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provided in the description) or Inferred (not provided in the descrip-
tion). Our assessment protocol is similar to that used by Carswell
et al. [15] where participant descriptions are used to assess local
and global integration of sonified features in a line graph.

6.2.2 Comprehension. To assess the effectiveness of each repre-
sentation in specific tasks, we used comprehension questions based
on common tasks with time-oriented data [4]. In total we asked
four comprehension questions per dataset, and we distinguished be-
tween elementary tasks (direct lookup, indirect lookup) and synop-
tic tasks (pattern lookup, pattern comparison) [3]. The elementary
task questions related to individual data values and can be answered
from an understanding of just the descriptions. The synoptic tasks
require consideration of sets of values of data, where descriptions
are not sufficient for answering. For each question, we recorded
accuracy and time.

6.2.3 Self-reported ratings & qualitative comments. To assess cog-
nitive load in understanding the information, we measured users’
self-perceived mental effort, on a 9-point Paas Likert scale [57]. Ad-
ditionally, after conclusion of all trials, we asked users’ open-ended
questions on their strategies, experience, and preferences.

6.3 Procedure

The study was conducted entirely online using the Zoom videocon-
ferencing platform and the Qualtrics survey platform was used for
data collection. Studies were scheduled to last up to 90 minutes. On
average the study lasted 63.5 minutes (SD = 20.2).

After obtaining participation consent, participants were intro-
duced to the study procedures and were provided a brief background
explaining what data sonification is. Participants were told they
would be asked to listen to different data representations in which
the information might be presented differently, and then asked
to answer a number of questions. To progress through the study,
participants opened a Qualtrics survey which contained all the
instructions, trial materials and questions. Participants accessed
the survey using their preferred browser. An experimenter was
present during the study to remotely guided participants through
the survey.

Participants completed one practice trial followed by four experi-
mental trials, each with varying Condition (Control, Narrative) and
dataset Complexity (Simple, Complex). For all trials, the data repre-
sentations were accessible as audio clips using participants’ native
browser media player. The practice trial was used to familiarize
participants with the study procedure, the survey mechanics, and
the data representations, and to answer any questions that might
arise.

A trial began by asking participants to entirely listen to the data
representation to gain a general gist of the information. Participants
could listen to the audio up to two times. After this initial listen,
based on their recollection, participants provided a few sentences
describing the representation and insights or takeaways learned,
and completed a set of Likert ratings assessing task mental effort.
Participants also rated the accuracy and completeness of their re-
sponses. In the second half of the trial participants answered four
specific comprehension questions. For these questions, participants
could re-visit the representation as many times as they wanted.
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Participants were told they would be assessed based on both the
accuracy and timeliness of their responses. This general procedure
was repeated for each of the four trials plus the practice trial. After
completion of the practice and experimental trials, participants
answered open ended questions.

6.4 Hypotheses

In connection with our study goals and motivated by prior work,
we formulated the following study hypotheses:

H1. The narrative representation helps users gain a more
complete gist of the data integrating both description and
sonification. In the narrative condition, descriptions are provided
closer to the relevant sonification segment. Co-designers described
this facilitated identifying important patterns in the sonification
and grounding them with values provided in the description. For
the Narrative condition, we expect this will result in overall more
insights gained from the data. Furthermore, we expect insights will
rely more on the information contained in both the description and
sonification. While for the non-narrative (Control) condition, we
expect users will have less insights and rely more on the descrip-
tions alone resulting from a less comprehensive understanding of
the sonification. We expect this to also reflect in the comprehen-
sion questions. In the Narrative condition, participants will be able
to more efficiently recall and answer questions that require un-
derstanding of the sonification (synoptic tasks). Regarding dataset
Complexity, we expect Complex datasets will result in a higher
overall number of insights since there is naturally more informa-
tion compared to the Simple datasets. However, we expect Simple
datasets to have a higher proportion of inferred insights since they
are easier to comprehend.

H2. Identifying relevant segments in the sonification will
reduce mental effort. Prior work investigating BVI users’ explo-
ration strategies of data sonification displays have reported one
strategy to gain a gist of the data entails breaking down the seg-
ment to better re-investigate and identify relevant patterns [79].
We observed this to be especially helpful to co-designers when
the dataset was complex with several trend reversals. In the Nar-
rative condition, relevant patterns are identified and presented to
the user as individual segments, thus we expect this will reduce
user’s mental effort in having to do the work in identifying these
segments.

6.5 Participants

Participants were recruited through announcements sent to local
and national blindness organization mailing lists. Participant eli-
gibility included being at least 18 years old, residing in the United
States, identifying as blind and/or visually impaired, and being a
primarily screen reader user. In total, 16 participants took part in
this study. Ten participants identified as woman and six participants
identified as man. The median age was 29 (SD = 15.3, range = 50).
The primary screen reader used for access was JAWS (9/16), fol-
lowed by VoiceOver (5/16), and NVDA (2/16). All participants rated
their screen reader expertise highly (&= 5, SD = 0.97) on a scale
from 1 (Not familiar at all) to 6 (Expert). Participants rated their ex-
pertise interpreting data through tactile charts (X% 3.1, SD = 1.5)
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Figure 4: The Narrative condition had a significantly higher
number of insights compared to the Control condition.
There were no interaction effects with dataset Complexity.
Error bars show 95% bootstrap confidence intervals.

slightly higher than their expertise with auditory graphs (&= 2.2,
SD = 0.94) on a scale from 1 (Not familiar at all) to 6 (Expert).

6.6 Data Analysis

To code participants’ insights and descriptions, we developed a
codebook using the fact taxonomy described by Law et al. [43]
and additional categories described in Vande Moere et al’s coding
process [76]. Our codebook categorized an insight according to
the following: Fact type (value, trend, range, extreme, compound
fact), Emotional, Rational, and Sound characteristics (pitch, rate).
This codebook was initially defined based on five pilot studies and
then applied to coding the evaluation data from the sixteen partic-
ipants. To verify the codebook applicability, two members of the
research team first coded a portion of the data ( 21.7%, 208/9578tate-
ments). Before resolving disagreements, we calculated inter-rater
reliability (IRR) as the percentage of agreement between raters as
87.5%M182/208), which indicated reasonable agreement [31]. Raters
jointly discussed and resolved disagreements and then coded the
remaining data independently. Appendix 2.1 defines our codebook
and provides examples from the data for each category.

6.7 Results

We present results from our quantitative analysis followed by find-
ings from our qualitative analysis.

6.7.1 Higher number and quality of data insights in Narrative con-
dition. Figure 4 shows the number of insights by Condition and
Complexity. Likelihood ratio tests were used to test for the effects of
Condition comparing a full model to a restrained model [58]. We fit
a generalized linear mixed effects model, using a Poisson distribu-
tion, predicting the number of insights (Count). We included fixed
effects for Condition (Narrative, Control), Complexity (Simplex,
Complex), and their two-way interaction (Condition: Complexity),
and a random intercept for each participant.

We find a main effect of Condition on the number of insights
provided by participants (8 = 0.22, SE = 0.067, y%(1) = 10.4, p =
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Figure 5: Condition had a significant effect on the propor-
tion of inferred insights with a higher likelihood of an in-
sight being inferred in the Narrative condition compared to
the Control. Error bars show 95% bootstrap confidence inter-
vals.

0.0013). The average number of insights is higher in the Narrative
condition (%= 15.4, SD = 6.5) compared to the Control condition
(x¥= 12.4, SD = 6.3). In the Narrative condition compared to the
Control condition, while holding all other variables constant, we
expect to have a rate 1.24 times greater in the number of insights
provided (Table A.1). There was no significant interaction between
Condition and dataset Complexity (8 = —0.004, SE = 0.13, y%(1) =
0.0008, p = 0.98).

Figure 5 shows the proportion of Inferred insights by Condition
and Complexity. Using the same analysis procedure as before, we
fit a mixed effects logistic regression, predicting the proportion
of inferred insights. We find a main effect of Condition on the
proportion of inferred insights provided (f = 0.78, SE = 0.23,
x%(1) = 8.15, p = 0.004). The proportion of inferred insights is
significantly higher in the Narrative condition (= 0.33, SD = 0.18)
compared to the Control (x®= 0.21, SD = 0.16). In the Narrative
condition, while holding all other variables constant, the odds are
1.56 times higher that an insight is inferred compared to the Control
(Table A.3).

There was also a marginally significant interaction between
Condition and dataset Complexity (f = —0.60, SE = 0.32, y?(1) =
3.65, p = 0.05). Simultaneous pairwise comparisons, adjusting for p-
values using Tukey’s HSD test indicated the proportion of insights
in the Control condition was significantly different between the
Simple and Complex datasets (Z = —1.03, p = 0.0002) but not
between the Narrative condition Simple and Complex datasets
(Z = —0.174, p = 0.13). There were also significant differences
between the Control Complex and Narrative Complex (Z = —0.77,
p = 0.0060) and the Control Complex and Narrative Simple (Z =
—1.21, p < 0.0001). Table A 4 lists all the contrasts.

Figure 6 shows the distribution of insights by categories. The
main distinctions between the Narrative and Control conditions are
the higher count of Compound facts and facts describing Trends
and Values (X and Y).
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Figure 6: The number of facts that are compound and that describe Trends, and X-Y Values is higher in the Narrative condition

compared to the Control.
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Figure 7: On average, participants were more inefficient an-
swering questions in the Control condition compared to the
Narrative. A higher IES indicates completion is more inef-
ficient. The pattern lookup questions, which require under-
standing of both the description and sonification, were most
inefficient. Error bars show 95% confidence intervals.

6.7.2  Higher efficiency in the Narrative condition. To assess the ef-
fect of Condition on performance in the comprehension questions,
we computed the Inverse Efficiency Score (IES) as the time spent
answering a comprehension question divided by the accuracy [81].
Since participants may focus on generating an accurate response
while sacrificing time, the IES provides us a combined score to
assess performance. A higher IES means completion is more inef-
ficient. Following the same analysis procedure as before, we fit a
generalized mixed effects model using a Gamma distribution and
identity link function, predicting IES (continuous). We included

fixed effects for Condition, Complexity and Question type (direct
lookup, indirect lookup, pattern comparison, pattern lookup), as
well as a random intercept for each participant. We use a Gamma
distribution [45], since inspection of our data revealed a non-normal
distribution.

Figure 7 shows the average IES score and 95% bootstrap con-
fidence intervals. Controlling for dataset Complexity and Ques-
tion type, we find a significant interaction between Condition and

Question type (.Bindirect_lookup = —3.51, SEindirect_lookup =
1.54, ﬂpattern_lookup = —11.94, SEpttern_lookup = 43,
ﬁpattern_camparl‘son = -0.61, SEpattern_camparison = 43,

¥2(3) = 12.90, p = 0.004865). On average, participants were more
inefficient at responding comprehension questions in the Control
condition (x¥= 17.89, SD = 28.8) compared to the Narrative con-
dition (x¥= 10.81, SD = 19.73). Pairwise contrasts on Condition
with Holm-Sidak correction indicated these differences were signif-
icantly different depending on the Question type. For the pattern
lookup questions (Z = 11.66, p = 0.0066), performance was more ef-
ficient in the Narrative condition (xX= 15.45, SD = 24.03) compared
to the Control (x}& 32.77, SD = 41.38). An example of this question
asked, “When was the rate of change the fastest?”. Correctly answer-
ing these synoptic questions requires integrating an understanding
of both the description and sonification. Smaller differences were
also found for the indirect lookup questions (Z = 3.23, p = 0.0269),
where performance was slightly better in the Narrative condition
(x¥= 10.28, SD = 16.27) compared to the Control (xX= 13.13,
SD = 18.13). Table A.6 lists all the contrasts.

6.7.3 High mental effort across conditions. Participants’ self-
reported rating for the mental effort required to understand each
representation and complete the tasks was high across both condi-
tions. Figure 8 shows Likert responses on a 9-point Paas scale (very
very high mental effort to very very low mental effort). In the Control
condition the average self-reported mental effort (x®= 6.1, M = 6X
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Figure 8: Participants reported high mental effort in both the Narrative and Control conditions.

SD = 1.31) was higher than in the Narrative condition (x¥= 5.8,
M = 66D = 1.56). 80% of participants reported mental effort in
the very high to neither high nor low range compared to 70% in
the Narrative condition. A mixed effects model analysis predicting
mental effort and controlling for Participant, did not reveal signifi-
cant differences between these conditions (f = —0.25, SE = 0.28,
x2(1) = 0.81, p = 0.368). However, some qualitative comments
from participants suggested the Narrative condition required less
effort by the making the information easier to digest (P4, P7, P8,
P12, P13) and recall (P6, P9). We discuss users’ qualitative feedback
in the next sections.

6.7.4  Benefits of integrating description and sonification. Overall,
regardless of study condition, all participants were strongly enthu-
siastic about the complementing benefits of using structured de-
scriptions and sonification. Participants described both “re-enforced
[each] other” (P6) and provided complementing details (P1, P5, P7,
P9, P10, P11, P12, P13). Participants described the sonification pro-
vided an easier and better understanding of the trends, verifying
what is usually verbally described (P8, P12, P15, P16). Other par-
ticipants described the sonification as more memorable than just
hearing a description (P6, P11, P12). P5 described the benefits of
both together saying “I think the sound and description were really
good... It’s a verification because with the data you can only focus
on so much information but the change in pitch clarifies that. And I
think it’s really helpful both together.”

Participants also compared hearing the data narratives to their
typical experience encountering descriptions. P11 for example, de-
scribed how “listening to the tones is easier to grasp and hold in
memory” compared to descriptions they typically encounter. This
could be indicative of the higher cognitive load imposed by text-
based representations, as opposed to rendering the information
through a direct perceptual interface, when accessing spatial graph-
ics [29]. P7 described how usually when accessing NPR, they read
“the captions and data but it doesn’t really give me a whole picture”
compared to having access to both the description and sonifica-
tion. One participant (P2), however, did not see value in using the
sonification and asked, “if the audio was describing the rates and
the percentage and all that stuff, what is the purpose of having the
sound?”.

6.7.5 Different understanding between the Narrative and Control
conditions. For the Narrative condition, participants described be-
ing able to better comprehend the information in more detail, espe-
cially the individual trends when compared to the Control condition
(P4, P8, P9, P10, P12, P13, P16). P12 emphasized this saying, “slice it
up and then give it to me so I can understand the exact shape of the
data.” These observations explain some of the quantitative findings
showing how participants in the Narrative condition performed
better in the synoptic tasks (Figure 7) and provided more facts
related to trends (Figure 6). Participants described the Narrative
allowed them to better keep track of where events were happening
in the graph which may also be indicative of the higher number of
data facts involving value-x (Figure 6). Several participants qual-
ified their preference for the Narrative representation depending
on the dataset and context where they might be consuming the
information (P1, P3, P4, P7, P10, P12, P13, P16). Participants de-
scribed the Narrative as being most helpful for complex datasets
with “many data points and differing trends” (P16) but less necessary
for the simpler datasets. These are also reflected in the quantitative
results (Figure 5) and support prior work investigating parameters,
including data complexity, which may impact interpretation of an
auditory graphic [54].

While the Narrative allowed participants to better contextualize
the information and make more inferences based on the data sonifi-
cation, participants described how it provided a lesser appreciation
of the overall sonification (P4, P10). Despite representations used in
both the Narrative and Control condition having the same duration,
some participants perceived the Narrative as longer in duration.
P4 described it as, “the graph of the overall would be much slower
but I could comprehend it more”. Whereas for the Control condition,
participants described their understanding as more general, “more
of a big trend understanding... so I can say it was high or low but
there was no accurate way to gauge” (P4).

6.7.6 Adjusting the narrative based on the task & context. After
a general gist of the data, several participants were interested in
accessing specific details in the data or making adjustments to
the narrative (P10, P11, P12, P14, P16). For example, participants
wanted to know more exact dates for events they had picked up from
the audio or wanted to reduce the narrative to a specific segment
to better appreciate the changes (P13, P16). Several participants
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also wanted to adjust some of the audio parameters such as the
speed, timbre, and interval between rhythmic clicks (P10, P11, P12,
P14, P16). Additionally, some participants noted the benefits of the
Narrative versus Control for use in different contexts (P1, P3, P4, P10,
P13, P16). For example, P4 described the sonification would be useful
for “general discussion” while the narrative might be more useful
for “data analysis or political science class”. These were similar to
discussions with co-designers on adjusting the narrative segments
and number based on different information-seeking goals. A few
participants emphasized that while they had specific preferences,
it was important to let the person choose (P3, P9, P10).

7 DISCUSSION & FUTURE WORK

7.1 For complex datasets, the audio narrative
representation helps users gain a more
complete gist

The evaluation results provide evidence supporting our first hy-
pothesis that the narrative representation helps users gain a more
complete gist of the data integrating both the description and sonifi-
cation. Results show that with the narrative, participants draw more
insights from the sonification forming their own interpretation of
the data (inferred insights) compared to repeating information ex-
plicitly provided in the description. This is particularly the case
when the dataset is complex. Results (Section 6.7.1) indicate that
for a complex dataset, the Narrative condition resulted in a signifi-
cantly higher proportion of inferred insights (x%= 0.30, SD = 0.20)
compared to the Control condition (x®= 0.14, SD = 0.11). Whereas
when the dataset was simple, the difference between the Narrative
(x¥= 0.36, SD = 0.16) and Control (xX= 0.30, SD = 0.18) was
higher but not significant. Thus, we see that, especially with com-
plex datasets, audio data narratives can support users in drawing
their own insights and gaining a more complete understanding of
the data.

Participants described in the Narrative condition they could gain
a more detailed understanding, whereas in the Control, they de-
scribed their understanding as more general. Our narrative genera-
tion approach includes a heuristic that aims to minimize the number
of trend reversals contained in a sonification segment which might
explain some of participants’ responses. In a study assessing global
integration of sonified line graphs, Carswell et al. reported that
interpreting more complex graphs (higher data density and trend
reversals) resulted in more global insights at the expense of local de-
tail [15]. These differences indicate the Narrative could be adjusted
depending on the dataset complexity. In this evaluation, we consid-
ered complexity based on the number of trend reversals and data
points. Investigating additional factors that might impact complex-
ity in interpreting an auditory graphics such as noise, symmetry,
and variance might also be important to consider [15, 54].

7.2 Reducing the high cognitive load

One downside of our investigated approach is that across conditions,
participants self-reported high mental effort (M = 6 on a scale from
1 to 9). We initially hypothesized the Narrative condition would
result in lower cognitive load since the narrative helps identify and
segment relevant patterns in the sonification. However, participants’

Alexa Siu et al.

self-reported ratings for mental effort were consistently high and
no significant differences were observed between conditions. One
participant attributed this to the novelty of using sonification. P12
explained that listening to verbal information is “very common... so
it doesn’t necessarily require high levels of concentration” whereas
the “sonification is such a new way of representing information” it
requires conscious attention to “to combine all the pieces”. Exploring
other complementing modalities such as haptics, might help lessen
the auditory load and reduce users’ cognitive load [78].

Future studies could also investigate whether repeated exposure
and greater familiarity from users could reduce the high mental load.
Though not a requirement for the study, all participants reported
their expertise in using audio graphs as relatively low (xlX= 2.2,
on a scale from Not familiar at all [1] to Expert [6]). Nonetheless,
with a short introduction and one practice trial, we found most
participants were able to gain a comprehensive gist of the data.
Providing more ways for users to directly interact with the audio
graph could also help reduce the high effort required. In our study,
we focused on understanding the benefits of the representation
itself and thus offered limited interaction techniques. We discuss
further interactions in the next section.

7.3 Exploring additional interactions

In our study, we used real world datasets of relevance and several
participants were enthusiastic about being able to understand the
data at greater depth when compared to access through typical
news channels with just image descriptions or tabular data. All
participants were generally enthusiastic about the use of data soni-
fication to complement typical descriptions available with data
visualizations. Participants described their potential benefits in pro-
viding more comprehensive access to data representations, being
able to quickly understand trends, and being able to verify informa-
tion provided through descriptions. In efforts to address the data
accessibility gap [65, 66], data sonification could be more widely
integrated with existing image descriptions for data-driven content
on the web. The work on data narratives with visual graphics is com-
paratively extensive. We believe this work demonstrates there are
ample research opportunities in similarly extending data narrative
patterns and techniques to the auditory domain.

Most evaluation participants also had interest in gaining a greater
understanding of specific events in the data, as well as having ex-
ternal context that might explain the data. Co-designers had simi-
lar interests, emphasizing opportunities for the data narratives to
be more engaging by including relevant external context. In our
approach, no external context was included in the descriptions pro-
vided. Instead at minimum the description just provided the start
and end point values of a segment. Prior works with visual narra-
tives have investigated methods to automatically include relevant
annotations that tie external context to a data visualization [36, 69].
These methods could also be applied to audio data narratives to
improve the descriptions provided and enhance the narrative by
better explaining the data.

Participants accessed the information through their native
browser media player and had minimal interaction as they were
asked to passively listen. Moreover, the interactions available with
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the narrative were time-based manipulations (e.g., play/pause, time-
line scrolling). Exploring dynamic data visualizations and inter-
actions that support semantic navigation of the narrative might
better support data-driven tasks and could address some of partici-
pants’ feedback discussed in the qualitative results (Section 6.7.6).
Prior work has also suggested access to meaningful data insights
is strongly reader-specific [47]. Thus, dynamic visualizations that
provide users the flexibility to adjust the narrative, both the sound
characteristics as well as the details provided in the description,
are promising areas of future work. The approach we investigated
to generate the data narratives would be able to support these in-
teractions. Depending on different contexts or tasks, it would be
possible to add or change heuristics to accommodate each need.
Future work could investigate an authoring tool for data narratives
and design parameters that might be adjustable by the user for use
in different scenarios.

8 LIMITATIONS

There are limitations to consider in the work presented. On the
algorithm side, we proposed a heuristics-based approach to gener-
ate audio data narratives. We discussed three cost functions and
experimentally tuned parameters weighing each function. These
parameters may vary depending on the dataset and may need to be
adjusted accordingly. Other factors might also impact the weights
used (e.g., data density). Furthermore, we implemented a small set
of heuristics, but our approach could be extended to include other
considerations discussed in the co-design workshops. For example,
highlighting additional significant points such as outliers in the
data.

We investigated audio data narratives specifically for communi-
cating time-series datasets with only one variable of interest. For
multidimensional time-series datasets, the principles investigated
could be extended. Investigating interaction methods, as discussed
in Future Work (Section 7.3), would likely be critical when present-
ing multiple variables to mitigate further auditory load on the user.
However, some of the principles we applied in our approach might
not directly extend to communication of other types of commonly
available data visualizations (e.g., scatter plot) and will instead
require further investigation.

In compliance with COVID-19 health guidance, we conducted
all tasks remotely through a videoconferencing platform for both
the co-design workshops and evaluation. Users accessed the audio
representations with their own personal device; thus, we were not
able to control for the audio quality or environmental noise in par-
ticipants’ location. Participants also had different prior background
and experiences with data graphics and the order in which they
were presented the different conditions might lead to some practice
effects. We aimed to mitigate these effects in our study design and
analysis by counterbalancing conditions as well as accounting for
participant as a random effect in our statistical analysis modelling.
We also used a qualitative insight analysis process to evaluate par-
ticipants findings from the data. North et al. discusses some of the
difficulties with these methods for assessing visualizations, includ-
ing the greater variance in results compared to more controlled
benchmark tasks [55].
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In proposing audio data narratives to increase access to data,
we focused on addressing the needs of BVI screen reader users.
Our investigation was largely motivated by insights gained from
formative work with four BVI co-designers. With a limited partici-
pant group, we might not capture the diverse accessibility needs
in the broad continuum of visual conditions and abilities in this
population [27]. Furthermore, while the approach we investigated
may improve access for some users, it may be entirely inaccessi-
ble to others. Marriot et al. review the current state of access to
visualization and discuss challenges across three disability groups
(visual, cognitive, and motor impairments) that affect access to
visualization [48]. Focusing on visual disabilities and relying on
primarily auditory perception, our approach to data narratives may
be inaccessible to others such as users with hearing loss or even
make data interpretation more difficult for these users. Thus, in
aiming for greater access and equity for all users, it is important to
consider access in a more holistic context.

9 CONCLUSION

We have discussed one approach to improve consumption of au-
ditory graphs through audio data narratives which interleave seg-
ments of speech description and data sonification. We have focused
specifically on communicating time-series datasets. Informed by
prior work and a series of co-design workshops with BVI users, we
summarized design principles for audio data narratives. We applied
these in the development of a heuristics-based algorithm for gen-
erating data narratives given a time-series dataset. To validate our
approach, we conducted a user evaluation with sixteen BVI screen
reader users exploring the benefits of data narratives in helping
users gain insights from the data. Our evaluation compared different
metrics between a Narrative condition with segments to a Control
condition without segments. Our findings show that consuming the
information in narrative form helps BVI screen reader users gain
more insights that integrate both description and sonification. Like
consumption of visual data graphics, consumption of audio data
graphics can also benefit from effective narrative techniques that
help guide the reader. Our work shows that audio data narratives
can support screen reader users in forming their own interpretation
of the data, promoting independent and equitable access to data.
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A APPENDICES
A GENERATING DATA NARRATIVES

We provide additional sample outputs created from our proposed
generation algorithm described in Section 5. Datasets were collected
from Our World in Data and the Federal Reserve Economic Data
(FRED).
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A.1 Description segments for the datasets
shown in Figure 2

2 shows samples of the data segmentation through dynamic pro-
gramming. Below are the accompanying descriptions for each seg-
ment, including the title and legend.

Yearly CO2 Emission Rates in Finland. During the past 119
years between 1860 and 1979, the emission rate was lowest in
January 1860 at 0%. Represented by this sound [notes]. And was
the highest in January 1979 at 11.4% [notes]. Tick sounds mark
10-year intervals. In January 1860, emission rate was 0% and then
it increased slowly to 0.2% in January 1945 [notes]. In January 1945,
emission rate was 0.2% and then it increased sharply to all time
high of 11.4% in January 1979 [notes].

Yearly Cigarette Sales. During the past 114 years between 1900
and 2014, the sales was lowest in January 1900 at 0.1%. Represented
by this sound [notes]. And was the highest in January 1961 at 11%
[notes]. Tick sounds mark 10-year intervals. In January 1900, sales
was 0.1% and then it increased slowly to all time high of 11.0% in
January 1961 [notes]. In January 1961, sales was 11% and then it
decreased slowly to 3.2% in January 2014 [notes].

COVID Positivity Rate in Peru. During the past year between
February and November, the COVID rate was lowest in February
2020 at 0%. Represented by this sound [notes]. And was the highest
in April 2020 at 37.7% [notes]. Tick sounds mark monthly intervals.
In February 2020, COVID rate was 0% and then it increased sharply
to all time high of 37.7% in April [notes]. In April 2020, COVID
rate was 37.7% and then it decreased more slowly to 28.2% in Au-
gust [notes]. In August 2020, COVID rate was 28.2% and then it
decreased rapidly to 14.6% in September [notes]. In September 2020,
COVID rate was 14.6% and then it decreased more slowly to 4.6%
in November [notes].

COVID Positivity Rate in the US. During the past year be-
tween March and December, the COVID rate was highest in April
2020 at 19.9%. Represented by this sound [notes]. And was the low-
est in June 2020 at 3.8% [notes]. Tick sounds mark monthly intervals.
In March 2020, COVID rate was at 5.6%, when it sharply increased
to all time high of 19.9% in April then decreased back to 3.8% in
June [notes]. In June 2020, COVID rate was at 3.8%, then it increased
slowly then decreased to 4.2% in September [notes]. In September
2020, COVID rate was 4.2% and then it increased slowly to 9.7% in
November [notes]. In November 2020, COVID rate was 9.7% and
then it increased slowly to 12.0% in December 2020 [notes].

A.2 Results from the Segmentation Algorithm

Figure A.1 shows additional datasets and results from the segmen-
tation algorithm. Segments are visually marked by both different
colors and dashed lines.

B EVALUATION
B.1 Codebook

A codebook was developed to code the insights participants pro-
vided during the evaluation. The codebook uses the fact taxonomy
described by Law et al. [43] and additional categories described in
Vande Moere et al’s insight coding process [76]. There are three
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possible categories: data fact, rational, and emotional. These are
defined as follows:

e Rational: An observation that contains some reasoning, such
as ‘why’ an event in the data might have occurred [76].

e Emotional: An observation that contains a subjective inter-
pretation [76].

e Data Fact: one of seven possible data descriptors (value [x,
y], extrema [x, y], trend, range, outlier, compound fact, soni-
fication fact) [43]. Sonification quality was a category specif-
ically added for our study and describes references to the
sonification rate and/or pitch qualities.

For each category, below provide examples collected from partici-
pants during the evaluation:
1. Rational:

e “In 1860 maybe they didn’t have many cars or the stuff that
would put carbon because there was none.”

e “Despite the fact that people know that there is a link be-
tween cancer and cigarette smoking, people still continue to
do it, but the trends have really gone down.”

e “It kind of did what I would expect that in the 50s and 60s
people were smoking a lot, so it made sense for it to go up.
But then it started going down because we learned about the
dangers of nicotine and all that, so sales went back down”

e “I think that goes to show that was the time period we were
under mandatory shelter in place and that seems to have
been effective”

e “Contrary to popular belief COVID rates were in fact much
lower during the shutdown”

2. Emotional:
e “What surprised me was how long it took of the number of
cases to decline”
e “I'mso glad that it has gotten lower because I hate cigarettes.”
3. Value (X, Y):

e “In November, it was 4.2%.”

e “In December it went back to 12%.
4. Extrema (X, Y):

e “It had some spikes with a high in 1961”

e “Then it drops to the all-time low in June at 3.4%.”
5. Trend:

e “For the first few decades, I would say 3 or 4 decades, it was
a very slow increase, or I guess barely any increase.”

e “1945 onwards, for a short amount of period on the x-axis
there is a sharp rise in the y coordinate”

e “There was a gradual increase starting from 0% in 1860 to
0.2%”

6. Range:

e “It was the COVID rate in the United States between April
and December”

e “The data spanned from January of 1860 to January of 1979

7. Compound fact:

e “It decreased more rapidly between April and August of 2020
compared to like between August and November”

e “Early on in the beginning it was a lot higher and decreased
more slowly over time.”
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Figure 9: Results from the segmentation through dynamic programming.

e “How much faster it went up than it was able to come back
down again overall”

e “I think it’s interesting that between 1945 and 1979, the rate
jumps so quickly and in that 24-year span, as opposed to the
115 years before that, and I would wonder why that was.”

8. Sonification fact:

e “The data consisted of sounds, piano sounds that were rising
in pitch as the CO3 level increased.”
e “The kick sounds represented every 10-year intervals.”

B.2 Results: Poisson Mixed Effects Model
Predicting the Number of Insights

Likelihood ratio tests were used to test for the effects of Condition

comparing a full model to a restrained model [58]. We fit a gen-

eralized linear mixed effects model, using a Poisson distribution,
predicting the number of insights (Count). We included fixed effects

for Condition (Narrative, Control), Complexity (Simplex, Complex),
and their two-way interaction (Condition:Complexity), and a ran-
dom intercept for each participant. Table A.1 shows the regression
model and estimates. Table A.2 lists the sample mean and SD.

B.3 Results: Logistic Mixed Effects Model
Predicting the Proportion of Inferred
Insights

Likelihood ratio tests were used to test for the effects of Condition
comparing a full model to a restrained model [58]. We fit a logistic
mixed effects regression, predicting the proportion of inferred in-
sights. We included fixed effects for Condition (Narrative, Control),
Complexity (Simplex, Complex), and their two-way interaction
(Condition: Complexity), and a random intercept for each partici-
pant. Table A.3 shows the regression model estimates. Table shows
pairwise contrasts between Condition*Complexity calculated using
Tukey’s HSD. Table A.5 lists the sample mean and SD.
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Table 1: Mixed effects model predicting the count of insights

Restrained Model Full Model
Predictors Incidence Rate CI p Incidence Rate CI p
(Intercept) 13.54 10.78-17.0 <0.001 12.08 9.51-15.34 <0.001
Complexity [Simple] 0.90 0.79-1.02 0.11 0.90 0.79-1.02 0.11
Condition [Narrative] 1.24 1.09-1.42 0.001

Table 2: Mean and SD for the number of insights by condition and dataset complexity

Condition Complexity Mean SD
Control Complex 13.1 6.9
Simple 11.8 5.7
Narrative Complex 16.2 7.6
Simple 14.6 5.4

Table 3: Logistic mixed effects model predicting the proportion of inferred insights

Restrained Model Full Model Full Model + Interaction
Predictors Odds CI p Odds CI P Odds CI p
Ratio Ratio Ratio
(Intercept) 0.27 0.20-0.37 <0.001 0.21 0.14-0.30 <0.001 0.17 0.11-0.26 <0.001
Complexity 1.94 1.43-2.61 <0.001 1.94 1.44-2.63 <0.001 2.80 1.72-4.57 <0.001
Condition 1.56 1.15-2.12 0.005 2.17 1.36-3.47 0.001
Interaction 0.55 0.29-1.02 0.057

Table 4: Pairwise Contrast using Tukeys HSD for Condition: Complexity

Contrast Estimate SE z-ratio P
Control Complex — Narrative Complex -0.777 0.238 -3.266 0.0060
Control Complex — Control Simple -1.031 0.249 -4.145 0.0002
Control Complex — Narrative Simple -1.205 0.237 -5.084 <0.0001
Narrative Complex — Control Simple -0.254 0.212 -1.199 0.6273
Narrative Complex — Control Simple -0.428 0.197 -2.176 0.1298
Control Simple — Narrative Simple -0.174 0.210 -0.827 0.8416
B.4 Results: Linear Mixed Effects Model fixed effects for Condition, Complexity and Question type (direct
Predicting Inverse Efficiency Score lookup, indirect lookup, pattern comparison, pattern lookup), as

well as a random intercept for each participant. We use a Gamma

Likelihood ratio tests were used to test for the effects of Condi- R ; ) ;
distribution [45], since inspection of our data revealed a non-normal

tion comparing a full model to a restrained model [58]. We fit a
generalized mixed effects model using a Gamma distribution and
identity link function, predicting IES (continuous). We included

Table 5: Mean and SD for the proportion of inferred insights by condition and dataset complexity

Condition Complexity Mean SD
Control Complex 0.14 0.11
Simple 0.28 0.18
Narrative Complex 0.30 0.21

Simple 0.36 0.16
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Table 6: Pairwise Contrasts with Holm-Sidak Correction for Condition: Question

Question Condition Mean SE P

Direct lookup Control 9.56 271 0.6805
Narrative 9.84 2.71

Indirect lookup Control 12.37 2.98 0.0269
Narrative 9.14 2.69

Pattern Comparison Control 9.88 2.71 0.6149
Narrative 9.56 2.71

Pattern Lookup Control 25.53 4.70 0.0066
Narrative 13.87 3.03

Table 7: Mean and SD for IES by condition and dataset question

Condition Question Mean SD
Control Direct lookup 8.5 12.4
Indirect lookup 13.1 18.1
Pattern comparison 13.8 27.4
Pattern lookup 32.8 414
Narrative Direct lookup 9.5 15.3
Indirect lookup 10.3 16.3
Pattern comparison 7.9 22.1
Pattern lookup 15.4 24.0

distribution. Pairwise contrasts on Condition with Holm-Sidak cor-

rection indicated differences were significantly different depending

on the Question type. Table A.6 lists the means and contrasts.
Table A.7 lists the sample mean and SD.
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