

1 **Ecological and evolutionary challenges for wildlife vaccination**

2

3 KM Barnett^{1*} and David J Civitello¹

4

5 ¹Department of Biology, Emory University, Atlanta, GA USA 30322

6 *Correspondence: katherine.mary.barnett@emory.edu (KM Barnett)

7

8 Keywords: Vaccination, wildlife, spillover, conservation, imperfect immunity

9

10 **ABSTRACT**

11 Wildlife vaccination is of urgent interest to reduce disease-induced extinction and
12 zoonotic spillover events. However, several challenges complicate its application to
13 wildlife. For example, vaccines rarely provide perfect immunity. While some protection
14 may seem better than none, imperfect vaccination can present epidemiological,
15 ecological, and evolutionary challenges. While anti-infection and anti-transmission
16 vaccines reduce parasite transmission, anti-disease vaccines may undermine herd
17 immunity, select for increased virulence, or promote spillover. These imperfections
18 interact with ecological and logistical constraints that are magnified in wildlife, such as
19 poor control and substantial trait variation within and among species. Ultimately, we
20 recommend approaches such as trait-based vaccination, modeling tools, and methods to
21 assess community- and ecosystem-level vaccine safety to address these concerns and
22 bolster wildlife vaccination campaigns.

23 **The potential of wildlife vaccines**

24 Vaccination, the process of exposing the immune system to an antigen to induce
25 pathogen resistance, is a powerful tool for controlling disease. The benefits of vaccination
26 are twofold: recipients are directly protected against infection and unvaccinated hosts are
27 indirectly protected through **herd immunity (Glossary)**, which reduces transmission and
28 parasite-mediated harm to host populations [1]. Vaccination has been vastly successful
29 for humans and livestock [2,3]. Successful vaccination campaigns against rabies in
30 raccoons (*Procyon lotor*), red foxes (*Vulpes vulpes*), gray foxes (*Urocyon*
31 *cinereoargenteus*), and coyotes (*Canis latrans*) suggest that vaccination efforts could be
32 directed towards emerging infectious diseases (EIDs) that cause devastating host
33 declines, e.g., amphibian chytridiomycosis, white nose syndrome, Tasmanian devil
34 facial-tumor disease, and Ebola [4–10]. The success of vaccination in human and
35 livestock populations, the pressing need for disease control tools in wildlife conservation,
36 and the ever-increasing threat of zoonotic **spillover** events support a clear need to
37 develop vaccination as an intervention tool for wildlife disease control. However, several
38 outstanding challenges and questions remain before vaccination can emerge as a reliable
39 tool for wildlife disease control. We argue that accounting for the limitations of imperfect
40 vaccines, host and non-host ecology, and individual physiology in the development of
41 vaccination campaigns is vital for harnessing the potential of wildlife vaccines
42 successfully.

43 **Objectives of wildlife vaccination**

44 Biodiversity conservation and the prevention of pathogen spillover are two urgent
45 concerns of wildlife disease control. Emerging diseases of wildlife threaten population

46 and species persistence and contribute significantly to the ongoing loss of biodiversity
47 [11]. Additionally, wildlife populations are **reservoir hosts** for many **zoonotic**
48 **pathogens** such as rabies, Nipah virus, and coronaviruses that threaten the health of
49 humans [12].

50 Controlling disease in wildlife reservoir populations can reduce spillover
51 transmission, but complete prevention of spillover risk from a known pathogen requires
52 elimination or eradication of a parasite within a reservoir host to prevent zoonotic
53 transmission. Vaccines may be able to achieve this objective, but given the inherent
54 antigenic specificity of all known vaccines, they will not prevent novel pathogen
55 emergence. Theory underlying eradication often identifies a critical level of vaccine
56 coverage, which drives the **effective reproductive ratio (R_{eff})** of a pathogen below the
57 threshold value of one [1]. Combating rinderpest virus reintroduction during the
58 eradication campaign exemplifies the intense effort needed for eradication [3].

59 In contrast, vaccination for conservation aims to maximize the persistence of host
60 populations and communities by decreasing the risk of disease-induced extinction, rather
61 than through achieving parasite elimination. Wildlife populations can generally withstand
62 small-scale disease outbreaks, and so conservation-motivated vaccination does not
63 always require pathogen eradication [13]. Thus, vaccination coverage required for
64 conservation-motivated disease control tends to be lower than that required for spillover
65 prevention. For example, modeling estimates suggest that maintaining low vaccination
66 coverage, between 20-40%, will stave off rabies-induced extinction of Ethiopian wolves
67 (*Canis simensis*)[13].

68

69 **Vaccine efficacy and modes of imperfection**

70 Despite their potential for controlling wildlife disease, vaccines rarely provide
71 perfect immunity, which can compromise herd immunity or contribute to the evolution of
72 increased **parasite virulence** [14]. For example, a prototype vaccine partially protects
73 amphibians from *Batrachochytrium dendrobatidis*; vaccination decreases, but does not
74 eliminate, parasite proliferation [15]. In contrast, a theoretically perfect vaccine would
75 provide permanent and complete resistance to infection for all recipients, but vaccines
76 considered for wildlife often fall short of this definition [14]. Three broad aspects of
77 vaccine imperfection are often discussed in the literature: waning, leaky, and partial
78 immunity. However, “leaky” immunity is used inconsistently and imprecisely, generating
79 confusion. One reason for this is that modeling frameworks, such as *Susceptible-Infected-*
80 *Resistant* (SIR) compartment models can make it difficult to incorporate some types of
81 vaccine imperfections. Therefore, we suggest a clarified categorization based on **waning**,
82 **binary** and **partial immunity**. Importantly, these categories are not mutually exclusive,
83 and we discuss the impacts of these varying levels of immunity on wildlife populations,
84 vaccine efficacy, modeling frameworks.

85

86 *Waning immunity*

87 Waning describes the loss of resistance to infection over time. Individuals can
88 vary in their waning rate, and immunity can be restored by subsequent exposures, i.e.,
89 “boosters”. Vaccine-induced immunity often wanes faster than immunity generated from
90 natural infection, which can leave vaccinated individuals at higher risk during recurrent
91 or cyclical epidemics [16]. For example, Eastern Equine Encephalitis virus vaccination in

92 sandhill (*Grus americana*) and whooping cranes (*Grus canadensis*) waned rapidly,
93 requiring booster vaccination within 30 days [17]. Life history traits, immune boosting
94 sources, and waning rate interact to determine vaccine utility [18]. Waning immunity is
95 routinely and relatively easily incorporated into SIR compartment models by allowing
96 resistant individuals to reenter the susceptible class.

97

98 *Binary immunity*

99 Binary immunity occurs when vaccination does not induce immunity in all
100 recipients [19]. This generates a binary outcome, wherein hosts are either resistant or
101 susceptible, with no intermediate outcome. Binary outcomes of immunization have also
102 been described as an “all-or-nothing qualitative response” [20]. For example, high rates
103 of binary vaccine outcomes for the varicella vaccine in humans prompted the
104 recommendation for a second dose within months of the first [21]. Differences in vaccine
105 **immunogenicity, adjuvants**, vaccine storage, dosage, administration, host infection
106 status, competence of the host’s immune system, and host genetics can all shape binary
107 immunity [19,22]. Random binary immunization outcomes are often incorporated into
108 SIR models by effectively lowering vaccination coverage by the proportion of binary
109 failure [23]. However, if certain host types are more prone to vaccine failure, then it
110 might be critical to address how these different failure rates among different host class
111 affect disease dynamics [24].

112

113 *Partial immunity*

114 In contrast to binary efficacy, which assumes a vaccine either succeeds in
115 inducing an acquired immune response or fails, vaccines that provide partial immunity
116 may not completely prevent infection, disease symptoms, or transmission in an
117 immunized host. Partial immunity allows for vaccine efficacy to be measured on a
118 proportional gradient from 0-1, rather than as a qualitative all-or-nothing response
119 [25,26]. One critical complication is that partial immunity may impact a number of
120 infection outcomes, such as resistance to infection, disease attributed to infection, and
121 infectiousness [27]. The functional consequences of these changes are detailed below.
122 Partial immunity is less easily incorporated into SIR-type models and has therefore been
123 relatively neglected compared to other modes of imperfection. Individual-based models
124 (IBMs), which explicitly track individual traits and histories may be much better suited to
125 investigate this vaccine imperfection.

126

127 **Functional mechanisms and consequences of imperfect vaccines**

128 Different resistance responses to imperfect vaccines have unique ecological and
129 evolutionary consequences. Imperfect immunization can confer the following three
130 phenotypic types of resistance responses: 1) anti-disease, 2) anti-infection, and 3) anti-
131 transmission (**Figure 1**). These are also not mutually exclusive, and they can be assessed
132 using either binary (qualitative) or partial (quantitative) metrics [26,28,29]. Because the
133 majority of vaccines are imperfect, anticipating and addressing their potential deleterious
134 consequences is a priority in determining vaccination feasibility in a wildlife context. For
135 example, the **imperfect-vaccine hypothesis** postulates that partial immunity upon
136 vaccination could drive the evolution of increased pathogen virulence, and the risk of

137 vaccine-driven virulence evolution is dependent on the vaccination phenotype and
138 efficacy [29].

139

140 *Anti-disease vaccines*

141 Anti-disease vaccines reduce virulence (i.e., increase **host tolerance**) without
142 necessarily reducing the risk of infection or subsequent transmission. Therefore, these
143 vaccines directly benefit recipients, but can counteract herd immunity if the infectious
144 period is lengthened. Studies on Marek's disease in poultry and helminth and tuberculosis
145 **coinfections** in African buffalo show that interventions which reduce the mortality of
146 infected hosts, without decreasing infection or transmission rates, increase parasite
147 transmission in populations by extending the infectious period [29,30]. Despite this
148 potential for increased transmission, anti-disease vaccines may still be effective for
149 conservation if their net effect reduces total parasite-induced mortality or reproductive
150 costs. A prototype anti-*Chlamydia pecorum* vaccine for koala (*Phascolarctos cinereus*)
151 conservation offers potential as a therapeutic vaccine as it reduces disease in unexposed
152 and infected koalas, with some reduction in infection incidence and loads [31]. However,
153 anti-disease vaccines are unlikely to reduce spillover risk, precisely because they can
154 promote transmission.

155 Evolutionarily, lengthening the infectious period through anti-disease vaccination
156 is theorized to relax selection against high virulence [27,29]. This prediction, derived
157 from the **transmission-virulence trade-off hypothesis**, arises because limiting host
158 death allows for otherwise highly virulent genotypes to persist and even be favored by
159 selection [29]. While experimental evidence explicitly demonstrating increased virulence

160 driven by vaccination is lacking, a recent study on house finches (*Haemorhous*
161 *mexicanus*) parasitized by the bacteria *Mycoplasma gallisepticum* demonstrated that an
162 anti-disease phenotype conferred by a natural primary infection facilitated a two-fold
163 increase in the fitness advantage of a high virulence strain during secondary infections
164 [32]. However, anti-disease vaccines that vary in degree of protection among immunized
165 individuals may be less risky for vaccine-driven virulence evolution, as variance in host
166 protection will not uniformly favor the evolution of increased parasite virulence [27].

167

168 *Anti-infection and anti-transmission vaccines*

169 Vaccines that prevent or reduce parasite establishment in an immunized host are
170 considered anti-infection vaccines. Anti-transmission vaccines, on the other hand, may
171 permit infection but prevent or reduce onward transmission from the recipient. Both
172 phenotypes contribute to herd immunity, and epidemiological models predict that parasite
173 elimination can be achieved with high rates of coverage and efficacy [28]. Thus, both
174 anti-infection and anti-transmission vaccines can be effective for spillover prevention and
175 conservation. The *Mycobacterium bovis* bacille Calmette-Guérin (BCG) vaccine, used to
176 prevent spillover of *M. bovis* into livestock, confers anti-infection resistance in Australian
177 brushtail possums (*Trichosurus vulpecula*), and the transmission-reducing prototype
178 *Batrachochytrium dendrobatidis* vaccine offers promise for use in amphibian
179 conservation [15,33].

180 The evolutionary consequences of these vaccines depend crucially on the mode of
181 imperfection. Binary anti-infection or anti-transmission vaccines do not favor virulence
182 evolution and can, at times, even reduce selection for parasite virulence, by preventing

183 coinfections for example [28,34]. Conversely, partial anti-infection or anti-transmission
184 vaccines can select for increased virulence [25]. Partial anti-infection and anti-
185 transmission phenotypes effectively increase the exposure dose required for
186 establishment (i.e. infectious dose), which can select for increases in parasite
187 reproduction rate [25,28]. Theory suggests that this type of anti-infection resistance
188 favors virulence evolution by encouraging the increase in intrinsic parasite reproduction
189 for successful infection establishment [25].

190

191 **Ecological and logistical challenges of vaccination exacerbated in wildlife**

192 Vaccines have strong potential to achieve disease control in wildlife. However,
193 imperfect vaccines must also overcome physiological, behavioral, and ecological factors
194 to succeed. Thus, complications arise from two primary factors: vaccine imperfections
195 and vaccine administration. Lack of control and intraspecific, interspecific, and
196 environmental heterogeneity are central sources of uncertainty in vaccine delivery,
197 uptake, and response (**Box 1**). Vaccination success hinges on high coverage of doses that
198 induce a durable immune response without harming recipients [1]. In complex ecological
199 communities, indirect deployment (i.e., oral baiting) campaigns risk simultaneously over-
200 and under-dosing many organisms because wildlife can vary in 1) the amount of
201 inoculum consumed or encountered and 2) their physiological response to a given dose.

202 Heterogeneity in host behavior, morphology, and habitat use all influence
203 infection risk, and probability of vaccine exposure [35–37]. Assessing vaccine exposure
204 in target and non-target wildlife can be done using biomarkers, such as fluorescent
205 Rhodamine b [38]. Moreover, the immunological traits of most wildlife hosts remain

206 poorly known, and even closely related species can exhibit marked variation in response
207 to vaccination [39]. In vaccination campaigns using indirect deployment, assessing
208 vaccine safety and impact on non-target hosts and non-hosts is a critical step to
209 anticipating and preventing harmful unintended consequences on ecological communities
210 and ecosystem functioning. **Dose-response profiles** are a useful and routine tool for
211 assessing consequences of over- and under-dosing wildlife. Specifically, dose-response
212 profiles can be useful for quantifying differences in dose-specific immune responses for
213 distinct classes of hosts (e.g., species identity, developmental stage, age class, genotype).
214 Additionally, the effect of vaccination on non-target wildlife can be evaluated by tracking
215 community diversity metrics (e.g. abundance, richness, and evenness) and ecosystem
216 function pre- and post-administration in both placebo and vaccinated environments [38].
217 Furthermore, **trait-based vaccination** may help to overcome issues related to patchy
218 coverage and dosing.

219

220 **Trait-based vaccination**

221 Which hosts should be prioritized for vaccination? Host factors such as age,
222 immunity, behavior, and genetics all influence **host competence** [40]. These
223 heterogeneous factors contribute significantly to disparities in parasite susceptibility and
224 transmission between hosts, leading to relatively few individuals being responsible for
225 most parasite transmission in a population [41]. This observation can be harnessed to
226 tailor control methods using trait-based vaccination.

227 Random mixing is a fundamental assumption of classic vaccination and
228 transmission models, but network analyses of wildlife show that traits such as

229 territoriality or sociality often reveal non-random contacts, elevating the importance of
230 accounting for contact and home range heterogeneity in vaccination [42,43]. Targeted
231 vaccination of **superspreaders** has been continually proposed as a method to reduce
232 required immunization coverage [44,45]. For example, targeted vaccination of socially-
233 central chimpanzees, determined by detailed behavioral data or approximated using trait-
234 based estimates, can significantly reduce the vaccination coverage threshold [44].
235 Incorporating contact networks into **transmissible vaccine** models, using an individual-
236 based approach, could assess if behaviors associated with superspreading, such as
237 gregariousness or boldness, increase vaccine transmission [46,47]. Alternatively,
238 vaccination for conservation could target individuals that are disproportionately
239 important to population growth or persistence [48].

240

241 **Modeling wildlife vaccination**

242 Susceptible-Infected-Resistant (SIR) models are the most common models used
243 for predicting vaccination outcomes [27]. While valuable for modeling waning and
244 binary modes of imperfection, SIR models cannot capture the complexities of partial
245 immunity, especially when spatial dynamics, social interactions or individual history are
246 important [23,27,49]. Limitations of modeling partial immunity using ordinary
247 differential equations (ODEs) can be overcome using individual-based models (IBMs),
248 which are able to incorporate different host immune responses and space-based behaviors
249 such as territoriality and migration [49]. For example, in the case of fox rabies control in
250 Europe, IBM predictions recommended the use of a lower coverage vaccination strategy
251 relative to an SIR model [50]. This lower coverage strategy was carried out successfully

252 and saved considerable resources [49]. While the simplicity and analytical tractability of
253 ODE models can offer considerable advantages, we advocate for the increased
254 consideration of IBMs in the study of wildlife disease because they can represent
255 individual-level physiology, connect seamlessly with transmission networks or spatially-
256 explicit movement models, and accommodate individual history and heterogeneity [49].

257

258 **Concluding Remarks**

259 Vaccines can advance biodiversity conservation and spillover control. However,
260 vaccine imperfections can substantially compromise the achievement of herd immunity
261 or promote the evolution of increased virulence, yet they are not always accounted for in
262 theory, planning, or analysis of vaccine use in wildlife. Wildlife vaccination offers a
263 frontier to explore advancing questions in eco-immunology, imperfect immunity, and
264 disease control innovation. The biological factors shaping vaccination success, feasibility,
265 and efficacy should be as central to decisions regarding wildlife vaccination as logistical
266 limitations and financial resources (**Outstanding Questions**). Thorough empirical
267 assessment of the vaccine-host-parasite biology can both 1) prevent impractical
268 vaccination campaigns and 2) ameliorate challenges regarding vaccine dose and
269 coverage, saving time and limiting adverse outcomes.

270 Disentangling potential modes of imperfection is critical for predicting outcomes
271 of vaccination. Incorporating these effects into models and experiments can predict
272 otherwise counterintuitive deleterious outcomes, such as increased transmission caused
273 by anti-disease resistance. We suggest that IBMs should be selected for vaccines
274 conferring partial immunity or systems in which space-based behaviors drive disease

275 dynamics. Additionally, vaccination outcomes should be simultaneously studied across
276 ecological scales and evolutionary time. Imperfect vaccines impose subtle tension
277 between individual- and population-level benefits, and deeper theoretical examination
278 can help prevent the implementation of unfeasible or potentially harmful vaccines.

279 Furthermore, wild hosts and parasites are inherently heterogeneous and poorly
280 controlled. Dose-response profiles and community diversity metrics should be used to
281 account for heterogeneity when calculating safe and effective vaccine doses for wildlife
282 individuals, populations, communities, and ecosystems. Trait-based vaccination
283 approaches could prioritize hosts that disproportionately contribute to population
284 persistence or parasite transmission thus minimizing coverage required for parasite
285 eradication or host population viability. Ecological complexities and evolutionary
286 consequences of imperfect immunity provide an abundance of challenges when
287 vaccinating wildlife; but pursuing wildlife vaccination for use in conservation or spillover
288 prevention is by no means foolish if informed by the system's underlying physiology and
289 ecology.

290

291 **Acknowledgements**

292 We thank Drs. Levi Morran, Karen Levy, and Sarah Bowden for their valuable
293 feedback on the manuscript. We also thank members of the Civitello Lab for their
294 comments. KMB and DJC were supported by NSF IOS-1755002. KMB was also
295 supported by NSF GRFP DGE-1937971. DJC was also supported by NIH 1R01
296 AI150774-01. Any opinions, conclusions, or recommendations expressed in this material

297 are those of the authors and do not necessarily reflect the views of the National Science
298 Foundation.

299

300 **Glossary**

301 **Herd immunity:** indirect protection of susceptible hosts by resistant hosts.

302 **Spillover:** transmission of parasites from a non-human host species to humans.

303 **Reservoir host:** a population of organisms that serve as an infection source for another
304 host population.

305 **Zoonotic pathogens:** a parasite able to be transmitted from non-human animals to
306 humans.

307 **Effective reproductive ratio (R_{eff}):** the number of secondary infections a primary
308 infection contributes in a population with resistant individuals.

309 **Parasite virulence:** host death or pathology induced by infection.

310 **Resistance phenotype:** categories of incomplete immunity, including anti-disease
311 immunity, anti-infection immunity, and anti-transmission immunity.

312 **Immunogenicity:** a vaccine's ability to induce an acquired immune response.

313 **Adjuvants:** vaccine additives to increase its immunogenicity.

314 **Imperfect-vaccine hypothesis:** theory suggesting that, depending on the phenotype of
315 resistance, partial vaccination may select for increased parasite virulence.

316 **Host tolerance:** decreased mortality or pathology in response to infection.

317 **Transmission-virulence trade-off hypothesis:** hypothesis derived from the assumption
318 that transmission rate and virulence are correlated, predicting that an intermediate level of
319 virulence is favored by selection.

320 **Coinfections:** two or more parasite species simultaneously infecting the same host.

321 **Dose-response profiles:** quantifying an organism's physiological response to varying

322 doses of vaccine.

323 **Trait-based vaccination:** vaccine distribution prioritizing individuals with specific

324 characteristics.

325 **Host competence:** the relative ability of a host to become infected by and transmit a

326 parasite.

327 **Superspreaders:** an individual that disproportionately contributes to parasite transmission

328 within a given population.

329 **Transmissible vaccine:** vaccines that autonomously spread from treated to untreated

330 individuals.

331 **Enzootic:** a pathogen endemic in non-human animals.

332

333 **References**

334 1 Anderson, R.M. and May, R.M. (1985) Vaccination and herd immunity to
335 infectious diseases. *Nature* 318, 323–329

336 2 Rappuoli, R. *et al.* (2014) Vaccines, new opportunities for a new society. *Proc.*
337 *Natl. Acad. Sci.* 111, 12288–12293

338 3 de Swart, R.L. *et al.* (2012) Rinderpest eradication: lessons for measles
339 eradication? *Curr. Opin. Virol.* 2, 330–334

340 4 Gilbert, A.T. and Chipman, R.B. (2020) Rabies control in wild carnivores. In
341 *Rabies: Scientific Basis of the Disease and its Management* (4th edn) pp. 605–654,
342 Elsevier

343 5 MacInnes, C.D. *et al.* (2001) Elimination of rabies from red foxes in Eastern
344 Ontario. *J. Wildl. Dis.* 37, 119–132

345 6 Slate, D. *et al.* (2009) Oral Rabies Vaccination in North America: Opportunities,
346 Complexities, and Challenges. *PLoS Negl. Trop. Dis.* 3, e549

347 7 Scheele, B.C. *et al.* (2019) Amphibian fungal panzootic causes catastrophic and
348 ongoing loss of biodiversity. *Science* 363, 1459–1463

349 8 Hoyt, J.R. *et al.* (2015) Long-Term Persistence of *Pseudogymnoascus destructans*,
350 the Causative Agent of White-Nose Syndrome, in the Absence of Bats. *EcoHealth*
351 12, 330–333

352 9 Flies, A.S. *et al.* (2020) An oral bait vaccination approach for the Tasmanian devil
353 facial tumor diseases. *Expert Rev. Vaccines* 19, 1–10

354 10 Leendertz, S.A.J. *et al.* (2017) Ebola in great apes - current knowledge,
355 possibilities for vaccination, and implications for conservation and human
356 health. *Mammal Rev.* 47, 98–111

357 11 Smith, K.F. *et al.* (2006) Evidence for the Role of Infectious Disease in Species
358 Extinction and Endangerment. *Conserv. Biol.* 20, 1349–1357

359 12 Letko, M. *et al.* (2020) Bat-borne virus diversity, spillover and emergence. *Nat.
360 Rev. Microbiol.* 18, 461–471

361 13 Haydon, D.T. *et al.* (2006) Low-coverage vaccination strategies for the
362 conservation of endangered species. *Nature* 443, 692–695

363 14 Plumb, G. *et al.* (2007) Vaccination in conservation medicine. *Rev. Sci. Tech. Int.
364 Off. Epizoot.* 26, 229–241

365 15 McMahon, T.A. *et al.* (2014) Amphibians acquire resistance to live and dead
366 fungus overcoming fungal immunosuppression. *Nature* 511, 224–227

367 16 Heffernan, J.M. and Keeling, M.J. (2009) Implications of vaccination and waning
368 immunity. *Proc. R. Soc. B Biol. Sci.* 276, 2071–2080

369 17 Clark, G.G. *et al.* (1987) Antibody response of Sandhill and Whooping cranes to
370 an Eastern Equine Encephalitis virus vaccine. *J. Wildl. Dis.* 23, 539–544

371 18 Morris, S.E. *et al.* (2015) Demographic buffering: titrating the effects of birth rate
372 and imperfect immunity on epidemic dynamics. *J. R. Soc. Interface* 12, 20141245

373 19 Heininger, U. *et al.* (2012) The concept of vaccination failure. *Vaccine* 30, 1265–
374 1268

375 20 Gandon, S. and Michalakis, Y. (2000) Evolution of parasite virulence against
376 qualitative or quantitative host resistance. *Proc. R. Soc. Lond. B Biol. Sci.* 267,
377 985–990

378 21 Michalik, D.E. *et al.* (2008) Primary Vaccine Failure after 1 Dose of Varicella
379 Vaccine in Healthy Children. *J. Infect. Dis.* 197, 944–949

380 22 Mentzer, A.J. *et al.* (2015) Searching for the human genetic factors standing in
381 the way of universally effective vaccines. *Philos. Trans. R. Soc. B Biol. Sci.* 370,
382 20140341

383 23 Fine, P. *et al.* (2011) “Herd Immunity”: A Rough Guide. *Clin. Infect. Dis.* 52, 911–
384 916

385 24 te Kamp, V. *et al.* (2020) Responsiveness of various reservoir species to oral
386 rabies vaccination correlates with differences in vaccine uptake of mucosa
387 associated lymphoid tissues. *Sci. Rep.* 10, 2919

388 25 De Roode, J.C. *et al.* (2011) Virulence evolution in response to anti-infection
389 resistance: toxic food plants can select for virulent parasites of monarch
390 butterflies: Resistance and virulence evolution. *J. Evol. Biol.* 24, 712–722

391 26 Gandon, S. and Michalakis, Y. (2000) Evolution of parasite virulence against
392 qualitative or quantitative host resistance. *Proc. R. Soc. Lond. B Biol. Sci.* 267,
393 985–990

394 27 Miller, I.F. and Metcalf, C.J. (2019) Vaccine-driven virulence evolution:
395 consequences of unbalanced reductions in mortality and transmission and
396 implications for pertussis vaccines. *J. R. Soc. Interface* 16, 20190642

397 28 Gandon, S. *et al.* (2001) Imperfect vaccines and the evolution of pathogen
398 virulence. 414, 6

399 29 Read, A.F. *et al.* (2015) Imperfect Vaccination Can Enhance the Transmission of
400 Highly Virulent Pathogens. *PLOS Biol.* 13, e1002198

401 30 Ezenwa, V.O. and Jolles, A.E. (2015) Opposite effects of anthelmintic treatment
402 on microbial infection at individual versus population scales. *Science* 347, 175–
403 177

404 31 Waugh, C. *et al.* (2016) A Prototype Recombinant-Protein Based Chlamydia
405 pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical
406 Disease in Free-Ranging Koalas (*Phascolarctos cinereus*). *PLOS ONE* 11,
407 e0146934

408 32 Fleming-Davies, A.E. *et al.* (2018) Incomplete host immunity favors the evolution
409 of virulence in an emergent pathogen. *Science* 359, 1030–1033

410 33 Buddle, B.M. *et al.* (2018) Efficacy and Safety of BCG Vaccine for Control of
411 Tuberculosis in Domestic Livestock and Wildlife. *Front. Vet. Sci.* 5, 259

412 34 Choisy, M. and de Roode, J.C. (2010) Mixed Infections and the Evolution of
413 Virulence: Effects of Resource Competition, Parasite Plasticity, and Impaired
414 Host Immunity. *Am. Nat.* 175, E105–E118

415 35 Rocke, T.E. *et al.* (2015) Age at Vaccination May Influence Response to Sylvatic
416 Plague Vaccine (SPV) in Gunnison's Prairie Dogs (*Cynomys gunnisoni*).
417 *EcoHealth* 12, 278–287

418 36 Tripp, D.W. *et al.* (2014) Season and application rates affect vaccine bait
419 consumption by prairie dogs in Colorado and Utah, USA. *J. Wildl. Dis.* 50, 224–
420 234

421 37 Herrera, J. and Nunn, C.L. (2019) Behavioural ecology and infectious disease:
422 implications for conservation of biodiversity. *Philos. Trans. R. Soc. B Biol. Sci.* 374,
423 20180054

424 38 Bron, G.M. *et al.* (2018) Impact of Sylvatic Plague Vaccine on Non-target Small
425 Rodents in Grassland Ecosystems. *EcoHealth* 15, 555–565

426 39 Curlee, J.F. (1999) Cross-Species Vaccination in Wild and Exotic Animals. In
427 *Advances in Veterinary Medicine* 41pp. 551–556, Elsevier

428 40 Gervasi, S.S. *et al.* (2015) The context of host competence: a role for plasticity in
429 host–parasite dynamics. *Trends Parasitol.* 31, 419–425

430 41 VanderWaal, K.L. and Ezenwa, V.O. (2016) Heterogeneity in pathogen
431 transmission: mechanisms and methodology. *Funct. Ecol.* 30, 1606–1622

432 42 White, L.A. *et al.* (2017) Using contact networks to explore mechanisms of
433 parasite transmission in wildlife: Contact networks: wildlife parasite
434 transmission. *Biol. Rev.* 92, 389–409

435 43 McClure, K.M. *et al.* (2020) Variation in host home range size decreases rabies
436 vaccination effectiveness by increasing the spatial spread of rabies virus. *J. Anim.*
437 *Ecol.* 89, 1375–1386

438 44 Rushmore, J. *et al.* (2014) Network-based vaccination improves prospects for
439 disease control in wild chimpanzees. *J. R. Soc. Interface* 11, 20140349

440 45 Paull, S.H. *et al.* (2012) From superspreaders to disease hotspots: linking
441 transmission across hosts and space. *Front. Ecol. Environ.* 10, 75–82

442 46 Basinski, A.J. *et al.* (2019) A little goes a long way: Weak vaccine transmission
443 facilitates oral vaccination campaigns against zoonotic pathogens. *PLoS Negl. Trop. Dis.* 13, e0007251

444 47 Smithson, M.W. *et al.* (2019) Transmissible vaccines whose dissemination rates
445 vary through time, with applications to wildlife. *Vaccine* 37, 1153–1159

446 48 Crouse, D.T. *et al.* (1987) A Stage-Based Population Model for Loggerhead Sea
447 Turtles and Implications for Conservation. *Ecology* 68, 1412–1423

448 49 Railsback, S. and Grimm, V. (2012) *Agent-Based and Individual-Based Modeling: A
449 Practical Introduction*, Princeton University Press.

450 50 Thulke, H.-H. and Eisinger, D. (2008) The Strength of 70%: Revision of a
451 Standard Threshold of Rabies Control. *Dev. Biol.* 131, 291–98

452 51 (2018) *WHO Expert Consultation on Rabies: Third Report*, World Health
453 Organization.

454 52 Hampson, K. *et al.* (2015) Estimating the Global Burden of Endemic Canine
455 Rabies. *PLoS Negl. Trop. Dis.* 9, e0003709

456 53 Velasco-Villa, A. *et al.* (2017) Successful strategies implemented towards the
457 elimination of canine rabies in the Western Hemisphere. *Antiviral Res.* 143, 1–12

458 54 Hampson, K. *et al.* (2009) Transmission Dynamics and Prospects for the
459 Elimination of Canine Rabies. *PLoS Biol.* 7, e1000053

460 55 Kasempimolporn, S. *et al.* (2007) Prevalence of rabies virus infection and rabies
461 antibody in stray dogs: A survey in Bangkok, Thailand. *Prev. Vet. Med.* 78, 325–
462 332

463 56 Randall, D.A. *et al.* (2006) An integrated disease management strategy for the
464 control of rabies in Ethiopian wolves. *Biol. Conserv.* 131, 151–162

465 57 Taylor, L.H. *et al.* (2017) The Role of Dog Population Management in Rabies
466 Elimination—A Review of Current Approaches and Future Opportunities. *Front. Vet.
467 Sci.* 4, 109

468 58 Wandeler, A.I. *et al.* (1988) Oral Immunization of Wildlife Against Rabies:
469 Concept and First Field Experiments. *Clin. Infect. Dis.* 10, S649–S653

470 59 Sidwa, T.J. *et al.* (2005) Evaluation of oral rabies vaccination programs for
471 control of rabies epizootics in coyotes and gray foxes: 1995–2003. *J. Am. Vet.
472 Med. Assoc.* 227, 785–792

473 60 Canning, G. *et al.* (2019) Rabies outbreak in African Wild Dogs (*Lycaon pictus*) in
474 the Tuli region, Botswana: Interventions and management mitigation
475 recommendations. *J. Nat. Conserv.* 48, 71–76

476

477

478

479

480 **Figure 1.** Imperfect vaccines can be categorized by the phenotypic resistance effects on
 481 vaccinated hosts, such as anti-infection, anti-disease, and anti-transmission. Each of these
 482 non-exclusive categories can influence epidemiology and pathogen evolution.

483

484

485

486 **Box 1. Canid rabies vaccination campaigns: limitations to control**

487 **Figure 2.** Rabies vaccination on a gradient of wildness.

488 Rabies vaccination of canids has been used to both prevent spillover transmission into
489 human populations and protect endangered wildlife [51]. Rabies vaccination of domestic
490 dogs, stray dogs, and wild canids demonstrates vaccination across a gradient of control
491 and wildness (Figure 2). Globally, domestic dogs are the main source of rabies
492 transmission to humans [52]. Consequently, owned dog vaccination is used to interrupt
493 dog-to-human transmission and, largely due to the control afforded by ownership, has
494 been successful in eliminating **enzootic** canine rabies in the U.S [53]. However, the
495 unconstrained movement of stray dogs allows contact with wildlife, owned dogs, and
496 humans, amplifying their importance in rabies transmission [54]. Difficulty catching stray
497 dogs contributed to poor coverage, and hence failure, in a mass rabies vaccination
498 campaign in Bangkok, Thailand [55]. Furthermore, high population growth, turnover, and
499 translocation rates of stray dogs intensifies the challenge of achieving and maintaining
500 vaccination coverage sufficient for herd immunity [54–56]. Combining vaccination with
501 neutering can combat these challenges [57].

502 Vaccination of wildlife against rabies to prevent spillover into humans and domestic
503 animals have also been hugely successful campaigns; locally eliminating rabies in red
504 foxes and coyotes, while decreasing its prevalence in gray foxes [4–6]. This success is
505 undoubtedly driven by the advent of oral bait vaccines, which can be distributed across
506 large geographic scale [6]. Yet, although oral vaccination reduces the need for wildlife
507 control via capture and handling and increases the geographic scale of administration,
508 successful oral vaccination requires ecological knowledge of target and non-target
509 foraging behaviors and home ranges for baiting, population turnover rates for estimating
510 length of vaccination protection, and species-specific immunological responses [6,58,59].
511 Rabies vaccination has also been implemented as a conservation measure for endangered
512 wild canids, such as the Ethiopian wolf (*Canis simensis*) and African wild dogs (*Lycaon*
513 *pictus*) [56,60].
514 In these canid vaccination campaigns, control at the individual level, such as compliance,
515 handling, and capture, prove most challenging. Thus, strategies that prioritize population-
516 level measures, i.e., economic incentives through government support for owned dog
517 vaccination, managing stray dog populations through neutering, and oral baiting of free-
518 roaming and wild canids, significantly enhance vaccination success.