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ABSTRACT

Wildlife vaccination is of urgent interest to reduce disease-induced extinction and
zoonotic spillover events. However, several challenges complicate its application to
wildlife. For example, vaccines rarely provide perfect immunity. While some protection
may seem better than none, imperfect vaccination can present epidemiological,
ecological, and evolutionary challenges. While anti-infection and anti-transmission
vaccines reduce parasite transmission, anti-disease vaccines may undermine herd
immunity, select for increased virulence, or promote spillover. These imperfections
interact with ecological and logistical constraints that are magnified in wildlife, such as
poor control and substantial trait variation within and among species. Ultimately, we
recommend approaches such as trait-based vaccination, modeling tools, and methods to
assess community- and ecosystem-level vaccine safety to address these concerns and

bolster wildlife vaccination campaigns.
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The potential of wildlife vaccines

Vaccination, the process of exposing the immune system to an antigen to induce
pathogen resistance, is a powerful tool for controlling disease. The benefits of vaccination
are twofold: recipients are directly protected against infection and unvaccinated hosts are
indirectly protected through herd immunity (Glossary), which reduces transmission and
parasite-mediated harm to host populations [1]. Vaccination has been vastly successful
for humans and livestock [2,3]. Successful vaccination campaigns against rabies in
raccoons (Procyon lotor), red foxes (Vulpes vulpes), gray foxes (Urocyon
cinereoargenteus), and coyotes (Canis latrans) suggest that vaccination efforts could be
directed towards emerging infectious diseases (EIDs) that cause devastating host
declines, e.g., amphibian chytridiomycosis, white nose syndrome, Tasmanian devil
facial-tumor disease, and Ebola [4—-10]. The success of vaccination in human and
livestock populations, the pressing need for disease control tools in wildlife conservation,
and the ever-increasing threat of zoonotic spillover events support a clear need to
develop vaccination as an intervention tool for wildlife disease control. However, several
outstanding challenges and questions remain before vaccination can emerge as a reliable
tool for wildlife disease control. We argue that accounting for the limitations of imperfect
vaccines, host and non-host ecology, and individual physiology in the development of
vaccination campaigns is vital for harnessing the potential of wildlife vaccines

successfully.

Objectives of wildlife vaccination
Biodiversity conservation and the prevention of pathogen spillover are two urgent

concerns of wildlife disease control. Emerging diseases of wildlife threaten population
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and species persistence and contribute significantly to the ongoing loss of biodiversity
[11]. Additionally, wildlife populations are reservoir hosts for many zoonotic
pathogens such as rabies, Nipah virus, and coronaviruses that threaten the health of
humans [12].

Controlling disease in wildlife reservoir populations can reduce spillover
transmission, but complete prevention of spillover risk from a known pathogen requires
elimination or eradication of a parasite within a reservoir host to prevent zoonotic
transmission. Vaccines may be able to achieve this objective, but given the inherent
antigenic specificity of all known vaccines, they will not prevent novel pathogen
emergence. Theory underlying eradication often identifies a critical level of vaccine
coverage, which drives the effective reproductive ratio (Refr) of a pathogen below the
threshold value of one [1]. Combating rinderpest virus reintroduction during the
eradication campaign exemplifies the intense effort needed for eradication [3].

In contrast, vaccination for conservation aims to maximize the persistence of host
populations and communities by decreasing the risk of disease-induced extinction, rather
than through achieving parasite elimination. Wildlife populations can generally withstand
small-scale disease outbreaks, and so conservation-motivated vaccination does not
always require pathogen eradication [13]. Thus, vaccination coverage required for
conservation-motivated disease control tends to be lower than that required for spillover
prevention. For example, modeling estimates suggest that maintaining low vaccination
coverage, between 20-40%, will stave off rabies-induced extinction of Ethiopian wolves

(Canis simensis)[13].
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Vaccine efficacy and modes of imperfection

Despite their potential for controlling wildlife disease, vaccines rarely provide
perfect immunity, which can compromise herd immunity or contribute to the evolution of
increased parasite virulence [14]. For example, a prototype vaccine partially protects
amphibians from Batrachochytrium dendrobatidis; vaccination decreases, but does not
eliminate, parasite proliferation [15]. In contrast, a theoretically perfect vaccine would
provide permanent and complete resistance to infection for all recipients, but vaccines
considered for wildlife often fall short of this definition [14]. Three broad aspects of
vaccine imperfection are often discussed in the literature: waning, leaky, and partial
immunity. However, “leaky” immunity is used inconsistently and imprecisely, generating
confusion. One reason for this is that modeling frameworks, such as Susceptible-Infected-
Resistant (SIR) compartment models can make it difficult to incorporate some types of
vaccine imperfections. Therefore, we suggest a clarified categorization based on waning,
binary and partial immunity. Importantly, these categories are not mutually exclusive,
and we discuss the impacts of these varying levels of immunity on wildlife populations,

vaccine efficacy, modeling frameworks.

Waning immunity

Waning describes the loss of resistance to infection over time. Individuals can
vary in their waning rate, and immunity can be restored by subsequent exposures, i.¢.,
“boosters”. Vaccine-induced immunity often wanes faster than immunity generated from
natural infection, which can leave vaccinated individuals at higher risk during recurrent

or cyclical epidemics [16]. For example, Eastern Equine Encephalitis virus vaccination in
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sandhill (Grus americana) and whooping cranes (Grus canadensis) waned rapidly,
requiring booster vaccination within 30 days [17]. Life history traits, immune boosting
sources, and waning rate interact to determine vaccine utility [18]. Waning immunity is
routinely and relatively easily incorporated into SIR compartment models by allowing

resistant individuals to reenter the susceptible class.

Binary immunity

Binary immunity occurs when vaccination does not induce immunity in all
recipients [19]. This generates a binary outcome, wherein hosts are either resistant or
susceptible, with no intermediate outcome. Binary outcomes of immunization have also
been described as an “all-or-nothing qualitative response” [20]. For example, high rates
of binary vaccine outcomes for the varicella vaccine in humans prompted the
recommendation for a second dose within months of the first [21]. Differences in vaccine
immunogenicity, adjuvants, vaccine storage, dosage, administration, host infection
status, competence of the host’s immune system, and host genetics can all shape binary
immunity [19,22]. Random binary immunization outcomes are often incorporated into
SIR models by effectively lowering vaccination coverage by the proportion of binary
failure [23]. However, if certain host types are more prone to vaccine failure, then it
might be critical to address how these different failure rates among different host class

affect disease dynamics [24].

Partial immunity
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In contrast to binary efficacy, which assumes a vaccine either succeeds in
inducing an acquired immune response or fails, vaccines that provide partial immunity
may not completely prevent infection, disease symptoms, or transmission in an
immunized host. Partial immunity allows for vaccine efficacy to be measured on a
proportional gradient from 0-1, rather than as a qualitative all-or-nothing response
[25,26]. One critical complication is that partial immunity may impact a number of
infection outcomes, such as resistance to infection, disease attributed to infection, and
infectiousness [27]. The functional consequences of these changes are detailed below.
Partial immunity is less easily incorporated into SIR-type models and has therefore been
relatively neglected compared to other modes of imperfection. Individual-based models
(IBMs), which explicitly track individual traits and histories may be much better suited to

investigate this vaccine imperfection.

Functional mechanisms and consequences of imperfect vaccines

Different resistance responses to imperfect vaccines have unique ecological and
evolutionary consequences. Imperfect immunization can confer the following three
phenotypic types of resistance responses: 1) anti-disease, 2) anti-infection, and 3) anti-
transmission (Figure 1). These are also not mutually exclusive, and they can be assessed
using either binary (qualitative) or partial (quantitative) metrics [26,28,29]. Because the
majority of vaccines are imperfect, anticipating and addressing their potential deleterious
consequences is a priority in determining vaccination feasibility in a wildlife context. For
example, the imperfect-vaccine hypothesis postulates that partial immunity upon

vaccination could drive the evolution of increased pathogen virulence, and the risk of
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vaccine-driven virulence evolution is dependent on the vaccination phenotype and

efficacy [29].

Anti-disease vaccines

Anti-disease vaccines reduce virulence (i.e., increase host tolerance) without
necessarily reducing the risk of infection or subsequent transmission. Therefore, these
vaccines directly benefit recipients, but can counteract herd immunity if the infectious
period is lengthened. Studies on Marek’s disease in poultry and helminth and tuberculosis
coinfections in African buffalo show that interventions which reduce the mortality of
infected hosts, without decreasing infection or transmission rates, increase parasite
transmission in populations by extending the infectious period [29,30]. Despite this
potential for increased transmission, anti-disease vaccines may still be effective for
conservation if their net effect reduces total parasite-induced mortality or reproductive
costs. A prototype anti-Chlamydia pecorum vaccine for koala (Phascolarctos cinereus)
conservation offers potential as a therapeutic vaccine as it reduces disease in unexposed
and infected koalas, with some reduction in infection incidence and loads [31]. However,
anti-disease vaccines are unlikely to reduce spillover risk, precisely because they can
promote transmission.

Evolutionarily, lengthening the infectious period through anti-disease vaccination
is theorized to relax selection against high virulence [27,29]. This prediction, derived
from the transmission-virulence trade-off hypothesis, arises because limiting host
death allows for otherwise highly virulent genotypes to persist and even be favored by

selection [29]. While experimental evidence explicitly demonstrating increased virulence
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driven by vaccination is lacking, a recent study on house finches (Haemorhous
mexicanus) parasitized by the bacteria Mycoplasma gallisepticum demonstrated that an
anti-disease phenotype conferred by a natural primary infection facilitated a two-fold
increase in the fitness advantage of a high virulence strain during secondary infections
[32]. However, anti-disease vaccines that vary in degree of protection among immunized
individuals may be less risky for vaccine-driven virulence evolution, as variance in host

protection will not uniformly favor the evolution of increased parasite virulence [27].

Anti-infection and anti-transmission vaccines

Vaccines that prevent or reduce parasite establishment in an immunized host are
considered anti-infection vaccines. Anti-transmission vaccines, on the other hand, may
permit infection but prevent or reduce onward transmission from the recipient. Both
phenotypes contribute to herd immunity, and epidemiological models predict that parasite
elimination can be achieved with high rates of coverage and efficacy [28]. Thus, both
anti-infection and anti-transmission vaccines can be effective for spillover prevention and
conservation. The Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine, used to
prevent spillover of M. bovis into livestock, confers anti-infection resistance in Australian
brushtail possums (7richosurus vulpecula), and the transmission-reducing prototype
Batrachochytrium dendrobatidis vaccine offers promise for use in amphibian
conservation [15,33].

The evolutionary consequences of these vaccines depend crucially on the mode of
imperfection. Binary anti-infection or anti-transmission vaccines do not favor virulence

evolution and can, at times, even reduce selection for parasite virulence, by preventing
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coinfections for example [28,34]. Conversely, partial anti-infection or anti-transmission
vaccines can select for increased virulence [25]. Partial anti-infection and anti-
transmission phenotypes effectively increase the exposure dose required for
establishment (i.e. infectious dose), which can select for increases in parasite
reproduction rate [25,28]. Theory suggests that this type of anti-infection resistance
favors virulence evolution by encouraging the increase in intrinsic parasite reproduction

for successful infection establishment [25].

Ecological and logistical challenges of vaccination exacerbated in wildlife

Vaccines have strong potential to achieve disease control in wildlife. However,
imperfect vaccines must also overcome physiological, behavioral, and ecological factors
to succeed. Thus, complications arise from two primary factors: vaccine imperfections
and vaccine administration. Lack of control and intraspecific, interspecific, and
environmental heterogeneity are central sources of uncertainty in vaccine delivery,
uptake, and response (Box 1). Vaccination success hinges on high coverage of doses that
induce a durable immune response without harming recipients [1]. In complex ecological
communities, indirect deployment (i.e., oral baiting) campaigns risk simultaneously over-
and under-dosing many organisms because wildlife can vary in 1) the amount of
inoculum consumed or encountered and 2) their physiological response to a given dose.

Heterogeneity in host behavior, morphology, and habitat use all influence
infection risk, and probability of vaccine exposure [35-37]. Assessing vaccine exposure
in target and non-target wildlife can be done using biomarkers, such as fluorescent

Rhodamine b [38]. Moreover, the immunological traits of most wildlife hosts remain
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poorly known, and even closely related species can exhibit marked variation in response
to vaccination [39]. In vaccination campaigns using indirect deployment, assessing
vaccine safety and impact on non-target hosts and non-hosts is a critical step to
anticipating and preventing harmful unintended consequences on ecological communities
and ecosystem functioning. Dose-response profiles are a useful and routine tool for
assessing consequences of over- and under-dosing wildlife. Specifically, dose-response
profiles can be useful for quantifying differences in dose-specific immune responses for
distinct classes of hosts (e.g., species identity, developmental stage, age class, genotype).
Additionally, the effect of vaccination on non-target wildlife can be evaluated by tracking
community diversity metrics (e.g. abundance, richness, and evenness) and ecosystem
function pre- and post-administration in both placebo and vaccinated environments [38].
Furthermore, trait-based vaccination may help to overcome issues related to patchy

coverage and dosing.

Trait-based vaccination

Which hosts should be prioritized for vaccination? Host factors such as age,
immunity, behavior, and genetics all influence host competence [40]. These
heterogeneous factors contribute significantly to disparities in parasite susceptibility and
transmission between hosts, leading to relatively few individuals being responsible for
most parasite transmission in a population [41]. This observation can be harnessed to
tailor control methods using trait-based vaccination.

Random mixing is a fundamental assumption of classic vaccination and

transmission models, but network analyses of wildlife show that traits such as

10
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territoriality or sociality often reveal non-random contacts, elevating the importance of
accounting for contact and home range heterogeneity in vaccination [42,43]. Targeted
vaccination of superspreaders has been continually proposed as a method to reduce
required immunization coverage [44,45]. For example, targeted vaccination of socially-
central chimpanzees, determined by detailed behavioral data or approximated using trait-
based estimates, can significantly reduce the vaccination coverage threshold [44].
Incorporating contact networks into transmissible vaccine models, using an individual-
based approach, could assess if behaviors associated with superspreading, such as
gregariousness or boldness, increase vaccine transmission [46,47]. Alternatively,
vaccination for conservation could target individuals that are disproportionately

important to population growth or persistence [48].

Modeling wildlife vaccination

Susceptible-Infected-Resistant (SIR) models are the most common models used
for predicting vaccination outcomes [27]. While valuable for modeling waning and
binary modes of imperfection, SIR models cannot capture the complexities of partial
immunity, especially when spatial dynamics, social interactions or individual history are
important [23,27,49]. Limitations of modeling partial immunity using ordinary
differential equations (ODEs) can be overcome using individual-based models (IBMs),
which are able to incorporate different host immune responses and space-based behaviors
such as territoriality and migration [49]. For example, in the case of fox rabies control in
Europe, IBM predictions recommended the use of a lower coverage vaccination strategy

relative to an SIR model [50]. This lower coverage strategy was carried out successfully

11
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and saved considerable resources [49].While the simplicity and analytical tractability of
ODE models can offer considerable advantages, we advocate for the increased
consideration of IBMs in the study of wildlife disease because they can represent
individual-level physiology, connect seamlessly with transmission networks or spatially-

explicit movement models, and accommodate individual history and heterogeneity [49].

Concluding Remarks

Vaccines can advance biodiversity conservation and spillover control. However,
vaccine imperfections can substantially compromise the achievement of herd immunity
or promote the evolution of increased virulence, yet they are not always accounted for in
theory, planning, or analysis of vaccine use in wildlife. Wildlife vaccination offers a
frontier to explore advancing questions in eco-immunology, imperfect immunity, and
disease control innovation. The biological factors shaping vaccination success, feasibility,
and efficacy should be as central to decisions regarding wildlife vaccination as logistical
limitations and financial resources (OQutstanding Questions). Thorough empirical
assessment of the vaccine-host-parasite biology can both 1) prevent impractical
vaccination campaigns and 2) ameliorate challenges regarding vaccine dose and
coverage, saving time and limiting adverse outcomes.

Disentangling potential modes of imperfection is critical for predicting outcomes
of vaccination. Incorporating these effects into models and experiments can predict
otherwise counterintuitive deleterious outcomes, such as increased transmission caused
by anti-disease resistance. We suggest that IBMs should be selected for vaccines

conferring partial immunity or systems in which space-based behaviors drive disease

12
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dynamics. Additionally, vaccination outcomes should be simultaneously studied across
ecological scales and evolutionary time. Imperfect vaccines impose subtle tension
between individual- and population-level benefits, and deeper theoretical examination
can help prevent the implementation of unfeasible or potentially harmful vaccines.
Furthermore, wild hosts and parasites are inherently heterogeneous and poorly
controlled. Dose-response profiles and community diversity metrics should be used to
account for heterogeneity when calculating safe and effective vaccine doses for wildlife
individuals, populations, communities, and ecosystems. Trait-based vaccination
approaches could prioritize hosts that disproportionately contribute to population
persistence or parasite transmission thus minimizing coverage required for parasite
eradication or host population viability. Ecological complexities and evolutionary
consequences of imperfect immunity provide an abundance of challenges when
vaccinating wildlife; but pursuing wildlife vaccination for use in conservation or spillover
prevention is by no means foolish if informed by the system’s underlying physiology and

ecology.

Acknowledgements

We thank Drs. Levi Morran, Karen Levy, and Sarah Bowden for their valuable
feedback on the manuscript. We also thank members of the Civitello Lab for their
comments. KMB and DJC were supported by NSF I0S-1755002. KMB was also
supported by NSF GRFP DGE-1937971. DJC was also supported by NIH 1R01

AI150774-01. Any opinions, conclusions, or recommendations expressed in this material

13



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

are those of the authors and do not necessarily reflect the views of the National Science

Foundation.

Glossary

Herd immunity: indirect protection of susceptible hosts by resistant hosts.

Spillover: transmission of parasites from a non-human host species to humans.
Reservoir host: a population of organisms that serve as an infection source for another
host population.

Zoonotic pathogens: a parasite able to be transmitted from non-human animals to
humans.

Effective reproductive ratio (Refr): the number of secondary infections a primary
infection contributes in a population with resistant individuals.

Parasite virulence: host death or pathology induced by infection.

Resistance phenotype: categories of incomplete immunity, including anti-disease
immunity, anti-infection immunity, and anti-transmission immunity.

Immunogenicity: a vaccine’s ability to induce an acquired immune response.
Adjuvants: vaccine additives to increase its immunogenicity.

Imperfect-vaccine hypothesis: theory suggesting that, depending on the phenotype of
resistance, partial vaccination may select for increased parasite virulence.

Host tolerance: decreased mortality or pathology in response to infection.
Transmission-virulence trade-off hypothesis: hypothesis derived from the assumption
that transmission rate and virulence are correlated, predicting that an intermediate level of

virulence is favored by selection.
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Coinfections: two or more parasite species simultaneously infecting the same host.
Dose-response profiles: quantifying an organism’s physiological response to varying
doses of vaccine.

Trait-based vaccination: vaccine distribution prioritizing individuals with specific
characteristics.

Host competence: the relative ability of a host to become infected by and transmit a

parasite.

Superspreader: an individual that disproportionately contributes to parasite transmission

within a given population.
Transmissible vaccine: vaccines that autonomously spread from treated to untreated
individuals.

Enzootic: a pathogen endemic in non-human animals.
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Figure 1. Imperfect vaccines can be categorized by the phenotypic resistance effects on
vaccinated hosts, such as anti-infection, anti-disease, and anti-transmission. Each of these
non-exclusive categories can influence epidemiology and pathogen evolution.
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Box 1. Canid rabies vaccination campaigns: limitations to control
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Figure 2. Rabies vaccination on a gradient of wildness.
Rabies vaccination of canids has been used to both prevent spillover transmission into
human populations and protect endangered wildlife [51]. Rabies vaccination of domestic
dogs, stray dogs, and wild canids demonstrates vaccination across a gradient of control
and wildness (Figure 2). Globally, domestic dogs are the main source of rabies
transmission to humans [52]. Consequently, owned dog vaccination is used to interrupt
dog-to-human transmission and, largely due to the control afforded by ownership, has
been successful in eliminating enzootic canine rabies in the U.S [53]. However, the
unconstrained movement of stray dogs allows contact with wildlife, owned dogs, and
humans, amplifying their importance in rabies transmission [54]. Difficulty catching stray
dogs contributed to poor coverage, and hence failure, in a mass rabies vaccination
campaign in Bangkok, Thailand [55]. Furthermore, high population growth, turnover, and
translocation rates of stray dogs intensifies the challenge of achieving and maintaining
vaccination coverage sufficient for herd immunity [54-56]. Combining vaccination with

neutering can combat these challenges [57].
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Vaccination of wildlife against rabies to prevent spillover into humans and domestic
animals have also been hugely successful campaigns; locally eliminating rabies in red
foxes and coyotes, while decreasing its prevalence in gray foxes [4—6]. This success is
undoubtedly driven by the advent of oral bait vaccines, which can be distributed across
large geographic scale [6]. Yet, although oral vaccination reduces the need for wildlife
control via capture and handling and increases the geographic scale of administration,
successful oral vaccination requires ecological knowledge of target and non-target
foraging behaviors and home ranges for baiting, population turnover rates for estimating
length of vaccination protection, and species-specific immunological responses [6,58,59].
Rabies vaccination has also been implemented as a conservation measure for endangered
wild canids, such as the Ethiopian wolf (Canis simensis) and African wild dogs (Lycaon
pictus) [56,60].

In these canid vaccination campaigns, control at the individual level, such as compliance,
handling, and capture, prove most challenging. Thus, strategies that prioritize population-
level measures, i.e., economic incentives through government support for owned dog
vaccination, managing stray dog populations through neutering, and oral baiting of free-

roaming and wild canids, significantly enhance vaccination success.
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