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Data-driven Bayesian model-based prediction of fatigue crack
nucleation in Ni-based superalloys
Maxwell Pinz1, George Weber1, Jean Charles Stinville2, Tresa Pollock2 and Somnath Ghosh 3✉

This paper develops a Bayesian inference-based probabilistic crack nucleation model for the Ni-based superalloy René 88DT under
fatigue loading. A data-driven, machine learning approach is developed, identifying underlying mechanisms driving crack
nucleation. An experimental set of fatigue-loaded microstructures is characterized near crack nucleation sites using scanning
electron microscopy and electron backscatter diffraction images for correlating the grain morphology and crystallography to the
location of crack nucleation sites. A concurrent multiscale model, embedding experimental polycrystalline microstructural
representative volume elements (RVEs) in a homogenized material, is developed for fatigue simulations. The RVE domain is
modeled by a crystal plasticity finite element model. An anisotropic continuum plasticity model, obtained by homogenization of
the crystal plasticity model, is used for the exterior domain. A Bayesian classification method is introduced to optimally select
informative state variable predictors of crack nucleation. From this principal set of state variables, a simple scalar crack nucleation
indicator is formulated.
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INTRODUCTION
Ni-based superalloys, such as René 88DT, are widely used in high-
temperature applications especially in the aerospace propulsion
industry, on account of their excellent thermomechanical and
chemical properties. Despite significant advantages, the fatigue life
of these materials is compromised due to the presence of
heterogeneities in the microstructure. While very few metallurgical
defects like inclusions or voids are found in their polycrystalline
microstructures, typically manufactured by powder metallurgy
techniques, heterogeneities manifest as spatial variations in the
crystallographic and grain morphology distributions, as well as
intragranular compositions1. Additionally, annealing twins are critical
heterogeneities that form in the polycrystalline microstructures during
processing. These microstructural variations are major contributing
factors to their fatigue failure under operating conditions2.
A number of studies, e.g. in3–7 have observed nucleating cracks

near coherent Σ3 twin boundaries under fatigue loading conditions.
For the polycrystalline René 88DT, fatigue cracks are often found to
nucleate at these twin boundaries, especially where the adjacent
grains also have a high Schmid factor1,8. Crack nucleation is
preceded by the formation of slip bands that are parallel to the
coherent twin boundaries, yet slightly offset from the boundary
itself9,10. In addition to the high Schmid factor, high elastic modulus
mismatch across the boundary and long twin boundaries have also
been associated with the probable locations of crack nucleation
in11–13. A hypothesis behind such observations of crack nucleation
is that these geometric and crystallographic metrics can be
correlated with high values of the resolved shear stress on shared
slip systems between twin and parent grains, parallel to the twin
boundary14–19. The studies conjecture that rather than high Schmid
factors, the high resolved shear stresses promote dislocation glide
along the shared plane leading to nucleation. Out-of-plane forest
dislocations do not disrupt slip on the shared plane, and hence
dislocation glide is unimpeded along the boundary. With the
progression of cyclic loading, highly localized slip parallel to the

twin boundary trigger the formation of persistent slip bands (PSB),
which precede crack nucleation and propagation20. Experiments on
Ni-based superalloys have shown that PSBs can form at strains
below 0.35% within a single cycle of deformation9.
These observations necessitate the development of robust

mechanism-driven predictive models that can relate evolving
state variables in the underlying polycrystalline microstructure to
the nucleation of cracks. The last two decades have witnessed
significant advances in the understanding and prediction of the
connection between microstructure and local mechanical fields,
along with critical failure indicators under fatigue loading. This has
been enabled by a combination of advanced experimental
characterization techniques like electron backscatter diffraction
(EBSD), high-energy diffraction microscopy (HEDM), and X-ray
tomography/diffraction techniques, and computational models
like adaptive finite element methods (FEM) and fast Fourier
transform (FFT) methods integrated with crystal plasticity con-
stitutive models. In the computational modeling approaches,
virtual 2D and 3D polycrystalline microstructures are generated
from materials characterization data, and subsequently image-
based micromechanical simulations are conducted to interrogate
the locations of crack evolution21–23. Comprehension of material
states near the critical cracked regions has guided researchers in
constructing metrics of fatigue and failure indicators. Both
physics-based and data-driven approaches have been pursued
to create the appropriate fatigue metrics, such as dislocation
density and plastic slip-based criteria combined with crack
opening stresses for susceptible grain configurations24,25, ener-
getics and stability of PSBs in26, accumulated plastic slip and
elastic anisotropy in14, and cyclic stored plastic energy den-
sity21,23,27,28. Important fatigue indicator parameters have thereby
been derived through the use of correlation metrics, variance-
based sensitivity, or physics-derived arguments in combination
with machine learning and Bayesian techniques21,22,29–31.
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Despite significant advances, shortcomings, e.g. in experimental
throughput rates and computational efficacy, have in some cases
mitigated the effectiveness of these models. Limitations in the
collection of experimental data sets linking microstructural config-
urations to crack nucleation sites have often led to the develop-
ment of models from very limited microstructural data sets,
typically encompassing a single grain configuration. Alternatively,
the microstructural geometry has been abandoned entirely in favor
of higher-scale statistical analysis. The lack of realistic experimental
data leads to inherent uncertainty in the model output. The
resulting fatigue indicators are not likely to retain fidelity with the
introduction of new data. Furthermore, probabilistic methods,
required to handle multiple experiments in a high-dimensional
input data space, suffer from various issues resulting from the
problem dimensionality. From a modeling point of view, the
computational methods must ensure accurate determination of
state variables like stresses, plastic strains, dislocation densities, etc.
at potential crack nucleation sites for effective development of
mechanics-based models of crack nucleation. Boundary conditions
play a very important role in the prediction of localized variables in
the image-based micromechanical models32,33. Conventionally used
periodicity boundary conditions can lead to gross inaccuracies
when modeling fatigue behavior.
This paper introduces a data-driven Bayesian model framework

for predicting fatigue crack nucleation in polycrystalline micro-
structures of the Ni-based superalloy René 88DT, overcoming
some of the limitations mentioned above. The overall approach
leverages large data sets obtained from crystal plasticity FEM-
based micromechanical simulations with statistics and machine
learning algorithms. Within this framework, the probability of
observing a crack nucleation event is derived based on
computationally generated micromechanical data on state vari-
ables at a potential nucleation point. High fidelity, image-based
crystal plasticity finite element (CPFE) models developed in34–37

are adopted for simulating evolving state variables in micro-
structural representative volume elements (RVE) of polycrystalline
Ni-based superalloys. The deficiencies with improper boundary
conditions on the RVE is alleviated in this work through a
concurrent multiscale model, where the microstructural RVE is

embedded in a homogenized exterior material domain. The
exterior domain is modeled using an upscaled, anisotropic
continuum plasticity constitutive model that is obtained from
homogenization of crystal plasticity RVE simulations38–44. This
model is discussed in the Supplementary Methods Section.
The paper introduces a robust Bayesian model framework for

extracting fatigue nucleation criterion using a combination of
simulation and experiments. The primary contributions of this
framework are delineated below.

● The probabilistic crack nucleation model accounts for multiple
experimental microstructures that are simulated using crystal
plasticity FEM with one-to-one virtual representations of EBSD
scans. A major factor for model calibration and validation is the
generation of statistically significant results over a set of multiple
experimental microstructures, covering a range of microstructural
variabilities. By incorporating multiple one-to-one experimental
data sets directly in the probabilistic modeling framework, the
approach mitigates uncertainties arising from a single micro-
structure dependency and insufficient validation data. An
important additional aspect is the accounting for material states
of both cracked and uncracked regions in the development,
through efficient algorithms for handling large data sets.

● The Bayesian crack nucleation model is formulated using a
customized Nataf transformation to represent multivariate joint
posteriors. The resulting probabilistic framework yields several
advantages over other comparable methods, viz. (i) semi-
analytical expressions for high-dimensional joint probability
distributions, (ii) easy sampling of arbitrary points in the data-
space with no reliance on specialized sampling techniques, (iii)
simple calculation of moments and measures on the joint
probability distribution, and (iv) straightforward regularization of
discrete data that reduces a generalized model error. These
advantages enable efficient use of the final posterior joint
distribution in predicting crack nucleation.

● The automated simulation framework creates pipelines, which
take a set of EBSD scans delineating grain configurations and
crack nucleation sites as input, and returns a reduced order
state-variable-based Bayesian model for probabilistic nucleation
prediction as shown in Fig. 1. The framework integrates

Fig. 1 Four modules comprising the pipeline for developing the data-driven crack nucleation model. (I) experimental testing and
characterization data, (II) development of the concurrent multiscale model with embedded microstructural RVE, (III) creation of a database of
microstructural state variables, and (IV) development of the Bayesian crack nucleation model.
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multiple computational procedures into a continuous workflow.
● The model introduces an algorithm for selecting important

state variables and isolating critical metrics that indicate
locations of crack nucleation. This algorithm assesses successive
multi-dimensional joint distributions and accounts for highly
correlated sets of variables to be incrementally optimal in its
predictions.

● The automated procedure with minimal intervention uses
experimental data to inform the probabilistic model of the most
informative parameters. These parameters yield mechanistic
insights into the drivers of crack nucleation for this material.
The resulting probabilistic model demonstrates robust perfor-
mance across variations in the microstructure and local grain
configuration.

● A scalar crack nucleation indicator is derived from the
simulation platform.

The process of developing a probabilistic crack nucleation
modeling framework integrates experimental testing and char-
acterization with a pipeline of simulation tools for mechanical
modeling and data-driven, supervised learning techniques. The
sequence of four major modules in this pipeline is schematically
depicted in Fig. 1.

Experimental testing and characterization
In this module, specimens of the Ni-based superalloy René 88DT
are subjected to interrupted fatigue loading at various stages of
deformation, to track the precursors of crack nucleation. Scanning
electron microscopy (SEM) maps are acquired and utilized for
identifying microstructural locations of crack nucleation. Simulta-
neously, EBSD maps are acquired to determine the crystal-
lographic orientations and grain morphologies at locations of
interest in the microstructure.

Concurrent multiscale model development with embedded
microstructural RVE
This module builds a two-scale concurrent model, consisting of an
embedded polycrystalline microstructural RVE in a homogenized
outer domain. Important microstructural deformation variables are
extracted from simulations of the concurrent model of the
experimental specimen. The two-scale concurrent representation
is constructed to avoid direct application of boundary conditions
on the RVE, thereby averting boundary condition-related inac-
curacies in micromechanical fields. The embedded microstructural
region is generated by extruding 2D EBSD scans in the out-of-
plane direction. It is modeled using a crystal plasticity constitutive
model for individual grains in the polycrystalline microstructure,
while the outer domain is modeled by a homogenized, rate-
dependent elasto-plastic constitutive model that is calibrated to
the average mechanical response of the embedded RVE.

Creating a database of microstructural state variables
The concurrent multiscale model is simulated with fatigue loading
conditions applied on the external boundary, from which the
evolving state variables in the embedded microstructural RVE
region are extracted. The state variables are then processed and
archived in a crystal plasticity simulation database for subsequent
stages of the data-driven modeling.

Development of a Bayesian crack nucleation model
The crystal plasticity simulation database provides the input data
for the modeling framework to determine the probability of crack
nucleation corresponding to a mechanical state in the material
volume. The Bayesian model selects the most informative state
variables for predicting crack nucleation by navigating the
covariance structure of candidate predictor variables. The results

are used to create a simple model for identifying potential
locations of crack nucleation in the microstructure.
Each module is standardized and automated so that the model

building process can be rapidly and systematically repeated for all
experimental microstructures. Furthermore, this approach allows
for the extension to other critical events as well as the inclusion of
new data sets.

RESULTS
Material description
The material investigated in this study is a polycrystalline Ni-based
superalloy René 88DT. Generally produced by powder metallurgy
techniques45,46, René 88DT has a nominal chemical composition
(weight percent) of 13% Co, 16% Cr, 4% Mo, 4% W, 3.7% Ti, 0.7%
Nb 0.03% C, 0.015% B, and the balance in Ni47. The intragranular
microstructure of René 88DT consists of an FCC-structured Ni
matrix (γ phase) and an embedded population of L12-structured
Ni3Al precipitates (γ' phase) with a bimodal size distribution of
large (~100 nm) secondary and small (<10 nm) tertiary γ0
precipitates. At the polycrystalline scale, the material has an
average grain size of about 26 μm, very weak crystallographic
texture, and a significant population of Σ3 twin boundaries. Details
on the René 88DT microstructure are given in8,9.

Experiments on fatigue tests and data acquisition
An experimental data set consisting of 12 specimens with
independent grain structure configurations is utilized for devel-
oping the Bayesian model in the present study. Room tempera-
ture, low-cycle fatigue tests are conducted to evaluate the fatigue
life of the Ni-based superalloy René 88DT, for which the
mechanical testing procedures are detailed in9. The tests are
performed in air on an electromechanical machine in a uniaxial,
symmetric push-pull mode. Fully reversed loading tests with an
R-ratio equal to −1 at a frequency of 1 Hz, are carried out in a
stress-controlled mode at a maximum stress of 758 MPa.
Cylindrical specimens with a gauge diameter of 5 mm and a
gauge length of 16 mm are used in these tests. The strains in the
specimen are measured by a mechanical extensometer that is
positioned on the specimen gauge. The average fatigue lifetime of
the specimens is observed to be 65340 cycles with a scatter
(standard deviation) of 5530 cycles. A maximum and minimum
total strain of 0.35% ± 0.04% and −0.35% ± 0.03% are measured
for the first cycle. The material exhibits cyclic evolution of the
strain, with the maximum and minimum strain stabilizing at
0.40% ± 0.05% and −0.30% ± 0.04% respectively, after half of the
lifetime i.e. around 30–40,000 cycles. The strain range remains
constant at 0.70% ± 0.03% during the entire fatigue test.
Interrupted tests are performed to enable specimen surface
examination using SEM and EBSD measurements at about 45% of
the average fatigue lifetime (~30,000 cycles). The SEM scans
identify regions exhibiting evidence of micro-crack formation,
while the EBSD measurements interrogate the configuration of the
surface grains surrounding the micro-cracks. The interrupted tests
capture two types of cracks, viz. those confined to one grain48

(type I) and those extended between one and three-grain
diameters, crossing one or two grain boundaries on the surface
(type II). This approach facilitates the identification of the low-
cycle crack nucleation sites that are characteristic for each
microstructure. A few typical microstructures, showing nucleated
cracks under the fatigue loading conditions, are shown in Fig. 2.

Experimentally generated polycrystalline microstructures
Subsequent to EBSD acquisition, an automated data processing
pipeline is applied to each of the 12 investigated grain structures
in the microstructure generator software DREAM.3D49 to remove
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any measurement defects. Low image quality voxels are identified
and automatically filled. Grains are determined by grouping voxels
within a 5∘ misorientation angle threshold. Grains containing an
area <20 μm2 are merged with their surrounding grains using a
nearest-neighbor identification method. These processing stages
result in a collection of 2D segmented images, free of artifacts that
can cause difficulties with generating robust finite element
meshes.

Key experimental observations on fatigue crack nucleation
The primary sources of heterogeneity in René 88DT are derived
from variations in microstructural features since minimal metal-
lurgical defects like inclusions and voids are generated with
powder metallurgy processing. The most prominent microstruc-
tural features are annealing twins, whose boundaries are
uniformly dispersed throughout the grain structure during heat
treatment. These boundaries have unique crystallographic and
morphological properties and thereby affect dislocation motion
during material deformation.
Prior research, e.g. in1,9,50,51, suggests a number of experimental

correlations between the material grain structure and physical
location of crack nucleation sites. A few key observations are
delineated below:

1. Fatigue crack nucleation and the highest degree of strain
localization are systematically reported to occur near and
parallel to Σ3 twin boundaries in the low, high and very high
cycle regimes9;

2. Crack nucleation always occurs between pairs of grains,
which are relatively oriented in a parallel slip configuration;

3. Additional geometric, crystallographic, and mechanical
factors, such as high Schmid factor, large difference in
elastic modulus between adjacent grains, and long straight
twin boundary length, have been shown to be associated
with crack nucleation sites;

4. Slip bands at crack nucleation sites can form as early as the
first cycle, suggesting state variables at early stages of
deformation are predictive of the crack nucleation locations;

5. For both high and low-cycle fatigue regimes, the previous
studies have reported that all crack nucleation sites are
associated with twin boundaries that display parallel slip
configurations15.

The above observations are taken into account in this study for
predicting the microstructure and grain configurations that

generate crack nucleation. Next the pipeline requires the
development of a concurrent multiscale model for fatigue
analysis, followed by the creation of a microstructural state
variable database related to fatigue nucleation. These are
respectively discussed in Sections I and II of the Methods Section.

A Bayesian framework for predicting crack nucleation
A stochastic machine learning (ML) method is developed for
assessing the probability of crack nucleation in the René 88DT
superalloy microstructure. The Bayesian framework, outlined in
the Methods Section III, is chosen for generating the probability of
observing a crack nucleation event, as a function of the
micromechanical state in the microstructure. This is a supervised
learning classification approach that is effective with a limited set
of high-dimensional data. It has model parameters that are
physically interpretable functions of the micromechanical state
variables and offers a level of uncertainty in its predictions. The
Bayesian modeling framework naturally yields a probabilistic
outcome as opposed to a binary (0 or 1) response, which is
advantageous over other machine learning classification techni-
ques. The finite element simulation data, generated by the
concurrent model in the Methods Section I, is aggregated over all
microstructures and used as training data for this stochastic
model. The results of these simulations are collected into a
segmented database containing over 20 potential crack nuclea-
tion predictors in Methods Section II.

A Bayesian framework for predicting crack nucleation
Constructing a Bayesian model using all of these parameters
would result in over-fitting, providing little useful information. To
remedy this, a model selection technique is developed to
systematically reduce the number of state variables to only those
that most influence the posterior distribution p(C ∣ x) as a
combined set. The objective is to select a reduced order model
with only the most significant state variables from the possible
k= 20 state variables in the data set X listed in Table 2 as well as
their regularized difference terms.
A recursive build-up approach is executed to add state variables

one by one to the model and assess the incremental value of each
new addition. In order to compare across multiple models, an
objective function is designed to quantify the overall effectiveness
of each posterior distribution. Let the objective function ρC be

Fig. 2 Two sample experimental data sets used in the development of the Bayesian crack nucleation model. The SEM images display
fatigue crack nucleation near and parallel to the twin boundaries. The associated EBSD maps present the grain structure around the crack
nucleation sites.
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defined as:

ρC ¼ exp
XNC

i

wðiÞ
C logðpðC j xðiÞÞÞ

 !
(1)

where NC is the total number of cracked material volumes across
all microstructures and wðiÞ

C are the normalized volumes for each,
i.e.

PNC
i wðiÞ

C ¼ 1. This objective function ρC represents the
geometric mean of the probability that the model correctly labels
each known cracked volume of the observed data set. In practice,
log ρC is used for numerical computations.
The reduced order posterior model p(C ∣ x*) is determined by

choosing a subset of state variables X*⊂ X that incrementally
maximizes ρC for a fixed number of state variables k* ≤ k. This
optimization procedure is described in Algorithm 1 in the
Supplementary Methods Section. The fundamental idea is to train
the posterior PDF with each of the state variables individually, and
assess the effectiveness of each model by comparing their
respective ρC. After determining the most informative state
variable with the maximal objective value, the model is trained
again with each of the remaining state variables individually, as
well as the previously chosen most informative state variable, in
order to select the second most informative state variable. This
incremental process is repeated until a priori chosen k* ≤ k state
variables are established. The incremental selection process
algorithm is given in the Supplementary Methods Section under
Algorithm 1.
The incremental selection process is executed with the present

data set X comprised of k= 20 state variables, using k*= 8. In each

iteration, the method optimally adds the most informative state
variable. With each additional state variable included in the
probabilistic model, the overall performance characterized by ρC
increases. Figure 3a plots the incremental effectiveness of the
posterior with additional state variables. The slope of the plot
gradually saturates as less new and independent crack-delineating
information is provided to the joint posterior PDF from the
additional simulation output data.
The above procedure yields a systematic ranking of state

variables from the data set in terms of effectiveness, into a set X*.
It provides a clear path to reduce the degrees of freedom in the
final model. The top three state variables determined by this
process are:

1. The von Mises stress σVM.
2. The maximum plastic slip-rate _γ.
3. The plastic defect energy ψp.

These three quantities contain the most combined information
that is capable of distinguishing between cracked and uncracked
material volumes within the regions undergoing parallel slip. The
marginal distributions for these state variables are shown in
Fig. 3a–c, illustrating the overall trends for the crack data
separation. Generally, low σVM, high _γ, and high ψp all correlate
with an increased likelihood of cracked nucleation at the material
volumes in a parallel slip configuration.
A reduced-order posterior is generated from these three state

variables by defining a set xr ¼ ½σVM; _γ;ψp�. The three-
dimensional likelihood PDFs p(xr ∣ C, ξ) and pð xr j C; ξÞ are

Fig. 3 Most predictive state variables for crack nucleation locations. a Increasing geometric mean probability of prediction for known
cracked material volumes with incremental addition of state variables into the posterior PDF; Cracked and uncracked marginal likelihood
distributions for b the von Mises stress σVM, c the maximum plastic slip-rate _γ, and d the plastic defect energy ψp.
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constructed, and subsequently the resultant posterior PDF p(C ∣ xr)
is calculated. Two-dimensional projections of the likelihoods are
visualized in Fig. 4a, which shows the tendency of the cracked
data to separate according to the values of σVM and _γ.
Incorporating the priors yields the final projected posterior as
shown in Fig. 4b, where the highest probability of crack nucleation
commences for low σVM and high _γ values.
The posterior PDF, when compared with other existing crack

nucleation models of varying complexity, demonstrates excellent
improvement. The original prior M0 ¼ pðCÞ, the prior after
conditioning on parallel slip configuration regions Mξ ¼ pðC j ξÞ,
and additional posteriors including an increasing number of state
variables, are ranked according to their predictive capacity on the
training data set. In Fig. 4c, the log-odds of each PDF’s geometric
mean probability ρC (in bits) is used as the measure of comparison

and is calculated as log2
ρC

1�ρC

� �
. The log-odds gives a natural

interpretation of the strength of evidence gained by adding
model complexity to a probabilistic model52. A unit increase in
log-odds corresponds to an additional bit of evidence. This is
roughly interpreted as observing 2:1 evidence in support of the
model’s hypothesis, i.e. that it correctly predicts crack nucleation
sites. In this context, p(C ∣ ξ) adds about 6.5 bits of evidence over
the naive p(C), by requiring that crack nucleation occurs at
material volumes in a parallel slip configuration. Furthermore,
Mr ¼ pðC j ξ; xrÞ adds about 1.5 bits of evidence on top of p(C ∣ ξ),
by incorporating the top three state variables in the posterior PDF.
The model therefore greatly improves the probability of locating a

rare crack nucleation event, by about 8 bits relative to the original
prior from the data.
From a mechanistic point of view, an interpretation is offered

for the model’s emphasis on σVM, _γ, and ψp in terms of the
experimental evidence supporting long, thin cracks in PSB regions
at parallel slip configurations. The von Mises stress, which is a
norm of the deviatoric stress, typically represents a driving force
for the volume-preserving shear deformation such as plasticity
and dislocation motion. However, since the material volume is
already in a parallel slip configuration, a high directionally
independent measure of shear stress, such as σVM, indicates that
dislocation slip is likely to occur on multiple slip systems, rather
than focusing on only the parallel slip plane. This importance of
directionality is further evidenced by a large _γ measure, also acting
as a crack-delineating state variable. The combination of the low
σVM and high _γ is an environment that promotes dislocation
motion along the primary slip plane, which is the parallel slip
plane in a parallel slip configuration. It represses slip along with
other secondary slip systems that interferes with the main
deformation mode. The plastic defect energy as the third major
indicative variable of crack nucleation is linked to the build-up of
dislocation substructures that are typical of persistent slip band
(PSB) regions. Regions of large ψp store more external work into
complex and organized arrays of tangled dislocations, rather than
dissipating it entirely as plastic work.
After constructing the full posterior distribution p(C ∣ xr),

probability fields are overlaid on the microstructures to determine
the most likely crack nucleation sites. A sample polycrystalline

Fig. 4 Illustration of crack nucleation model performance. a 2D projection of the iso-probablistic contours of the final uncracked and
cracked likelihood PDFs, and b 2D projection of the final posterior joint PDF indicating high crack probability at low σVM and high _γ values. c
Log-odds of the geometric mean of the probability of correct crack nucleation prediction for increasingly model complexity. The included
models are M0 ¼ pðCÞ, Mξ ¼ pðC j ξÞ, Mr ¼ pðC j ξ; xrÞ, and M� ¼ pðC j ξ; x�Þ.

M. Pinz et al.

6

npj Computational Materials (2022) 39 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



microstructure is shown in Fig. 5 with the corresponding
orientation map from the EBSD scan. The probability contours
by the Bayesian model concur with the experimental crack
nucleation sites, as probable locations for observing a crack.

Cross-validation
The predictive capacity of the probabilistic model is assessed in
this section. Delineation of the training and test data allows for a
comparison of the performance of the methodology in terms of
both training error and generalization error. Model over-fitting is a
concern when the only efficacy measure of a model is on the data
it is trained on. Therefore, a “leave-two-out” cross-validation
approach is used to ensure the crack nucleation model generalizes
onto unseen data. The leave-two-out method is a standard,
exhaustive cross-validation approach, in which the model is
trained on every available set of data except for two micro-
structures. The model is then tested/validated on the two
microstructures that are left out from the training set. This process
is repeated, leaving two different data sets out each time, and
retraining the model on the remaining ten microstructures. This
approach is one of the best for small data sets and for training a
computationally expensive model, as it increases the amount of
training data available for each validation evaluation.
For the case of M= 12 microstructures, there are M(M− 1)/2=

66 ways to leave two unique data sets out and train on the
remaining ten. Therefore, the model is trained and tested 66 times
for all combinations. The geometric mean of correct crack
nucleation prediction ρC is used as a measure of the effectiveness
of the model in both training and validation. An additional related
measure is defined as:

ρC ¼ exp
XNC

i

wðiÞ
C
log 1� pðC j xðiÞÞ
� � !

(2)

where NC is the total number of uncracked material volumes
across all microstructures of interest, and wðiÞ

C
are the normalized

volumes for each. This measure is the geometric mean of the
probability that the model correctly labels every known uncracked
material volume of the observed data set.
The arithmetic mean and geometric mean of ρC and ρC over all

66 cases are given in Table 1 for both the training and testing data
sets, by employing the leave-two-out method. The resulting
evaluation measures indicate that the probabilistic model yields
similar abilities for both the training and testing sets. Only the
geometric mean for the validation cracked cases is slightly lower
than that of the test case. This deviation is due to the geometric

mean’s sensitivity to variance and bias towards low values, which
are higher in the testing examples. Overall, these results
demonstrate that the model generalizes well, and is predictive
on new data.
The predictive behavior of the model is further emphasized by

plotting the posterior distribution over a grain structure for one of
the 66 leave-two-out cases. Fig. 1 in the Supplementary Methods
Section shows the probability field and the corresponding EBSD
map over one of the two cases that are not included in the
training. The probability field illustrates likely locations for crack
nucleation, and in particular, highlights the locations near the
experimental crack nucleation site. These regions are comprised of
material volumes in a parallel slip configuration with high
propensity for primary slip and have already undergone
substantial defect build-up.

DISCUSSION
The probabilistic crack nucleation model consisting of a validated
three-dimensional posterior PDF can be used to create a simple,
heuristic scalar indicator model of crack nucleation probability. A
one-dimensional functional form is constructed to become a
separator of the cracked and uncracked regions. The dimension-
less crack nucleation indicator is defined at material volumes in a
parallel slip configuration (Ξ= ξ) as:

Ψc ¼ κ1
log _γ

_γ0

� �
σ2
VM

0
@

1
Aþ κ2ψp (3)

where _γ is the slip-rate, _γ0 ¼ 5 ´ 107 is the reference slip-rate, ψp is
the plastic defect energy, and κ1, κ2 are parameters to be
determined. The crack nucleation indicator incorporates the basic
mechanistic ideas discussed in the previous section. The first term
of Ψc corresponds to a state of material which heavily favors
parallel slip along a boundary rather than homogeneous plastic

Fig. 5 Comparison of the crack nucleation model predictions with the observed crack locations of an experimental microstructure. The
probability of crack nucleation predicted from the posterior distribution in an embedded microstructure of the concurrent multiscale model
(red corresponding to the most probable), compared with the corresponding EBSD map and experimental nucleation site.

Table 1. Mean probabilities of nucleation prediction for all “leave-two-
out” cases.

Training Validation

ρC ρC ρC ρC
Arithmetic mean 16.6% 88.8% 16.9% 88.7%

Geometric mean 16.3% 88.8% 13.0% 88.6%
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deformation across multiple slip systems. The numerator log _γ
_γ0

� �
is approximately proportional to the effective RSS driving slip
through thermal activation, and the denominator σ2VM is
proportional to the elastic distortion energy. The second term of
Ψ, often used in the Helmholtz energy representation of phase-
field crack models53, indicates that the material has a tendency to
build up dislocation substructures to promote the onset of
persistent slip band formation. The proposed crack nucleation
indicator encompasses and combines features of fatigue indicator
parameters proposed in the literature, such as the emphasis on
the plane of maximum plastic slip in24 and the significance of the
stored plastic defect energy in23.
The two parameters κ1 and κ2 of Ψc are linear coefficients with

respect to the inputs of the function. Correspondingly they can be
determined using linear discriminant analysis (LDA). LDA is a
classification method that finds the linear combination of inputs
that best separates two distinct distributions, to find a reduced
order model. The application of LDA to the crack nucleation data
yields explicit values for the linear coefficients of Ψc, i.e. κ1=−

0.28 ⋅ 10−18 Pa−2 and κ2 ¼ 0:26 � 10�6 J
m3

� ��1
. This process results

in a single scalar value for crack nucleation prediction and is used
as a sole indicator in the probabilistic model p(C ∣ x), where x=
[Ψc].
Visual analysis of the likelihood distributions of Ψc in Fig. 6a

establishes it as a useful separator of the cracked and uncracked
experimental data. Furthermore, the model in Eq. 3 is assessed
similar to the previous posteriors by calculating ρC. Applying the
cracked data to the model p(C ∣Ψc) yields ρC= 11.8%, which is
superior to building a model with any of the other previously
evaluated state variables individually. Consequently, the crack
nucleation indicator, which embodies the mechanistic motivation
of parallel slip within a persistent slip band, is a consistent
measure for identifying cracked regions of the microstructures.
The contour plots of the crack nucleation indicator field are

shown for four polycrystalline microstructures in Fig. 2 of the
Supplementary Methods Section. This enables a visual comparison
to assess its performance with respect to predicting crack
nucleation sites. Qualitatively, large values of Ψc highlight areas
associated with the experimentally identified nucleation sites for
each case.
A final study is performed to quantify the sensitivity of the

scalar-valued probabilistic model development to the inclusion of
new data. The 66 cross-validation cases are revisited for this
analysis. For each case, the posterior model is constructed by
training with data from ten microstructures, using only the data
from the crack nucleation indicator Ψc. The posterior p(C∣Ψc) is
generated and plotted as a function of Ψc for each case. In Fig. 6b,
the 66 models are aggregated into an average model shown with
the solid dark line, and standard deviation bounds depicted with
dotted lines. This result demonstrates that most models lie within
about 5–10% of the average model, and therefore are robust and
relatively insensitive to the choice of training data set.
In summary, a robust Bayesian inference-based probabilistic

predictive model for crack nucleation in the Ni-based superalloy
René 88DT under fatigue loading is developed in this paper. The
process fuses several statistical and data-driven methods
operating on micromechanical and experimental data with
important mechanistic observations. The model systematically
reduces a large set of experimentally acquired microstructural
data and corresponding crystal plasticity-based micromechani-
cal simulation results to a 3D posterior probability density
function (PDF) for crack nucleation. Three hierarchically impor-
tant state variables in the microstructural material volume,
relevant to the crack nucleation process, are identified by the
framework. They are: (i) the von Mises stress, (ii) the maximum
plastic slip rate, and (ii) the plastic defect energy. This data-
driven selection process is performed in an automated fashion

without the need for external intervention. It follows a
statistically unbiased approach that makes an informed decision
while accounting for various experimental microstructures and
mechanical simulations.
Given a set of EBSD scans along with the associated pre-

identified crack nucleation sites as input, the procedure ranging
from the processing of experimental EBSD and SEM data,
multiscale simulations for creating a reference database, to the
development of the probabilistic crack nucleation model is
implemented through an automated computational pipeline. It
comprises four sequential modules given below.

1. Collection of post-fatigue loading local microstructural data,
and subsequent cleaning and processing of EBSD data;

Fig. 6 Performance and robustness of the scalar crack nucleation
indicator. a The likelihood distributions of the scalar crack
nucleation indicator for cracked and uncracked states, b aggregated
posterior distribution of the 66 models, conditioned on only the
scalar crack nucleation indicator, for different combinations of ten
microstructure in the training data sets. The average of all models is
depicted by the dark solid line and the standard deviation bounds
are depicted by the dotted lines.
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2. Development of a concurrent multiscale model with the
image-based 3D microstructure embedded in a homoge-
nized material modeled by an upscaled, anisotropic
continuum plasticity constitutive model;

3. Multiscale simulations with different experimental micro-
structures to create a database of micromechanical state
variables relevant to the crack nucleation process;

4. Formulation of a Bayesian crack nucleation model that
identifies crack nucleation sites from the database of local
state variable fields.

The probabilistic models for indicating crack nucleation are
based on the core concept of parallel slip at susceptible coherent
twin boundaries. The material near these boundaries possesses
particular crystallographic configurations that promote an envir-
onment for recurring dislocation slip parallel to the boundary.
State variables, such as the von Mises stress, the maximum plastic
slip rate, and the plastic defect energy in this region, have a strong
effect on this mechanism. Slip is driven on the primary plane and
builds up dislocation substructures like PSBs that further promote
future slip along the same path. Simultaneously, little driving force
exists for forest dislocations to impede obstacles on the primary
plane. The combination of these events creates a probable setting
for the incidence of crack nucleation.
The multi-dimensional Bayesian inference model is constructed

to capture this sequence of mechanistic events. It is validated for
various microstructures and probabilistic measures, using the
“leave-two-out” cross-validation process. Finally, a simple crack
nucleation indicator is formulated to integrate the parallel slip
concepts into a single scalar model. This composite indicator
outperforms other individual state variables in differentiating
between cracked and uncracked material volumes. In conclusion,
this paper provides a robust framework for employing sophisti-
cated data analysis techniques in conjunction with multiscale
simulations to investigate the mechanisms underlying complex
physical phenomena, and produces interpretable results. The
Bayesian crack nucleation model should be valid for different
microstructural compositions and loading conditions, as long as
the main mechanisms of deformation such as plastic slip,
dislocation glide, etc., remain the same.
The overall modeling framework developed in this paper is not

limited to only superalloys considered in this study. Most aspects
of the framework are transferable to other polycrystalline alloys for
which, state variable evolution corresponding to parallel slip and
PSB formation govern their fatigue behavior. A majority of steps in
the automated framework, including the embedding methodol-
ogy, finite element meshing, state variable calculation, probabil-
istic model procedure, and the reduced model selection
technique, are material agnostic within the realm of metallic
materials. Transferring the microstructure to deformation behavior
and fatigue platform to other metallic materials will require the
corresponding experimental data, viz. EBSD scans and crack
nucleation sites, a calibrated crystal plasticity constitutive model,
and the associated upscaled anisotropic continuum plasticity
model. Additionally, the probabilistic classification framework has
many other potential applications in data-rich and knowledge-
poor circumstances.
For component-scale analysis, it is necessary to introduce a

detailed parametrically upscaled constitutive model (PUCM) and
associated parametrically upscaled crack nucleation model
(PUCNM) developed in39–43. The thermodynamically consistent
PUCMs, incorporate a parametric representation of lower-scale
microstructural descriptors in higher-scale constitutive coeffi-
cients. The PUCM coefficients are expressed as functions of
representative aggregated microstructural parameters (RAMPs),
representing lower-scale descriptors of microstructural morphol-
ogy and crystallography. While the upscaled anisotropic con-
tinuum plasticity model developed for the concurrent model is a

step in this direction, it does not have the parametric forms in
terms of the RAMPs. The PUCM, in conjunction with the PUCNM,
readily performs component-scale analysis with direct connection
to the microstructure. The models developed in this study can be
used for SERVE analysis to develop the PUCM and PUCNM for the
superalloy considered for this study.

METHODS
Concurrent multiscale model for fatigue analysis
The concurrent multiscale model in Fig. 7 consists of a polycrystalline
microstructural RVE that is embedded in an exterior computational
domain. The RVE and the exterior domain are modeled by a crystal
plasticity constitutive model34–36 and a rate-dependent homogenized
elasto-plasticity constitutive model respectively. Cyclic loads representing
fatigue loading are applied on the outer surface of the homogenized
exterior domain. The constitutive relations used in the concurrent
multiscale model are summarized in the Supplementary Methods Section
of this paper.

Concurrent multiscale model with embedded microstructural RVE. The
application of periodicity or other boundary conditions directly on the
microstructural RVE domain can result in significant inaccuracies due to
improper representation of the domain and consequent boundary
effects32,33,54. The concept of concurrent multiscale domains, in which
the RVE is embedded in a homogenized exterior domain, has been
successfully introduced in43,55,56 to alleviate this discrepancy. Boundary
conditions are applied on the exterior boundary of the concurrent domain,
while the RVE shares a common interface with the homogenized domain.
Similar concurrent approaches have also been proposed for coupled
continuum-polycrystalline domains in29,57.
The embedded RVE in Fig. 7 is generated by directly mapping the 2D

EBSD micrograph of a polycrystalline microstructure shown in Fig. 2,
and extruding it in the orthogonal direction to a suitable depth. Each
section of the RVE contains about 50–200 grains. Previous studies on Ni-
based superalloys in34,54,58 have demonstrated the effectiveness of
microstructural RVEs of this size. Some of the EBSD micrographs
containing cracked regions are not fully supported by first and second
nearest neighbor grains. While this may lead to some error in the
simulation results due to limited grain representation in RVE models,
the relatively lower strains levels may not significantly alter the
response fields as noted in59. The homogenized exterior medium in
the concurrent model may also mitigate the surrounding boundary
effect due to influence from neighboring grains. Furthermore, the final
posterior model is constructed using multiple experimental micro-
structures and testing. With increasing data, the Bayesian model
improves at distinguishing between all the sources of model noise
and the meaningful relation existing between crack nucleation sites and
state variable fields.
For fatigue crack modeling, it is necessary that the microstructural

RVEs be constructed directly from EBSD scans of the region containing
cracks for one-to-one correspondence with experimental observations.
Statistically equivalent RVE (SERVEs), with matching morphological and
crystallographic distributions, are not ideal for this one-to-one
correspondence. 3D microstructures may consequently be created by
focused ion beam (FIB)–based serial-sectioning, or synchrotron-based
CT methods. However, it is challenging to obtain interrupted 3D
experimental microstructures in the context of fatigue experiments. The
decision to create 3D microstructural RVEs by extruding 2D EBSD scans
was made since such types of data were not available for this study.
In60, the authors have inferred that sub-surface crystallography and
grain morphology, are needed to accurately predict surface strain
distributions. In the present study, it is assumed the error due to the
extrusion will not be significant since the thickness of the RVE is smaller
than the average grain size. Additionally, the use of multiple
microstructural instantiations may have a mitigating effect on the crack
nucleation model.
The concurrent multiscale model can mitigate other spurious

boundary effects on the evolving RVE variables. A sample microstruc-
tural RVE, shown in Fig. 7, has dimensions of 168 μm× 69 μm× 7.5 μm,
while the homogenized exterior rectangular domain has dimensions of
336 μm× 138 μm× 42 μm. This corresponds to twice the length and
width of the RVE and a depth of 7.5 μm plus half of the RVE width. Five
of the six faces of the embedded RVE share an interface with the
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exterior homogenized domain, enforcing displacement compatibility
across these interfaces. The remaining RVE face represents the free
surface of the fatigue experiment and is unconstrained during the cyclic
simulations.
The concurrent FE model is discretized into TET4 elements, generated

using an automated meshing pipeline built within the Simmetrix
code61. This minimizes the computational and memory requirements
and provides a robust discretization in terms of numerical accuracy and
geometric conformity. Since the state variables near twin boundaries
are key to the crack model, a graded mesh with highly refined elements
near the grain/twin boundaries, and coarser elements away from these
critical regions, is developed as seen in Module II of Fig. 1. The exterior
domain mesh matches the RVE mesh at the interface, but coarsens away
from the interface.

Creating a microstructural state variable database related to
fatigue nucleation
The following steps are executed for creating the database.

Experimentally obtained training data sets for supervised learning. The
Bayesian modeling approach to fatigue crack nucleation requires a data set
for supervised learning, consisting of experimentally observed points for
which the binary cracked/uncracked states are known. To generate this
data set, the locations of crack nucleation sites are recorded for the
experimental micrographs, e.g. in Fig. 2. Each TET4 element in the
concurrent model, for which three nodes are on a cracked interface is
marked as belonging to the set of cracked elements. All other elements in
the ensemble are designated as uncracked. This labeling method classifies
the data set into two distinct states for training the probabilistic model.

Extracting core microstructural state variables for the crack nucleation
model. The concurrent multiscale model in Methods Section I is now
developed for each of the 12 experimental microstructures and subse-
quently loaded under fatigue loading conditions. Analogous to the
experiments in51, a stress-controlled fully reversed (R=−1) cyclic loading
with a triangular wave-form and 1 Hz frequency is applied on the
computational model. The peak stress in this loading cycle corresponds to

a 1% total strain. All state variables are recorded at the peak tensile load of
each cycle. This process generates a complete database of mechanical
fields for all the 12 experimental microstructures, which is used for training
the Bayesian crack nucleation model.
Time-histories of state variables are calculated and recorded as

quantities of interest in the development of the fatigue crack nucleation
model. From a comprehensive set of mechanistic variables, including stress
and strain measures, dislocation evolution indicators, fatigue indicator
parameters, etc., a set of ten core state variables are deduced. Most of the
other indicators are functions of these core parameters. The core variables
are tabulated in Table 2.
The set of variables in Table 2 is designated as X. Additionally, a

regularized difference operator (similar to unsharp masking) acting on
each state variable is appended to the set X. Correspondingly the
dimension of the set is k= dim(X)= 20. The values of X are assembled into
a state variable database for use in the training and testing of the
probabilistic model.

Fig. 7 Schematic of the concurrent computational domain. Microstructural RVEs are embedded in homogenized exterior domains.

Table 2. List of core state variables used in the probabilistic crack
nucleation analysis.

State variable Symbol Mathematical expression

von Mises stress σVM

ffiffi
3
2

q
jjdevðσÞjj

Principal Cauchy stress
components (3)

σI σInI= σnI

Maximum resolved shear stress τ* max
α

jmα
0 �Mnα

0j
� �

Effective plastic strain ϵp ϵp ¼
R t
0 jjDpjjdev dt0

Elastic Helmholtz free energy ϕe
1
2 Ee : ðCeEeÞ

Plastic defect energy ψp
β
2

PNslip
α ðsαa þ sαthÞγαacc

(β= 1 and γacc ¼
R t
0 j _γjdt)

Maximum plastic slip-rate _γ max
α

j _γαjð Þ
Maximum slip system
normal stress

τn max
α

nα
0 �Mnα

0

� �
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Observations on parallel slip configuration from experiments. Observations
from fatigue experiments in9 suggest that dislocation slip parallel to the
coherent twin boundaries results in persistent slip band (PSB) and thin
shear band formation due to strain localization. Adjacent to the twin
boundary, plasticity occurs due to dislocation glide on slip planes parallel
to the twin boundary. The repeated passing of these dislocations and
migration of dislocations to this region, shears the γ0 precipitates,
promoting additional plasticity by reducing the barrier to subsequent
dislocation motion. It has been observed that these highly localized
regions of plasticity nucleate cracks, several nanometers offset from the
actual twin boundary.
Some twin boundaries are identified by grains that are oriented such

that their slip systems favor dislocation motion along their shared
boundary plane. This special grain-pair configuration is called a parallel
slip configuration. It is characterized by a grain pair separated by a
coherent twin boundary, where the resolved shear stress on one of the
shared slip systems is significantly higher than that of the other slip
systems. This configuration results in primary slip along that single shared
plane and no new dislocation migration occurs from other planes to the
slipped region. The twin boundary lengths are also relatively long and
straight compared to other grain boundaries. Consequently, this geometric
effect and the lack of out-of-plane dislocation motion leaves the shared
slip system free of obstacles, which allows dislocations to glide unimpeded
for long distances. In cyclic deformation, uninterrupted localized slip
promotes the early stages of PSB formation.

Indicator of dominant parallel slip. Since parallel slip configurations are
identified as precursors to crack nucleation, it is important to develop an
indicator for dominant parallel slip. This indicator should identify coherent
twin boundaries and subsequently search for grain-pairs, oriented such
that the resolved shear stress favors slip along the shared boundary plane.
The following procedure is adopted to account for these conditions and
lead up to a definition for the parallel slip indicator.
The criteria used to determine if two grains are in a Σ3 twinned

configuration is based on two conditions. The first condition is that the
misorientation angle must be 60∘ ± 2∘, and the second requires that the
absolute value of the inner product between the shared slip plane normals
is >0.985. For each grain pair, the shared slip plane normal is defined by
the unit vector average of the two slip plane normals, whose inner product
has the largest absolute value. Specifically, these vectors are determined
by the following process.
For two adjacent grains g1 and g2 in the microstructure, the two

respective slip planes that most closely share the same normal are selected
according to the criterion:

ðl�; k�Þ ¼ argmax
l;k

ðjng1
l � ng2

k jÞ (4)

where l and k enumerate the four possible slip planes in the 〈111〉 family.
Correspondingly, the shared slip plane normal for the grains g1 and g2 are
defined as:

ng1 ;g2
p ¼ ng1

l� þ ng2
k�

jjng1
l� þ ng2

k�jj
(5)

where ng1
l� is the normal to the l* slip plane of grain g1 and ng2

l� is the normal
to the k* slip plane of grain g2.
The existence of a shared plane allows for a partition of the standard

octahedral slip systems of FCC materials. Let A denote the set of all its slip
systems for a grain that shares a slip system with an adjacent grain. Also,
let Ap be the set of slip systems that contain the shared slip plane
characterized by ng1 ;g2

p in Eq. 5. Finally, let Ao be the complement of Ap in
A, i.e. the complementary set of slip systems that do not contain the
shared slip plane.
Two special resolved shear stresses (RSS) are defined to determine when

parallel slip is dominant for a given twin boundary. The maximum RSS is
given as τ� ¼ max

α2A
jM : sα0j
� �

, where sα0 ¼ mα
0 � nα

0 is the Schmid tensor for

the α slip system, mα
0 is the slip direction, and nα

0 is the slip plane normal in
the reference configuration. Correspondingly, the parallel slip RSS and the
out-of-plane RSS are respectively defined as:

τp ¼ max
α2Ap

jM : sα0j
� �

and τo ¼ max
α2Ao

jM : sα0j
� �

(6)

The parallel slip RSS is the maximum RSS on the shared slip plane, while
the out-of-plane RSS is the maximum over the remaining three slip planes.
When τp > τo, primary slip occurs along the twin boundary, and out-of-

plane dislocations do not disrupt this plastic flow. Therefore, parallel slip
dominates the deformation process. This condition is combined with the
coherent twin and a plastic flow requirement to define a binary parallel slip
indicator Ξ as ξ or ξ for a given material volume. The parallel slip indicator
is activated with Ξ= ξ, if all of the following three requirements are met
simultaneously:

1. The material volume is located on a coherent twin boundary;
2. The parallel slip plane is dominant, i.e. τp > τo;
3. The maximum plastic slip-rate exceeds a minimum threshold, i.e.

_γ> _γm, where _γm is a minimum threshold slip-rate.

The threshold slip-rate is selected as _γm ¼ 10�5s�1 to indicate that the
material is undergoing plasticity. If any one of the three conditions are not
met, then Ξ ¼ ξ . The parallel slip indicator is designed to signal time-
evolving, point-wise occurrence of parallel slip throughout the micro-
structure. It is analogous to the time-independent, grain-wise-
homogeneous parallel slip configuration definition in1,8,9,15. The impor-
tance of Ξ is that it acts as a sufficiency condition for crack nucleation
within the experimental data set of microstructures. This empirical data is
exploited in the probabilistic model framework.

Formulation of the Bayesian model for classifying crack
nucleation
Let a discrete random variable Θ represent the possible observation of a
crack event in a fixed, reference material volume V*, and let a continuous k-
dimensional random vector X denote the set of core state variables
pertaining to that particular region. The entire microstructural field is
classified by one of two distinct states, viz. (i) with a crack event Θ= C, and
(ii) without a crack event Θ ¼ C. Additionally, let the previously defined
parallel slip indicator Ξ in the microstructure be a discrete random variable
with two possible states, viz. (i) Ξ= ξ indicating a parallel slip configuration,
and (ii) Ξ ¼ ξ otherwise. In accordance with experimental observations, it is
assumed that all cracked states C require that a material volume is in a
parallel slip configuration Ξ= ξ. Therefore, the probability of observing a
crack nucleation event C in the microstructure with given state variables x,
homogeneous over some small volume V*, is given by Bayes’ theorem. For
the case of Ξ= ξ, this is stated as:

PðΘ ¼ C jX ¼ xÞ ¼ pΘjXðC j xÞ ¼ pΘjΞ;XðC j ξ; xÞ ¼ pXjΘ;Ξðx j C; ξÞpΘjΞðC j ξÞ
pXjΞðx j ξÞ

(7)

where pΘ∣X(C ∣ x) and pΘ ∣ Ξ,X(C ∣ ξ, x) are both posterior probability density
functions (PDF’s), pX ∣Θ,Ξ(x ∣ C, ξ) is a likelihood function, pΘ ∣ Ξ(C ∣ ξ) is
the prior belief of observing a crack nucleation event, and pX ∣ Ξ(x ∣ ξ) is the
marginal state variable PDF, which normalizes the expression. For the
complementary event Ξ ¼ ξ , the posterior PDF pΘ∣X(C ∣ x)= 0. Hereafter,
the subscripts on the PDF’s will be omitted to eliminate notational clutter,
but may be used occasionally for providing beneficial clarity. Applying the
law of total probability to Eq. 7 yields:

pðC j xÞ ¼ pðx jC; ξÞpðC j ξÞ
pðx jC; ξÞpðC j ξÞ þ pðx jC; ξÞpðC j ξÞ (8)

The posterior PDF p(C ∣ x) is the primary quantity of interest to be
determined for the crack nucleation model. From Eq. 8, it is seen that four
PDF’s must be calculated to fully characterize this posterior, viz. p(x ∣ C, ξ),
pðx jC; ξÞ, p(C ∣ ξ), and pðC j ξÞ. Each of these distributions is systematically
constructed from the experimental data set in the following sections.

Determination of the prior distributions pðC j ξÞ and pðC j ξÞ. The prior
belief that a crack event occurs in a material volume is constructed by
calculating the ratio of cracked volume to total volume over all
experimental microstructures. For the available experiments, let M= 12
denote the number of independent microstructures in the data set, and let
V ðiÞ
C and V ðiÞ

tot be respectively the total cracked volume and total overall
volume of the ith microstructure, where Ξ= ξ. The crack nucleation prior is
correspondingly defined as:

pðC j ξÞ ¼
PM

i VðiÞ
CPM

i VðiÞ
tot

(9)

The uncracked prior is constrained by the complementary event, and is
therefore determined as PðC j ξÞ ¼ 1� PðC j ξÞ. Additionally, let the
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reference volume for the model be defined as:

V� ¼ 1
M

XM
i

VðiÞ
C (10)

which corresponds to the average crack volume over all microstructures.

Determination of the likelihood distributions pðx j C; ξÞ and pðx jC; ξÞ. In
general, the likelihood PDF’s, p(x ∣ C, ξ) and pðx j C; ξÞ, are high-dimen-
sional, highly covariant joint distributions. The Nataf transformation
method62–64 is used in this work to construct explicit functional

representations of both p(x ∣ C, ξ) and pðx jC; ξÞ. It has been shown
through Sklar’s theorem that a multivariate joint distribution can be
decomposed into a composition of component-wise univariate marginal
distributions and a multivariate copula, which retains the covariance
structure of the random vector. For the Nataf transformation, the joint
distribution is approximated using a Gaussian copula to permit a
straightforward analytical computation. The following construction is
formulated in the context of p(x ∣ C, ξ). However for pðx jC; ξÞ, analogous
steps are performed by substituting C for C.
The Nataf transformation is comprised of three sequential transforma-

tions. First, an observed data point x= [x1, x2, . . . ,xk] of the random set X of

Fig. 8 Illustration of the Nataf transformation for two variables. a Example action of the Nataf transformation for the bivariate x ¼ ½σVM; _γ�.
Approximately 500,000 data points from all 12 microstructures are transformed from the observed X space to the marginally uniform U space
to the standardized Z space. b Iso-probabilistic contours of the bivariate normal model fit for the uncracked likelihood pðz j CÞ in the bivariate
example case of x ¼ ½σVM; _γ� and c Iso-probabilistic contours of the model fit for pðz j CÞ by transforming the standardized model back to the
X space.
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state variables is transformed component-wise into a vector of uniformly
distributed random variables u= [u1, u2, . . , uk], where

ui ¼ FXi jΘ;Ξðxi jC; ξÞ (11)

FXi jΘ;Ξ is the marginal cumulative distribution function (CDF) for the ith
component of X. Secondly, each component of u is standardized by
applying the inverse standard normal CDF, specified by a mean of zero and
a variance of one. Let the standardized vector z= [z1, z2, . . . , zk] be
characterized by this transformation as:

zi ¼ Φ�1 uið Þ (12)

Finally, a k-dimensional normal distribution is fit to the observations in
the standardized space. This sequential application of the ingredients of
the Nataf transformation is summarized as:

Fðx jC; ξÞ ¼ ΦkðzÞ ¼ ΦkðΦ�1ðu1Þ;Φ�1ðu2Þ; ::: ;Φ�1ðukÞÞ (13)

where the joint CDF F(x ∣ C, ξ) corresponds to the likelihood p(x ∣ C, ξ) and
Φk is the k-dimensional multivariate normal CDF. Differentiating Eq. 13
yields:

pðx jC; ξÞ ¼ pðz jC; ξÞ
Yk
i

pXi jΘ;Ξðxi jC; ξÞ
ϕðziÞ

(14)

where pXi jΘðxi j CÞ is the marginal PDF for the ith component, ϕ is the
standard normal distribution, and p(z ∣ C) is a multivariate normal
distribution ϕk given as:

pðz j C; ξÞ ¼ ϕkðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞk detΣ
q exp

1
2
z � Σ�1z
� �� �

(15)

with the covariance matrix Σ. The computation of p(x ∣ C, ξ) for the state
variable data set only requires the determination of FXi jΘ;Ξ , pXi jΘ;Ξ , and Σ.
FXi jΘ;Ξ and pXi jΘ;Ξ are represented by a regularized, weighted empirical CDF
and a weighted kernel density estimation from the observed x data,
respectively. The covariance matrix Σ, defined as: Σ ¼ E½z� z�, is
approximated by a weighted unbiased estimator of the observed data as:

Σ ¼ 1
1� ω

XNe
i

wðiÞzðiÞ � zðiÞ (16)

where Ne is the total number of discretized volumes (finite elements) over
all M microstructures in a state of Ξ= ξ, w(i) are observation weights
corresponding to the normalized material volume of each point such thatPNe

i wðiÞ ¼ 1, and ω ¼PNe
i wðiÞ2 is the sum of squares of the observation

weights.
An example of the action of the Nataf transformation for the uncracked

likelihood PDF pðx jC; ξÞ is shown in Fig. 8a for two representative state
variables. The von Mises stress and maximum plastic slip-rate data points
x ¼ ½σVM; _γ�, are depicted in the original X space, transformed into the
uniform U space, and then transformed again into the standardized Z
space. Additionally, grid lines are added and transformed accordingly to
illustrate the component-wise warping of each observation space.
Figure 8b demonstrates the application of the model described in Eq. 15

to determine a bivariate normal distribution as an approximation for the
standardized observations z. This approximation is achieved through the
computation of Σ, using Eq. 16. It is seen that the preservation of the iso-
probabilistic property of the transformation and of the covariance
structure are determined by how well the standard bivariate normal fits
the data in the standardized Z space, shown in Fig. 8b. The original joint
PDF, pðx j C; ξÞ, is recovered in the X space by applying Eq. 14. The
outcome, shown in Fig. 8c, is an excellent model for a joint distribution,
which would typically be complicated to analytically represent and infer
from the data.

DATA AVAILABILITY
The input data sets for the training and testing of the Bayesian model will be
available from the corresponding author upon reasonable request.

CODE AVAILABILITY
The codes to train and test the Bayesian model will be available from the
corresponding author in a suitable format upon reasonable request.

Received: 13 October 2021; Accepted: 13 February 2022;

REFERENCES
1. Miao, J., Pollock, T. & Jones, W. Crystallographic fatigue crack initiation in nickel-

based superalloy René 88DT at elevated temperature. Acta Mater. 57, 5964–5974
(2009).

2. McDowell, D. Viscoplasticity of heterogeneous metallic materials. Mat. Sci. Eng. R.
Rep. 62, 67–123 (2008).

3. Stein, C., Lee, S. & Rollett, A. An analysis of fatigue crack initiation using 2D
orientation mapping and full-field simulation of elastic stress response. Super-
alloys 2012, 439–444 (2012).

4. Mineur, M., Villechaise, P. & Mendez, J. Influence of the crystalline texture on the
fatigue behavior of a 316L austenitic stainless steel. Mat. Sci. Eng. A 286, 257–268
(2000).

5. Chen, Q. et al. Small crack behavior and fracture of Nickel-based superalloy under
ultrasonic fatigue. Int J. Fatigue 27, 1227–1232 (2005).

6. Thompson, N., Wadsworth, N. & Louat, N. The origin of fatigue fracture in copper.
Philos. Mag. 1, 113–126 (1956).

7. Boettner, R., McEvily Jr, A. & Liu, Y. On the formation of fatigue cracks at twin
boundaries. Philos. Mag. 10, 95–106 (1964).

8. Miao, J., Pollock, T. & Jones, W. Microstructural extremes and the transition from
fatigue crack initiation to small crack growth in a polycrystalline nickel-base
superalloy. Acta Mater. 60, 2840–2854 (2012).

9. Stinville, J., Lenthe, W., Miao, J. & Pollock, T. A combined grain scale elastic–plastic
criterion for identification of fatigue crack initiation sites in a twin containing
polycrystalline nickel-base superalloy. Acta Mater. 103, 461–473 (2016).

10. Alam, Z., Eastman, D., Weber, G., Ghosh, S. & Hemker, K. Microstructural aspects of
fatigue crack initiation and short crack growth in René 88DT. Superalloys 2016,
561–568 (2016).

11. Heinz, A. & Neumann, P. Crack initiation during high cycle fatigue of an austenitic
steel. Acta Met. Mater. 38, 1933–1940 (1990).

12. Wong, S. & Dawson, P. Influence of directional strength-to-stiffness on the
elastic–plastic transition of fcc polycrystals under uniaxial tensile loading. Acta
Mater. 58, 1658–1678 (2010).

13. Stinville, J. et al. Sub-grain scale digital image correlation by electron microscopy
for polycrystalline materials during elastic and plastic deformation. Exp. Mech. 56,
197–216 (2016).

14. Stein, C. et al. Fatigue crack initiation, slip localization and twin boundaries in a
nickel-based superalloy. Curr. Opin. Solid State Mater Sci.18, 244–252 (2014).

15. Stinville, J., Vanderesse, N., Bridier, F., Bocher, P. & Pollock, T. High resolution
mapping of strain localization near twin boundaries in a nickel-based superalloy.
Acta Mater. 98, 29–42 (2015).

16. Shyam, A. et al. Development of ultrasonic fatigue for rapid, high tempera-
ture fatigue studies in turbine engine materials. Superalloys 2004, 259–268
(2004).

17. Healy, J., Grabowski, L. & Beevers, C. Short-fatigue-crack growth in a nickel-base
superalloy at room and elevated temperature. Int J. Fatigue 13, 133–138 (1991).

18. Li, K., Ashbaugh, N. & Rosenberger, A. Crystallographic initiation of nickel-base
superalloy IN100 at RT and 538 ∘C under low cycle fatigue conditions. Superalloys
2004, 251 (2004).

19. Davidson, D., Tryon, R., Oja, M., Matthews, R. & Chandran, K. Fatigue crack
initiation in Waspaloy at 20∘C. Met. Mater. Trans. A 38, 2214–2225 (2007).

20. Lukáš, P. & Kunz, L. Role of persistent slip bands in fatigue. Philos. Mag. 84,
317–330 (2004).

21. Rovinelli, A. et al. Predicting the 3D fatigue crack growth rate of small cracks
using multimodal data via Bayesian networks: in-situ experiments and crystal
plasticity simulations. J. Mech. Phys. Solids 115, 208–229 (2018).

22. Hochhalter, J. et al. A geometric approach to modeling microstructurally small
fatigue crack formation: II. Physically based modeling of microstructure-
dependent slip localization and actuation of the crack nucleation mechanism
in AA 7075-T651. Model Simul. Mater. Sci. 18, 045004 (2010).

23. Chen, B., Jiang, J. & Dunne, F. Is stored energy density the primary meso-scale
mechanistic driver for fatigue crack nucleation? Int J. Plast. 101, 213–229 (2018).

24. Shenoy, M., Zhang, J. & McDowell, D. Estimating fatigue sensitivity to poly-
crystalline Ni-base superalloy microstructures using a computational approach.
Fatigue Fract. Eng. Mater Struct. 30, 889–904 (2007).

25. Ozturk, D., Shahba, A. & Ghosh, S. Crystal plasticity FE study of the effect of
thermo-mechanical loading on fatigue crack nucleation in titanium alloys. Fatigue
Fract. Eng. Mater Struct. 39, 752–769 (2016).

26. Yeratapally, S., Glavicic, M., Hardy, M. & Sangid, M. Microstructure based fatigue
life prediction framework for polycrystalline nickel-base superalloys with

M. Pinz et al.

13

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 39



emphasis on the role played by twin boundaries in crack initiation. Acta Mater.
107, 152–167 (2016).

27. Korsunsky, A., Dini, D., Dunne, F. & Walsh, M. Comparative assessment of
dissipated energy and other fatigue criteria. Int J. Fatigue 29, 1990–1995
(2007).

28. Bandyopadhyay, R., Prithivirajan, V., Peralta, A. & Sangid, M. Microstructure-
sensitive critical plastic strain energy density criterion for fatigue life prediction
across various loading regimes. Proc. Math. Phys. 476, 20190766 (2020).

29. Pierson, K., Hochhalter, J. & Spear, A. Data-driven correlation analysis between
observed 3d fatigue-crack path and computed fields from high-fidelity, crystal-
plasticity, finite-element simulations. JOM 70, 1159–1167 (2018).

30. Sankararaman, A., Ling, Y. & Mahadevan, S. Uncertainty quantification and model
validation of fatigue crack growth prediction. Eng. Fract. Mech. 78, 1487–1504
(2011).

31. Yeratapally, S., Glavicic, M., Argyrakis, C. & Sangid, M. Bayesian uncertainty
quantification and propagation for validation of a microstructure sensitive
model for prediction of fatigue crack initiation. Reliab Eng. Syst. Saf. 164,
110–123 (2017).

32. Ghosh, S. & Kubair, D. Exterior statistics based boundary conditions for representative
volume elements of elastic composites. J. Mech. Phys. Solids 95, 1–24 (2016).

33. Kubair, D., Pinz, M., Kollins, K., Przybyla, C. & Ghosh, S. Role of exterior statistics-
based boundary conditions for property-based statistically equivalent RVEs of
polydispersed elastic composites. J. Compos Mater. 52, 2919–2928 (2018).

34. Bagri, A. et al. Microstructure and property-based statistically equivalent repre-
sentative volume elements for polycrystalline Ni-based superalloys containing
annealing twins. Met. Mater. Trans. A 49, 5727–5744 (2018).

35. Weber, G. & Ghosh, S. Thermo-mechanical deformation evolution in poly-
crystalline Ni-based superalloys by a hierarchical crystal plasticity model. Mater.
High. Temp. 33, 401–411 (2016).

36. Keshavarz, S., Ghosh, S., Reid, A. & Langer, S. A non-Schmid crystal plasticity finite
element approach to multi-scale modeling of nickel-based superalloys. Acta
Mater. 114, 106–115 (2016).

37. Keshavarz, S. & Ghosh, S. Multi-scale crystal plasticity finite element model
approach to modeling nickel-based superalloys. Acta Mater. 61, 6549–6561
(2013).

38. Kotha, S., Ozturk, D. & Ghosh, S. Parametrically homogenized constitutive models
(PHCMs) from micromechanical crystal plasticity FE simulations. Part I: sensitivity
analysis and parameter identification for Titanium alloys. Int J. Plasticity 120,
296–319 (2019).

39. Shen, J., Kotha, S., Noraas, R., Venkatesh, V. & Ghosh, S. Developing parametrically
upscaled constitutive and crack nucleation models for the alpha/beta Ti64 alloy.
Int J. Plasticity 151, 103182 (2022).

40. Ozturk, D., Kotha, S. & Ghosh, S. An uncertainty quantification framework for
multiscale parametrically homogenized constitutive models (PHCMs) of poly-
crystalline Ti alloys. J. Mech. Phys. Solids 148, 104294 (2021).

41. Kotha, S., Ozturk, D. & Ghosh, S. Uncertainty-quantified parametrically homo-
genized constitutive models (UQ-PHCMS) for dual-phase α/β titanium alloys. Npj
Comp. Mater. 6, 117 (2020).

42. Ozturk, D., Kotha, S., Pilchak, A. & Ghosh, S. Two-way multi-scaling for predicting
fatigue crack nucleation in Titanium alloys using parametrically homogenized
constitutive models. J. Mech. Phys. Solids 128, 181–207 (2019).

43. Weber, G., Pinz, M. & Ghosh, S. Machine learning-aided parametrically homo-
genized crystal plasticity model (PHCPM) for single crystal Ni-based superalloys.
JOM 72, 4404–4419 (2020).

44. Keshavarz, S. & Ghosh, S. Hierarchical crystal plasticity FE model for nickel-based
superalloys: sub-grain microstructures to polycrystalline aggregates. Int J. Solids
Struct. 55, 17–31 (2015).

45. Krueger, D., Kissinger, R. & Menzies, R. Development and introduction of a
damage tolerant high temperature nickel-base disk alloy, Rene’88DT. Superalloys
1992, 277–286 (1992).

46. Chang, D., Krueger, D. & Sprague, R. Superalloy powder processing, properties
and turbine disk applications. Superalloys 1984, 245–273 (1984).

47. Wlodek, S., Kelly, M. & Alden, D. The structure of Rene 88 DT. Superalloys 1996,
129–136 (1996).

48. Bataille, A. & Magnin, T. Surface damage accumulation in low-cycle fatigue:
physical analysis and numerical modelling. Acta Met. Mater. 42, 3817–3825
(1994).

49. Groeber, M. & Jackson, M. DREAM.3D: a digital representation environment for
the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3, 56–72 (2014).

50. Stinville, J. et al. Fatigue deformation in a polycrystalline nickel base superalloy at
intermediate and high temperature: Competing failure modes. Acta Mater. 152,
16–33 (2018).

51. Stinville, J. et al. Microstructural statistics for fatigue crack initiation in poly-
crystalline nickel-base superalloys. Int J. Fract. 208, 221–240 (2017).

52. Jaynes, E. Probability Theory: The Logic of Science (Cambridge University Press,
2003).

53. Clayton, J. Nonlinear Mechanics of Crystals, Vol. 177 (Springer Science & Business
Media, 2010).

54. Pinz, M. et al. Microstructure and property based statistically equivalent RVEs for
intragranular γ- γ’ microstructures of Ni-based superalloys. Acta Mater. 157,
245–258 (2018).

55. Paquet, D., Dondeti, P. & Ghosh, S. Dual-stage nested homogenization for rate-
dependent anisotropic elasto-plasticity model of dendritic cast aluminum alloys.
Int J. Plasticity 27, 1677–1701 (2011).

56. Ghosh, S., Bai, J. & Paquet, D. Homogenization-based continuum plasticity-
damage model for ductile failure of materials containing heterogeneities. J. Mech.
Phys. Solids 57, 1017–1044 (2009).

57. Spear, A. et al. A method to generate conformal finite-element meshes from 3D
measurements of microstructurally small fatigue-crack propagation. Fatigue Fract.
Eng. Mater Struct. 39, 737–751 (2016).

58. Prithivirajan, V. & Sangid, M. Examining metrics for fatigue life predictions of
additively manufactured IN718 via crystal plasticity modeling including the role
of simulation volume and microstructural constraints. Mat. Sci. Eng. A 783,
139312 (2020).

59. Turner, T. J. & Semiatin, S. L. Modeling large-strain deformation behavior and
neighborhood effects during hot working of a coarse-grain nickel-base super-
alloy. Model Simul. Mater. Sci. 19, 065010 (2011).

60. Turner, T. J., Shade, P. A., Schuren, J. C. & Groeber, M. A. The influence of
microstructure on surface strain distributions in a nickel micro-tension specimen.
Model Simul. Mater. Sci. 21, 015002 (2013).

61. Simmetrix Inc. Simulation Modeling Suite. www.simmetrix.com (2021).
62. Lebrun, R. & Dutfoy, A. An innovating analysis of the Nataf transformation from

the copula viewpoint. Probabilist Eng. Mech. 24, 312–320 (2009).
63. Lebrun, R. & Dutfoy, A. A generalization of the Nataf transformation to distribu-

tions with elliptical copula. Probabilist Eng. Mech. 24, 172–178 (2009).
64. Kim, H. & Shields, M. Modeling strongly non-Gaussian non-stationary stochastic

processes using the iterative translation approximation method and
Karhunen–Loève expansion. Comput Struct. 161, 31–42 (2015).

ACKNOWLEDGEMENTS
This work has been supported through Grant No. CMMI-1825115 from the National
Science Foundation awarded by the Mechanics of Materials and Structures (MOMS)
Program (Program Manager: Dr. Siddiq Qidwai). Early stages of this work was
supported through a grant No. FA9550-12-1-0445 to the Center of Excellence on
Integrated Materials Modeling (CEIMM) at Johns Hopkins University awarded by the
AFOSR/RSL Computational Mathematics Program (Managers Dr. Fariba Fahroo and
Dr. A. Sayir). Computing support by the Maryland Advanced Research Computing
Center (MARCC) is gratefully acknowledged.

AUTHOR CONTRIBUTIONS
M.P. and G.W. have developed the Bayesian framework, homogenized model, and
have completed all of the simulation results of the paper, as well as writing a
substantial portion. M.P. and G.W. wish to be represented as Co-First authors. J.C.S.
and T.P. have contributed the experimental results, and have written the
corresponding sections. S.G. has directed the study and has written a majority of
the paper.

COMPETING INTERESTS
The authors declare no competing interests

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-022-00727-5.

Correspondence and requests for materials should be addressed to Somnath Ghosh.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

M. Pinz et al.

14

npj Computational Materials (2022) 39 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://www.simmetrix.com
https://doi.org/10.1038/s41524-022-00727-5
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

M. Pinz et al.

15

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 39

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Data-driven Bayesian model-based prediction of fatigue crack nucleation in Ni-based superalloys
	Introduction
	Experimental testing and characterization
	Concurrent multiscale model development with embedded microstructural RVE
	Creating a database of microstructural state variables
	Development of a Bayesian crack nucleation model

	Results
	Material description
	Experiments on fatigue tests and data acquisition
	Experimentally generated polycrystalline microstructures
	Key experimental observations on fatigue crack nucleation
	A Bayesian framework for predicting crack nucleation
	A Bayesian framework for predicting crack nucleation
	Cross-validation

	Discussion
	Methods
	Concurrent multiscale model for fatigue analysis
	Concurrent multiscale model with embedded microstructural RVE

	Creating a microstructural state variable database related to fatigue nucleation
	Experimentally obtained training data sets for supervised learning
	Extracting core microstructural state variables for the crack nucleation model
	Observations on parallel slip configuration from experiments
	Indicator of dominant parallel slip

	Formulation of the Bayesian model for classifying crack nucleation
	Determination of the prior distributions p(C,| , )p(C&#x02223;&#x003BE;) and p(C,| , )p(C&#x000AF;&#x02223;&#x003BE;)
	Determination of the likelihood distributions p(x,| ,C, )p(x&#x02223;C,&#x003BE;) and p(x,| ,C, )p(x&#x02223;C&#x000AF;,&#x003BE;)


	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




