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A B S T R A C T

Building from a foundation of microstructural characterization, mechanical testing, 3D statisti-
cally equivalent microstructural volume elements (SEMVEs), and image-based microstructural
modeling, this paper develops an effective crystal plasticity model with porosity evolution for
additively manufactured Ti-6Al-4V alloys. Their microstructure is characterized by a complex
Widmanstätten morphology containing 12 𝛼 lath variants. In this paper, the morphology is
parametrized by statistically equivalent ellipsoids, enabling a parametric representation of the 𝛼
laths in the models. An effective crystal plasticity framework with the parametric representation
of the 𝛼 lath morphology is achieved by identifying the crystallographic relationship of the 𝛼
laths in relation to the parent 𝛽 grains from which they have nucleated and developing methods
to incorporate a statistical representation of HCP 𝛼 laths in 𝛽 grains. The constitutive model
for 𝛽 grains statistically accounts for the size, shape, orientation, and crystallography of all
12 𝛼 lath variants. An important contribution is the integration of porosity evolution with the
crystal plasticity model. The model is calibrated and satisfactorily validated with results from
experiments on additively manufactured Ti-6Al-4V alloys with and without heat treatment. The
model can yield important insights into the underlying physics of this relatively new class of
materials.

1. Introduction

Additive manufacturing (AM) has brought dramatic changes to the manufacturing industry through near-net-shape production of
omplex, customized parts and structures. Capitalizing on the use of layer-by-layer material addition technology, the AM processes
re able to fabricate finished products conforming to 3D computerized designs (Bonatti and Mohr, 2017). Powder-bed AM techniques,
such as electron beam melting (EBM) and laser powder bed fusion (LPBF), involving layer-wise melting of powder have shown great
promise in manufacturing metallic components, e.g. of titanium and aluminum alloys (Knezevic et al., 2021; Chen and Li, 2019).
Despite the significant promise, the qualification and certification of AM processed materials are often impeded by inconsistencies in
the overall mechanical behavior and extreme properties (Khairallah et al., 2020; Voisin et al., 2018; Francois et al., 2017), commonly
attributed to subtle, yet characteristic variations in the microstructural morphology like grain size, crystallographic texture, and
defect structures (Boyce et al., 2017; Salzbrenner et al., 2017; Muhammad et al., 2021).

Among various metallic materials, additively manufactured Ti-6Al-4V promises to be a transformational material in high-
erformance, mission-critical components due to its impressive strength and a large design envelope (Liu and Shin, 2019). These
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materials exhibit a complex, Widmanstätten or basket-weave microstructure (Gil et al., 2001), with over 98% hexagonal close-packed
(HCP) 𝛼 phase that forms due to the high cooling rates in the AM process. Following solidification after energy injection in the EBM
process, the material initially exists in the body-centered cubic (BCC) 𝛽 phase. However, upon the cooling below 950 ◦C, the transus
temperature of Ti-6Al-4V, 𝛼 laths begin to precipitate and form individual 𝛼 colonies with one of 12 unique Burgers relationships
with respect to the parent 𝛽 grain (Kobryn and Semiatin, 2001; Humbert and Gey, 2002). The highly localized heating source in the
electron beam and laser processes (Lin et al., 2019; Yang et al., 2016) results in a far more rapid cooling rate of the molten material
than for other bulk processes. With the high cooling rate, more nucleation sites are formed resulting in smaller and more intricate 𝛼
laths. These microstructures also contain defects intrinsic to the AM processes in the form of void and porosity distribution, due to
either lack of fusion or key-holing events (Beretta and Romano, 2017; Pegues et al., 2019; Gong et al., 2014). An understanding of the
interplay between the complex Widmanstätten microstructure of Ti-6Al-4V and the porosity defects (Montalbano et al., 2021; Qiu
et al., 2013; Book and Sangid, 2016; Watring et al., 2021) is important for capturing the overall mechanical and failure properties
of these additively manufactured materials. Robust micromechanical models that can effectively couple the detailed effects of these
aspects of the microstructure are of high relevance in the effective design and manufacture of these materials.

There is an extensive literature on image-based modeling approaches for dual-phase 𝛼∕𝛽 Ti-6Al-4V (Liu et al., 2020; Kasemer
et al., 2017; Mayeur and McDowell, 2007; Mayeur et al., 2008; Chatterjee et al., 2018; Hu et al., 2020; Thomas et al., 2012;
Feng et al., 2020). For example, physics-based micromechanical models of dwell fatigue due to load shedding and plastic strain
localization in temperature and rate-sensitive materials have been proposed for Ti alloys in Zheng et al. (2018), Xu et al. (2020),
Anahid et al. (2011), Ozturk et al. (2017). However, there is a paucity of modeling-based studies on Widmanstätten microstructures
of AM-processed Ti-6Al-4V materials (Seifi et al., 2016). This in part is due to the difficulty of statistical characterization of individual
𝛼 laths, interlocked in a basket-weave pattern as shown in Fig. 1. A few studies with this material include crystal plasticity modeling
with grain-level residual stresses (Kapoor et al., 2018) and crystal plasticity model-based prediction of tensile properties (Azhari
et al., 2022). Image-based micromechanical models need the creation of virtual microstructures from experimental electron
backscattered diffraction (EBSD) and/or scanning electron microscopy (SEM) scans, e.g. the statistically equivalent microstructural
volume elements (SEMVEs) (Pinz et al., 2018; Bagri et al., 2018). The intricate, interwoven Widmanstätten microstructures formed
by the AM processes are difficult to characterize without high-resolution 3D scans, such as dual-beam focused ion beam (FIB)-based
EBSD or SEM scans (Echlin et al., 2012). 2D surface scans lack the detailed information needed for creating representative high-
resolution 3D virtual microstructures. Alternative methods, such as the phase-field approach of microstructure evolution from 𝛽 to 𝛼
phase (Shi and Wang, 2013; Shi et al., 2015; Zhang et al., 2021; Radhakrishnan et al., 2016), while promising, are computationally
expensive.

The present study is aimed at the development of a micromechanical model for deformation analysis of AM-based Ti-6Al-
4V with Widmanstätten microstructures. The grain microstructure contains up to 12 unique HCP 𝛼 laths with ≥98% volume
fraction, each with its own crystallographic orientation and slip systems. Explicit representation of each of the 12 𝛼 lath variants
in FE models of the microstructural grains is computationally prohibitive due to their extremely small scale. It will require an
enormously large number of elements to represent individual phases. In lieu of explicit representation, the 𝛼 laths are represented
by a statistical representation of the morphology (e.g. volume fraction, size, and shape) and crystallography of the 𝛼 laths in
the parent grain, matching distributions observed in the EBSD scans. Statistically equivalent microstructural volume elements or
SEMVEs are generated by equating the statistics of various morphological and crystallographic descriptors of the EBSD scans of
the microstructure with those for the model (Pinz et al., 2018; Bagri et al., 2018). The SEMVE is a microstructural domain for
which statistical distribution functions of morphological parameters converge to those of the experimental microstructure. Unlike
representative volume elements (RVEs) that are conventionally subjected to periodic boundary conditions, boundary conditions
on the SEMVE resemble the experimental loading conditions for generating overall response functions of the specimen. For the
problems considered in this study, the use of RVEs with periodic boundary conditions is deemed inappropriate due to the localization
(non-periodic) deformation patterns observed in the experimental specimen.

The crystallographic orientations of the 𝛼 laths are functions of the crystallography of the parent 𝛽 grain. In this approach, the
effects of each of the 12 variants are incorporated into a constitutive framework of an equivalent crystal. This concept follows the
equivalent crystal model that has been developed in Deka et al. (2006) for transformed 𝛽 colonies in the Ti-6242 alloy microstructure,
consisting of alternating parallel 𝛼 and 𝛽 laths. The equivalent crystal consists of an assemblage of 30 HCP and 48 BCC slip systems
that are oriented in accordance with the Burgers relation. Assuming a Taylor model, the stress tensor in the equivalent crystal is
determined using the rule of mixtures, where a weighted averaging of the 𝛼 and 𝛽 phase stresses is conducted, with phase volume
fractions as weights. In the present study, the equivalent grain is developed for the 12 unique 𝛼 laths and incorporated into an
effective constitutive relation. Voids in the model microstructure are assumed to manifest in the form of porosity distributions. The
effect of porosity distributions in the equivalent grain is accommodated through a porous crystal plasticity constitutive model that
has been developed in Yang and Ghosh (2022) to capture the effect of evolution of porosity (void volume fraction), crystallographic
orientation, void growth, stress triaxiality, and Lode parameters. This porosity evolution and associated crystal plasticity model
in Yang and Ghosh (2022) is adopted in this work for simulating Widmanstätten microstructures in additively manufactured Ti-
6Al-4V. This combination of the microstructure and defect representation provides a strong and viable computational model to
interrogate and develop microstructure-response relations for this additively manufactured Ti alloy.

This paper begins with a description of the material, mechanical testing regimens, and the image acquisition methods used
for microstructure statistics gathering in Section 2. Section 3 discusses the cleanup procedures for the microstructural images, the
methodologies for determining the parent 𝛽 grains from images containing only 𝛼 laths, the construction of 3D statistically equivalent
2

microstructural volume element of parent 𝛽 microstructures, as well as the generation of statistically equivalent 𝛼 phase inputs for the
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Fig. 1. (a) Backscattered electron (BSE) image, (b) image quality map of electron backscattered diffraction (EBSD) scan, and (c) feature ID map of EBSD scan of
s-built additively manufactured Ti-6Al-4V microstructure, (a unique color is used represent each individual feature, corresponding to 𝛼 grains); (d) BSE image,
(e) image quality map of EBSD scan, and (f) feature ID map of EBSD scan of a HIP-treated Ti-6Al-4V microstructure (a unique color is used represent each
individual feature, corresponding to 𝛼 grains). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

effective crystal plasticity model. Section 4 provides a comprehensive overview of the porous crystal plasticity formulation derived
for the equivalent crystal model. Section 5 describes the calibration of the constitutive parameters and the subsequent validation
with results from mechanical tests. This is supplemented with additional validation for a hot isostatic pressing (HIP)-treated material
that contains minimal porosity. Finally, the paper concludes with a summary in Section 7

2. Summary of the material, manufacturing process, and testing

2.1. Additively manufactured Ti-6Al-4V alloy

Additively manufactured Ti-6Al-4V is nominally an 𝛼∕𝛽 Ti alloy, with small amounts of vanadium, aluminum, and other elements.
The weight fractions of the experimental alloy in this work are 5.82%Al, 4%V, 0.2%Fe, 0.1%O, with trace amounts of C, H, and
N, the balance being Ti. The EBSD scans of the Ti-6Al-4V microstructure contain ≥ 98% 𝛼 phase by area, demonstrating that the
deformation mechanisms are dominated by dislocation glide on HCP slip systems. Accordingly, the model accounts for deformation
of the 𝛼 phase in the Widmanstätten microstructure that is characterized by interlocking plates, forming 𝛼 lamellae. The 𝛼 laths
precipitate out of the 𝛽 phase, as the material cools below the 𝛽 transus temperature. The 𝛼 laths are approximately ellipsoidal in
nature and are related to the parent 𝛽 grain via a Burgers relationship (0001)𝛼 ∥ (101)𝛽 and [112̄0]𝛼 ∥ [1̄11]𝛽 , discussed in Burgers
(1934). The crystallographic rotation matrix 𝐷 that describes the rotation from a vector in the 𝛽 crystal coordinate system to the 𝛼
hase coordinate system is given in Humbert et al. (1995) as:
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Table 1
Crystallographic relationship of the 12 variants to the parent 𝛽 grain, defined by rotation matrices and quaternions.
Variant number 𝑖 Rotation matrix 𝑆𝛽

𝑖 Quaternions Burgers relationship

1
⎡

⎢

⎢

⎣

1
1

1

⎤

⎥

⎥

⎦

[1, 0, 0, 0] (101)||(0001) , [1̄11]||[112̄0]

2
⎡

⎢

⎢

⎣

1
−1

−1

⎤

⎥

⎥

⎦

[0, −1 ,0, 0] (1̄01)||(0001) , [111]||[112̄0]

3
⎡

⎢

⎢

⎣

1
1

1

⎤

⎥

⎥

⎦

[0.5, 0.5, 0.5, 0.5] (011)||(0001) , [111̄]||[112̄0]

4
⎡

⎢

⎢

⎣

−1
−1

1

⎤

⎥

⎥

⎦

[0.5, 0.5, −0.5, −0.5] (011̄)||(0001) , [1̄11]||[112̄0]

5
⎡

⎢

⎢

⎣

−1
−1

1

⎤

⎥

⎥

⎦

[0.5, 0.5, −0.5, 0.5] (11̄0)||(0001) , [111̄]||[112̄0]

6
⎡

⎢

⎢

⎣

−1
1

−1

⎤

⎥

⎥

⎦

[0.5, −0.5, 0.5, 0.5] (110)||(0001) , [1̄11]||[112̄0]

7
⎡

⎢

⎢

⎣

−1
1

−1

⎤

⎥

⎥

⎦

[0, 0, −1, 0] (101)||(0001) , [111̄]||[112̄0]

8
⎡

⎢

⎢

⎣

−1
−1

1

⎤

⎥

⎥

⎦

[0, 0, 0, −1] (1̄01)||(0001) , [11̄1]||[112̄0]

9
⎡

⎢

⎢

⎣

−1
1

−1

⎤

⎥

⎥

⎦

[0.5, −0.5, −0.5, 0.5] (011)||(0001) , [11̄1]||[112̄0]

10
⎡

⎢

⎢

⎣

1
−1

−1

⎤

⎥

⎥

⎦

[0.5, −0.5, 0.5, −0.5] (011̄)||(0001) , [111]||[112̄0]

11
⎡

⎢

⎢

⎣

1
−1

−1

⎤

⎥

⎥

⎦

[0.5, 0.5, 0.5, −0.5] (11̄0)||(0001) , [111]||[112̄0]

12
⎡

⎢

⎢

⎣

1
1

1

⎤

⎥

⎥

⎦

[0.5, −0.5, −0.5, −0.5] (110)||(0001) , [11̄1]||[112̄0]

However, due to the symmetry of the BCC crystal, there are 12 symmetry operators represented by a matrix 𝑆𝛽
𝑖 , which can generate

unique variants (Shi and Wang, 2013; Humbert et al., 1995). Defining the rotation matrix from the reference coordinates to the
crystallographic coordinates of the parent 𝛽 grain as 𝐺, the rotation matrix 𝑃 𝑖 from the reference orientation to the 𝑖th variant’s 𝛼
rystallographic orientation is expressed as:

𝑃 𝑖 = 𝐷𝑆𝛽
𝑖 𝐺 (2)

derivation of the relationship between 𝛼 and parent 𝛽 phases can be found in Humbert et al. (1995). An exhaustive list of the
ymmetries, resulting in varying 𝑆𝛽

𝑖 is provided in Table 1.
Each of the 12 variants represents a unique way to attach the HCP lattice onto a given BCC orientation. Table 1 provides the

otations of these symmetries that give rise to the variants in both the matrix forms and in quaternions. Quaternions, detailed in
ection 3.2, are an alternate approach to representing rotations. The table also shows the unique Burgers relationship between the
and the 𝛽 phases. A similar table without the quaternion representation is given in Shi and Wang (2013).

2.2. Material build parameters in the electron beam melting process

The Ti-6Al-4V specimens are fabricated using electron beam melting powder-bed fusion (EBM-PBF) in an Arcam A1 machine
(software version 3.2.132),1 schematically shown in Fig. 2. The accelerating voltage is 60 kV, and the layer thickness is 50 μm. The
standard Arcam Ti-6Al-4V gas-atomized powder used, has a specified particle size range of approximately 40 μm to 100 μm, and an

1 Certain commercial software, equipment, instruments or materials are identified in this paper in order to specify the experimental procedure adequately.
uch identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply
4

hat the equipment or materials identified are necessarily the best available for the purpose.
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Fig. 2. Overview of the powder-bed fusion build process with example build coupon and extraction of testing samples.

verage diameter of approximately 70 μm. Parts are grouped into a single melt model such that the EBM scan length is approximately
0 mm in each of the in-plane directions.
One subgroup of the samples is subjected to a hot isostatic pressing (HIP) treatment below the 𝛽 transus at 900 ◦C for two hours

in an inert Ar environment at a pressure of 100 MPa. Heating and cooling rates are carried out at 12 ◦C/min, a process that is
primarily used to eliminate porosity in the material due to the AM process. This has the added effect of allowing the 𝛼 laths to
slowly coarsen over the course of the treatment, similar to the Ostwald ripening process.

2.3. Tension testing

Ten tensile specimens are excised from the upper half of selected Ti-6Al-4V components, using electrical discharge machining
(EDM), for three material-load direction pairs. The material-load pairs include:

• Set 1: Ten samples of as-built material without heat treatment, loaded along the build direction;
• Set 2: Ten samples of as-built material without heat treatment, loaded perpendicular to the build direction.
• Set 3: Ten samples of HIP-treated material loaded along the build direction;

The tensile specimens with 12.7 mm total length, 1.27 mm thickness, 2.54 mm gauge width, and a 3 mm gauge length set by an
extensometer, are deformed at a strain rate of 10−3 s−1 in uniaxial tension. The linear portion of the stress–strain curve is fit in
accordance with ASTM E3076-18 (ASTM, 2011a) to calculate the Young’s modulus. The other tensile properties, e.g. yield strength,
ultimate strength, uniform elongation, and elongation at fracture, are found according to ASTM E8-16a (ASTM, 2011b) and have
een previously reported for this particular EBM-PBF build in Benzing et al. (2019). An analysis of variance is completed with InStat
software (Bailey and Stern, 2021) and used to test the null hypotheses that the tensile properties are equal across material conditions
ith a statistical significance of 𝑝 ≤ 0.01.

.4. Defect characterization

Samples of each material condition are analyzed for internal porosity with an X-ray computed tomography (CT) machine (Zeiss
radia) with the following parameters: 160 kV, 10 W, 1 μm voxel size. The volume-averaged porosity is found to be 0.1% for the
s-built conditions, and negligible for the HIP-treated samples.

.5. Microstructural characterization with EBSD scans

Samples from each material condition are sectioned from the same build height (Z = 20 mm), ground with SiC paper (400
rit through 1200 grit), polished with a suspension of 1 μm diamond particles and finished with a vibratory polish using 50 nm
olloidal silica. Backscattered electron images, as shown in Fig. 1(a, d), are recorded using a Zeiss Gemini field-emission scanning
lectron microscope (FE-SEM): 20 kV, 60 μm aperture, high current mode, and an 8 mm working distance. Six small-area electron
ackscatter diffraction (EBSD) scans in Fig. 1(b, c, e, f) are performed for each material condition using a Zeiss Leo FE-SEM: 20 kV,
20 μm aperture, 7.8 nA current, and a 19 mm working distance. For the purposes of measuring 𝛼 lath thickness and phase fraction,
5
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Fig. 3. (a) As-scanned XY EBSD map of 𝛼 laths in the AM-based Ti-6Al-4V microstructure, (b) reconstructed 𝛽 XY EBSD map, (c) as-scanned XZ EBSD map of
𝛼 laths in the AM-based Ti-6Al-4V microstructure, (d) reconstructed 𝛽 XZ EBSD map, (e) IPF key for the reconstructed 𝛽 EBSD maps in figures (b, d), (f) IPF
key for the as-scanned EBSD maps in figures (a, c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the EBSD step size is 0.150 μm and the field of view is 50 μm × 50 μm. Multi-tile large-area EBSD scans are performed for each
material condition and encompass at least 10 mm2 in area. The measurements are performed with a Zeiss Leo FE-SEM: 20 kV, 120
μm aperture, 7.8 nA current, and a 19 mm working distance. A step size of 1 μm is used to capture global texture in each 450 μm
× 450 μm tile.

3. Microstructure characterization and generation of Statistically Equivalent Microstructural Volume Elements (SEMVEs)

Micromechanical simulations of additively manufactured Ti-6Al-4V alloys are conducted on SEMVEs (Pinz et al., 2018; Bagri
et al., 2018) generated by equating the statistics of various morphological and crystallographic descriptors of EBSD scans of the
microstructure. The statistics extracted from the experimental micrographs necessarily correspond to the thermodynamic processes
in the microstructure generation process. The aim of constructing statistical instantiations of microstructural descriptors is to describe
the natural variation within the observed microstructure and to incorporate this stochasticity into the constitutive model. The
following process of generating SEMVEs is tailored to provide an unbiased estimation of the microstructural statistics, hewing as
closely as possible to the observed statistical distributions.

3.1. Image processing and statistical analysis of 𝛼 laths

An automated procedure is established for cleanup and segmentation to acquire the statistics of the size, shape, orientation,
nd crystallography of 𝛼 laths in the Ti-6Al-4V microstructure. Large-area images with lower resolution and high-resolution small-
rea images are sampled for microstructural characterization and statistical analysis. After stitching together, the large-area images
ontaining 0.4 μm pixel sizes, have overall dimensions of 1042 μm by 3116 μm for the XY EBSD scan, and 1996 μm by 4822 μm for
the XZ EBSD scan. These 𝛼 lath scans are shown in Figs. 3(a, c), and the corresponding IPF color keys are shown in Fig. 3(f). These
images are primarily used for determining the relative volume fraction of variants, as well as the morphology of the parent 𝛽 grains.
More detailed small-area scans, with a pixel size of 0.15 μm, are used for characterizing the 𝛼 lath morphology.

The EBSD scans are all imported into the DREAM.3D suite (Groeber and Jackson, 2014), and the following steps are applied for
onsistency.

1. A bad data filter is applied to remove any pixel with a confidence index ≤ 0.1, followed by a fill bad data approach to use
nearby pixel information to replace the removed data;

2. Individual grains are next segmented with a 1◦ misorientation tolerance;
3. Any segmented feature containing fewer than 50 pixels is removed from both the small and large area images, and the feature
IDs are replaced via a burn algorithm.

4. The best-fit ellipse and mean crystallographic orientation are calculated for every segmented grain, to calculate the grain
aspect ratio and orientation.
6
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The thickness distributions of the 𝛼 laths are determined from the thickness of 60 different 𝛼 laths in the ensemble. The 𝛼 lath size
as a significant length-scale effect in the crystal plasticity model.

.2. Construction of parent beta grains and variant identification

The reconstruction methodology is based on the methods described in Glavicic et al. (2003a,b). In consideration of rotational
symmetries of the parent 𝛽 and child 𝛼 phase, a particular 𝛽 phase orientation can give rise to 12 unique 𝛼 variants, as identified in
Table 1. Among these, however only five are unique crystallographic misorientations, which can be used to reconstruct the 𝛽 phase.
The quaternion representation of orientation space is employed in this development, where an arbitrary orientation is represented
with a unit quaternion (Kocks et al., 1998) as:

𝐪̄ = (𝑞0,𝐪) =
{

𝑞0, 𝑞1, 𝑞2, 𝑞3
}

with the constraint (𝑞0)2 + (𝑞1)2 + (𝑞2)2 + (𝑞3)2 = 1

Here 𝑞0 and 𝐪 = (𝑞1, 𝑞2, 𝑞3) represent the scalar and vector parts of the quaternion, respectively.
The algorithm for generating parent 𝛽 grains from the image of a child 𝛼 laths begins by aggregating the pixel-level orientation

data into 𝛼 laths defined in the previous section. A burn algorithm, which locates edge-connected pixels containing crystallographic
misorientations less than a user-specified tolerance, is executed. The misorientation 𝛥𝐪̄𝑎𝑏 between two quaternions 𝐪̄𝑎 and 𝐪̄𝑏 is the
quaternion product of the inverse of 𝐪̄𝑏 and 𝐪̄𝑎, defined as:

𝛥𝐪̄𝑎𝑏 = 𝛥(𝐪̄𝑎, 𝐪̄𝑏) = (𝐪̄𝑎)−1 ⋅ 𝐪̄𝑏 = (𝑞𝑎0𝑞
𝑏
0 − 𝐪𝑎 ⋅ 𝐪𝑏, 𝑞𝑎0𝐪

𝑏 + 𝑞𝑏0𝐪
𝑎 + 𝐪𝑎 × 𝐪𝑏) (3)

This misorientation is related to a rotation angle 𝜔 that is expressed through the relation 𝑞0 = 𝑐𝑜𝑠(𝜔2 ), whereas the rotation axis 𝐧 is
obtained from the relation 𝐪 = 𝐧𝑠𝑖𝑛

(

𝜔
2

)

. The average orientation is calculated from this data by ensuring that all pixels belonging
to a grain 𝑖 are in the fundamental zone, defined as the minimum set of orientations such that all crystallographic orientations can
uniquely map to it (MTEX, 2021). The conventions used in this paper are the same as those employed in the open-source software
package MTEX (Krakow et al., 2017).

To acquire this, the product of the measured quaternion 𝐪̄𝑖𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 with the rotational symmetry operators 𝑆
𝐻𝐶𝑃
𝑘 is taken for HCP

crystals, such that 𝐪̄𝑖 = 𝐪̄𝑖𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 [𝑆
𝐻𝐶𝑃
𝑘 ] for 𝑘 = 1...12. A single symmetry 𝑘∗ is chosen from the set 𝑘 = 1…12, such that 𝐪̄𝑖 is in the

undamental zone. With all orientations in the fundamental zone identified as being in the same grain, the average orientation can
e approximated as the arithmetic mean of the quaternions normalized by their respective vector norm (Cho et al., 2005) as:

⟨𝐪̄⟩ = 1
𝑁

𝑁
∑

𝑛=1

𝐪̄𝑛

‖𝐪̄𝑛‖
(4)

Unique 𝛼 laths are identified from clusters of pixels, following steps delineated in Section 3.1. Subsequently, an algorithm is
executed to loop over segmented 𝛼 laths that are not yet assigned to a contiguous 𝛽 region, using the following steps.

• For a selected 𝑖th 𝛼 lath, a list of all contiguous 𝛼 laths with a shared boundary is constructed.
• All possible misorientations between the 𝑖th 𝛼 lath and the 𝑗th neighbor are computed from the relation 𝛥𝐪̄𝑖𝑗𝑘 = 𝑆𝐻𝐶𝑃

𝑘 𝛥𝐪̄𝑖𝑗𝑆𝐻𝐶𝑃
𝑘 .

Symmetry operators are applied on both sides of this misorientation.
• As before, the quaternion in the fundamental zone is identified and the misorientation between the 𝑖th 𝛼 lath and 𝑗th neighbor
is recorded as 𝛥𝐪̄𝑖𝑗𝑘∗ .

• The misorientation between the 𝑖th and 𝑗th 𝛼 laths 𝛥𝐪̄𝑖𝑗𝑘∗ , and the set of the six crystallographically allowable misorientations
between 𝛼 laths from the same parent 𝛽 grain 𝐪̄𝐵𝑂𝑅

𝑙 in Table 2 are computed as 𝛥(𝐪̄𝐵𝑂𝑅
𝑙 , 𝛥𝐪̄𝑖𝑗𝑘∗ ).

• If the smallest of these resultant misorientations is less than a user-specified tolerance (3◦ in this paper), i.e.
𝑚𝑖𝑛
𝑙
(|𝛥(𝐪̄𝐵𝑂𝑅

𝑙 , 𝛥𝐪̄𝑖𝑗𝑘∗ )|) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, where |⋯ | represents only the scalar part of the quaternion

then the two variants are assumed to have been inherited from the same parent 𝛽 grain, and are temporarily marked as
belonging to the same 𝛽 region.

t should be noted that in a few special cases, 𝛼 variants within different prior 𝛽 grains can share one of these crystallographic
isorientations through some underlying crystallographic relationship in the parent 𝛽 grains, such as sharing a common ⟨110⟩
xis (Bhattacharyya et al., 2003). The present method relies on tight crystallographic tolerances, by driving the minimum tolerance
ngle on the initial segmentation of pixels-to-grains down as far as possible. An alternate robust method has been recently proposed
n Zaitzeff et al. (2021).
At least 4 unique variants are required to uniquely identify the orientation of the parent 𝛽 orientation from the observed 𝛼 lath

rystallography (Cayron, 2007). If there are fewer than 4 unique 𝛼 laths belonging to the same 𝛽 grain, then the 𝛽 orientation is
ot guaranteed to be calculable. Hence, if clusters of 𝛼 laths belonging to the same parent 𝛽 grain contain more than 4 unique
ariants, then this cluster has a unique solution to identifying the parent 𝛽 grain orientation. However, if there are fewer than 4
nique variants, the cluster is disbanded, and the loop is passed to the next iteration.
Following identification, the orientations of the contiguous 𝛽 grains are computed by first calculating trial orientations comprised

f all 6 possible parent 𝛽 orientations for each 𝛼 lath within an identified 𝛽 region. The trial 𝛽 orientations are calculated by the
ormula 𝑇 = 𝐪̄𝐷−1𝑆𝛼 𝐪̄𝛼 , where 𝑆𝛼 is a special subset of six of the hexagonal rotational symmetry elements described in Glavicic
7
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Table 2
List of all possible quaternion misorientations between two 𝛼 variants inherited from the same
prior 𝛽 grain, 𝐪̄𝐵𝑂𝑅

𝑙 .

Unique orientation ID 𝑞0 𝑞1 𝑞2 𝑞3
1 1 0 0 0
2 0.9958 0 0 −0.0918
3 0.7071 0.2959 −0.6422 0
4 0.8514 −0.5000 0 −0.1582
5 0.8624 −0.4979 0.0459 −0.0795
6 0.8660 0.2500 0.4330 0

et al. (2003a), 𝐪̄𝐷−1 = {0.5406, 0.7046, − 0.0800, 0.4558} is the inverse of Eq. (1) in quaternion form, and 𝐪̄𝛼 is the orientation of
he 𝛼 lath. A list of all trial 𝛽 orientations is constructed as 𝛽𝑚𝑙, where m ranges from 1 to the number of 𝛼 laths in the previously
dentified 𝛽 region, and l represents each of the 6 possible trial 𝛽 orientations. From this list 𝛽𝑚𝑙, the orientation 𝛽 is calculated by
olving an optimization problem, delineated as:

𝜷 = 𝑚𝑖𝑛
𝜷

𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
∑

𝑚=1
|𝛥(𝜷, 𝛽𝑚𝑙)|2𝐼𝑚𝑙 𝑆.𝑇 . 𝐼𝑚𝑙 ∈ Z[0, 1] ,

6
∑

𝑙=1
𝐼𝑚𝑙 = 1 ∀ 𝑚 (5)

here |𝛥(𝜷, 𝛽𝑚𝑙)| represents only the scalar portion of the quaternion, and 𝐼𝑚𝑙 is an indicator function that contains only one positive
alue for each 𝑚th entry. The resultant 𝜷 is the orientation that has the minimum misorientation between each of the trial 𝛽
rientations. The pseudo-code for generating the parent 𝛽 grain from the 𝛼 laths is given in Appendix A. An exit criteria may
be incorporated to avoid the rare possibility for this algorithm to end in an infinite loop if not all grains can be assigned.

Figs. 3(b, d) show the reconstructed 𝛽 section maps, and the corresponding IPF color keys are shown in Fig. 3(e). The different
orientation between the as-scanned EBSD and reconstructed suggests that there is a strong preference for the ⟨011⟩ direction of
the prior 𝛽 grains, and that any of the 12 unique variants could lead to 𝛽 grains with this orientation. The reconstruction of 𝛽
grains of the small and the large-area images are performed with the same methodology. No major differences are observed in the
reconstruction quality at different resolutions.

3.3. Volume fraction of variants

Characterization of the distribution of volume fraction of the 12 variants is integral to the construction of an effective crystal
plasticity constitutive model, in which the material response corresponds to the volume fraction-weighted contribution from each
of the 12 variants. For ensuring an unbiased sampling and reconstruction of the volume fraction distribution, the generation of
statistically equivalent volume fractions for each of the variants must conform to the following five constraints.

(i) The distribution of variants with non-zero volume fractions within a parent 𝛽 grain must be similar to the observed distribution
over many samples, as shown in Fig. 4(a).

(ii) The total volume fraction of all variants at a material point must add up to ∑12
𝑖=1 𝑣

𝑖
𝑓 = 1.

(iii) The distribution of volume fractions within a parent 𝛽 grain must conform to the empirical distribution, as shown in Figs. 4(d,
e, f).

(iv) The total volume fraction of each variant should reflect the global average of each variant, as shown in Fig. 4(b)
(v) Pairwise correlation between variant volume fractions must be maintained.

The proposed methodology, satisfying all of the above conditions, is conducted using the following steps.

1. The distribution in Fig. 4(a) is directly sampled to obtain 𝑁 number of 𝛼 laths containing a non-zero volume fraction within
a parent 𝛽 grain satisfying constraint (i).

2. 𝑁 − 1 points are randomly sampled in the range [0, 1], and sorted in ascending order. Volume fractions are assigned to
the distances between the values of this sorted list in this range. This implies that the first volume fraction is the difference
between 0 and the lowest sampled value, the second is the difference between the lowest sampled value and the second
lowest sampled value, etc.

3. The above operation is performed for a set number of times, 100 in this example, to generate a representative distribution of
variant volume fractions over many possible 𝛽 grains. It serves as an initial guess for matching the experimental distribution.

4. This trial set of variant volume fractions is matched with the experimental distribution through an algorithm, with an
established goodness of fit metric having a set baseline value. The Kolmogorov–Smirnov test statistic:

𝐾𝑆𝑅𝑒𝑓 = 𝑚𝑎𝑥
𝑥

(‖𝐹𝑆𝑦𝑛(𝑥) − 𝐹𝐸𝑥𝑝(𝑥)‖),

defined as the maximum difference between cumulative distribution functions (CDFs) of the experimentally observed samples
𝐹𝐸𝑥𝑝(𝑥) and the initial synthetically generated samples 𝐹𝑆𝑦𝑛(𝑥) is selected for this purpose.

5. Next, one of the 100 𝛽 grains is randomly selected. One point in the set of 𝑁 − 1 points is randomly perturbed, while
maintaining a minimum spacing of 0.01 between all other points in the [0, 1] range.
8
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Fig. 4. (a) Histogram of probability density function (PDF) of the number of variants experimentally observed in a parent 𝛽 grain, (b) PDF of volume fraction of
variant ID numbers, (c) Correlation matrix 𝑐𝑖𝑗 of variant IDs relative to predicted values based on the total volume fraction; Comparing CDFs of variant volume
fractions within a parent 𝛽 grain with that generated by the synthetic sampling method for: (d) 𝛽 grain 𝑁 = 9, (e) 𝛽 grain 𝑁 = 10, and (f) 𝛽 grain 𝑁 = 11.

6. The CDF of this modified trial distribution is subsequently calculated and the Kolmogorov–Smirnov test statistic is computed
and stored as 𝐾𝑆𝑇 𝑟. If this perturbation improves the test statistic, i.e. 𝐾𝑆𝑅𝑒𝑓 > 𝐾𝑆𝑇 𝑟, then this modification is retained,
otherwise, it is discarded.

7. This iteration is continued until a convergence criterion is met, or a specified number of iterations are reached.

his approach satisfies constraints (ii) and (iii). The resulting distributions are compared for 𝑁 = 9, 10, 11 in Figs. 4(d, e, f)
espectively with satisfactory agreement.
The preference for variants in the microstructure is not necessarily uniform and depends on a multitude of material processing

actors, including residual stresses, temperature gradients, cooling rates etc. (Shi and Wang, 2013), thus favoring particular variants.
he volume fraction of individual variants 𝑣𝑖𝑓 over the entire domain is shown in Fig. 4(b). Following the assignment of all of the
olume fractions, the variant ID’s to which the volume fractions are assigned are shuffled to satisfy the overall distributions of
olume fractions shown in Fig. 4(b). This process satisfies constraint (iv). As shown in Shi and Wang (2013), there are particular
interactions between variants that are energetically favored during the formation of the Widmanstätten microstructure. To determine
if there are such pairings between the variants, a covariance-like metric is defined to determine the volume-weighted frequency of
observed variant pairings, relative to their expectation expressed as:

𝑐𝑖𝑗 =
1
𝑁𝛽

𝑁𝛽
∑

𝑘=1

𝑣𝑓 𝑖
𝑘𝑣𝑓

𝑗
𝑘

𝑣̄𝑖𝑓 𝑣̄
𝑗
𝑓

(6)

here 𝑣̄𝑗𝑓 is the volume-averaged fraction of the 𝑗th variant, and 𝑁𝛽 = 12. As shown in Fig. 4(c) the presence of any one variant
oes not influence the likelihood of the presence of another variant in an averaged sense. In other words, 𝑐𝑖𝑗 does not deviate from 1
n off-diagonal terms sufficiently to warrant the additional model complexity of including a covariance matching scheme, satisfying
onstraint (v). It should be noted that the high covariance of variants 3 and 10 is likely due to random noise on account of their
inuscule sample size.

.3.1. Statistics of 𝛼 laths
Statistical characterization of the 𝛼 laths in the 3D Widmanstätten microstructure is central to the crystal plasticity constitutive
odel discussed in Section 4, which incorporates 𝛼 laths statistics. The constitutive model assumes that 𝛼 lath boundaries form
arriers to dislocation glide on slip planes, affecting the free motion of dislocations. This provides a basis for the determination of
mean-free path for dislocation glide on different slip systems in the 𝛼 lath, to be incorporated in Hall–Petch type relations. The
lath morphology is approximated as a 3D ellipsoid. This geometric representation of the 𝛼 lath is statistically representative with
9

espect to morphological parameters, while maintaining a relatively low complexity and high parametrizability. In this analysis, a
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Fig. 5. Schematic showing the principal axes of the representative 3D ellipsoid, as well as the crystallographic relationship between the minor axis 𝐞𝐳̄ 𝛼 lath
nd the

{

1̄12
}

crystallographic direction of the parent 𝛽 grain.

ingle 3D ellipsoid is assigned to each variant within a parent 𝛽 grain, effectively assuming a single 3D ellipsoid to approximate
he morphology of all 𝛼 laths of that variant within the 𝛽 grain. A representative 3D ellipsoid shown in Fig. 5 is parametrically
epresented in the principal coordinate system, with its origin at the centroid, as:

( 𝑥̄
𝐴

)2
+
(

𝑦̄
𝐵

)2
+
( 𝑧̄
𝐶

)2
= 1 (7)

here 𝐴 ≥ 𝐵 ≥ 𝐶 are semi-major, intermediate, and semi-minor axis lengths respectively. A position vector in the principal
oordinate system is expressed as 𝐱̄ = 𝑥̄𝐞𝐱̄ + 𝑦̄𝐞𝐲̄ + 𝑧̄𝐞𝐳̄, where 𝐞𝐱̄ , 𝐞𝐲̄ , 𝐞𝐳̄ are unit vectors along the major, intermediate and minor axes,
nd 𝑥̄, 𝑦̄, 𝑧̄ are the respective components. The process of generating the ellipsoids starts with the identification and segmentation of
D ellipses obtained in Section 3.1, along with the acquisition of the axis lengths, variant ID, and crystallographic orientation of the
and 𝛽 laths. For each of these 2D ellipses, multiple trial 3D ellipsoids are generated, from which the most probable 3D ellipsoid
rom this set is determined and assigned homogeneously within a parent 𝛽 grain.
As shown in Lütjering and Williams (2007), there is a relationship between the crystallographic direction 𝐧𝛽 =

{

1̄12
}

of the
arent 𝛽 grain and the minor axis 𝐞𝐳̄ of the 3D ellipsoid representing the 𝛼 lath. According to this relation, the minor axis 𝐞𝐳̄ is
ritten in the reference frame of the sample as:

𝐞𝐳̄ = 𝐆−1𝐒𝛽𝑖
𝐧𝛽
|𝐧𝛽 |

(8)

where 𝐒𝛽𝑖 represents the symmetry for the 𝑖th variant described in Table 1, and 𝐆 is defined as a rotation matrix that transforms a
vector from the reference coordinates to the crystallographic coordinates of the parent 𝛽 grain.

The most probable 3D 𝛼 lath ellipsoid conforming to the crystallographic relation in Eq. (8), is determined from a sample size of
fifty generated trial ellipsoids. Upon establishing the direction for 𝐞𝐳̄, the other two orthogonal principal axes with unit vectors 𝐞𝐱̄
and 𝐞𝐲̄ are selected randomly about the 𝑧̄ axis. Subsequently, the most probable ellipsoid aspect ratios 𝐴∕𝐶 and 𝐴∕𝐵 are determined
through a sampling process, in which the 2D ellipse formed by the intersection of the trial 3D ellipsoids with a centroidal XY plane,
best matches the observed ellipse aspect ratios from EBSD scans. Finally, with known aspect ratios, the overall size of the ellipsoid
is obtained through an estimation of the principal axis lengths (𝐴,𝐵, 𝐶). This process involves calculating the relationship between
(𝐴,𝐵, 𝐶) of the 3D ellipsoid, and the semi-minor axis of the 2D ellipse formed by the intersection of the most probable 3D ellipsoid
and the XY plane. The length of the semi-minor axis of the 2D ellipse is estimated by randomly selecting from the measured axis
lengths of the 2D ellipse set corresponding to experimental EBSD maps. Checks are conducted to ensure that the semi-minor axis
length 𝐶 is not less than the minimum of the set of measured 2D ellipse axis length in EBSD scans.

Results of the 3D 𝛼 lath ellipsoid generation process for the as-built and HIP-treated additively manufactured Ti-6Al-4V
microstructure are shown in Figs. 6. The plots include distributions of the resulting aspect ratios 𝐴∕𝐶, 𝐴∕𝐵, 𝐵∕𝐶, and the size
of the semi-major axis 𝐴. For all quantities, a log-normal distribution is used to parametrize the distributions with a good fit. The
aspect ratio distributions for the as-built and HIP-treated samples are generally quite similar. However, the size of the 𝛼 laths is
much larger for the HIP-treated samples. This plays an important role in the overall mechanical response of the material.

3.4. Parent beta grain statistics and reconstruction

The morphological and orientation statistics of the parent 𝛽 grains are extracted from the low-resolution orthogonal XY and
XZ large-area images and processed using the DREAM.3D software (Groeber and Jackson, 2014). The overall microstructural
morphology is well represented by elongated grains in the build direction. The SEMVEs are generated in the DREAM.3D framework.
The aspect ratio of the 𝛽 grain morphology in the build direction is characterized from the statistics of the XZ images, while the
10
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𝐴

Fig. 6. Probability density functions of the aspect ratios and semi-major axis lengths of the most probable 3D ellipsoid: (a) 𝐴∕𝐵 aspect ratio distribution, (b)
∕𝐶 aspect ratio distribution, (c) 𝐵∕𝐶 aspect ratio distribution, and (d) Size distribution of the semi-major axis 𝐴.

Fig. 7. Reconstructed SEMVEs of the parent 𝛽 grain for two orthogonal directions corresponding to (a) vertical loads and (b) horizontal loads.
11
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Fig. 8. Aspect ratio of the 3D ellipsoid representing 𝛽 grains (a) 𝐴∕𝐵 and (b) 𝐴∕𝐶; orientation distribution of the parent 𝛽 grains showing (c) (001) pole figure
nd (d) (011) pole figure.

tatistics from the XY images are used to describe the grain morphology perpendicular to the build direction. The overall 𝐴∕𝐵
nd 𝐴∕𝐶 aspect ratios are plotted in Fig. 8(a, b). Two sets of 5 microstructural SEMVEs in the orthogonal directions (vertical and
orizontal) are constructed as shown in Figs. 7 respectively, with each SEMVEs containing approximately 85 𝛽 grains. The overall
SEMVE dimensions are 400 μm × 200 μm × 200 μm. The elongated grains are in the build direction and are textured to favor the
(110) direction. The orientation distribution of the parent 𝛽 grains showing (001) and (011) pole figures are shown in Figs. 8(c, d).

4. Crystal plasticity model accounting for 𝜶 lath variants and porosity

The deformation behavior of the equivalent parent 𝛽 grains with a statistical representation of the 12 𝛼 lath variants in the
additively manufactured Ti-6Al-4V with Widmanstätten microstructure is modeled by an effective finite deformation, crystal plas-
ticity model. The model accounts for all HCP slip systems pertaining to the 𝛼 lath representation in the parent grains. Furthermore,
the model incorporates porosity and its evolution with the material state, in consideration of the effect of void distribution in the
microstructure. The effective crystal plasticity model for the equivalent parent 𝛽 grains in the Widmanstätten microstructure is
built on homogenization concepts introduced in Deka et al. (2006). The porosity evolution law follows developments in Yang and
hosh (2022), which has developed an effective constitutive model for porous viscoplastic HCP crystals, capturing the effect of
nitial porosity, crystallographic orientation, void growth, stress triaxiality, and Lode parameters. Furthermore, it also accounts for
variety of loading cases, viz. compressive and tensile loading, low to high stress triaxialities, and uniaxial, biaxial and triaxial
oading. This model is based on the variational framework in DeBotton and Castañeda (1995) and its phenomenological extensions
n Han et al. (2013), Ling et al. (2016). Phenomenological extension parameters are introduced into the effective plastic potential
o relax the assumptions employed in Han et al. (2013), Ling et al. (2016).
12
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In the following, the equations refer to the evolution of state variables for any one of the 12 potential variants. The stress–strain
elationship in the effective crystal plasticity model is written in the intermediate configuration in terms of the Mandel stress, given
s (Yang and Ghosh, 2022):

𝐌 = 𝐂𝑒𝐒̂ (9)

where 𝐂𝑒 = 𝐅T𝑒𝐅𝑒 is the right Cauchy–Green tensor and 𝐅𝑒 is the elastic part of the deformation gradient, defined as 𝐅𝑒 = 𝐅𝐅−1
𝑝 . Here

𝐅 and 𝐅𝑝 represent the total deformation gradient and the plastic deformation gradient, respectively. The second Piola–Kirchhoff
stress tensor 𝐒̂ in the intermediate configuration is expressed as:

𝐒̂ = C𝐄𝑒 (10)

where C represents a fourth-order anisotropic elasticity tensor, and 𝐄𝑒 = 𝐂𝑒 − 𝐈 is the Green–Lagrange strain tensor. Plastic
deformation for the porous crystalline material is not volume-preserving i.e. 𝑑𝑒𝑡𝐅𝑝 ≠ 1. The plastic velocity gradient tensor in
the intermediate configuration for a porous HCP variant in the parent grain with void volume fraction 𝑓 is given as (Yang and
Ghosh, 2022; Han et al., 2013; Ling et al., 2016):

𝐋𝑝 =
𝑁𝑆𝐹
∑

𝑖
(1 −𝑤𝑖

1𝑓 )
𝑁 𝑖

𝑠𝑙𝑖𝑝
∑

𝛼

𝜕𝑒𝛼∗
𝜕𝜏𝛼∗

𝜕𝜏𝛼∗
𝜕𝐌

(11)

where for each variant, 𝑒𝛼∗ is an effective slip potential function, 𝑤
𝑖
1 is a potential function parameter, and 𝜏𝛼∗ is the effective resolved

hear stress. 𝑁𝑆𝐹 represents the total number of slip families, and 𝑁 𝑖
𝑠𝑙𝑖𝑝 is the number of slip systems in the 𝑖th slip family. For HCP

rystals 𝑁𝑆𝐹 = 5 corresponding to the ⟨𝑎⟩-basal, ⟨𝑎⟩-prismatic, ⟨𝑎⟩-pyramidal, ⟨𝑐 + 𝑎⟩ pyramidal I, and ⟨𝑐 + 𝑎⟩ pyramidal II slip
amilies. The effective slip potential 𝑒∗𝛼 is expressed as:

𝑒∗𝛼 =
𝛾̇𝛼0

𝑚 + 1

(

𝜏𝛼∗
𝑔̄𝛼0

)𝑚+1

(12)

where 𝑔̄𝛼0 is the initial slip-system resistance given in Eq. (17), and 𝛾̇𝛼0 and 𝑚 are the reference slip-rate and rate sensitivity exponent
respectively. The porosity or void volume fraction 𝑓 evolves according to the relation:

̇𝑓 = (1 − 𝑓 )Tr(𝐋𝑝) (13)

where 𝑇 𝑟 corresponds to the trace of a matrix. The effective resolved shear stress on the 𝛼 slip system 𝜏∗𝛼 , is iteratively solved by
satisfying the following equation:

(

𝜏𝛼

𝜏𝛼∗

)2
+𝑤𝛼

3𝑤
𝛼
1𝑓

𝑀2
𝑒𝑞

(𝜏𝛼∗ )2
+ 2𝑓𝑤𝛼

1 cosh

(

𝑤2
𝛼 𝑀

2
𝑚

𝜏𝛼∗

)

− 1 − (𝑤𝛼
1𝑓 )

2 = 0 (14)

where 𝑀𝑚 = − 1
3𝑇 𝑟(𝐌) is the hydrostatic part of the Mandel stress and 𝑀𝑒𝑞 =

√

3
2𝑀𝑖𝑗𝑀𝑖𝑗 represents the equivalent Mandel stress.

The resolved shear stress on the 𝛼 slip plane is expressed as 𝜏𝛼 = 𝐌 ∶ 𝐬𝛼0 where the Schmid tensor is defined as 𝐬
𝛼
0 = 𝐦0 ⊗ 𝐧0 for

a slip normal 𝐧0 and slip direction 𝐦0. The potential function parameters 𝑤𝛼
1 , 𝑤

𝛼
2 , 𝑤

𝛼
4 are given by the set of equations (Yang and

Ghosh, 2022):

𝑤𝛼
1 = 𝑎𝛼1 + 𝑏𝛼1 tanh

(

−𝑑𝛼1

(

𝑓 − 𝑓0
𝑓0

))

𝑤𝛼
2 = 𝑎𝛼2 + 𝑏𝛼2 tanh

(

−𝑑𝛼2

(

𝑓 − 𝑓0
𝑓0

))

𝑤𝛼
4 = 1 + tanh

(

−𝑑𝛼4

(

𝑓 − 𝑓0
𝑓0

))

(15)

Values of the constant coefficients 𝑎𝛼1 , 𝑏
𝛼
1 , 𝑑

𝛼
1 , 𝑎

𝛼
2 , 𝑏

𝛼
2 , 𝑑

𝛼
2 , 𝑑

𝛼
4 , and 𝑤𝛼

3 for different slip systems have been calibrated in Yang and
Ghosh (2022) and are given in Appendix B. The plastic slip rate 𝛾̇𝛼 for a given slip system is given by a power-law form of the flow
rule as:

̇𝛾𝛼 = ̇̃𝛾𝛼
⟨

|

|

𝜏𝛼∗ − 𝜒𝛼
|

|

− 𝜏𝛼𝐺𝑃
𝑔𝛼 + 𝜏𝛼𝐺𝐹

⟩
1
𝑚

sign
(

𝜏𝛼∗ − 𝜒𝛼) (16)

where ⟨⟩ is the Macaulay bracket, ̇̃𝛾𝛼 is the reference slip rate, 𝑚 is the rate-sensitivity exponent, and 𝜒𝛼 is the back-stress on
a particular slip system. The resolved shear stress components 𝜏𝛼𝐺𝑃 and 𝜏𝛼𝐺𝐹 contribute to the parallel and forest geometrically
necessary dislocations (GNDs) respectively. The temperature-dependent slip-system resistance due to statistically stored dislocations
for the 𝛼 slip system is expressed as (Ozturk et al., 2016):

𝑔𝛼(𝜃) = 𝑔̄𝛼0 + 𝑔𝛼𝐻𝑃 − 𝑔̂𝛼
(

1 − exp

(

𝜃 − 𝜃𝛼𝑟𝑒𝑓
𝛼

))

(17)
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where 𝑔̄𝛼0 is the initial slip-system resistance, 𝑔𝛼𝐻𝑃 corresponds to the contribution from grain size effect and 𝑔̂𝛼 is a scaling parameter
for its temperature dependence. The temperature-dependent constants 𝑔̄𝛼0 , 𝑔̂

𝛼 , 𝜃𝛼𝑟𝑒𝑓 and 𝜃̂𝛼 have been calibrated in Ozturk et al. (2016)
nd are given in Appendix B. The size dependent contribution is attributed to the Hall–Petch effect as:

𝑔𝛼𝐻𝑃 = 𝐾
√

𝐷𝛼
(18)

here 𝐾 is the Hall–Petch coefficient, calibrated in Venkataramani et al. (2008) is given in Appendix B. 𝐷𝛼 is the mean free-path
r traversable length of a dislocation in the slip direction 𝑚𝛼

0 across the 𝛼 lath, whose morphology is characterized by Eq. (7) for a
D ellipsoid shown in Fig. 5. The distance traversed by a dislocation in the 𝑚𝛼

0 direction through the center of the ellipsoid is given
y

𝐷𝛼 =
√

[𝐴(𝐞𝐱̄⋅𝑚𝛼
0
)]2 + [𝐵(𝐞𝐲̄⋅𝑚𝛼

0
)]2 + [𝐶(𝐞𝐳̄⋅𝑚𝛼

0
)]2 (19)

he evolution of the hardening rate is given as:

𝑔̇𝛼(𝑡) =
𝑁𝑠𝑙𝑖𝑝
∑

𝛽=1
𝑞𝛼𝛽ℎ𝛽 ||

|

𝛾̇𝛽 ||
|

(20)

here 𝑞𝛼𝛽 represents the latent hardening matrix and the self-hardening contribution ℎ𝛽 is given by Venkatramani et al. (2006):

ℎ𝛽 = ℎ𝛽∗0
|

|

|

|

|

1 −
𝑔𝛽

𝑔𝛽𝑠

|

|

|

|

|

𝑟

sign
(

1 −
𝑔𝛽

𝑔𝛽𝑠

)

, 𝑔𝛽𝑠 = 𝑔𝑠
𝛽
(

𝛾̇𝛽
̇̃𝛾

)𝑛

(21)

Here 𝑛, 𝑟, and 𝑔̃𝛽𝑠 are hardening parameters described in Deka et al. (2006), 𝑔𝛽 is the slip-system saturation deformation resistance
nd ℎ𝛽 is the slip hardening rate, given as:

ℎ𝛽∗0 = ℎ𝛽0𝑤
𝛼
4 (22)

𝛽
0 is the initial slip hardening rate that has calibrated in Yang and Ghosh (2022) and given in Appendix B.
An Armstrong–Frederick type law (Frederick and Armstrong, 2007) is used for back-stress evolution, expressed as:

̇𝜒𝛼 = 𝑐 ̇𝛾𝛼 − 𝑑𝜒𝛼
|

|

̇𝛾𝛼|
|

(23)

here 𝑐 and 𝑑 are parameters calibrated in Ozturk et al. (2016). Hardening is attributed to GNDs for parallel and forest interactions
nd is described by the following equations:

𝜏𝛼𝐺𝑃 = 𝑐𝛼1𝐺
𝛼𝑏𝛼

√

𝜌𝛼𝐺𝑃 + 𝜌𝛼𝐴𝑃 , 𝜏𝛼𝐺𝐹 = 𝑄𝛼

𝑐𝛼2 𝑏
𝛼2

√

𝜌𝛼𝐺𝐹 + 𝜌𝛼𝐴𝐹 (24)

where 𝜌𝛼𝐺𝑃 and 𝜌𝛼𝐺𝐹 respectively represent GND densities parallel and normal to the slip plane 𝛼. They are calculated from the Nye
tensor 𝜦 = ∇ × 𝐅𝑝 as detailed in Ozturk et al. (2016). The coefficients can be found in Appendix B. 𝜌𝛼𝐴𝑃 and 𝜌𝛼𝐴𝐹 terms are GND
augmentation terms described next.

4.1. Augmented GND density accounting for lath boundaries

The calculation of GND density from the Nye tensor 𝜦 = ∇×𝐅𝑝 requires the explicit crystallographic representation of individual
grains and their boundaries in the microstructure. Due to the lack of this explicit 𝛼 lath boundary representation in the equivalent
crystal model, the ∇ × 𝐅𝑝 term due to dislocation pileup is significantly smaller than in models with explicitly represented crystal
boundaries. It is necessary to augment the effective crystal plasticity model, which does not explicitly incorporate 𝛼 lath boundaries
within the parent 𝛽 grains, to compensate for the lower GND densities affecting plastic hardening. The enhancement is taken from
a model in Ashby (1970), where GND densities are approximated for a matrix with plates that are assumed to be impenetrable to
dislocations, separated by a distance 𝐷𝛼 . The augmented GND density is given as:

𝜌𝛼𝐺𝑁𝐷 = 𝑐5
𝛾𝛼

𝑏𝛼𝐷𝛼 (25)

where 𝛾𝛼 represents the cumulative slip on a slip system 𝛼, and 𝑏 represents the length of the Burgers vector. The parallel and forest
augmented GND densities are related to the total augmented GND density by the relations:

𝜌𝛼𝐴𝐹 =
𝑁
∑

𝛽
𝜒𝛼𝛽
𝐴𝐹 |𝜌

𝛽
𝐺𝑁𝐷 sin(𝑛𝛼 , 𝑡𝛽 )| , 𝜌𝛼𝐴𝑃 =

𝑁
∑

𝛽
𝜒𝛼𝛽
𝐴𝑃 |𝜌

𝛽
𝐺𝑁𝐷 cos(𝑛𝛼 , 𝑡𝛽 )| (26)

As discussed in Ozturk et al. (2016), 𝜒𝛼𝛽
𝐴𝐹 represents the interaction matrix between slip systems. For a specified deformation gradient

𝐅 applied to a 𝛽 grain, the above set of equations evolves separately for each of the 12 variants. Since this augmentation is not
dependent on the term ∇ × 𝐅 for the Nye tensor, this approach is not dependent on the mesh resolution.
14
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Fig. 9. (a) A single instantiation of the SEMVE of the parent 𝛽 grains (shown with different colors) containing approximately 85 grains, (b) comparison of
the engineering stress–strain response of 5 SEMVE instantiations, and their mean, with experimental data acquired in Section 2.3, and (c) comparison of the
probability density function of loading direction Cauchy stress for 5 different mesh resolutions. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

4.2. Stresses at a material point

The above equations correspond to the evolution of state variables in a single 𝛼 lath variant, for a given deformation gradient
𝐅. Evaluating the stresses at an element integration point in the FE model requires a volume fraction based weighting over all of
the 12 variants. The Cauchy stress for the 𝑘th variant is given as:

𝝈(𝑘) = 1
det𝐅(𝑘)

𝑒

𝐅(𝑘)
𝑒

−T𝐌(𝑘)𝐅(𝑘)
𝑒
T (27)

he corresponding stress tensor for a material point is expressed as the sum over all the 12 variants as:

𝝈 =
12
∑

𝑘=1
𝑣(𝑘)𝑓 𝝈(𝑘) (28)

he state variables of each variant evolve independently, and are not related to one another. This method is substantially more
fficient than if all of the 𝛼 laths were explicitly represented and simulated.

.3. Calibration of the crystal plasticity model

The crystal plasticity and porosity evolution parameters, given in Tables 5–8, are adopted from prior work in Ozturk et al.
(2016), Yang and Ghosh (2022), Venkataramani et al. (2008). In these papers, the crystal plasticity parameters are calibrated
using experimental results for a wide range of strain-rates and loading conditions. For calibrating additional parameters related
to the additively manufactured Ti-6Al material, the first of the material-load direction sets in Section 2.3, is simulated. For this
process, 5 SEMVEs are generated for the set by following the steps in Section 3 with randomly-generated, different initial conditions.
Voxelized representations of the generated SEMVEs are meshed with 4-noded tetrahedral (TET4) elements, using the meshing
package Simmetrix (Simmetrix Inc., 2015). The resultant microstructures contain approximately 175k elements and an example
nstantiation with mesh is shown in Fig. 9(a). The average volume of the 𝛼 laths in the SEMVE are 96 μm3 for the as-built material
icrostructure, and 468 μm3 for the HIP-treated material microstructure. This corresponds to approximately 168,000 and 35,000
laths for the SEMVEs of the as-built and HIP-treated materials respectively. Displacement boundary conditions are applied on
he model corresponding to a strain rate of 10−3 up to a final engineering strain of 18.5%. Minimum boundary conditions (MBCs),
reventing rigid body motion, are applied on the SEMVE boundary. Given that the size difference between the SEMVE and the
xperimental specimen is not very large (∼10), the MBCs are deemed appropriate as they allow instabilities like necking to occur in
he SEMVE, as seen in the actual specimen. Applying periodic boundary conditions on the SEMVE can over-constrain the deformation
odes and may inhibit these instabilities. The calibration process evaluates parameters to match the experimental stress–strain
esponse as shown in Fig. 9(b). The corresponding optimized parameters are given in Table 3.
For the calibration process, a metric corresponding to the percentage error in the loading direction stress component 𝜎 is
inimized. For two arbitrary stress–strain curves 𝜎𝑎(𝜖) and 𝜎𝑏(𝜖) the metric is given as:

𝛷(𝜎𝑎(𝜖), 𝜎𝑏(𝜖)) =
1 𝜖𝑓𝑖𝑛𝑎𝑙

|𝜎𝑎(𝜖) − 𝜎𝑏(𝜖)|𝑑𝜖 (29)
15

𝑚𝑎𝑥(𝜎𝑎)𝜖𝑓𝑖𝑛𝑎𝑙 ∫0



International Journal of Plasticity 153 (2022) 103254M. Pinz et al.

T

𝜎
s

T

1

d

b
i
l
s
f
a

Table 3
Calibrated additional crystal plasticity model parameters.
Description Symbol Value(s)
Augmented GND Coefficient 𝑐5 3
Initial Basal Slip resistance 𝑔̄𝐵𝑎𝑠𝑎𝑙0 206 (MPa)
Initial Prismatic Slip resistance 𝑔̄𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐0 203 (MPa)
Initial Pyramidal ⟨𝑎⟩ Slip resistance 𝑔̄𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙⟨𝑎⟩0 309 (MPa)
Initial Pyramidal < 𝑎 + 𝑐 > I Slip resistance 𝑔̄𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙<𝑎+𝑐>𝐼0 400 (MPa)
Initial Pyramidal < 𝑎 + 𝑐 > II Slip resistance 𝑔̄𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙<𝑎+𝑐>𝐼𝐼0 400 (MPa)

Fig. 10. Contour plots of (a) equivalent plastic strain, (b) Cauchy stress, and (c) void volume fraction in a SEMVE of the parent 𝛽 grain at 18.5% strain.

he error metric for the experimental and simulation data is measured by 𝛷(𝜎̄𝑒𝑥𝑝(𝜖), 𝜎̄𝑠𝑖𝑚(𝜖)), where 𝜎̄𝑒𝑥𝑝(𝜖) =
1

𝑁𝑒𝑥𝑝

∑𝑁𝑒𝑥𝑝
𝑖=1 𝜎𝑖𝑒𝑥𝑝(𝜖) and

̄𝑠𝑖𝑚(𝜖) =
1

𝑁𝑠𝑖𝑚

∑𝑁𝑠𝑖𝑚
𝑖=1 𝜎𝑖𝑠𝑖𝑚(𝜖) are respectively the mean engineering stress–strain responses for all experiments and simulations in the

et. A value 𝛷(𝜎̄𝑒𝑥𝑝(𝜖), 𝜎̄𝑠𝑖𝑚(𝜖)) = 0.019 corresponds to a ∼ 1.9% difference in the average stress for strains ranging from 0 to 18.5%.
Similar metrics for purely experimental and simulation data correspond to the average level of deviation in the data,

𝛷̄𝑒𝑥𝑝 =
1

𝑁𝑒𝑥𝑝

𝑁𝑒𝑥𝑝
∑

𝑖=1
𝛷(𝜎̄𝑒𝑥𝑝(𝜖), 𝜎𝑒𝑥𝑝(𝜖)𝑖) and 𝛷̄𝑠𝑖𝑚 = 1

𝑁𝑠𝑖𝑚

𝑁𝑒𝑥𝑝
∑

𝑖=1
𝛷(𝜎̄𝑠𝑖𝑚(𝜖), 𝜎𝑠𝑖𝑚(𝜖)𝑖) (30)

he metrics are computed to be 𝛷̄𝑒𝑥𝑝 = 0.0067 and 𝛷̄𝑠𝑖𝑚(𝜖) = 0.0082.
The contour plots of the simulated equivalent plastic strain, Cauchy stress, and porosity in the SEMVE at the final strain of

8.5% strain are depicted in Fig. 10. The equivalent plastic strain contour plot in Fig. 10(a) shows substantial variation, including
plastic localization with the onset of necking. The evolving void volume fraction and the Cauchy stress in Figs. 10(b, c) also show
significant variations. This stochastic material response is attributed to a combination of the spatial variations in 𝛼 lath statistics
and the parent 𝛽 grain morphology.

The porosity evolution is further compared to that for a single uniaxial strain test conducted under similar conditions in Benzing
et al. (2020). The porosity or void volume fraction in this test was observed to have increased by 9%. The corresponding increase
in the simulated void volume fraction 𝑓 across the SEMVE instantiations is 15%, with 𝑓 increasing from 0.11% to 0.127%, which
is deemed to be satisfactory agreement.

A mesh sensitivity study is performed by meshing the vertically oriented microstructure in Fig. 9(a) with 5 different mesh
ensities, with the number of elements ranging from 84 × 103 to 360 × 103. The microstructure is loaded to a maximum of 2.5%
engineering strain. The volume-averaged, loading direction stresses are found to be within 1% of each other for all the 5 meshes.
Furthermore, the probability density functions (PDFs) of the loading direction stresses in the simulated microstructures are compared
in Fig. 9(c). It is seen that the PDFs begin to converge at around 130 k elements. This convergence is further substantiated by the
comparatively low values of the Kolmogorov–Smirnov test statistics (Dodge, 2008) between the distributions. The KS-test statistic
etween 360 k and 130 k elements is determined to be 0.0295. In contrast, the KS-test statistic between 360k and 84k elements
s determined to be 0.0636. This test demonstrating a substantial decrease in error, and a sufficiency of 13 k elements, which is
ower than the average 175 k elements used in the microstructural simulations. The computation time required for each of the mesh
ensitivity test simulations scaled approximately linearly with the number of elements, to around 1.25 CPU-hours per 1000 elements
or 48 Intel Xeon Gold 6248R parallel CPUs. For SEMVE simulations up to 18.5% engineering strain, approximately 6.12 CPU-hours
re required per 1000 elements.
16
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Fig. 11. (a) Mesh of a single instantiation of a SEMVE containing approximately 85 grains, where different colors represent different parent 𝛽 grains. (b) The
engineering stress, engineering strain relationship between the 5 as-built SEMVE instantiations loaded perpendicular to the build direction, and experimentally
collected data. (c) The engineering stress, engineering strain relationship between the 5 HIP treated SEMVE instantiations loaded parallel to the build direction,
and experimentally collected data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
The mean and standard deviation-based metrics, 𝛷̄𝑒𝑥𝑝, 𝛷̂𝑒𝑥𝑝, 𝛷̄𝑠𝑖𝑚, 𝛷̂𝑒𝑥𝑝, and 𝛷(𝜎̄𝑒𝑥𝑝(𝜖), 𝜎̄𝑠𝑖𝑚(𝜖)) are respectively
calculated from experimental, simulation, and experimental-simulation data for the three material-direction sets
in the calibration and validation examples.

Set 1 (C) Set 2 (V) Set 3 (V)

Mean (𝛷̄) SD (𝛷̂) Mean (𝛷̄) SD (𝛷̂) Mean (𝛷̄) SD (𝛷̂)

Experimental data 0.0067 0.0020 0.0128 0.0037 0.0040 0.0027
Simulation data 0.0082 0.0044 0.0106 0.0080 0.0055 0.0044
Experiment-simulation 0.0190 N/A 0.0279 N/A 0.0714 N/A

5. Validation studies for the porous crystal plasticity model of the equivalent crystal

Validation is conducted with the second and third of the material-load direction sets in Section 2.3. As with the calibration, 5
SEMVEs are generated with different initial conditions, and simulated for identical loading conditions. An example model and mesh
for the second set as-built material without heat treatment, loaded perpendicular to the build direction, is shown in Fig. 11(a).
The simulated mechanical responses are compared with those from experiments in Fig. 11(b) with reasonably good agreement.
he third set of HIP-treated material with minimal porosity that is loaded vertically, shares an almost identical parent 𝛽 grain
icrostructure as the first set used in the calibration. Correspondingly, the model uses the same parent 𝛽 grains and their meshes
rom the calibration example. However, the 𝛼 statistics assigned to each 𝛽 grain are significantly different. The mechanical response
f the third material-direction set is shown in Fig. 11(c).
The 𝛷 metric in Eq. (29) is again used to quantify the error in stress–strain responses for the validation examples. The metric for

ll the 3 sets (as-built, as-built perpendicular and HIP-treated) are given in Table 4. For a more complete picture of the variation
f individual instantiations, the standard deviations are also included in the table. The standard deviation of the 𝛷 metric for the
xperimental and simulation data are given as:

𝛷̂𝑒𝑥𝑝 =

√

√

√

√

√

1
𝑁𝑒𝑥𝑝 − 1

𝑁𝑒𝑥𝑝
∑

𝑖=1

(

𝛷̄𝑒𝑥𝑝 −𝛷(𝜎̄𝑒𝑥𝑝(𝜖), 𝜎𝑖𝑒𝑥𝑝(𝜖))
)2

𝛷̂𝑠𝑖𝑚 =

√

√

√

√
1

𝑁𝑠𝑖𝑚 − 1

𝑁𝑠𝑖𝑚
∑

𝑖=1

(

𝛷̄𝑠𝑖𝑚 −𝛷(𝜎̄𝑠𝑖𝑚(𝜖), 𝜎𝑖𝑠𝑖𝑚(𝜖))
)2

The results generally show good agreement between the experiments and simulations for the validation tests. The largest error is
seen for the HIP-treated samples, possibly because of small discrepancies in the Hall–Petch effect coefficient in Eq. (18) accounting
lath size effects, as well as the localized plastic straining with necking in the HIP-treated microstructure as seen in Fig. 12.

. Investigation on microstructural stochasticity

FE simulations are conducted for 5 SEMVE instantiations of each of the three material-direction sets, discussed in Section 2.3.
hese SEMVEs are generated with the statistical distributions of the variant volume fraction, 𝛼 lath size and shape, and 𝛽 grain
ize and shape conforming to the experimental EBSD maps. However, the stochasticity in various microstructural parameters
17
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Fig. 12. Contour plots of (a) equivalent plastic strain, (b) Cauchy stress, and (c) porosity distribution in a SEMVE of the as-built material loaded perpendicular
to the build direction (set 2) at 18.5% strain; Contour plots of (d) equivalent plastic strain, (e) Cauchy stress, and (f) porosity distribution in a SEMVE of the
HIP-treated material loaded parallel to the build direction (set 3) at 18.5% strain.

in the SEMVEs that are not explicitly accounted for, result in significant variability in the simulated deformation-related state
variables. Understanding the drivers of these variations through the effect of microstructural parameters and deformation variables
on the overall material response, can provide useful insights on the deformation behavior of additively manufactured Ti-6Al-4V
microstructures. State variables, viz. the Cauchy stress 𝜎𝑖𝑗 in the loading direction, the equivalent plastic strain 𝜖𝑝, and the local
void volume fraction 𝑓 , are studied in this section.

6.1. Variation attributable to the statistical moments of state variables

For assessing the effect of statistical moments of the state variables, the difference in loading direction engineering stresses at
18.5% engineering strain 𝑖𝛥𝐸𝑆 is plotted as a function of the mean and standard deviation of the stress, plastic strain, and void
volume fraction in Fig. 13. For a given instantiation 𝑖, the difference in stresses is defined as:

𝑖𝛥𝐸𝑆 = 𝜎𝑖 − 𝜎̄, where 𝜎̄ = 1
𝑁𝑠𝑖𝑚

𝑁𝑠𝑖𝑚
∑

𝑖=1
𝜎𝑖 (31)

𝑁𝑠𝑖𝑚 = 5 for these plots. The mean and standard deviation are representative of the statistical moments of distributions of the
state variables. Simple linear regression curves are generated for the data points in each plot and the corresponding coefficient
of determination 𝑅2 values are determined. The 𝑅2 value corresponds to the proportion of the variation in stress difference with
respect to the moments of the state variables. The higher 𝑅2 values in the plots of figures Fig. 13(d, e, f) reveal that the variance
of the distributions is much more predictive of the stress patterns. In addition to 𝑅2, 95% confidence bounds are given for Pearson
correlation coefficients.

6.2. Variation related to 𝛽 microstructure and orientation

The parent 𝛽 microstructures are strongly textured with elongated grains in the build direction. Determining the effect of
18

individual microstructural instantiations is important to understanding the drivers of micromechanical variability and overall
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Fig. 13. The stress difference plotted as a function of the mean and standard deviation respectively of the (a, d) loading direction stress, (b, e) equivalent plastic
train, (c, f) void volume fraction, at 18.5% engineering strain. The figures include 95% confidence intervals for the Pearson correlation coefficients, marked by
B and UB respectively.

aterial properties. Since the vertical As-Built (AB) and HIP-treated (HT) microstructures have the same 𝛽 grain structure and
𝛽 orientations, the effect of the 𝛽 microstructure instantiations can be understood by determining if state variables with the same
microstructure statistics but different 𝛼 lath statistics are correlated. The effect of the 𝛽 microstructure and orientations on the
tress at 18.5% strain is determined by plotting the stress difference 𝑖𝛥𝐸𝑆

𝐻𝑇 vs. 𝑖𝛥𝐸𝑆
𝐴𝐵 from Eq. (31), at 18.5% strain in Fig. 14(a). A

sustained correlation across samples indicates that instantiations of parent 𝛽 grains have a significant effect on microstructural state
variables. Furthermore, the plots of the standard deviation of the loading direction stress and effective plastic strain in Fig. 14(b,
c) show their correlation. As there are little to no correlations between the instantiations, it is likely that instantiations of the 𝛽
microstructure play a very small role in the variation of state variables.

7. Summary and conclusions

Building from a foundation of microstructural characterization, mechanical testing, 3D synthetic microstructures, and statistically
equivalent microstructural volume elements (SEMVEs), and image-based microstructural modeling, this paper develops an effective
crystal plasticity model with porosity evolution for additively manufactured Ti-6Al-4V alloys. The microstructure of these materials
is characterized by a complex Widmanstätten morphology containing 12 𝛼 lath variants. The direct numerical simulation of
microstructures with explicit representation of the 𝛼 lath morphology is computationally prohibitive. To overcome this major
bottleneck, it is necessary to create an effective crystal plasticity framework with a parametric representation of the 𝛼 lath
morphology. This is achieved by identifying the crystallographic relationship of the 𝛼 laths in relation to the parent 𝛽 grains from
which they have nucleated, and developing methods to incorporate a statistical representation of HCP 𝛼 laths in 𝛽 grains. The
constitutive model for 𝛽 grains statistically account for the size, shape, orientation, and crystallography of all 12 𝛼 lath variants. An
important contribution is the integration of porosity evolution with the crystal plasticity model.

Statistical characterization of 𝛼 laths assumes a 3D ellipsoidal representation of the morphology. This process first generates
equivalent 2D ellipses from orthogonal EBSD scans of the material microstructure Subsequently, the most probable 3D ellipsoids
are obtained through the use of stereological concepts that equate the 2D intersection of ellipsoids with 2D EBSD-based maps.
Statistical functions that characterize the distribution of observed 3D ellipsoids, and allow for their efficient and accurate statistical
sampling are constructed thereafter. Subsequently, a prior 𝛽 reconstruction algorithm is executed, allowing for the identification
of the crystallographic orientation of the parent 𝛽 grains. The morphology of the 𝛽 grains are characterized, and used to
generate statistically equivalent instantiations of the 𝛽 grain microstructure using the DREAM.3D code. For each 𝛽 microstructure,
the distributions characterizing the 𝛼 lath morphology are sampled. The combined statistics establish a statistically equivalent
representative volume element or SEMVE that incorporates the physically relevant portions of the 𝛼 laths in an explicit voxelized
19

description of the much larger 𝛽 microstructure.
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Fig. 14. (a) Plot of the difference in mean stress for the as-built (AB) microstructure loaded parallel to the build direction and the HIP-treated (HT) microstructure;
lot of the standard deviation of: (b) the Cauchy stress distribution for the (AB) and (HT) microstructures, (c) the equivalent plastic strain distribution for the
AB) and (HT) microstructures.

The calibration and validation of the effective crystal plasticity model incorporate results from three different sets of material-
oading tests, viz. (i) as-built material loaded in the build direction, (ii) as-built case loaded perpendicular to the build direction,
nd (iii) a HIP-treated case loaded in the build direction. Set (i) is used for calibration, while the other two are used in validation.
he validation tests demonstrate reasonably good accuracy of the model for tests corresponding to sets (ii) and (iii). The lower yield
tress predicted for the HIP-treated materials due to the larger 𝛼 laths is in good agreement with experimental observations. An
insightful result of the model-based simulations infers that the standard deviation of the state variables are more predictive of the
overall response than the mean.

The material model developed in this study, when integrated with process models, is expected to provide insights on optimizing
the performance and qualification of additive manufacturing processes. By linking this approach with models that can accurately
predict 𝛼 lath morphology, 𝛽 grain structure, and initial porosity from material processing conditions, superior material response
predictions can be obtained.
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Appendix A. Pseudo code for determining 𝜷 parent grain from 𝜶 laths

Require: a set A of all segmented 𝛼𝑖 grains with unassigned parent 𝛽 grain, and orientation 𝜷𝑖
equire: a set B of all segmented 𝛼𝑖 grains that contain an assigned 𝜷𝑖 orientation
while A is not empty do
for Select the next alpha grain (𝛼𝑖) in A do
Initialize a set of 𝛼 laths potentially sharing the same 𝛽 grain 𝐶 = ∅
for all neighbors j do
compute 𝛥𝐪̄𝑖𝑗𝑘∗
if 𝑚𝑖𝑛

𝑙
(|𝛥(𝐪̄𝐵𝑂𝑅

𝑙 , 𝛥𝐪̄𝑖𝑗𝑘∗ )|) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then
Add neighbor j to set C
compute trial beta orientations 𝛽𝑚=𝑗,𝑙 = 𝐪̄𝐷−1𝑆𝛼

𝑙 𝐪̄
𝑗

end if
end for
if There are more than 3 unique variants in set C then
Calculate the parent 𝛽 orientation: 𝜷𝑖 = 𝑚𝑖𝑛

𝜷𝑖

∑𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
𝑚=1 (𝜷𝑖 − 𝛽𝑚𝑙 )2 ∗ 𝐼𝑚𝑙 𝑆.𝑇 . 𝐼𝑚𝑙 ∈ Z[0, 1] ,

∑6
𝑙=1 𝐼𝑚𝑙 = 1 ∀ 𝑚

add 𝜷𝑖 to set B, to define the 𝛽 orientation of 𝛼𝑖
remove 𝛼𝑖 from set A
for j in set C do
Set 𝜷𝑖 = 𝜷𝑗
Add 𝜷𝑗 to set B
remove 𝛼𝑗 from set A

end for
else
for j neighbors C do
if j already belongs to a 𝛽 grain: 𝛽𝑗 ∈ 𝐵 then
add 𝛼𝑖 to the same 𝛽 grain as its neighbor 𝑗
set 𝜷𝑖 = 𝜷𝑗
Add 𝜷𝑖 to set B
remove 𝛼𝑖 from A

end if
end for

end if
end for

end while

Appendix B. Calibrated crystal plasticity parameters

Table 5
Porosity evolution parameters calibrated in Yang and Ghosh (2022). Here (T) and (C) refer to tension and
compression.
Slip family Equation a b d

T C T C

Basal

𝑤1 0.58 0.397 −0.114 78.703 38.985
𝑤2 2.558 0.964 −0.781 105.892 60.664
𝑤3 8.391
𝑤4 6.821 25.356

Prismatic
⟨𝑎⟩ Pyramidal

𝑤1 1.191 0.135 0.188 270253 53.251
𝑤2 1.079 0.363 0.228 −0.404 0.744
𝑤3 0.005
𝑤4 −0.158 4.785

I+II
⟨𝑐 + 𝑎⟩ Pyramidal

𝑤1 1.187 0.599 0.188 0.335 1.604
𝑤2 2.479 0.013 0.154 28.641 12.312
𝑤3 6.189
𝑤4 2.370 1.743

Table 6
Slip system dependent parameters.
Parameter Basal Prismatic ⟨𝑎⟩ Pyramidal I+II ⟨𝑐 + 𝑎⟩ Pyramidal

𝜃𝑟𝑒𝑓 300 ◦K 300 ◦K 300 ◦K 300 ◦K
𝜃̂𝑟𝑒𝑓 400 ◦K 200 ◦K 200 ◦K 160 ◦K
𝑔̂ 176.58 MPa 132.43 MPa 132.43 MPa 353 MPa
ℎ0 150 MPa 150 MPa 150 MPa 150 MPa
𝑔 470 MPa 570 MPa 570 MPa 1550 MPa
𝑐1 0.08 0.062 0.07 0.05
𝑐2 1 1 1 1

The interaction matrices between slip systems are given by the following parameters: 𝑞𝛼𝛽 = 1, 𝜒𝛼𝛽
𝐴𝐹 = 1, and 𝜒𝛼𝛽

𝐴𝑃 = 1 for all slip
system pairs.
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Table 7
Components of the anisotropic elasticity
tensor C, expressed in Voigt notation,
calibrated in Deka et al. (2006), with all
other components being 0.
C11 ,C22 170.0 GPa
C33 204 GPa
C12 98 GPa
C23 ,C13 86 GPa
C44 36 GPa
C55 ,C66 51 GPa

Table 8
Additional material constants.
Parameter Value

K .162 MPa
m0.5

G 48 GPa
Q 2.5−19 J
c 500 MPa
d 100

Appendix C. Quaternion notation

Relevant definitions are given below.

• ∙ Quaternion 𝐪̄ contains a scalar component 𝑞0 and a vector component 𝐪.
• ∙ Superscripts are used to define which grain or lath the quaternion represents.
• ∙ 𝛥 ̄𝐪𝑎𝑏 denotes the misorientation between two quaternions 𝐪𝑎 and 𝐪𝑏.
• ∙ 𝐪̄𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝 denotes the as measured orientation.
• ∙ 𝐪̄ = 𝐪̄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 [𝑆𝐻𝐶𝑃

𝑘 ] represents quaternions without the ‘‘measured’’ subscript, which denotes the quaternion after transfor-
mation to the fundamental zone.

• ∙ Subscript k refers to a quaternion after the 𝑘th symmetry operator has been applied to it.
• ∙ Asterisk 𝑘∗ denotes a particular symmetry operator that satisfies or minimizes some operation, such as a transformation to
the fundamental zone.
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