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Abstract

Remote sensing observations from satellites and global biogeochemical models have com-
bined to revolutionize the study of ocean biogeochemical cycling, but comparing the two data
streams to each other and across time remains challenging due to the strong spatial-temporal
structuring of the ocean. Here, we show that the Wasserstein distance provides a powerful metric
for harnessing these structured datasets for better marine ecosystem and climate predictions.
Wasserstein distance complements commonly used point-wise difference methods such as the
root mean squared error, by quantifying differences in terms of spatial displacement in addition
to magnitude. As a test case we consider Chlorophyll (a key indicator of phytoplankton biomass)
in the North-East Pacific Ocean, obtained from model simulations, in situ measurements, and
satellite observations. We focus on two main applications: 1) Comparing model predictions
with satellite observations, and 2) temporal evolution of Chlorophyll both seasonally and over
longer time frames. Wasserstein distance successfully isolates temporal and depth variability
and quantifies shifts in biogeochemical province boundaries. It also exposes relevant temporal
trends in satellite Chlorophyll consistent with climate change predictions. Our study shows that
optimal transport vectors underlying Wasserstein distance provide a novel visualization tool for
testing models and better understanding temporal dynamics in the ocean.

Subjects: Climatology, Oceanography
Keywords: Wasserstein distance, Earth mover’s distance, Data-model comparison, Optimal

Transport, Chlorophyll, Remote Sensing

1. Introduction

Understanding the differences between large spatiotemporal datasets is a common task in oceanog-
raphy. Whether quantifying the agreement between the output of an ocean simulation model
Dutkiewicz et al. [2015], Forget et al. [2015a] and in situ measurement Moore et al. [2009], Jackson
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et al. [2017] or monitoring the changes in the ocean across time Dutkiewicz et al. [2019], one needs a
meaningful notion of “distance” between scalar fields defined across the ocean. We focus on the case
in which the scalar field of interest represents the density or concentration of a quantity over space.
It is most common to compare images or data distributions using a “pixel-by-pixel” or pointwise
difference Seegers et al. [2018], Forget et al. [2015a], Forget and Ponte [2015], Forget et al. [2015b];
popular examples of such distances include root-mean-squared error (RMSE) and mean absolute
error. However, although easy to compute, pixel-wise comparisons may not fully account for the
spatiotemporal nature of ocean data, which can exhibit complicated patterns composed of both
global and local underlying trends linked to shifting and evolving water mass bodies.

These issues are well known and have led to the development of various normalized differences or
“cost functions” which differentially weight differences arising from deviations in quantity, location
or from unresolved scales (e.g. Forget and Wunsch [2007], Forget et al. [2015a], Forget and Ponte
[2015]). Focusing on the probability distribution over predefined regions (e.g., marine provinces, or
water masses) is one way to account for spatial errors. This method has been used to examine, for
example: the volumetric census of water masses Forget [2010], Speer and Forget [2013]; relationships
between primary production and export Cael et al. [2018]; and the effects of mesoscale eddies
Ashkezari et al. [2016]. Power-spectra further provide a useful basis for comparison as a function
of space and/or time scale (e.g. Forget and Ponte [2015], McCaffrey et al. [2015]). Despite these
advances there remains a need for metrics which take into account pattern differences in a clear and
interpretable way. This is especially true when evaluating the skill (or error) of ocean biogeochemical
model simulations compared to other data sources such as satellite-derived measurements. Indeed,
a recent summary paper ioc [2020] reports the need for a better measure of ocean Chlorophyll
difference that goes beyond pixel-wise differences. The reasons are many. Computer simulations
may not be finely resolved enough to capture meso-scale Chlorophyll patterns (e.g. eddies) in time
and space. However, such features will be captured in situ and using satellites. Further, small spatial
mismatches can result in large pixel-wise differences – see Section 5.3.2 of ioc [2020] – which penalize
models that are mechanistically correct for stochastic fluctuations. What we need is a metric which
is easy to interpret, like RMSE, but for pattern differences.

In this paper, we explore the use of the Wasserstein distance Villani [2021], which sometimes
goes by the name earth mover’s distance Rubner et al. [2000]. As that name suggests, Wasserstein
distance measures the total amount of ”dirt”-moving that would be required to transform one mound
of dirt (representing a probability distribution) to make it equivalent to another mound (a second
probability distribution). The probability distributions in our context are normalized versions of
the scalar fields. Unlike pixel-by-pixel distances, the Wasserstein distance incorporates the spatial
structure of discrepancies, making it particularly well-suited for the comparison of ocean datasets.
Wasserstein distance has been used in several other areas of geosciences. To list a few, it has
been used to analyze particle distributions in the ocean Nooteboom et al. [2020], for measuring
error in temperature, precipitation, and sea ice projections Vissio et al. [2020], for ocean data
assimilation Tamang et al. [2020], Le et al. [2021], for analyzing sea height imagesPapadakis [2015],
for ocean Synthetic Aperture Radar (SAR) segmentation Colin et al. [2021], and for studying sea
ice imagery Parno et al. [2019]. However, ioc [2020] makes clear that Wasserstein distance has
not been thoroughly applied to the fundamental problem of model-to-data comparison and model-
skill evaluation particularly in the context of ocean biogeochemical models and the representation
of marine ecosystem structure and function. The goal of this paper is to carefully highlight the
usefulness of Wasserstein distance in this context, as well as to show its usefulness in exploring
time series of satellite maps. We focus on high-coverage Chlorophyll observations in the North
Pacific Subtropical Gyre Jackson et al. [2017], and demonstrate how discrepancies between model
predictions and observed Chlorophyll can be interpreted in terms of a transport field that when
integrated over space yields a measure of distance in spatial units. We do this for the comparison
of surface maps (see Section 3(a)) and of depth profiles (see Section 3(b)), which reveals long-term
temporal trend and seasonality of satellite and model Chlorophyll maps in Section 3(a)(ii).
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Figure 1: The left-most panel A shows a map of the study regions that are used for data analysis
in this paper (solid lines for Section 3(a)(i), dotted lines for 3(a)(ii), and dashed lines for Sec-
tion 3(a)(iii)); the star marker denotes the location of station ALOHA near Hawaii from which we
obtain depth profiles of Chlorophyll to analyze in Section 3(b). In panel B, the first two figures show
a toy example of two Chlorophyll maps both formed using simulated climatology data in January
(from the ocean coupled physical-biogeochemical-optical model Dutkiewicz et al. [2015], Forget et al.
[2015a]). One map was formed by adding an artificial patch of Chlorophyll to a longitude of –150.
The other map was formed by shifting this patch to the east by up to 40 degrees longitude (while also
rotating it). The right-most graph shows two different distance measures—root-mean-squared error
(RMSE) and Wasserstein distance—between the two plots, while varying the amount of longitude
shift of the patch. RSME plateaus after a shift of 20 degrees, while the Wasserstein distance is
proportional to the amount of shift.

To convey the intuitive appeal of the Wasserstein distance over pixel-wise distance measures,
consider the toy example in Figure 1, in which we imagine two surface maps that are identical
except for the location of an artificially inserted patch of Chlorophyll south of the Equator. Physical
processes like, for example, Rossby waves can generate such propagating patches. The right panel
shows how RMSE and Wasserstein distance quantify the difference between the two surface maps as
spatial shift of the patch increases. RMSE quickly saturates: once the two patches have no spatial
overlap, there is no further change in the RMSE metric. By contrast, the Wasserstein distance
increases in an approximately linear fashion. Indeed, the Wasserstein distance has units of distance
and is directly related to the distance that the patch has moved.

In addition to its merit as a scalar distance, the Wasserstein distance also enables the visualization
of the transport that would most efficiently (from the perspective of a person moving the dirt)
transform the first ocean map into the second. For example, the rightmost panel of Figure 2A shows
the optimal transport pattern between the two maps on the left (see Section 3(a)(i)). These optimal
transport patterns are not to be interpreted as “physical” transport of the underlying quantity. Still,
these optimal transport patterns are useful for understanding how the data differ. In this work, we
consider two primary types of comparison: (1) comparing two different data sources measuring the
same signal on a spatiotemporal region or gridpoints; and (2) comparing the same data source at
different times. In both cases, visualizing the optimal transport can provide a scenario to elucidate
the nature of the difference. This can be particularly useful when spatiotemporal differences are
related to shifts in patterns that may not be well captured by pixel-wise comparisons.

With this paper, we aim to highlight the usefulness of studying ocean data using Wasserstein
distance, which we show is particularly well-suited for evaluation of ocean biogeochemical models,
among many other applications. We compare satellite Chlorophyll observations from the Eastern
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North Pacific Ocean and depth profiles from the North Pacific Subtropical Gyre (NPSG) with their
counterparts from a biogeochemical model coupled to a state estimate of the ocean currents, tem-
perature, and salinity Forget et al. [2015a]. We show that the Wasserstein distance for Chlorophyll
between model and satellite data is large compared to the Wasserstein distance over the seasonal
cycle from satellite data or the model. We further show how Wasserstein distance can be used to
track changes in the transitional boundaries between marine provinces over time Follett et al. [2021].
When reduced to this “feature comparison” we find that the model and satellite observations are
in relatively close agreement. Furthermore, applying a similar analysis to the Chlorophyll depth
profiles at Station ALOHA Karl and Lukas [1996], Karl and Church [2014], discrepancy between
model outputs and in situ data is framed in terms of Chlorophyll shifts along the depth dimen-
sion. Our numerical experiments allowed us to investigate whether the Wasserstein distance can
effectively capture deviations in the “Deep Chlorophyll Maximum” between two Chlorophyll depth
profiles Venrick et al. [1973], Cullen [1982], Huisman et al. [2006]. These results provide a path and
justification for using Wasserstein distance to analyze deviations in terms of pattern displacements,
and provide complementary information on magnitude differences.

2. Material and Methods

(a) Wasserstein Distance

Consider two discrete probability distributions P = (Pi)
m
i=1, Q = (Qj)

n
j=1, such that Pi ≥ 0 for all

i, Qj ≥ 0 for all j, and
∑

i Pi =
∑

j Qj = 1. In our context, i = 1, . . . ,m indexes a spatial partition
of the region of ocean being studied into m cells (and likewise for j = 1, . . . , n) and Pi gives the
proportion of the Chlorophyll (or any other positive quantity the scalar field is representing) in the
region that is in cell i. In the special case that i and j index the same set of cells (such as m = n
pixels), one can define pixel-wise distances such as the root-mean-squared error, RMSE(P,Q) =(
1
n

∑
i(Pi −Qi)

2
)1/2

. If P and Q do not exist on the same coordinates, they need to be reconciled
(processed) to exist on the exact same cells in order to calculate RMSE. This requirement is not
shared by Wasserstein distance, which we describe next.

Wasserstein distance, which is also sometimes called earth mover’s distance Rubner et al. [2000],
as discussed in the introduction can be thought of as the total amount of “dirt”-moving required to
transform a mound shaped like P to a mound shaped like Q when one performs optimal transport
Monge [1781], Kantorovitch [1958], Villani [2021], i.e. when one does this earth moving in the most
efficient fashion possible. More precisely, the optimal transport between P and Q can be expressed
as solving the following linear program:

f̂ = argmin
f

m∑
i=1

n∑
j=1

fi,jd
2
i,j , subject to

⎧⎪⎨
⎪⎩

∀i, j : fi,j ≥ 0

∀i : ∑j fi,j = Pi

∀j : ∑i fi,j = Qj ,

(1)

where di,j is the base distance between cell i in P and cell j in Q. The optimization variable fi,j
describes the amount of probability mass being transported from i to j. The constraints encode
that no mass is created or destroyed and that the net effect of the transport is to take P to Q. The
objective function is a weighted sum of squared distances (the square used in this paper makes this
the ”2-Wasserstein” distance), where the weights are given by the amount of probability mass being

transported across all pairs of cells, i and j. The optimum f̂ is the optimal transport between P
and Q, and the Wasserstein distance is defined to be the square root of the optimal value of this

optimization problem: W2(P,Q) =
(∑m

i=1

∑n
j=1 f̂i,jd

2
i,j

)1/2

.

Throughout, we use the transport R package Schuhmacher et al. [2020], which implements the
algorithm in Bonneel et al. [2011] in which each discrete probability distribution first undergoes a
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multiscale transformation and is decomposed into a weighted sum of Gaussian bases; then the optimal
transport problem is solved using a network simplex algorithm. This has O(nm) computational
complexity. Solving the optimal transport problem with a full dense di,j (base distance matrix as in
equation (1)) is prohibitively slow at moderate problem sizes like n = m = 10, 000. One interesting
and straightforward future improvement is to reduce the number of transports needed by setting
di,j = ∞ if |i − j| > c for some threshold c. Generally, there is a large literature on algorithms
to calculate optimal transport, of which we cite only a recent few. Among popular cutting-edge
algorithms are fast approximations in the Fourier space Auricchio et al. [2020] and in the wavelet
space Shirdhonkar and Jacobs [2008]. Also popular is entropic regularization Cuturi [2013], which
is known as Sinkhorn distance. The most analogous pre-existing application of Wasserstein distance
is to digital image data, and has gained popularity in recent years in the neural network literature
Rubner et al. [2000].

A distinctive feature of ocean applications (as opposed to, for example, digital image applica-
tions), is that the base distance di,j cannot be taken to be Euclidean distance, especially when the
coordinates of the cells i and j are far apart. Instead, we take the base distance to be the great
circle distance between the (longitude, latitude) coordinates, which we compute using the geodist
package in R Padgham and Sumner [2021]. Our work also offers fully reproducible code, via an
R package named omd (https://github.com/sangwon-hyun/omd), which could be used for other
ocean studies.

(b) Multidimensional Scaling

In our analysis, multidimensional scaling plots will be used to help us interpret distance matrices,
often highlighting seasonality and other relationships across time. Using Wasserstein distance as
described in Section 2(a), we can take a collection of maps and form a distance matrix D ∈ R

N×N ,
where Dab is the Wasserstein distance between normalized Chlorophyll maps a and b. To help
interpret the resulting distance matrix, we visualize the maps’ relationship to each other using
classical multidimensional scaling (classical MDS) Borg and Groenen [2005], Gower [1966]. This
popular data analysis technique seeks a configuration of points in the two-dimensional plane whose
Euclidean distances are close to those in an inputted distance matrix. That is, after computing the
Wasserstein distance between all pairs of N maps, the goal is to find a low-dimensional embedding,
z1, · · · , zN ∈ R

2, for which ‖za − zb‖2 ≈ Dab for all maps 1 ≤ a < b ≤ N . An approximate
closed-form solution can be calculated using an eigen-decomposition of the doubly centered matrix
of squared distances. The details are provided in Supplement Section 1.1.

(c) Data

The analysis is based on monthly Chlorophyll data from three different data sources: derived from
ocean-color remote sensing observations, the output from a global biogeochemical circulation model,
and integrated in situ observations. We use a subdomain of the model and remote sensing datasets fo-
cused on a latitude-longitude rectangle in the Pacific Ocean directly above—and including—Hawaii.
The region is centered around about 20 degrees latitude and −155 degrees longitude and captures
interesting geographic variability in the ocean. To the south of this region is the North Pacific Sub-
tropical Gyre (low latitude, dominated by warm, more saline water) and to the north is the Subpolar
Gyre (high latitude, low-temperature, low-salinity, nutrient-rich water). The region between these
two gyres is the North-Pacific Transition Zone (NPTZ) with a strong gradient in Chlorophyll, as
can be seen in the remote sensing observations and in the model output (Figure 2A, left panels).
We also focus on data directly from a fixed location near the south of this region, Station ALOHA
(22.75 degrees latitude and −158 degrees longitude) HOT [2021]. Throughout, we exclude Chloro-
phyll data near the coastline where both satellite measurements and numerical models have known
irregularities. Each dataset is described in some detail next.

5



(i) CBIOMES-global Model Output

Model data is based on output from a coupled physical-biogeochemical-optical model, modified
for the Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems
(CBIOMES) project. The CBIOMES-global model simulates the period from 1992-2011 Forget
[2018].

The model’s physical component is derived from the Estimating the Circulation and Climate of
the Ocean project (ECCO), version 4 (ECCOv4) Forget et al. [2015a,b], Forget and Ponte [2015].
ECCOv4 uses a “least-squares with Lagrangian multipliers” method to get internal model param-
eters, initial, and boundary conditions that minimize the discrepancy between global observational
data streams of satellite and in situ data. The end product is a global three-dimensional configura-
tion state estimate, at a horizontal resolution of 1 degree and with depth ranging from 10 m at the
surface to 500 m at depth (see Forget et al. [2015a] for details).

The biogeochemical/ecosystem component is from the MIT Darwin Project and follows that of
Dutkiewicz et al. [2021]. The model data we use in this paper is the aggregated Chlorophyll-a across
all phytoplankton groups simulated from this ecosystem model, made into monthly averages. The
amount of Chlorophyll in each of the 35 phytoplankton types varies based on light, nutrients and
temperature Geider et al. [1998]. The 35 phytoplankton types are from from several biogeochem-
ical functional groups such as pico-phytoplankton, silicifying Diatoms, calcifying coccolithophores,
mixotrophs that photosynthesize and graze, and nitrogen fixing diazotrophs, with sizes that span
from 0.6 to 228 μm equivalent spherical diameter (ESD). The model incorporates various interac-
tions with chemical factors (e.g. carbon, phosphorus, nitrogen, silica, iron, oxygen) and with other
species (e.g. grazing by zooplankton). See Dutkiewicz et al. [2021] for full details. Hereon, we will
simply refer to this data as model data.

(ii) Remote Sensing Data

Remote sensing (or satellite-derived) data is based on version 3.0 of the European Space Agency
Ocean Colour Climate Change Initiative (OC-CCI) Mélin et al. [2017], Sathyendranath et al. [2019,
2020], a blended Level 4 Chlorophyll product with a spatial resolution of 4 km. The OC–CCI
V5.0 combines data from five independent ocean-colour sensors to produce merged, climate-quality
observations of Chlorophyll concentration. The sensors include the Sea-viewing Wide-Field-of-
view Sensor (SeaWiFS), the Aqua MOderate-resolution Imaging Spectroradiometer (MODIS-Aqua),
the MEdium spectralResolution Imaging Spectrometer (MERIS), the Suomo-NPP Visible Infrared-
Imaging Radiometer Suite (NPP-VIIRS), and the Sentinel 3A Ocean and Land Colour Instrument
(OLCI). These data sources are algorithmically merged and processed (see more details of this pro-
cessing in Jackson et al. [2017], Sathyendranath et al. [2019]), then downscaled to the same spatial
grid as model data at the monthly time resolution.

(iii) In-Situ Data from Station ALOHA

We additionally consider shipboard measured Chlorophyll-a from Station ALOHA (22◦45’N, 158◦00’W).
The dataset (obtained from the Simons Collaborative Marine Atlas Project (CMAP), originally
sourced from https://hahana.soest.hawaii.edu/hot/dataaccess.html) contains concentrations
of Chlorophyll collected using a CTD fluorescence sensor. There are 28, 583 observations measured
between 1988-10-3 to 2016-11-27, in the depth range between 0 and 200 meters. This data was
downloaded directly from Hyun et al. [2019], an R package for accessing the CMAP database.

In Section 3(b), we compare depth profiles (measurements over depth) of in situ data and model
data using Wasserstein distance. In situ data is sampled irregularly in time, while Darwin data is
complete in space and time. In order to compile the two datasets at matching locations in space
and time, we colocalize the model data, by taking averages of the Chlorophyll measurements in a
certain space-time vicinity (±2 days and ±5 meters) of each time point of the in situ data. Panel B
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of Figure 6 shows the Chlorophyll data from the two sources. Each depth profile is normalized by
dividing by the total so that the sum is 1 prior to calculating Wasserstein distance, as done for the
maps.

3. Results

(a) Geographical and Temporal Analysis of Chlorophyll Data

In this section, we show several different data applications of Wasserstein distance to the ocean
setting, each highlighting a different aspect of ocean data comparisons. First, in Section 3(a)(i) we
consider the climatological seasonal changes in Chlorophyll patterns in both satellite and model, and
we also perform direct model-satellite comparisons. Here, ”climatological” refers to being based on
the twelve average monthly Chlorophyll levels (averaging from 1998 to 2006). Next, in Section (ii)
we consider the full time series of monthly averages from 1998 to 2006 and focus on using Wasserstein
distance to explore change in Chlorophyll patterns over that time period. Finally, in Section (iii) we
use a smaller longitude-latitude rectangle in the North Pacific Transition Zone, and base comparisons
on estimated boundaries between regions instead of on the original Chlorophyll concentrations.

(i) Climatology Chlorophyll Data

Our first comparison is between the two climatology data sources—remote sensing and model data.
The third panel in Figure 2A shows the pixel-wise difference, and portrays both large positive
deviations in the northern region and smaller ones in a wider region near the equator. The rightmost
panel shows an example of the optimal transport pattern from comparing climatology remote sensing
data and model data in April. Optimal transport is visualized as blue transparent arrows, and those
corresponding to the top 10% are highlighted in bold red. Both plots indicate that the model and
remote sensing data differ the most in the northern region, while optimal transport additionally
shows a southbound shift in patterns across the whole domain.

Next, we form a 24-by-24 distance matrix D = (Da,b)a,b, shown in Panel B of Figure 2, from
the

(
24
2

)
unique pairwise Wasserstein distances between Chlorophyll maps a and b (ranging over all

12 months and both data sources). This shows interesting seasonal changes in Chlorophyll patterns
within each of the data sources. For instance, the Wasserstein distances in a given row (or column)
in the top left panel (model) or bottom right panel (satellite) form a unimodal curve when plotted as
a 1-dimensional time series. Also, the Wasserstein distances between monthly remote sensing data
in the top-left quadrant have much larger values than the Wasserstein distances between monthly
model data in the bottom-right quadrant, meaning that patterns of Chlorophyll shift geographically
more in the Darwin model compared to the remote sensing data. The twelve Wasserstein distances
between the two sources in each calendar month are shown in the diagonal values of the upper-
right and lower-left quadrants and have large values compared to (i) the distances between any two
months and (ii) the distances between adjacent months in either data source.

We further summarize the distance matrix D with a classical MDS plot (Panel C of Figure 2),
projecting the 24 Chlorophyll maps onto a 2-dimensional plot. This MDS plot again shows that
model data has higher variability than the remote sensing data. It also shows a clear separation
between the two data sources. The line connecting the data sources shows a closed loop within
each source, which shows seasonality according to time of year. A careful look reveals that the
seasonality pattern is different for the two data sources—the distance between the three months
(August through October) and (December through January) is smaller in model data than in the
remote sensing data.
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Figure 2: Geographical analysis of Chlorophyll data. Panel A shows a comparison of April’s
climatology Chlorophyll maps from two data sources (two left maps) using optimal transport. The
first two maps are measurements on a two-dimensional grid in which each grid cell measurement
can be thought of as a pixel intensity in a digital image. The values have been normalized to sum
to 1 in each map. The third map in Panel A shows the pixel-wise difference (which is the basis
for root-mean-squared error—RMSE) of the two left maps. The rightmost map shows the estimated
optimal transports (which is the basis for Wasserstein distance), with transparent blue arrows and
opaque red lines showing the bottom 90% and top 10% of all the masses, respectively. This mass
transfer plot shows that the major shift of Chlorophyll probability mass from the concentrated upper
left corner is dispersed in a south- and east-bound direction with a particular trend. Panel B shows
a summary of all pairwise Wasserstein distances from the 24 maps—twelve months of climatology
Chlorophyll maps, from the two data sources (model and remote sensing), as a 24 × 24 distance
matrix. Panel C shows a classical multidimensional scaling (MDS) performed on this data. Three
notable observations can be made: (1) model data is more variable than remote sensing data, (2)
there is a clear separation between model and remote sensing data, and (3) the connecting dashed line
between adjacent months in each data source shows an annual seasonality. This is further explored
in 3 and Figures S4 and by analyzing data from each year.

(ii) Interannual Variability and Long-term Trends

We expand the analysis by using time-resolved data based on monthly averages of model and remote
sensing data in all months available from 1998 to 2006. An MDS analysis leads to similar conclusions
as those from the climatology data (see Supplemental Section 1.2 for a detailed analysis). Next,
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Figure 3 plots the Wasserstein distance between pairs of maps from within a single source (model
or remote sensing) as a function of the number of months they are apart. The blue line shows a
regression mean that explicitly models annual seasonality, and the red line is the linear trend without
the seasonality. The regression model predicts

√
Dab between year-month a and b, using two types

of predictors: (i) the number of months apart |ym(a) − ym(b)| that includes year information and
the (ii) number of calendar months apart if one ignores the years, i.e. |m(a) − m(b)| ∈ {0, . . . , 6}.
The predictor in (ii) is an explicit accounting for differences in the time of year. In particular, the
fitted model for

√
Dab shown by the blue line is given by

β̂0 + β̂1 · |ym(a)− ym(b)|+
6∑

k=0

β̂2,k1(|m(a)−m(b)| = k), (2)

where
∑6

k=0 β̂2,k = 0. The red line is simply the first two terms of the above expression. The
undulating blue line indicates the larger seasonal variability in Chlorophyll patterns in the model
relative to remote sensing data noted in Section 3(a)(i). The slope of the red line, β̂1, is positive for
remote sensing and 8.5 times that of the model data. Indeed, the upward trend of the red line for
the remote sensing data is visibly much more apparent than that for the model data. This suggests
that the Chlorophyll maps in the remote sensing data are getting increasingly more different from
each other (i.e. there is a trend in the Chlorophyll patterns) in a way that is not reflected in the
model. This is further supported by Figure S5 that shows a sustained trend in the remote sensing
data over a longer time period (1996-2020), as well as by the MDS plots in Figure S6. Using RMSE
instead of Wasserstein distance in Figure S7, the increasing trend is weaker but still present, and
about 2 times larger in remote sensing data than in model data.

Lastly, Figure 4 highlights a stark contrast between Wasserstein distance and RMSE. The lines
plotted in Panel A show the distance from model data in January 1998 to all other months of model
data in our date range, measured in two ways (Wasserstein distance and RMSE). Both have regular
seasonality, but the Wasserstein distance curve peaks in the summer (around August) of each year,
while the RMSE curve peaks in the early Spring (around April). We focus on three months—shown
as January 1998 (I), April 2002 (II), and August 2002 (III) in Panel A—and note that the domain
of calculations have been extended further northward as compared with Figure 2.

In Panel B comparing (I) and (II), we see that the RMSE is relatively high due to a few large
mismatches in the coastal region, while the Wasserstein distance in this comparison is relatively
small because only local shifts exist in the North. On the other hand, Panel C comparing (I) and
(II) shows that Wasserstein distance is appropriately large; the rightmost figure shows how optimal
transport captures many global south-bound shifts in probability mass to the equatorial region.
Pixel-wise difference (third figure from the left) fails to capture this visibly large pattern difference,
and RMSE is measured to be smaller than from the comparison in Panel B. This demonstrates how
Wasserstein distance can be an improvement over RMSE in quantifying such differences between
maps.

(iii) Comparing Ocean Provinces

Sometimes, rather than comparing the scalar fields directly, we may be more interested in comparing
a scientifically relevant derived feature of the fields. For example, one may algorithmically segment
the ocean into cohesive regions—”provinces”—based on underlying differences in one or more fields
(e.g. Kavanaugh et al. [2014], Oliver and Irwin [2008], Sonnewald et al. [2020], Wüst et al. [2020].

We show here how Wasserstein distance can be used to evaluate how different the boundaries
are of such provinces when determined from different datasets or algorithms. Here, we apply a
clustering algorithm (K-means clustering) to two Chlorophyll maps—one from remote sensing and
the other from the model—to estimate two different spatial provinces of Chlorophyll. In our study
region, this province boundary occurs in the North Pacific Transition Zone and is often referred
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Figure 3: Wasserstein distance between time-resolved Chlorophyll data from different months (be-
tween March 1998 to December 2006) for the remote sensing (Panel A) and model (Panel B) data,
arranged so that the x-axis shows how many months apart the two Chlorophyll maps are, and the
y-axis is the Wasserstein distance (which uses square-root scaling). The blue line is fitted using a
regression model that assumes a linear trend together with a regular seasonal pattern, and the red
line shows the linear trend excluding the seasonal component. The slope of the red line for the remote
sensing data is roughly 8.4 times larger than for the model data – both slope values are shown in the
top-right of each panel. Note, the red line is linear in

√
Dab, and only appears linear here because

the slope coefficient is very small in size.

to as the Transition Zone Chlorophyll Front (TZCF) Polovina et al. [2000], Follett et al. [2021].
We demonstrate in this section how to use Wasserstein distance to flexibly measure the difference
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between ocean provinces, by measuring how much transport is needed to move the boundaries of one
set of provinces (based on model data) to make them equivalent to that of an alternative definition
of provinces (based on remote sensing data). Given a partition of the ocean, we can extract a binary
scalar field that is 0 inside the provinces and equal to a nonzero constant along the discretized
boundaries between regions. Given two such binary scalar fields, we can then apply Wasserstein
distance. An example is shown in Panel A of Figure 5 for the March and August Chlorophyll
climatologies, where the estimated boundary is shown as yellow (model) and blue (remote sensing)
lines.

It is interesting to compare the distance matrices (Panels B) and the MDS plots (Panels C)
in Figure 5 and Figure 2, which was formed by applying Wasserstein distance to the Chlorophyll
field itself. When performing Wasserstein distance on the boundaries, the MDS plot in Figure 5
shows little between-source difference (compared to within-source seasonal variability), with the
months from the two data sources lining up with each other. By contrast, the MDS plot of Figure 2
showed a larger degree of between-source variability. In other words, despite the relatively large
between-source distance between Chlorophyll maps, we see that in terms of one important aspect—
the estimated boundary between the regions—the two data sources agree rather well. Putting this
in the context of data source comparison, boundary comparison show a much better connection
between the model and remote sensing data than the Chlorophyll fields themselves, suggesting the
model captures the overarching patterns and controls although not the exact locations and more
detailed patterns.

(b) Comparing Depth Profiles of Chlorophyll

In this section, we use Wasserstein distance to compare Chlorophyll depth profiles at Station ALOHA
using two different data sources (in situ and model). In the vertical profile of Chlorophyll, a Deep
Chlorophyll Maximum (DCM) (sometimes also referred to as a Subsurface Chlorophyll Maximum,
SCM Anderson [1969]) is observed as a pronounced peak at depth (generally below the first optical
depth) (Figure 6). A DCM develops under stratified conditions Estrada et al. [1993] at the point of
cross-over between two conditions that limit phytoplankton growth. Surface waters are light-rich and
nutrient-limited, while at depth nutrient concentrations are high and photosynthesis is light-limited
Dugdale [1967], Hodges and Rudnick [2004]. At the depth of cross-over between these conditions
a DCM can develop Steele and Yentsch [1960], Beckmann and Hense [2007], Cullen [2015] and the
consumption of nutrients by phytoplankton acts to fix this DCM at a given depth.

Figure 6 shows Wasserstein distance and RMSE comparisons between Chlorophyll depth profiles
from two data sources—in situ and model—at 226 shared dates between October 1988 and November
2016. Panel A shows an example of a single Chlorophyll depth profile for the two data sources
(for 2014-09-15), while all 226 depth profiles for each data source are shown in Panel B. For each
comparison (i.e. each common date), we also record an estimate of the DCM, measured by the
depth at which the maximum concentration of Chlorophyll occurs. Panel C shows linear regressions
of Wasserstein distance and RMSE on the estimated difference in DCM between the two data sources.
The higher R2 of the left panel of Figure 6C suggests that Wasserstein distance is more effective than
RMSE at capturing the observed difference in DCM. Additionally, Figure S9 shows that the most
prominent movement across depth—pooled across all comparisons made—is from approximately 96
meters in the in situ data, to 140 meters in model data. This indicates that in aggregate, there is a
depth-wise mismatch in the DCM between the two data sources. Wasserstein distance uncovers the
spatial mismatch without the additional step of isolating the DCM.

4. Conclusion

We have demonstrated through a series of examples how Wasserstein distance can be a useful tool
for oceanographers performing the common task of comparing scalar fields in the ocean. Our anal-
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yses focused on two time-varying Chlorophyll datasets in the Pacific Ocean—a map defined over a
longitude-latitude box in the North Pacific and a depth profile at Station ALOHA. In several exam-
ples, we found that Wasserstein distance was able to capture differences in seasonality, distribution
shifts, and other scientifically-relevant factors in ways that a pixel-wise difference could not. For
example, in the depth profile analysis, Wasserstein distance could more closely track the changes
in the deep Chlorophyll maximum than RMSE. A further advantage over RMSE that we did not
demonstrate in our examples is that Wasserstein distance does not require the two sources to be
defined on identical sets of spatial cells.

Our Wasserstein distance-based analysis also suggested that the differences in Chlorophyll data
from the model and remote sensing observations can sometimes be larger than the within-source
seasonal variability. The optimal transport maps that are generated in the computation of Wasser-
stein distance allowed us to understand that this difference was driven by a seasonally varying set of
global-scale probability mass shifts. We also found that a key feature of these two data sources—the
estimated boundary between the subpolar zone and the subtropical gyre—are much more similar in
this region than the original Chlorophyll maps. Analysis of Wasserstein distance on remote sensing
data (further analyzed with a linear regression with customized covariates) also helped reveal a long-
term change from 1998 to 2006 that is not present in the model data. This suggests the usefulness
of Wasserstein distance for examining spatial data over time within a single source. Current studies
often establish long-term trend terms of changes in magnitude; Wasserstein distance detects changes
in patterns, which may help detect long-term trends efficiently and with less uncertainty.

The demonstrations within this paper are just a starting point for the potential uses of the
Wasserstein distance. We envisage this metric being used by many oceanographic data scientists for
a variety of comparisons, across a range of dimensions and variables. One particular future devel-
opment of interest would build on our application of Wasserstein distance to province boundaries
with exploration of this technique for more complex applications than the single horizontal TZCF
boundary demonstrated here. Defining and testing provinces (“biomes”) in the ocean is an active
area of research Wüst et al. [2020], Sonnewald et al. [2020], and we believe that Wasserstein distances
can provide a flexible tool to compare competing definitions of biomes.

As demonstrated in our examples, Wasserstein distance is particularly useful for model-data
comparison because models can struggle to get the physical location of some key features in the
ocean, such as the Gulf Stream. A pixel-wise comparison will measure the magnitude of difference
at rigid locations, while Wasserstein distance will focus on the pattern change and appropriately
measure this discrepancy in the longitude-latitude space.

Further, the regression analysis in Section 3a(ii) suggests Wasserstein distance as a powerful tool
to examine temporal trends in patterns rather than in magnitudes. This shows Wasserstein distance
goes far beyond simple model-data comparison, and can be useful for analyzing spatial fields of
ocean physical, biogeochemical as well as optical quantities over time.

Developing computational improvements will be important to allow for full global ocean compar-
isons. One simple extension is to only allow local transports, by directly modifying the base distances.
Handling this sparser structured base distance effectively—by building specialized software—may
be an important practicality. Faster approximations to optimal transport are popular in computer
science and machine learning applications, and can also be adopted when analyzing ocean data.

Another methodological extension is to consider optimal transport with unequal masses Chizat
et al. [2016], a natural scenario when dealing with physical quantities in the ocean. Normalizing
such data prior to analysis discards a potentially important piece of information, which is the total
amount of mass prior to normalization. When the data in a few bins are very large, the normalization
can unduly flatten the probability mass in other bins. An interesting future direction is to allow
optimal transport to borrow from physical transport to become more physically realistic. Optimal
transport is not to be confused with physical transport of the underlying quantity in the ocean.
Instead, optimal transport can be thought of as an alternative measure of distance that measures
pattern shifts in the space of the data. Nonetheless, making the optimal transport more physically
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constrained could be a beneficial future direction. To do so, one could adjust the base distance
dij to account for factors such as natural boundaries in the ocean (e.g. two clear bodies of water
that do not mix) or ocean currents that prevent or promote movement in certain directions. For
example, by simulating Lagrangian drifts of particles under known currents one might be able to
form a more oceanographically relevant base distance that is then inputted into the Wasserstein
distance calculation.

Data and code. Available in https://github.com/sangwon-hyun/omd.
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Figure 4: Comparison between the interpretation of time series data using Wasserstein distance and root-
mean-squared error (RMSE). Panel A shows the distance between January 1998 model data (I) to other
months’ model data, measured by Wasserstein distance and RMSE, with distances normalized to range from
0 to 1. Panel B shows the three maps. Noticing that the seasonal cycle and annual peak of Wasserstein
distance is different in the two sources, we focused on two months—April 2002 (II) when RMSE peaks and
Aug 2002 (III) when Wasserstein distance peaks. (Grey vertical dotted lines are drawn at dates (I), (II),
and (III) for emphasis.) RMSE measures January to be more different from April than it is from August,
while Wasserstein distance measured the opposite. In panel C, the optimal transport between (I) and (II)
is mostly short shifts locally in the north, while the pixel-wise difference is overly pronounced due to a few
large differences in the northern coastal region. On the other hand, the optimal transport between (I) and
(III) includes two types of shifts—those that are local to the northern region, and sizeable equator-bound
shifts. The pixel-wise difference does not capture the latter. Note, only half of the arrows are shown in the
optimal transport plots for visual clarity. The year of 2002 was chosen randomly, and the same analysis
using another comparison year shows similar conclusions.
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Figure 5: Comparison of ocean provinces using Wasserstein distance (W2). Panel A shows an
example of the application of Wasserstein distance on cluster boundaries for March and August based
on Chlorophyll climatology data (the full set of plots from all months are provided in Figure S8). The
plots show province boundaries estimated from remote sensing (blue line) and model (yellow line)
data, overlaid on model Chlorophyll data shown as heatmaps. The next two panels show summaries
of all pairwise Wasserstein distances from the 24 maps of estimated cluster boundaries (for the twelve
months of climatology Chlorophyll maps from the two sources) in the same style as Figure 2. Panel
B shows a 24× 24 distance matrix, and Panel C shows a classical multidimensional scaling (MDS)
performed on this data. The distance between the two data sources in the same month is small
and the seasonal dynamic shown by the lines is similar in the two data sources. This shows that,
despite the large between-source distance between Chlorophyll maps in 2, one important aspect—the
estimated boundary between the two bodies of water (the North Pacific Transition Zone and the
Subtropical Gyre)—is similar between the two data sources.
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Figure 6: Comparing depth profiles of Chlorophyll from to data sources. Panel A and B show depth
profiles of Chlorophyll from two data sources—model and in situ—with an example of a single depth
profile for 2013-09-15 given in Panel A and all depth profiles between October 1988 and November
2016 (n = 226) given in Panel B. Each vertical slice (a single 1-dimensional histogram of Chlorophyll
distribution from each data source) at overlapping time points can be compared using Wasserstein
distance (W2). Panel C shows the effectiveness of the two distance measures, root-mean-square
error (RMSE) and Wasserstein distance (y-axis), in capturing the difference in the deep Chlorophyll
maximum (DCM: x-axis) recorded from the model and at Station ALOHA (in situ) at shared dates.
DCM refers to the region below the ocean surface where the maximum concentration of Chlorophyll
is observed. The higher R2 demonstrates that Wasserstein distance is better able to capture the
variability in the difference in the DCM than RMSE.
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