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The breakup of liquid threads into droplets is prevalent in engineering and natural

settings. While drop formation in these systems has a long-standing history, existing

studies typically consider axisymmetric systems. Conversely, the physics at play

when multiple threads are involved and the interaction of a thread with a symmetry

breaking boundary remain unexplored. Here we show that the breakup of closely

spaced liquid threads sequentially printed in an immiscible bath locks into crystal

like lattices of droplets. We rationalize the hydrodynamics at the origin of this

previously unknown phenomenon. We leverage this knowledge to tune the lattice

pattern via the control of injection flow rate and nozzle translation speed, thereby

overcoming the limitations in structural versatility typically seen in existing fluid

manipulations paradigms. We further demonstrate that these drop crystals have the

ability to self-correct and propose a simple mechanism to describe the convergence

towards a uniform pattern of drops.

Introduction

In the Rayleigh-Plateau instability of a flowing jet, interfacial perturbations can be mod-
eled as exponential functions with complex frequencies and wavelengths whose superposition
generates wave packets that travel both up and downstream until the thread breaks to gen-
erate drops [1–4]. Depending on the setting, these droplets are the vehicle for biological
material, drugs, polymeric solutions or are destined to combustion, while their radius may
range anywhere from a few millimeters to tenth of nanometers [5–10]. In addition to its
applicability, the breakup of jets illustrates key phenomena in the physics of fluids, e.g. ab-
solute/convective instabilities, singularities. As such, the Rayleigh-Plateau instability has
been extensively studied, albeit primarily in the context of a single jet and assuming axi-
symetry [4]. Therefore, little is known on the collective stability of multiple threads [11–13];
in particular the case of the successive breakups of neighboring jets has never been reported.
Here we show that viscous threads sequentially extruded into another immiscible viscous
bath lead to the self-assembly of complex droplet lattices. This self-templating effect is
underpinned by the noise amplifier nature of the instability that turns the infinitesimal per-
turbations of the interface of a thread into drops [14, 15]. Here, perturbations in a given
thread are inherited from breakup events in previously extruded threads, thereby slowly
building up memory in the system which eventually converges towards a crystalline struc-
ture. With our technique, the size of droplets and their arrangements are fully controlled by
fluid dynamics. While packed hexagonal lattices are routinely used in top down fabrication
methods [16–19], the flexibility of our approach allows for the assembly of previously impos-
sible complex arrays, which can subsequently be polymerized as a route to design functional
materials [20–24]. More generally, these droplet assemblies could find widespread applica-
tion in many fields, including microbiology [25–27], tissue engineering [28], acoustics [29, 30],
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FIG. 1. Sequential breakup of viscous threads.(a) Schematic of the experimental setup: glyc-

erol is injected from a nozzle into a reservoir of silicone oil. A jet develops at the nozzle outlet and

breaks up into droplets due to the Rayleigh-Plateau instability. (b) Close-up photograph showing

the developing troughs and peaks along the jet next to the adjacent droplets. (c) Snapshot of the

printing experiment with nozzle speed U0 = 4.7 mm/s, flow rate Q = 0.21 mL/min and spacing

L = 3.0 mm. The rows are printed in alternating directions and the drops progressively arrange

into an ordered lattice. Overlaid is the Voronoi tessellation obtained from the drop centroids and

color coded using the relative area of each cell.

optics [31, 32] and electrical components [33, 34].

Results

In Fig. 1a, we show our printing system where glycerol is injected through a moving nozzle
into an immiscible silicone oil bath to form a liquid jet. The jet follows the trajectory of the
nozzle before it breaks into droplets. In this article we show that the printing process builds
on the hydrodynamical interaction of a thread with the surrounding environment (Fig. 1b).
In particular, the sequential deposition and breakup process gives rise to a crystal-like lattice
of droplets as evident in Fig. 1c (see Supplementary Video 1). As evident from the Voronoi
diagram overlaid on the figure, the array gets more uniform as more rows are added and the
defects present in the first lines are progressively smoothed out.

To elucidate the physics at play in our problem we develop model experiments involving
solid templates designed to emulate the presence of nearby droplets. In Fig. 2a, we show a
photograph of an experiment where a liquid jet is breaking up near a solid template with
wavelength λ∗ matching that of the Rayleigh-Plateau instability [35] (see Supplementary
Video 2). The value of λ∗ scales with the radius of the injected jet, h0, in turn determined

by mass conservation, h0 =
√
Q/(πU0), where Q is the injection flow rate and U0 the speed

of the nozzle [10]. Geometry is anticipated to matter here, i.e., the relative magnitude of the
distance to template L and h0. In particular, in Fig. 2b we show that when L decreases, the
standard deviation in the observed breakup wavelength λ decreases too, as indicated by the
size of error bars. We also find that with L/h0 ≤ 8 the standard deviation in wavelength is
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FIG. 2. Enforcing a wavelength. (a) Photograph of an experiment of a jet with radius h0
printed at a distance L of an acrylic template (top view). (b) Breakup wavelength λ and (c) Jet

length ` as a function of normalized distance to template L for different radius of injected jet h0.

(d) Growth rate σ as a function of normalized distance to template L. Dashed line is the prediction

from linear stability analysis. (e) Initial perturbation A0/h0 as a function of normalized distance

to template L. Solid line is the best fit to the experimental data.

consistently low. These results suggest that the jet radius h0 is the relevant lengthscale in
this problem. This point is further confirmed by examining the length of the jet, `, defined
as the distance from the nozzle to the point where droplets are shedding. As evident from
Fig. 2c, ` increases with L/h0 until it reaches the limiting value `∗ of the unbounded case for
L/h0 ∼ 8 [10]. To further quantify the role of the template and elucidate the mechanism at
play, we measure the growth of the periodic perturbations leading to the jet breakup and
compare the results to that of linear stability analysis where the jet radius is assumed to
be h(x, t) = h0 + A0e

σt cos kx [3, 4, 36]. In Fig. 2d, we show that the observed growth rate
σ is constant and independent of L. Therefore, the template does not affect the instability
intrinsically. Rather, the template alters the initial conditions of the problem in the form
of A0. A0 is indirectly measured using the jet length data (see Methods). In Fig. 2e, we
show that A0 decreases exponentially as L increases. Close enough from the template,
the jet is thus seeded with deformations significantly larger than the ambient noise and
whose wavelength follows that of the template. As such, the breakup pattern locks with the
template, thereby improving the droplet monodispersity.

With our solid templates we also demonstrate the possibility of enforcing wavelengths
that deviate from the natural breakup wavelength λ∗. In Fig. 3a, typical breakup patterns
with different template wavelengths λf are shown. As evident from the figure, the distance
between drops is a complex function of that of the template. In particular, we observe
locking in the range 0.7λ∗ < λf < 1.4λ∗ as detailed next. When λf < 0.7λ∗, the resulting
breakup pattern is highly irregular with negligible locking effect, and the observed mean
breakup wavelength remains close to λ∗ (shown in Fig. 3b). In the range 0.7λ∗ < λf < 1.4λ∗,
the breakup wavelength λ follows λf closely. A much lower degree of polydispersity than that
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FIG. 3. Tuning the wavelength. (a) Photographs of jet breakup with initial radius h0 =

0.63 mm and templates with different forcing wavelength λf (L = 2h0). (b) Distance between

the biggest drops λ/λ∗ versus the frustration ratio λf/λ
∗ with L = 5h0 and 2h0. The error

bars correspond to the standard deviation of measurements. The grey band indicates the range

of enforced wavelengths as determined experimentally. This range is reported in (c) where the

corresponding growth rates are shown. The solid and dashed curves are the linear dispersion

relations for the fundamental harmonic and superharmonic, respectively. (d) Self-correcting of

wavelengths starting from a polydispersed row. The lattice pattern becomes more regular as rows

are printed (e) The observed evolution of the wavelengths across the rows in (d). The 2nd and

the 24th rows are shown by the solid and dotted lines, respectively. (f) Comparison of standard

deviation in wavelength between the observed evolution (solid line) and the model prediction (dash-

dotted line)

observed in unbounded breakups is observed, consistent with the aforementioned case λf =
λ∗. The corresponding growth rate follows the prediction from linear stability analysis [35],
which is plotted as the black curve in Fig. 3c. We also note that the satellite drops, i.e.,
the small drops in-between, become larger as λf increases. When close to the transitional
value λf ∼ 1.4λ∗, we observed unstable breakups yielding drops of varying sizes between
the main drops (see Supplementary Figure 1). As λf is further increased, λf > 1.4λ∗, the
breakup pattern becomes stable again, producing two large drops per forcing wavelength.
In this superharmonic regime, the observed wavelength is half that of the forcing [37]. The
dispersion relation for this superharmonic regime is plotted as the dashed curve in Fig. 3c
and intersects the fundamental harmonic dispersion at kfh0 = 0.37, which gives a transition
threshold ratio at λf/λ

∗ = 1.51. This value is close to the transition observed experimentally
as shown in Fig. 3b and 3c. These results further confirm that the mechanism behind the
wavelength locking effect is primarily underpinned by a modification of the initial conditions
of the problem by the template. Remarkably, the remainder of the dynamics, e.g., the
dispersion relation of the instability, appears to be unaffected by the template.

After describing the effects of a solid template, we now demonstrate that droplets them-
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FIG. 4. Designing complex patterns. (a) Photograph of a crystal highlighting the phase

difference between the drops in adjacent rows. Arrows indicate nozzle printing direction. (b) Final

phase difference δ plotted as a function of nozzle speed U0. The drop radius and the separation

between the rows are kept constant, R = 3.5 mm and L = 6.7 mm. The printing direction is

reversed across the neighboring rows as shown in panel (a). (c) Drop patterns printed (i) U0 = 7.2

mm/s, Q = 0.25 mL/min, L = 1.7 mm; (ii) U0 = 56.9 mm/s, Q = 1.98 mL/min, L = 1.7 mm; (iii)

U0 = 3.9 and 7.2 mm/s, Q = 0.25 mL/min, L = 2.4 mm. In (iv - vi), orange droplets are printed

first (U0 = 10.8 mm/s, Q = 0.97 mL/min, L = 2.0 mm), followed by blue droplets (U0 = 10.8

mm/s, Q = 0.47 mL/min, L = 2.0 or 4.0 mm). Printing direction: (i),(iv),(vi) unidirectional

(ii),(iii),(v) alternating.

selves can serve as templates. When printing a thread next to a row of droplets with a
well defined wavelength, we find that the breakup pattern follows the same wavelength (see
Supplementary Video 2). As such, printing multiple lines parallel to a template leads to
the emergence of a regular lattice of drops (see Supplementary Figure 2). Additionally, we
have discovered that similar types of ordered droplet arrays also emerge when starting from
a row whose breakup pattern is irregular, i.e., a self templating effect. In Fig. 3d, we show a
typical droplet pattern observed when sequentially printing parallel threads without a solid
template. The first row is unbounded and presents some polydispersity [10, 38]. As more
rows are printed, the breakup progressively corrects itself such that a regular crystal-like
pattern eventually emerges. In Fig. 3d, we circle the drops with color coding for their size.
In particular, the distance between the two large drops in the first row (highlighted in the
dotted box) is λ ' 1.70λ∗. In the next row, one wavelength is inserted such that the distance
between drops is λ = 0.95λ∗. This observation is consistent with our previous discussion on
the competition between harmonic modes. In this case, the smaller wavelengths are closer
to the optimal value and thus grow faster than the large wavelength. From the second row
onwards, there is no drastic change in the number of drops, and thus wavelength, but a
subtle converging process continues. The rescaled wavelengths in every other row are shown
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in Fig. 3e. As evident from the figure, the initial non-uniformity in the pattern is progres-
sively smoothed. We find that the convergence towards a lattice structure is iterative in
nature and can be captured by a moving average model (see Methods and Fig. 3f). Any
randomly distributed noise oscillating around a constant, here λ∗, therefore eventually van-
ish as evident from Fig. 3d-f. Likewise, the system also corrects localized defects, e.g., the
intentionally seeded defects discussed in SI. In any case, a regular drop lattice is obtained
regardless of the type of initial defect present.

We now turn to study the phase relationship between rows. An out-of-phase relation is
typically observed in the simultaneous breakup of multiple liquid threads [11, 13, 39–41].
In contrast, our technique generates different phase relations as the lattice is the result of a
dynamic process. The drops are indeed dragged long after they are formed when printing
subsequent rows (see Supplementary Video 3). In Fig. 4a, we show the phase difference δi,i+1,
between consecutive lines i and i+ 1. These quantities evolve each time a line is added, e.g.,
δ7,8(t + ∆t) = δ6,7(t) owing to the periodic nature of the problem. Eventually, these values
converge to the final phase difference δ, thus depending on the initial phase difference and
successive shifts (see Supplementary Note and Supplementary Figures 5 - 7). As such, we
are able to tune this quantity 0.2 ≤ δ/λ ≤ 0.5 by merely modifying the nozzle speed U0

(see Fig. 4b for zig-zag printing patterns). Likewise, the relative printing direction between
rows affects the overall pattern. In Fig. 4c, we show that a variety of drop crystals can be
produced by adjusting injection flow rate, nozzle translation speed or changing the printing
direction in different rows (Fig. 4c (i) - (ii)). Additionally, we leverage our understanding
of the problem to produce complex patterns, e.g., with two populations of monodisperse
drops (Fig. 4c (iv)-(vi)). To obtain such structures we print jets with different thread radii,
h1 and h2 ' 0.5h1 (shown orange and blue, respectively). Stability analysis predicts that
the natural breakup of such individual threads would yield wavelengths differing by a factor
2, λ2 ' 0.5λ1. In stark contrast, we manage to force these wavelengths to be equal by
templating (see Supplementary Video 4). First, the threads with radius h1 are printed next
to a solid template with wavelength λf ' 0.7λ1 and yield a first set of drops (orange in the
figure). This forcing matches the left boundary of the templating regin shown in Fig. 3b.
Second, the threads with radius h2 are printed just atop the already formed droplets. These
droplets with wavelength λf now serve as templates for the breakup of the newly printed
threads λf ' 1.4λ2 (the right boundary of the templating domain in Fig. 3b). Since glycerol
is denser than the surrounding oil, the blue droplets sink in between the orange ones. Using
the same protocol, but changing the relative printing directions and inter-thread gap offers
ways to tune the geometry of the final pattern as shown in Fig. 4c (iv)-(vi).

Discussion

In closing we note that our methodology can be applied to a broad range of fluids so long
as jetting is possible [10]. As such, our approach is particularly suited to viscous liquids
and polymer melts that cannot be handled by microfluidic devices and inkjet printers [42]
but are necessary to materials science and many industrial applications [43]. Therefore, our
methodology offers a new route for the fabrication of architected materials in a controllable
and scalable manner. We envision the freedom in designing the pattern and its flexibility to
be adapted to the existing droplet-based technologies will open up new opportunities as a
tool of additive manufacturing.
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Materials and Methods

Printing setup. Glycerol (99%, Avatar Corporation) is injected through a nozzle with
inner radius r = 0.85 mm into a reservoir fluid of silicone oil (DMS-T31, Gelest). The
fluids have the same viscosity µ = 1.1 Pa.s and the interfacial tension between the fluids is
γ = 0.028 N/m. The flow rate, Q, is imposed using a syringe pump (Chemyx OEM) and
we operate in the range 0.25 < Q[mL/min] < 4.41, such that the average injection speed
at the nozzle is 1.8 < Ui = Q/πr2[mm/s] < 32.4. The nozzle is translated in the x, y-plane
using a two-axis translational stage (AxiDraw V3.0) at speed 7.2 < U0[mm/s] < 50.4. The
trajectory of the injector is controlled via a software (Inkscape).

Growth of perturbations on liquid threads. The initial stages of breakup are
governed by linear theory [2, 4], such that the amplitude of perturbations on the thread
grows exponentially. The growth rate σ can thus be estimated from an exponential fit to
the temporal evolution of thread radius [38, 44].

We record the breakup of liquid threads at different distance L away from the solid
template. The snapshots of the breakup evolution are binarized. The changes in greyscale
at the thread center are measured over time to infer the change in light intensity and hence
the growth of amplitude of the perturbations on the thread, according to the Beer-Lambert
law. The growth rate σ can then be extracted from the evolution of the growing amplitude.

The initial amplitude of perturbations, A0 is usually small (below 1 - 2% of the initial
radius h0) and cannot be measured accurately [44]. We estimate the ratio A0/h0 using the
experimental measurements of jet length ` and growth rate σ:

A0

h0
= e−σtb = e−σ`/U0 (1)

Here tb is the time needed to break the jet, which is given by the intact jet length divided
by the nozzle speed U0 [4, 10].

Moving average model. The converging process is akin to the dilution of variation or
frustration in the system by a moving average kernel. In particular, with the kernel ( 1

2
, 1
2
)

the wavelengths in the later row are given by the average of the two closest neighboring
wavelengths in the prior row. The process will repeat for the subsequent rows, resulting in
increasingly more uniform breakup patterns (see Supplementary Note and Supplementary
Figure 3). This model can be generalized to other kernels of the form ( 1

a
, a−1

a
) with similar

results.
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