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1 Introduction

Robustness has been, for decades now, a prominent topic in the optimization literature.
Yet, it is only in the past few years that robust techniques have been imported and
further developed for stochastic models, particularly stochastic processing networks.
A reason for this late adoption might be that “non-robust” analysis of general stochastic
networks already presents significant mathematical challenges. Hence, for much of the
first 80 years of the study of queueing models robustness was not explicitly considered
in most models that appeared in the literature.

Papers that do address robustness in queueing networks focus on two major robust-
ness angles: parameter robustness, and data robustness. In the former group, the
statistical structure for the arrival and service processes is known (e.g., it is a Poisson
process) but the arrival and service rates (the parameters) are only known to lie within
some uncertainty set; [4] is one of the earlier papers in this space. More recently,
[5] studies an M /M /s queue where only the mean and support of the arrival-rate
distribution is known to the manager who must make staffing decisions.

Data robustness, in contrast, does not impose a parametric statistical structure and
takes the view that the realized process (e.g., the sequence of inter-arrival times)
belongs to a suitably defined uncertainty set and uses robust optimization to obtain
approximations and bounds for performance metrics; see [1,3]. Further recent devel-
opment along these lines appears in [2,10].

2 Problem statement

We would like to advocate, in addition to these angles, for a third notion of robustness
in stochastic networks, namely policy robustness. Here, what is uncertain is the policy
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that is used at each station in a stochastic network. In multiclass queueing networks
(MQNs5), the policy specifies the order in which jobs are served at each station. More
generally, the policy could include decisions about setups, batching, and routing, for
example. In MQNss, the “uncertainty set,” as such, consists of a large, but well-specified,
collection of scheduling policies.

This set can be as large as the collection of all non-idling policies. In order to further
define a notion of policy robustness, one must specify a performance metric or network
property that is of interest. To keep the exposition simple, we focus on stability (e.g.,
positive Harris recurrence).

We can now define a specific version of the policy robustness problem. In par-
ticular, for a MQN with a fixed topology, for what set of network parameters is the
system stable, given an uncertainty set of policies?

Policy robustness is an appealing property of a network. It means that the network’s
manager or resources have flexibility to determine local prioritization without concern
for first-order network-level objectives (like maximal throughput). The uncertainty set
also provides a mathematical means to embody decentralized control for applications,
such as telecommunications, in which centralized control is impractical.

In this general framing, this is not a new question. The notion of global stability [7,8]
precisely concerns robustness (in the sense of stability) within the set of all non-idling
policies. Finding parameters, e.g., service time means, for which a given network is
policy-robust is the same as finding the global stability region.

Global stability is well understood for certain network topologies (feedforward
networks), certain routing matrices (those corresponding to generalized Jackson net-
works), and limited-sized networks (specifically, two-station fluid networks). Beyond
two-station MQNSs, the global-stability region is fully characterized only for specific
networks [7,8]; these papers highlight the difficulty of coming up with a general
approach to global stability.

We advocate for a re-framing of global stability that connects more directly to
robustness ideas in optimization and has the potential to advance the understanding of
global stability. To create this connection, it is useful to consider uncertainty sets that
are more restrictive (i.e., smaller than the set of all non-idling policies) but can lead to
a more tractable analysis; see §1.

Ideally, a generalizable framework can also produce answers to problems that are
in some sense “dual” to that of finding the global stability region (the set of policy
robust parameters). One might be interested in characterizing network topologies that
are policy robust. Meaning that, for these networks, any non-idling policy is stable as
long as the usual traffic conditions hold, i.e., p; < 1 for every station j (see [6]).

3 Discussion

In forthcoming work [11], we have made progress on policy robustness for the case
in which the uncertainty set contains all fixed-queue ratio policies (see [9]). We prove
that the stability of a policy within this uncertainty set is inherited from the stability
of “vertices” of the set. These vertices represent static buffer priority policies. In
other words, if the parameters—specifically, mean service times—are such that all
static buffer priority policies are stable, then so is any policy in the “interior” of the
uncertainty set.
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Our result relies on two, potentially generalizable, principles. First, because a Sko-
rohod Problem (representing the fluid workload model) plays a key role in our analysis
so do, in turn, the so-called reflection matrices. We show that certain “good” prop-
erties of the reflection matrices satisfy a (limited) form of convexity. If one of these
properties is satisfied at all vertices, it is also satisfied at any point in the interior.

Second, this convexity property can be verified by framing verification of matrix
properties as a robust optimization problem and applying known robust optimization
arguments. In other words, the analysis reduces verification of stability to verifica-
tion at corner points of the uncertainty set. In some cases, this leads to an explicit
characterization of the (family of) parameters for which a network is policy robust.

Our hope is that the connections we draw between stability, convexity, and robust
optimization can serve as the basis for, and motivate, a general framework toward
policy robustness that applies, beyond MQNs, to flexible server networks, constrained
multi-hop networks, and reflected Brownian motion models.

The ideas in this paper showcase the potential in bringing together ideas (and
scholars) from applied probability and optimization to re-visit and make progress on
fundamental questions in stochastic modeling.
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