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We present high-precision predictions for Z boson-pair production via electron-positron collisions by
taking into account a full set of one-loop order scattering amplitudes, i.e., electroweak (EW) corrections
together with soft and hard QED radiation. We provide a detailed numerical evaluation, from full EW
corrections to pure QED corrections, specifically focusing on the effect of initial beam polarization on the
production rate. The left-right asymmetry and angular distributions are also presented. The radiative
corrections are largely affected by initial beam polarizations. We get an improvement of around three times
with completely polarized beams of e−L and eþR . We find that the radiative corrections can sizably modify the
production rate, typically yielding a total relative correction up to a few tens of a percent. This implies that
the full EW corrections are required for e−eþ → ZZ to match with percent-level accuracy.
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I. INTRODUCTION

The Standard Model (SM) [1–3] has been well estab-
lished as a self-consistent gauge theory. Starting with the
discovery of the Higgs boson [4,5] a decade ago, we have
increasing confidence in the consistency of the Standard
Model (SM) from the LHC experiments [6]. Despite its
many successes, there are remaining questions (such as the
hierarchy problem, neutrino masses, dark matter, the strong
CP problem, and the generation of a baryon asymmetry)
which require beyond the SM (BSM) physics. Current and
future experiments will continue to not only make sensi-
tivity tests of the SM but also to search for BSM physics to
meet the challenges listed above.
Proton-proton colliders have significant backgrounds,

which makes it harder to explore rare processes. On the
other hand, electron-positron colliders have cleaner back-
grounds and offer important opportunities to precisely
observe the interesting phenomena. Various proposals for
such colliders exist; the International Linear Collider (ILC)
[7–9] is one of the proposed linear colliders, which would
be operated in the c.m. energies of

ffiffiffi
s

p
¼ 250–500 GeV

(extendable up to a 1 TeV) with collision modes of e−eþ,
e−e−, e−γ, and γγ. At the ILC, it is also expected to use the

electron and positron beams with 80% and 30% polar-
izations, respectively. Another linear collider is the
Compact Linear Collider (CLIC) [10], which is foreseen
to be operated a TeV scale high-luminosity capacity, in
stages at energies of

ffiffiffi
s

p
¼ 380 GeV, 1.5 TeV, and 3 TeV,.

Furthermore, there are circular collider projects such as the
Circular Electron-Positron Collider (CEPC) [11] and
Future Circular Collider (FCC) [12]. The CEPC is pro-
jected with a circumference of 100 km and to have a
maximum of

ffiffiffi
s

p
¼ 240 GeV. The FCC project [12],

hosted in a 100 km tunnel at CERN, is considering three
collision types: FCC-ee, for electron-positron collisions;
FCC-hh, for hadron-hadron collisions; and FCC-eh, for
electron-hadron collisions. The FCC-ee [13], running at
different energies to research the production of Z,W,H and
tt̄, is expected to be a Higgs, electroweak, and top factory
with high luminosity. The above lepton colliders are
expected to offer the unique opportunities for precise
measurements and signs of new physics, appearing in
the form of small deviations from the SM.
In parallel, high-precision predictions from theory are

required to get more precise measurements for clues of the
BSM physics or more sensitivity tests of the SM. This
means that it is necessary to go beyond the lowest-order
calculations for the most production channels. At least,
one-loop order corrections in the production channels must
be included to get adequate accuracy. However, the extent
to which higher-order computations beyond one-loop order
will be needed depends largely on the expected exper-
imental accuracy. In the present study, we focus on the
complete one-loop-order electroweak (EW) corrections and
beam polarization effects. The beam polarization has the
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ability to improve the corresponding signal-to-background
ratio along with the sensitivity of the observables [14–16].
Furthermore, the CP-violating couplings can be separated
from CP-conserving ones using beam polarization [16].
The main production reaction of the Z-boson pairs at the

e−eþ colliders are e−eþ → ZZ, which include the Born-
level contributions from electron exchanges via t and u−
channels. Since there are no Yukawa or QCD contributions,
the identification of the EW corrections would be very
clean. The process at Born order was studied by
Refs. [17,18] a long time ago. Next, one-loop EW radiative
corrections were investigated by Ref. [19]. However, their
results directly depend on the soft cutoff parameter, since
the hard photon correction is not taken into account. In
addition to the above work, in Ref. [20], the high-energy
behavior of the various helicity amplitudes was investigated
considering all of the Minimal Supersymmetric Standard
Model contributions.
Furthermore, neutral gauge boson production via electron-

positron collisions have received a significant experimental
[21–23] and theoretical [24–28] interest, motivated by the
search for anomalous neutral gauge boson self-couplings. In
particular, Z-pair events provide an opportunity for the
investigation of possible triple neutral gauge boson cou-
plings, ZZγ and ZZZ [29–31], not allowed at tree level in
the SM.
In the present work, we examine the Z-boson pair

production via electron-positron collisions in the SM,
including a full set of one-loop-order EW radiative cor-
rections, i.e., the EW corrections together with soft and
hard real photon emission. We provide a detailed numerical
discussion with particular emphasis on the effects of initial
beam polarization. Moreover, we consider the decompo-
sition of the EW corrections into the pure QED photonic
corrections along with the corresponding counterterms and
the remaining weak corrections. The left-right asymmetry
and angular distributions are also presented at the Born and
one-loop orders.
The rest of this paper is organized as follows. In Sec. II,

we provide some useful analytical expressions together
with the relevant Feynman diagrams and amplitudes.
General shapes of the real photon emission and the virtual
corrections are also discussed. In Sec. III, we give briefly
information on initial beam polarization. In Sec. IV, we give
a set of input parameters used in this study. In Sec. V, we
present a detailed analysis of numerical results. A com-
parison with the results of other approaches is also given.
Finally, in Sec. VI, we present a summary and conclusions.

II. THEORETICAL SETUP FOR A CROSS
SECTION

We first present our notation regarding the Born ampli-
tudes and one-loop EW contributions. The relevant pro-
duction process is expressed as

eþðp1; σ1Þe−ðp2; σ2Þ → Zðk1; λ1ÞZðk2; λ2Þ; ð2:1Þ

where σ1, σ2, λ1, and λ2 denote the helicities of initial
positron and electron and outgoing Z bosons, respectively.
The helicities take the values λ1;2 ¼ 0;%1 and σ1;2 ¼%1=2.
Polarization vectors of outgoing Z bosons are denoted by
εμðk1; λ1Þ and ενðk2; λ2Þ. Neglecting the electron mass, the
momenta in the center of mass of the initial state system are
given by

p1 ¼
ffiffiffi
s

p

2
ð1; 0; 0;−1Þ;

p2 ¼
ffiffiffi
s

p

2
ð1; 0; 0;þ1Þ;

k1 ¼
ffiffiffi
s

p

2
ð1;−κ sin θ; 0;−κ cos θÞ;

k2 ¼
ffiffiffi
s

p

2
ð1;þκ sin θ; 0;þκ cos θÞ; ð2:2Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
Z

s

r
; ð2:3Þ

and
ffiffiffi
s

p
and θ denotes the center-of-mass energy and the

scattering angle, respectively. For further use, we also note
the Mandelstam variables:

s ¼ ðp1 þ p2Þ2 ¼ ðk1 þ k2Þ2;
t ¼ ðk1 − p1Þ2 ¼ ðk2 − p2Þ2;
u ¼ ðk2 − p1Þ2 ¼ ðk1 − p2Þ2: ð2:4Þ

The Z-boson polarization vectors are given by

εμþðk; λ ¼ þ1Þ ¼ −
1ffiffiffi
2

p ð0; 1; i; 0Þ;

εμ0ðk; λ ¼ 0Þ ¼ 1

MZ
ðkz; 0; 0; EÞ;

εμ−ðk; λ ¼ −1Þ ¼ 1ffiffiffi
2

p ð0; 1;−i; 0Þ; ð2:5Þ

which obey the condition εμkμ ¼ 0. The sum over physical
polarization states of the Z boson is given by

X

λ

εμðk; λÞε&νðk; λÞ ¼ −gμν þ
kμkν
M2

Z
: ð2:6Þ

The analytical and numerical evaluations are carried out
by using the following tools.1 The Feynman diagrams and

1Using the same tools, many calculations have been carried out
with significant results (see, e.g., Refs. [32–35] by one of us and
Refs. [36–40] by others).
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amplitudes are created by using FEYNARTS [41,42]. The
algebraic evaluation for amplitudes is provided technically
in the same way as defined in Ref. [35]. Then, the squaring
of amplitudes, the simplifying of fermion chains and
the numerical computation are carried out by using
FORMCALC [43]. The scalar loop integrals are calculated
via LOOPTOOLS [43]. The phase-space integrations are
calculated by using the Monte Carlo integration algorithm
VEGAS, implemented in the CUBA library [44]. We have
checked the cross sections of Born and hard photon
radiation processes against the results obtained by using
WHIZARD [45,46] and CALCHEP [47].

A. Born amplitudes

At lowest order, the process eþe− → ZZ includes the
leading contributions from t- and u-channel electron-
exchange diagrams. The corresponding Feynman diagrams
are given in Fig. 1, where a diagram with a Higgs field
coupling to electrons is omitted. It is suppressed by a factor
me=

ffiffiffi
s

p
and thus canbeneglected. The explicit expressions are

given for the Born matrix elements from these diagrams as

M1 ¼
−ig2

4½t −m2
e(c2W

v̄ðp1; meÞ=ε&ðk1Þ½ceV − ceAγ5(

× ðp2 − =k2 þmeÞ=ε&ðk2Þ½ceV − ceAγ5(uðp2; meÞ;
ð2:7Þ

M2 ¼
−ig2

4½u−m2
e(c2W

v̄ðp1;meÞ=ε&ðk2Þ½ceV − ceAγ5(

× ðp2−=k1þmeÞ=ε&ðk1Þ½ceV − ceAγ5(uðp2;meÞ;
ð2:8Þ

where g ¼ e=sW , sW ¼ sin θW , and cW ¼ cos θW ¼
MW=MZ. The vector and axial vector couplings are defined
as cfV ¼ If3 − 2Qfs2W and cfA ¼ If3 for the fermion type f. For
electrons, these are ceV ¼ −1=2þ 2s2W and ceA ¼ −1=2. The
Born-level total amplitude is

MBorn ¼
X2

i¼1

Mi: ð2:9Þ

For arbitrary polarizations of the leptons and bosons, the
differential cross section reads

"
dσ
dΩ

#
eþe−→ZZ

Born
¼ κ

64π2s

X

σ1;2;λ1;2

1

4
ð1þ 2σ1P1Þð1þ 2σ2P2Þ

× jMσ1;σ2;λ1;λ2
Born j2; ð2:10Þ

where P1 and P2 are the polarization degrees of the incoming
electron and positron. The sum runs over all included boson
polarizations. Following the square of total amplitude and the
summation over final helicities, we have

"
dσ
dt

#
e−eþ→ZZ

Born
¼ g4

128π2s2
ðceVÞ4 þ ðceAÞ4 þ 6ðceVÞ2ðceAÞ2

c4W

$
u
t
þ t
u
þ 4M2

Z

"
s
ut

#
−M4

Z

"
1

t2
þ 1

u2

#%
; ð2:11Þ

where the electron massme is neglected for simplicity. This
result is consistent with the results in the literature [17]. The
above coupling term can be also written in terms of chiral
coupling constants as ðceVÞ4 þ ðceAÞ4 þ 6ðceVÞ2ðceAÞ2 ¼
8ðceLÞ4 þ 8ðceRÞ4. Then, the integrated cross section is
obtained by

σe
−eþ→ZZ
Born ¼ 1

2!

Z
tmax

tmin

"
dσ
dt

#
e−eþ→ZZ

Born
dt; ð2:12Þ

where the lower and upper bounds of the integral are
defined as

tmax;min ¼ M2
Z −

1

2
sð1% κÞ: ð2:13Þ

B. One-loop EW radiative corrections

The radiative corrections consist of three parts. The first
comes from virtual loop corrections, the second one is
soft photon radiation, and the last one corresponds to
hard real photon radiation. We now discuss them for
e−eþ → ZZ below.

1. Virtual corrections

We consider full EW OðαÞ contributions at one-loop
level for the process e−eþ → ZZ. The virtual loop correc-
tions for this process come from three types of diagrams:
vertex type, self-energy, and box type. Here, we do not
provide their explicit analytical expressions since they
are not particularly illuminating. Instead, we present a

e

e

Z

Z
e

1

e

e

Z

Z
e

2

FIG. 1. The lowest-order Feynman diagrams contributing to
e−eþ → ZZ.
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complete list of Feynman diagrams created by FEYNARTS.
At one-loop order, the process (2.1) has a total of 161
one-loop diagrams ð112 vertextypeþ 34 self-energyþ
15 boxtypeÞ as shown in Figs. 2–4. We use the following
labels on the internal lines: f stands for all fermions in SM,
G is the charged Goldstone boson, and u% is the ghosts.
The gauge vector bosons (γ, Z, and W%) are denoted by
wavy lines, and the Higgs and Goldstone bosons are
denoted by the dashed lines. In diagrams with two arrows
on the same lines of the loop, particles move both clock-
wise and counterclockwise.
The one-loop diagrams can topologically divided into s,

t, and u channels with the mediator of gauge bosons (γ, Z,
W%), Higgs boson (h0), and charged Goldstone bosons
(G%). We can also separate them into QED and weak
corrections. The diagrams of QED virtual corrections are
obtained by the possible virtual photon attachment and
fermion loop insertion to the Born-level diagrams.
First, in Fig. 2, we present the vertex-correction dia-

grams, which consist of triangle corrections to t-channel

electron exchange, bubbles, and triangle vertices attached
to the initial or final state via a mediator of γ, Z, and h0.
They can also be divided into three classes. The first
comes from the vertex corrections ZZA&=Z&. Here, the off-
shell field is marked by an asterisk. These are given with
diagrams 1–4 and 6–8 in Fig. 2. The second is due to the
vertex corrections eeh0&, and it is shown in diagram 5
in Fig. 2. Both types are s-channel contributions. The
fermion loop contributions to the vertex of eeh0& are
proportional to the electron mass and hence are suppressed.
The third type is the vertex corrections Zeē& in the t and u
channels. The Zeē& correction is shown in diagrams 9–20
of Fig. 2.
Second, in Fig. 3, we show the self-energy diagrams,

which consist of all possible loops of e− or νe− with gauge
bosons γ, Z, or W% on the electron propagator via t and u
channels. Also, all possible loops of fermions, W and G
bosons are included on the γh0 or Zh0 mixing propagator in
s channel. Diagrams 4 and 5 in Fig. 3 are obtained by QED
correction, while others are weak corrections.
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Z
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e
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Z
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e
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e

e

e
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e
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W
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Z
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e
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FIG. 2. The vertex-correction diagrams contributing to e−eþ → ZZ.
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FIG. 4. The box-type diagrams contributing to e−eþ → ZZ.
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FIG. 3. The self-energy diagrams contributing to e−eþ → ZZ.
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Finally, Fig. 4 shows the irreducible one-loop diagrams
(box-type diagrams). They consist of all possible box loops
of e−, νe− , vector bosons γ, Z, W%, Higgs and Goldstone
bosons. These are mainly t- and u-channel contributions.
Diagrams 1 and 7 in Fig. 4 are obtained by QED correction,
while others are weak corrections. Diagrams 2, 4, 8, and 10
are due to neutral current correction, and other diagrams are
due to charged current correction.
The total amplitude for the virtual contributions is

defined as the summation of triangle-type, self-energy,
and box-type corrections:

δMvirt ¼ M
△

þM
○

þM
□

: ð2:14Þ

The differential cross section of the virtual corrections is
calculated by

"
dσ
dΩ

#
e−eþ→ZZ

virt
¼

X

σ1;2;λ1;2

1

4
ð1þ 2σ1P1Þð1þ 2σ2P2Þ

×
κ

64π2s
2Re½M&

BornδMvirt(; ð2:15Þ

where jδMvirtj2 is not included because its contribution
is so small that it can be neglected. The one-loop
Feynman diagrams, which form the virtual OðαÞ
corrections δMvirt, have been calculated in the ’t
Hooft-Feynman gauge. We use the on-shell (OS)
renormalization scheme (see Ref. [48]) to fix all the
renormalization constants.
The virtual contributions have UV and IR divergences.

These divergences can be regularized by extending the
dimensions of spinor and spacetime manifolds to D ¼
4 − 2ϵ [49] and adding a photon mass parameter,
respectively. We adopt all Feynman rules of the counter-
terms (shown in Fig. 5) and of the renormalization
conditions from Ref. [48]. The redefinition of parameters
and fields is carried out in the OS scheme. This turns the
Lagrangian into a bare term and a counter-term. After
applying the renormalization procedure, a UV-finite
virtual contribution is achieved. Although, the soft IR
singularity due to virtual photonic loop corrections still
exists. It is regularized by giving the photon a fictitious
mass, mγ . The virtual cross section is independent of the
UV regularization parameter CUV ¼ 1=ϵ − γE þ logð4πÞ
but still a function of the IR regularization parameter mγ.
From the Kinoshita-Lee-Nauenberg theorem [50,51],2 it
is canceled in the limit mγ → 0 by adding the real photon
corrections. We have checked numerically that our results
do not depend on mγ . After adding the virtual and real
corrections, the results are still collinear singular. This
singularity comes from the initial-state radiation part.
We use the phase-space slicing method3 [53–56] to

handle the collinear singularities in the photon radiation
off the initial state.

2. Real corrections

Real photon emission gives rise to the kinematically
different reaction from eþe− → ZZ, presented by

eþðp1; σ1Þe−ðp2; σ2Þ → Zðk1; λ1ÞZðk2; λ2Þγðk3; λ3Þ;
ð2:16Þ

where k3 and λ3 are the 4-momenta and helicity of the
radiated photon. We present the bremsstrahlung Feynman
diagrams in Fig. 6, obtained from the Born diagrams by
adding a photon emitted from a lepton line. The lowest-
order of real-photon emission provides an OðαÞ correction
to eþe− → ZZ.
The differential cross section of eþe− → ZZγ reads

"
dσ
dΩ3

#
eþe−→ZZγ

real
¼ 1

2s

X

σ1;2;λ1;2;3

1

4
ð1þ 2P1σ1Þð1þ 2P2σ2Þ

× jMσ1;σ2;λ1;λ2;λ3
eþe−→ZZγ j2 ð2:17Þ

with the three-particle phase-space integral
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FIG. 5. The counterterm diagrams.
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FIG. 6. The Feynman diagrams for the real photon radiation.

2This was also shown perturbatively in QEDby Schwinger [52].

3We have developed the necessary code for evaluating of
collinear contributions and implemented it in FORMCALC.
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Z
dΩ3 ¼

Y3

i¼1

Z
d3k⃗i

ð2πÞ32k0i
ð2πÞ4δ

"
p1 þ p2 −

X3

j¼1

kj

#
:

ð2:18Þ

According to the radiated photon energy Eγ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗3j2 þm2

γ

q
, the bremsstrahlung phase space can be

separated into two regions: soft and hard. Hence, the real
photon radiation correction can be organized as

dσe
−eþ→ZZγ
real ¼ dσsoftðΔsÞ þ dσhardðΔsÞ; ð2:19Þ

where Δs ¼ ΔEγ=ð
ffiffiffi
s

p
=2Þ is the soft cutoff energy param-

eter. The bremsstrahlung photon is named soft when
Eγ < ΔEγ ¼ Δs

ffiffiffi
s

p
=2, whereas it is hard if Eγ > ΔEγ .

The soft photon correction is given by approximation
[48,57],

dσsoft ¼ −dσBorn
αQ2

l

2π2

Z

jk3
!

j≤ΔEγ

d3k3
2Eγ

$
k1

k1 · k3
−

k2
k2 · k3

%
2

;

ð2:20Þ

where ΔEγ satisfies Eγ ≤ ΔEγ ≪
ffiffiffi
s

p
. Integrating the soft

photon phase space in the center-of-mass system gives

dσsoft ¼ δsoftdσBorn ð2:21Þ

with

δsoft ¼ −
α
π

$
2 ln

"
2ΔEγ

mγ

#"
1þ ln

"
m2

e

s

##

þ 1

2
ln2

"
m2

e

s

#
þ ln

"
m2

e

s

#
þ π2

3

%
: ð2:22Þ

Both the soft and hard photon corrections depend on the
soft cutoff parameter Δs, but the real correction is inde-
pendent of this parameter. We note that the hard photon
emission must be taken account into to remove this
dependency. Furthermore, adding the virtual and soft
corrections removes the mγ dependency.
In addition to the divergences mentioned above, there

also appear mass singularities as a consequence of the
collinear photon emission off massless particles, so-called
collinear divergences. However, the smallness of the
electron mass induces the quasicollinear IR divergences
from the photon radiation off the electron/positron. To deal
with this, we apply the phase-space slicing method.
According to this method, the hard bremsstrahlung phase
space can be divided into collinear and finite regions,

dσe
−eþ→ZZγ
hard ðΔsÞ ¼ dσcollðΔs;ΔcÞ þ dσfinðΔs;ΔcÞ; ð2:23Þ

where Δc denotes the angular cutoff parameter. In the
hard collinear region ðEγ ≥ ΔEγ; cos θeγ > 1 − ΔcÞ, the

integrand is numerically unstable, whereas in the hard
finite region ðEγ ≥ ΔEγ; cos θeγ ≤ 1 − ΔcÞ, it is finite
(numerically stable). Here, cos θeγ is the cosines of angle
between the electron/positron and bremsstrahlung photon.
In the stable regions, the integration is carried out numeri-
cally, while it is semianalytically calculated in the unstable
regions [58] by using the approximation

dσcoll ¼
X2

i¼1

α
2π

Q2
i

Z
1−Δs

0
dx dσBornð

ffiffiffiffiffi
xs

p
Þ

×
$
1þ x2

1 − x
ln
"
sΔc

2m2
i

#
−

2x
1 − x

%
; ð2:24Þ

where the approximation Δc ≫ 2m2
e=s has been taken. To

avoid overcounting in the soft energy region, the integra-
tion over all possible factors x is constrained by the soft
cutoff parameter Δs.

3. Classification of full corrections

As a result, the IR- and UV-finite EW corrections consist
of four parts,

dσe
þe−→ZZ
NLO ¼ dσvirtðmγÞ þ dσsoftðmγ;ΔsÞ

þ dσcollðΔs;ΔcÞ þ dσfinðΔs;ΔcÞ; ð2:25Þ

where they are from virtual corrections, soft photon
corrections, collinear corrections, and finite hard photon
corrections, respectively.
We have numerically checked that our results are

independent of mγ , soft cutoff parameter Δs, and angular
cutoff parameter Δc. The virtual, soft photon, and hard
photon emission corrections are shown as a function of
both Δs and Δc at

ffiffiffi
s

p
¼ 250 GeV in Fig. 7. It is obvious

that the virtual plus soft and the hard photon emission
corrections significantly depend on Δs and Δc, whereas the
total corrections do not depend on them. Moreover, the
relative correction σ1-loop=σBorn is independent ofΔs andΔc

over several orders of magnitude. To more clearly show the
cutoff independence, we have also given the values by
tables next to Fig. 7. Finally, our results are also stable over
nine digits when varying mγ from 10−20 GeV to the default
value of 1 GeV. Our numerical results below have been
obtained for Δs ¼ 10−3, Δc ¼ 10−2, and the range of
scattering angles of the final particles j cos θj < 0.99.
To discuss the origin of the large correction, we also

consider the pure QED corrections δQED as individual in
addition to the full EW corrections δTotal. The QED
corrections consist of virtual-photon exchange, the corre-
sponding counterterms, and real-photon emission. Hence,
we can express the QED relative correction as

δQED ¼ δvirt;QED þ δreal: ð2:26Þ
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The QED-like diagrams consist of only A and f fields as
virtual lines. In this study, the one-loop QED contributions
come from the sum of the real-photonic corrections and
contributions of diagrams 4 and 5 of Fig. 3, 1 and 7 of
Fig. 4, and 1 and 9–12 of Fig. 2.
The remaining corrections (non-QED) can be called

weak corrections δWeak, which include the massive gauge
bosons Z0 and W%. The genuine weak relative correction
can be obtained from

δWeak ¼ δTotal − δQED: ð2:27Þ

In the above definition of δWeak, the weak corrections are
obtained by subtracting the pure QED corrections from the
full EW radiative corrections. Thus, we can write the full
OðαÞ EW relative correction as

δTotal ¼ δQED þ δWeak: ð2:28Þ

Overall, we can factorize the full EW corrected cross
section into the Born cross section and the relative
corrections. Therefore, the one-loop cross section σ1-loop
becomes

σ1-loop ¼ σBornð1þ δTotalÞ
¼ σBornð1þ δQED þ δWeakÞ; ð2:29Þ

leading to

δX ¼
σX1−loop − σBorn

σBorn
ð2:30Þ

where X can be “QED,” “weak,” and “total.”

(a)

(b)

FIG. 7. Phase-space slicing method. The virtual, soft, and hard photon radiation corrections as a function of soft cutoff parameter Δs
(upper plot) and angular cutoff parameter Δc (lower plot) at

ffiffiffi
s

p
¼ 250 GeV.
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III. BEAM POLARIZATION

Polarization effects are important in eþe− colliders and
can be used to provide significant advantages. These effects
could benefit searches for new physics with small deviation
from the SM predictions in two ways. First, properly
chosen combinations of beam polarization can strengthen
the signal and suppress the background in many cases.
Second, it is possible to establish smart observables that
contain beam polarization information. With the above
motives, we analyze the effect of beam polarizations on the
production rate of eþe− → ZZ.
The polarizations with a sign for e− and eþ beams are

given by [59], respectively,

Pe− ¼
ðne−R − ne−LÞ
ðne−R þ ne−LÞ

; Peþ ¼
ðneþR − neþL Þ
ðneþR þ neþL Þ

; ð3:1Þ

where ne%L and ne%R are the number of the left- and right-
handed e%’s (e%L and e%R ) in the beam, respectively. Here,
Pe−=Peþ is equal to þ1 (−1) for the 100% right-handed
(left-handed) polarized e−=eþ beams.
If a normalization ne%L þ ne%R ¼ 1 is applied, the normal-

ized number of e−R ’s and e−L’s can be obtained as

ne−R ¼ 1þ Pe−

2
; ne−L ¼ 1 − Pe−

2
: ð3:2Þ

Consequently, the cross section for any beam polarizations
can be defined by [16,59,60]

σPeþPe− ¼ 1

4
½ð1 − PeþÞð1 − Pe−ÞσLL

þ ð1þ PeþÞð1þ Pe−ÞσRR
þ ð1 − PeþÞð1þ Pe−ÞσLR
þ ð1þ PeþÞð1 − Pe−ÞσRL(; ð3:3Þ

where σLL, σRR, σLR, and σRL indicate the cross sec-
tions with completely polarized beams of the four
possible cases. Namely, RL, LR, RR, and LL stand
for ðPeþ ; Pe−Þ ¼ ðþ1;−1Þ; ð−1;þ1Þ; ðþ1;þ1Þ; ð−1;−1Þ,
respectively. Figure 8 shows these spin configurations,
the corresponding fractions (the fourth column), and the
total spin projections onto the eþe− direction (the last
column). This figure is adapted from Ref. [16].
Now, we give an expression of the left-right asymmetry

ALR, which has several advantages such as it being
independent of detector efficiency asymmetries and its
measurement having negligible systematic error. It is
defined by

ALR ¼
σðPeþ ¼þ1;Pe− ¼−1Þ− σðPeþ ¼−1;Pe− ¼þ1Þ
σðPeþ ¼þ1;Pe− ¼−1Þþ σðPeþ ¼−1;Pe− ¼þ1Þ

or equivalently

ALR ¼ σRL − σLR
σLR þ σRL

ð3:4Þ

for a given process. For the process eþe− → ZZ considered
in this study, it is obtained by

ABorn
LR ¼ ðceLÞ4 − ðceRÞ4

ðceLÞ4 þ ðceRÞ4
¼ 0.40979 ð3:5Þ

at the Born level.
If eþe− is annihilated into a vector particle, only σLR and

σRL (J ¼ 1 configurations) have a nonzero contribution. In
this study, the σLL and σRR have the tiny values due to small
electron mass effects, so they can be neglected. In this case,
we can also rewrite the left-right asymmetry as [16]

ALR ¼ 1

Peff
Aobs
LR ¼ 1

Peff

"
σ−þ − σþ−
σ−þ þ σþ−

#
ð3:6Þ

in terms of the effective polarization Peff and the measured
left-right asymmetry Aobs

LR,

Peff ¼
ðPe− − PeþÞ
ð1 − Pe−PeþÞ

; Aobs
LR ¼ σ−þ − σþ−

σ−þ þ σþ−
; ð3:7Þ

where the corresponding cross sections are given by

σ−þ ¼ 1

4
½ð1þ jPeþ jjPe− jÞðσRL þ σLRÞ

þ ðjPeþ jþ jPe− jÞðσRL − σLRÞ(

σþ− ¼ 1

4
½ð1þ jPeþ jjPe− jÞðσRL þ σLRÞ

− ðjPeþ jþ jPe− jÞðσRL − σLRÞ(: ð3:8Þ

Another parameter, the effective luminosity Leff is given by

Leff

L
¼ 1

2
ð1 − Pe−PeþÞ; ð3:9Þ

FIG. 8. The longitudinal spin configurations in electron-positron
collisions. The thick arrow denotes the direction of motion of the
particle, and the double arrow denotes its spin direction.
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which basically reflects the fraction of particles that are
interacting.

IV. PARAMETER SETTINGS

A set of input parameters must be specified with their
corresponding numeric values, in order to provide consis-
tent higher-order predictions in the SM. We set the input
parameters as follows (see also Ref. [61]):

(i) Mass parameters are

me ¼ 0.510998928 MeV; mu ¼ 73.56 MeV;

mμ ¼ 105.6583715 MeV; md ¼ 73.56 MeV;

mτ ¼ 1.77682 GeV; ms ¼ 95 MeV;

MW ¼ 80.385 GeV; mc ¼ 1.275 GeV;

MZ ¼ 91.1876 GeV; mb ¼ 4.66 GeV;

Mh ¼ 125 GeV; mt ¼ 173.21 GeV:

Here, the u- and d-quark masses are calculated as a
effective parameters and are specially given for the
MZ-mass scale via the hadronic contributions

Δαð5ÞhadðMZÞ ¼
α
π

X

f¼u;c;d;s;b

Q2
f

"
ln
M2

Z

m2
f
−
5

3

#

≈ 0.027547: ð4:1Þ

According to Ref. [61], s-quark mass ms is an
estimate of a so-called current quark mass in the
MS scheme at scale μ ≈ 2 GeV. mc ≡mcðmcÞ is
the “running” mass in the MS scheme, and mb is the
ϒð1SÞ bottom quark mass.

(ii) The fine structure constant is

αð0Þ ¼ 1=137.03599907: ð4:2Þ

(iii) The Fermi constant is

GF ¼ 1.1663787ð6Þ × 10−5 GeV−2; ð4:3Þ

which is conventionally defined via the muon
lifetime.

The renormalization scale μR is fixed to center-of-mass
energy,

ffiffiffi
s

p
.

On the other hand, it is important to specify the
electromagnetic coupling α ¼ e2=ð4πÞ for the EW OðαÞ
corrections. For an obvious choice of α, there are two
different methods as follows: the fine-structure constant
αð0Þ in the Thompson limit [αð0Þ scheme] and the running
electromagnetic coupling αðQ2Þ at any energy scaleQ. It is
possible to use the value of αðM2

ZÞ ≈ 1=129 [αðM2
ZÞ

scheme], which is calculated by analyzing the experimental
ratio R ¼ σðe−eþ → hadronsÞ=σðe−eþ → μ−μþÞ [62,63].
Another choice is a Gμ scheme given by

αðGμÞ ¼
ffiffiffi
2

p
GμM2

W

π

"
1 −

M2
W

M2
Z

#
: ð4:4Þ

An effective value of α in this scheme is obtained as
αðGμÞ ≈ 1=132 from the Fermi constant Gμ.
The Gμ scheme provides the possibility of absorbing

some important universal corrections associated with the
renormalization of the weak mixing angle into leading-
order contributions. At next-to-leading order (NLO), the
αð0Þ and Gμ schemes are related by

αðGμÞ ¼ αð0Þ½1þ Δrð1Þ( þOðα3Þ; ð4:5Þ

where Δrð1Þ denotes the EW correction to muon decay at
NLO [48,64]. In Sirlin’s relation, the resummation is
achieved by the replacement ð1þ Δrð1ÞÞ → 1

ð1−Δrð1ÞÞ in

Eq. (4.5). One then obtains a much closer agreement
between the two schemes. This fact also reveals that the
Gμ scheme provides more accurate results above the MZ-
mass scale unless one applies the leading-log resummation
in the strict NLO α scheme.
Actually, the suitability of the scheme directly relates to

the nature of the considered process. In all cases, a common
coupling factor αn should be used in full gauge-invariant
subgroups; otherwise, significant consistency relations
disappear [65].
In this study, we present the results obtained by both the

αð0Þ scheme and Gμ scheme and discuss the difference due
to these choices.

V. NUMERICAL RESULTS AND DISCUSSIONS

We examine the Z-boson pair production in electron-
positron collision, by taking into account a full one-loop EW
OðαÞ corrections, including soft and hardQED radiation.We
provide the center-of-mass energy dependence of Born and
one-loop cross sections. To discuss the origin of the large
correction, we also present the relative QED and weak
corrections [as defined in Eq. (2.30)] as a function of the
center-of-mass energy. We include the spin polarization
effects of the initial electron and positron beams in the total
cross sections. We discuss how the considered process is
affected by beam polarization. The left-right asymmetry and
angular distributions are also presented.
First of all, for the numerical verification of Born-level

and hard photon bremsstrahlung calculations, we use three
different tools FEYNARTS&FORMCALC, CALCHEP, and
WHIZARD. In Table I, we give the results obtained by them
for Born-level process e−eþ → ZZ and hard process
e−eþ → ZZγ at

ffiffiffi
s

p
¼ 250, 500, and 1000 GeV. It is found

that Born-level results are an excellent agreement. The hard
photon bremsstrahlung results are in good agreement up to
five digits.
In Fig. 9, we plot the Born and one-loop cross sections

and the relative corrections as a function of center-of-mass
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energy. We also show the proposed energies of future
colliders with the vertical solid lines. The center-of-mass
energy ranges from 190 GeV to 1.5 TeV in steps of 10 GeV.
Since the colliding energy

ffiffiffi
s

p
starts near the threshold of

2mZ, the Born and one-loop cross sections increase quickly
with the opening of the phase space, reach a maximum
value, and then fall off rapidly with the increment of

ffiffiffi
s

p
.

This is also the expected behavior. The one-loop cross
section reaches a maximum of 1109.93 fm with δTotal ¼
−8.45% at

ffiffiffi
s

p
¼ 210 GeV and then decreases to 40.04 fb

with δTotal ¼ þ14.17% at
ffiffiffi
s

p
¼ 1.5 TeV. The pure QED

corrections make a positive contribution and increase from
−8.1% to þ31.15% when

ffiffiffi
s

p
goes from 200 GeV to

1.0 TeV. On the other hand, the weak corrections make a
negative contribution, and its relative correction decreases

from −4.63% to −17.69%. The QED and weak corrections
partially compensate each other, providing relative correc-
tions of around −12.73% at the first point and þ13.46% at
1.0 TeV. The EW radiative corrections significantly
increase with the

ffiffiffi
s

p
. This is due to the presence already

at the one-loop order, of large double and single logarithm
terms behaving like ðα=πÞ ln2 s and ðα=πÞ ln s.
These results show that the pure QED and weak

corrections are the same order of magnitude, so that both
are equally important. However, the QED correction makes
the main contribution to the total EW correction. The
relative radiative correction due to full EW one-loop
contributions in the vicinity

ffiffiffi
s

p
close to the threshold of

production ZZ becomes rather large. This effect is due to
the Coulomb singularity in Feynman diagrams, which
includes the instantaneous virtual photon exchange in
the loop that has a small spatial momentum. Overall, the
full EW one-loop corrections enhance the Born cross
section. While the energy-dependent structure of both
the QED and weak corrections is clearly visible, it almost
disappears in the total corrections at higher energies. For
proposed colliding energies of the future collider projects,
CEPC (at

ffiffiffi
s

p
¼ 240 GeV), FCCee (at

ffiffiffi
s

p
¼ 350 GeV),

CLIC (at
ffiffiffi
s

p
¼ 380 GeV), and ILC (at

ffiffiffi
s

p
¼ 500 GeV),

the unpolarized born-level cross sections reach 1051.44
(with δTotal ¼ −2.20%), 588.23 (with δTotal ¼ þ4.73%),
513.82 (with δTotal ¼ þ5.70%), and 315.46 fb (with
δTotal ¼ þ8.66%), respectively. The production rate of
e−eþ → ZZ is larger by around 1 order of magnitude than
from the γγ-collision mode (see Refs. [66,67]).
In Fig. 10, we plot the virtual, soft, and hard photonic

corrections as a function of
ffiffiffi
s

p
. The virtual corrections

decrease from 0.24 to -0.06, while the soft bremsstrahlung
corrections remain nearly constant with a value of -0.91
with the increment of

ffiffiffi
s

p
. However, hard bremsstrahlung

corrections, i.e., collinear and noncollinear parts, start from

TABLE I. The Born and hard photon bremsstrahlung cross
sections obtained by FEYNARTS&FORMCALC (FA&FC), WHI-

ZARD, and CALCHEP.
ffiffiffi
s

p
250 GeV 500 GeV 1000 GeV

σBornðe−eþ → Z0Z0Þ (fb)
FA&FC 991.500(2) 315.463(9) 79.592(8)
WHIZARD 991.501(5) 315.464(3) 79.595(1)
CALCHEP 991.50 315.46 79.593

σhard−γðe−eþ → Z0Z0γÞ (fb)
FA&FC 144.443(4) 52.751(9) 14.852(4)
WHIZARD 144.457(1) 52.739(5) 14.851(3)
CALCHEP 144.46 52.758 14.859

FIG. 9. Born and one-loop cross sections as a function of
ffiffiffi
s

p
.

The relative corrections in a percentage is also shown at the
bottom panel. The vertical solid lines show the proposed energies
for various future colliders.

FIG. 10. The effect of different individual contributions on
cross sections as a function of

ffiffiffi
s

p
.
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their minimum values and then increase rapidly with the
increment of

ffiffiffi
s

p
. Consequently, the virtþ soft and hard

bremsstrahlung corrections are partially canceled, as they
are combined into the full EW corrections. The soft and
hard bremsstrahlung corrections make the negative and
positive dominant contributions to the full EW corrections,
respectively.
For αð0Þ and Gμ schemes, we present the ratios of

cross sections in Fig. 11(a) and the relative corrections in
Fig. 11(b) as a function of

ffiffiffi
s

p
, respectively. In Table II, we

also provide our numerical results obtained in the αð0Þ and
Gμ schemes for

ffiffiffi
s

p
¼ 250, 500, and 1000 GeV. The Born

cross section increase by about 7.39% in the Gμ scheme as
compared to the αð0Þ scheme. When

ffiffiffi
s

p
goes up from

200 GeV to 1.5 TeV, the one-loop cross section in the Gμ

scheme is from 6.58% to 7.69% larger than ones in the αð0Þ
scheme. The QED relative corrections in the Gμ scheme
increase by up to about 4%, while the weak relative
corrections decrease by up to about 5%, as compared to
the αð0Þ scheme. However, the difference between total
relative corrections in considered schemes is 1%, so small
that it can be considered as a theoretical uncertainty.

Now, we examine the initial beam polarization depend-
ence of the Born and the one-loop cross sections (σPeþPe−

Born

and σ
PeþPe−

1-loop ) on
ffiffiffi
s

p
. Also, we present the total relative

corrections in order to see effect of polarization configu-
rations on the EW corrections. Figure 12(a) shows unpo-
larized and completely polarized initial beams cases. Here,
we use the following notation: σRL denotes the total cross
section with the 100% right-handed polarized positron
(Peþ ¼ þ1) and the 100% left-handed polarized electron
(Pe− ¼ −1) beams, ðeþR ; e−LÞ. Others can be defined analo-
gously. We note that σLL and σRR are very small [Oð10−10Þ
pb] as expected and are thus not included here. All curves
for polarized and unpolarized cases increase quickly with
the opening of the phase space, reach a maximum value,
and then fall off rapidly with the increment of

ffiffiffi
s

p
. Their

maximum values are reached at around
ffiffiffi
s

p
∼ 210 GeV.

The one-loop polarized cross sections σLR1-loop and σ
RL
1-loop can

be enhanced by about factors of 1.5 and 2.5, respectively,
compared with the unpolarized case. For instance, atffiffiffi
s

p
¼ 250 GeV, σRLBorn reaches a value of 2.80 pb, yielding

a total relative correction of about −10.71%. Atffiffiffi
s

p
¼ 250 GeV, σLRBorn reaches a value of 1.17 pb, yielding

a total relative correction of þ22.20%. While σRLBorn is
around two times larger than σRLBorn, the relative corrections
of the former are smaller than that of the latter. Namely,
ðeþLe−RÞ polarization case has larger EW radiative correc-
tions than other cases.
Figure 12(b) shows the results for various polarization

degrees of the initial beams, ðPeþ ; Pe−Þ ¼ ð0.0;−0.8Þ;
ðþ0.3;−0.8Þ; ðþ0.6;−0.8Þ, proposed by the future col-
liders. The cross sections at both Born and one-loop levels
are sorted according to various polarization degrees of

(a)

(b)

FIG. 11. The ratios of cross sections and relative corrections in
two different schemes, αð0Þ and Gμ schemes, as a function of

ffiffiffi
s

p
.

TABLE II. Born and one-loop cross sections and relative
corrections of eþe− → Z0Z0 in the αð0Þ scheme and Gμ scheme
for various values of

ffiffiffi
s

p
.

ffiffiffi
s

p
250 GeV 500 GeV 1000 GeV

σðeþe− → Z0Z0Þ (fb)
σαð0ÞBorn

991.50 315.46 79.59

σ
Gμ

Born
1064.83 338.88 85.48

σαð0Þ1-loop
981.59 342.77 90.31

σ
Gμ

1-loop
1051.67 368.51 97.24

δðeþe− → Z0Z0Þ (%)
δαð0ÞQED

þ6.35 þ19.50 þ31.15

δ
Gμ

QED
þ6.39 þ20.38 þ32.27

δαð0ÞWeak
−7.35 −10.85 −17.69

δ
Gμ

Weak
−7.63 −11.61 −18.52

δαð0ÞTotal
−1.00 þ8.65 þ13.46

δ
Gμ

Total
−1.24 þ8.77 þ13.75
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initial beams as follows: σRL > σþ0.6;−0.8 > σþ0.3;−0.8 >
σ0.0;−0.8 > σLR > σUU. There appears a similar energy
dependence behavior in polarized cases as in the unpolar-
ized case. The one-loop cross section with the polarization
degrees of ðPeþ ; Pe−Þ ¼ ðþ0.6;−0.8Þ, i.e., σðþ0.6;−0.8Þ

1-loop , has
a maximum of 2.05 pb, providing a total relative cor-
rection of −14.59%. When

ffiffiffi
s

p
goes from 240 GeV

to 1.0 TeV, the relative corrections vary from about
−11% to þ1.69%;þ0.75%, and þ0.14% for ðPeþ ; Pe−Þ ¼
ð0.0;−0.8Þ; ðþ0.3;−0.8Þ; ðþ0.6;−0.8Þ, respectively. We
obtain the following results for proposed polarization cases
by the future collider projects: σþ0.3;−0.8

1-loop ¼ 1.51 pb with

δþ0.3;−0.8
Total ¼ −9.90% at

ffiffiffi
s

p
¼ 250 GeV (ILC) and σ0;−0.81-loop ¼

0.66 pb with δ0;−0.8Total ¼ −3.94% at
ffiffiffi
s

p
¼ 380 GeV (CLIC).

In Figs. 13 and 14, the Born cross section and the total
relative correction are also presented in the plane of
polarization degrees of the incoming beams ðPeþ ; Pe−Þ
for

ffiffiffi
s

p
¼ 250 GeV and

ffiffiffi
s

p
¼ 500 GeV, respectively. The

Peþ and Pe− range from −1 to þ1. We also show some
values by the contour lines. The beam polarization depend-

ence of the relative correction is calculated from δ
PeþPe−

Total ¼
ðσPeþPe−

1-loop =σPeþPe−

Born − 1Þ by using Eq. (3.3). The Born cross
section reaches its larger values at the left top corner

(a) (b)

FIG. 12. Polarized Born and one-loop cross sections as a function of
ffiffiffi
s

p
.

(a) (b)

FIG. 13. Beam polarization effects on the Born cross section and on the total relative correction for
ffiffiffi
s

p
¼ 250 GeV. The color heat

maps correspond to the values of born cross section (left plot) and the total EW relative correction (right plot). The asterisk denotes the
unpolarized point ðPeþ ; Pe−Þ ¼ ð0; 0Þ.
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(0 < Peþ ≤ þ1 and −1 ≤ Pe− < 0), whereas it has smaller
values at the right top and left bottom corners. As expected,
it has a maximum value at point ðPeþ ; Pe−Þ ¼ ðþ1;−1Þ,
namely, 100% left-handed polarized electron and 100%
right-handed polarized positron. The total relative correc-
tion reaches positive and larger values at the right bottom
corner (−1 ≤ Peþ < 0 and 0 < Pe− ≤ þ1). As the values of
polarization degrees approach Pe− → þ1 and Peþ → −1,
the relative correction increases. Particularly, significant
positive corrections are observed in the region below the
0.10 contour line. Together with the larger cross sections,
smaller systematic errors can be expected for the cross
section measurement with the polarized beams than in the
unpolarized case.
A convenient observable is the left-right asymmetry when

applying polarized beams. This asymmetry is especially
important for high-precision measurements. Therefore, we
present the left-right asymmetry of the cross sections, which
is defined in Eq. (3.4), as a function of center-of-mass energy
in Fig. 15. For Born level, the left-right asymmetry remains

constant at 0.40979 with the increment of
ffiffiffi
s

p
. This value is

exactly the same as the result calculated theoretically in
Eq. (3.5). On the other hand, at one-loop level, the left-right
asymmetry decreases from 0.2616 to 0.2065, as the

(a) (b)

FIG. 14. Same as in Fig. 13 but for
ffiffiffi
s

p
¼ 500 GeV.

FIG. 15. The left-right asymmetry as a function of
ffiffiffi
s

p
.

(a)

(b)

FIG. 16. The left-right asymmetry in the plane of polarization
degrees of the incoming beams ðPeþ ; Pe−Þ for

ffiffiffi
s

p
¼ 500.
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center-of-mass energy goes up from 190 to 1500 GeV.
Consequently, the radiative corrections can conveniently
be described by the one-loop induced deviation from its
value at Born level.
In Figs. 16(a) and 16(b), we plot the left-right asymmetry

of the cross sections Aobs
LR , which is defined in Eq. (3.6), as a

function of polarization degrees of ðPeþ ; Pe−Þ. Some values
are also shown with contour lines. We note that the results
are symmetric with respect to the exchange of Peþ ↔ Pe− ,
since they only appear by their absolute values in the
Eq. (3.8). It is obvious that the left-right asymmetry Aobs

LR
increases as both jPeþ j and jPe− j run from 0 to 1. The maxi-
mum values are reached at the point ðjPeþ j; jPe− jÞ ¼ ð1; 1Þ.
These values are 0.40979 and 0.2657 for Born and one-
loop levels, respectively. In these figures, we also mark
some special points by an asterisk.
Table III presents the numerical values of the polarized

cross sections, the relative corrections, and the left-right
asymmetry Aobs

LR for various polarization degrees of the

initial beams. The values of effective polarization and
effective luminosity, which are calculated by Eqs. (3.7)
and (3.9), respectively, are also given. It is clear that the
production rate can be enhanced if Pe− and Peþ have
negative and positive signs, respectively. In particular, the
longitudinally ðPeþ ; Pe−Þ ¼ ðþ1;−1Þ polarizations of the
initial beams significantly improve the cross section.
Figures 17(a) and 17(b) show the differential cross

sections at Born and one-loop levels as a function of the
angle between the coming electron and the outgoing Z
boson for

ffiffiffi
s

p
¼ 250 and 500 GeV, respectively. The

angular dependence of the QED, weak, and total EW
relative corrections is also shown in the same figures. For
Born and one-loop cross sections, the angular distribution
peaks significantly in the (symmetrically) forward and
backward directions. The relative corrections modify some-
what the Born angular distribution because their influence
is larger in the central region. The total corrections reach
their maximumvalues,when cos θ goes to the extreme points

TABLE III. Born and one-loop cross sections, relative correction, and left-right asymmetry for various polarization configurations at
ffiffiffi
s

p
¼ 250. Here, we define the scaling factor as RPeþPe−

X ¼ σ
PeþPe−

X =σ0;0X , where X stands for Born or one-loop level.

ðPeþ ; Pe−Þ Peff Leff=L Aobs
LRðBornÞ Aobs

LRð1-loopÞ σBorn (fb) σ1-loop (fb) δTotalð%Þ RPeþPe−

Born RPeþPe−

1-loop

(0, 0) 0 0.50 0 0 991.50 981.59 −0.99% 1.00 1.00
ðþ1.0;−1.0Þ −1.00 1.00 0.4098 0.2715 2795.61 2496.35 −10.71% 2.82 2.54
ð−1.0;þ1.0Þ þ1.00 1.00 0.4098 0.2715 1170.39 1430.25 þ22.20% 1.18 1.46
ð0.0;−1.0Þ −1.00 0.50 0.4098 0.2715 1397.81 1248.17 −10.70% 1.41 1.27
ð0.0;−0.8Þ −0.80 0.50 0.3278 0.2172 1316.54 1194.87 −9.24% 1.33 1.22
ð0.0;þ0.8Þ þ0.80 0.50 0.3278 0.2172 666.46 768.43 þ15.30% 0.67 0.78
ðþ0.3;−0.8Þ −0.89 0.62 0.3635 0.2409 1676.40 1510.42 −9.90% 1.69 1.54
ð−0.3;þ0.8Þ þ0.89 0.62 0.3635 0.2409 782.52 924.07 þ18.09% 0.79 0.94
ðþ0.6;−0.8Þ −0.95 0.74 0.3876 0.2568 2036.25 1825.98 −10.33% 2.05 1.86
ð−0.6;þ0.8Þ þ0.95 0.74 0.3876 0.2568 898.59 1079.71 þ20.16% 0.91 1.10

(a) (b)

FIG. 17. Born and one-loop angular distributions for (a)
ffiffiffi
s

p
¼ 250 GeV and (b)

ffiffiffi
s

p
¼ 500 GeV.

MEHMET DEMIRCI and A. BAHA BALANTEKIN PHYS. REV. D 106, 073003 (2022)

073003-14



−1 or þ1 for
ffiffiffi
s

p
¼ 250 and zero point for

ffiffiffi
s

p
¼ 500.

Namely, the Z bosons are dominantly produced in the
forward and backward directions for

ffiffiffi
s

p
¼ 250, whereas

they are produced in the central region for
ffiffiffi
s

p
¼ 500.

Therefore, it will be more likely to observe them in these
collision regions. For all values of cos θ, theQEDcorrections
make positive contributions, while the weak corrections
supply negative contributions. The same behavior is
observed as in the total cross sections. The QED and weak
contributions are partially offset by each other into EW
contributions. While both corrections show a significant
dependence on cos θ separately, this decreases for full EW
corrections. When cos θ runs from 0 to þ0.95 or −0.95, atffiffiffi
s

p
¼ 250 GeV, the total relative correction δTotal increases

from −3.71% to 4.30%, while it decreases 12.2% to 7.7%
at

ffiffiffi
s

p
¼ 500 GeV.

VI. SUMMARY AND CONCLUSIONS

For further sensitivity testing of the SM, as well as to look
for clues on the BSM, high-precision calculations should be
performed. At least, a full set of one-loop corrections in the
production channels must be included to ensure adequate
accuracy. However, the extent to which higher-order com-
putations beyond one-loop order will be needed depends
largely on the expected experimental accuracy.
In this work, by considering a full set of one-loop EW

corrections, we have investigated the Z-boson pair pro-
duction at electron-positron collisions. The UV divergences
have been organized by dimensional regularization on the
OS scheme. Furthermore, the IR divergences have been
removed by the inclusion of the soft and hard bremsstrah-
lung corrections. Also, the collinear divergences have been
corrected by the phase-space slicing method. We have
verified the stability of our results against the angular and
soft cutoff parameters Δc, Δs, as well as the IR regulator
mγ . We have also compared the results from WHIZARD and
CALCHEP for the Born and hard photon bremsstrahlung
cross sections with the results of the packages used in this
work and obtained very good agreement (up to six digits).
We have carried out the numerical evaluation for the αð0Þ

and Gμ schemes. The differences between these schemes
for the QED and weak relative corrections are about 4%
and 5%, respectively, whereas this is 1% for the total

relative correction. This can be considered as a theoretical
uncertainty.
Our results show that the Born cross section is commonly

increased by the one-loop EW radiative corrections and the
total relative correction is typically up to about 10%.Thepure
QED and weak corrections are the same order of magnitude,
so both are important for precision calculation. TheQED and
weak contributions are partially offset by each other into EW
contributions. However, the QED correction makes the main
contribution to the total EW correction.
Moreover, we have investigated the spin polarization

effects of the initial beams on the total cross sections. We
have observed that the radiative corrections have a large
polarization dependence. As a result, an improvement has
been observed by a factor of 2.5 with the 100% right-
handed polarized positron and the 100% left-handed
polarized electron beams, compared with the unpolarized
case. The left-right asymmetry and angular distributions
have also presented. The Born and one-loop angular
distributions are symmetric and strongly peaked in the
forward and backward directions. For all angles, the QED
corrections make positive contributions, while the weak
corrections supply negative contributions. The relative
corrections slightly change the Born angular distribution,
as their effect is usually larger in the central region.
In summary, an analysis of the one-loop EW radiative

corrections to Z-boson pair production in electron-positron
collisions has been carried out in the framework of the SM.
The initial beam effects on the cross sections have been
discussed in detail. It has been clearly shown that one-loop
EW radiative corrections significantly alter the lowest-
order results and should therefore be fully accounted for a
realistic description of experiments at future collider
energies. Our results provide precise predictions for
Z-boson pair production, which can be tested as experi-
ments achieve higher accuracy.

ACKNOWLEDGMENTS

The work of M. D. was supported by the Scientific and
Technological Research Council of Turkey (TUBITAK) in
the framework of 2219-International Postdoctoral Research
Fellowship Program. Thisworkwas also supported in part by
the National Science Foundation Grant No. PHY-2108339.

[1] S. L. Glashow, Nucl. Phys. 22, 579 (1961).
[2] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
[3] A. Salam, Conf. Proc. C 680519, 367 (1968).
[4] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1

(2012).

[5] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[6] G. Aad et al. (ATLAS and CMS Collaborations), J. High
Energy Phys. 08 (2016) 045.

[7] P. Bambade et al., arXiv:1903.01629.

BEAM POLARIZATION EFFECTS ON Z-BOSON PAIR … PHYS. REV. D 106, 073003 (2022)

073003-15

https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1007/JHEP08(2016)045
https://doi.org/10.1007/JHEP08(2016)045
https://arXiv.org/abs/1903.01629


[8] H. Baer et al., arXiv:1306.6352.
[9] H. Aihara et al., arXiv:1901.09829.

[10] E. Accomando et al. (CLIC Physics Working Group), arXiv:
hep-ph/0412251.

[11] The CEPC Study Group, arXiv:1811.10545.
[12] M. Benedikt et al., Report No. CERN-ACC-2019-0007,

CERN, 2019.
[13] A. Abada et al. Eur. Phys. J. Special Topics 228, 261 (2019).
[14] A. A. Pankov, A. V. Tsytrinov, and N. Paver, Phys. Rev. D

73, 115005 (2006).
[15] P. Osland, A. A. Pankov, and A. V. Tsytrinov, Eur. Phys. J. C

67, 191 (2010).
[16] G. Moortgat-Pick et al., Phys. Rep. 460, 131 (2008).
[17] R. W. Brown and K. O. Mikaelian, Phys. Rev. D 19, 922

(1979).
[18] K. J. F. Gaemers and G. J. Gounaris, Z. Phys. C 1, 259

(1979).
[19] A. Denner and T. Sack, Nucl. Phys. B306, 221 (1988).
[20] G. J. Gounaris, J. Layssac, and F. M. Renard, Phys. Rev. D

67, 013012 (2003).
[21] G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 476,

256 (2000).
[22] LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak

Working Group, SLD Electroweak Group, SLD Heavy
Flavor Group Collaborations, arXiv:hep-ex/0312023.

[23] P. Achard et al. (L3 Collaboration), Phys. Lett. B 572, 133
(2003).

[24] S. Jadach, W. Płaczek, and B. F. L. Ward, Phys. Rev. D 56,
6939 (1997).

[25] G. J. Gounaris, J. Layssac, and F. M. Renard, Phys. Rev. D
61, 073013 (2000).

[26] R. Rahaman and R. K. Singh, Eur. Phys. J. C 77, 521
(2017).

[27] S. C. İnan and A. V. Kisselev, J. High Energy Phys. 10
(2021) 121.

[28] S. Spor, E. Gurkanli, and M. Köksal, Nucl. Phys. B979,
115785 (2022).

[29] J. Alcaraz, M. A. Falagán, and E. Sánchez, Phys. Rev. D 61,
075006 (2000).

[30] G. J. Gounaris, J. Layssac, and F. M. Renard, Phys. Rev. D
62, 073013 (2000).

[31] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.
03 (2013) 128.

[32] M. Demirci and A. I. Ahmadov, Phys. Rev. D 94, 075025
(2016).

[33] M. Demirci, Phys. Rev. D 100, 075006 (2019).
[34] M. Demirci, Nucl. Phys. B961, 115235 (2020).
[35] M. Demirci and M. F. Mustamin, Phys. Rev. D 103, 113004

(2021).
[36] J. J. Su, W. G. Ma, R. Y. Zhang, S. M. Wang, and L. Guo,

Phys. Rev. D 78, 016007 (2008).

[37] F. Boudjema, Le D. Ninh, S. Hao, and M.M. Weber, Phys.
Rev. D 81, 073007 (2010).

[38] S. Heinemeyer and C. Schappacher, Eur. Phys. J. C 76, 220
(2016).

[39] S. Heinemeyer and C. Schappacher, Eur. Phys. J. C 78, 536
(2018).

[40] L. He-Yi, Z. Ren-You, Ma Wen-Gan, J. Yi, and L. Xiao-
Zhou, Chin. Phys. C 46, 043105 (2022).

[41] J. Küblbeck, M. Böhm, and A. Denner, Comput. Phys.
Commun. 60, 165 (1990).

[42] T. Hahn, Comput. Phys. Commun. 140, 418 (2001).
[43] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun.

118, 153 (1999).
[44] T. Hahn, Comput. Phys. Commun. 168, 78 (2005).
[45] W. Kilian, T. Ohl, and J. Reuter, Eur. Phys. J. C 71, 1742

(2011).
[46] M. Moretti, T. Ohl, and J. Reuter, arXiv:hep-ph/0102195.
[47] A. Belyaev, N. D. Christensen, and A. Pukhov, Comput.

Phys. Commun. 184, 1729 (2013).
[48] A. Denner, Fortschr. Phys. 41, 307 (1993).
[49] G. ’t Hooft and M. Veltman, Nucl. Phys. B44, 189

(1972).
[50] T. Kinoshita, J. Math. Phys. (N.Y.) 3, 650 (1962).
[51] T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549

(1964).
[52] J. Schwinger, Phys. Rev. 76, 790 (1949).
[53] K. Fabricius, G. Kramer, G. Schierholz, and I. Schmitt, Z.

Phys. C 11, 315 (1982).
[54] G. Kramer and B. Lampe, Fortschr. Phys. 37, 161 (1989).
[55] H. Baer, J. Ohnemus, and J. F. Owens, Phys. Rev. D 40,

2844 (1989).
[56] B. W. Harris and J. F. Owens, Phys. Rev. D 65, 094032

(2002).
[57] G. ’t Hooft and M. Veltman, Nucl. Phys. B153, 365 (1979).
[58] U. Baur, S. Keller, and D. Wackeroth, Phys. Rev. D 59,

013002 (1998).
[59] T. Omori, Report No. KEK-PREPRINT-98-237, KEK,

1999.
[60] K. I. Hikasa, Phys. Rev. D 33, 3203 (1986).
[61] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2020, 083C01 (2020).
[62] H. Burkhardt and B. Pietrzyk, Phys. Lett. B 356, 398

(1995).
[63] S. Eidelman and F. Jegerlehner, Z. Phys. C 67, 585 (1995).
[64] A. Sirlin, Phys. Rev. D 22, 971 (1980).
[65] A. Denner and S. Dittmaier, Phys. Rep. 864, 1 (2020).
[66] G. J. Gounaris, J. Layssac, P. I. Porfyriadis, and F. M.

Renard, Eur. Phys. J. C 13, 79 (2000).
[67] D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya,

W. von Schlippe, and E. Uglov, Phys. Part. Nucl. Lett. 14,
811 (2017).

MEHMET DEMIRCI and A. BAHA BALANTEKIN PHYS. REV. D 106, 073003 (2022)

073003-16

https://arXiv.org/abs/1306.6352
https://arXiv.org/abs/1901.09829
https://arXiv.org/abs/hep-ph/0412251
https://arXiv.org/abs/hep-ph/0412251
https://arXiv.org/abs/1811.10545
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1103/PhysRevD.73.115005
https://doi.org/10.1103/PhysRevD.73.115005
https://doi.org/10.1140/epjc/s10052-010-1272-z
https://doi.org/10.1140/epjc/s10052-010-1272-z
https://doi.org/10.1016/j.physrep.2007.12.003
https://doi.org/10.1103/PhysRevD.19.922
https://doi.org/10.1103/PhysRevD.19.922
https://doi.org/10.1007/BF01440226
https://doi.org/10.1007/BF01440226
https://doi.org/10.1016/0550-3213(88)90691-8
https://doi.org/10.1103/PhysRevD.67.013012
https://doi.org/10.1103/PhysRevD.67.013012
https://doi.org/10.1016/S0370-2693(00)00197-0
https://doi.org/10.1016/S0370-2693(00)00197-0
https://arXiv.org/abs/hep-ex/0312023
https://doi.org/10.1016/j.physletb.2003.08.023
https://doi.org/10.1016/j.physletb.2003.08.023
https://doi.org/10.1103/PhysRevD.56.6939
https://doi.org/10.1103/PhysRevD.56.6939
https://doi.org/10.1103/PhysRevD.61.073013
https://doi.org/10.1103/PhysRevD.61.073013
https://doi.org/10.1140/epjc/s10052-017-5093-1
https://doi.org/10.1140/epjc/s10052-017-5093-1
https://doi.org/10.1007/JHEP10(2021)121
https://doi.org/10.1007/JHEP10(2021)121
https://doi.org/10.1016/j.nuclphysb.2022.115785
https://doi.org/10.1016/j.nuclphysb.2022.115785
https://doi.org/10.1103/PhysRevD.61.075006
https://doi.org/10.1103/PhysRevD.61.075006
https://doi.org/10.1103/PhysRevD.62.073013
https://doi.org/10.1103/PhysRevD.62.073013
https://doi.org/10.1007/JHEP03(2013)128
https://doi.org/10.1007/JHEP03(2013)128
https://doi.org/10.1103/PhysRevD.94.075025
https://doi.org/10.1103/PhysRevD.94.075025
https://doi.org/10.1103/PhysRevD.100.075006
https://doi.org/10.1016/j.nuclphysb.2020.115235
https://doi.org/10.1103/PhysRevD.103.113004
https://doi.org/10.1103/PhysRevD.103.113004
https://doi.org/10.1103/PhysRevD.78.016007
https://doi.org/10.1103/PhysRevD.81.073007
https://doi.org/10.1103/PhysRevD.81.073007
https://doi.org/10.1140/epjc/s10052-016-4038-4
https://doi.org/10.1140/epjc/s10052-016-4038-4
https://doi.org/10.1140/epjc/s10052-018-6009-4
https://doi.org/10.1140/epjc/s10052-018-6009-4
https://doi.org/10.1088/1674-1137/ac424f
https://doi.org/10.1016/0010-4655(90)90001-H
https://doi.org/10.1016/0010-4655(90)90001-H
https://doi.org/10.1016/S0010-4655(01)00290-9
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://arXiv.org/abs/hep-ph/0102195
https://doi.org/10.1016/j.cpc.2013.01.014
https://doi.org/10.1016/j.cpc.2013.01.014
https://doi.org/10.1002/prop.2190410402
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1103/PhysRev.76.790
https://doi.org/10.1007/BF01578281
https://doi.org/10.1007/BF01578281
https://doi.org/10.1002/prop.2190370302
https://doi.org/10.1103/PhysRevD.40.2844
https://doi.org/10.1103/PhysRevD.40.2844
https://doi.org/10.1103/PhysRevD.65.094032
https://doi.org/10.1103/PhysRevD.65.094032
https://doi.org/10.1016/0550-3213(79)90605-9
https://doi.org/10.1103/PhysRevD.59.013002
https://doi.org/10.1103/PhysRevD.59.013002
https://doi.org/10.1103/PhysRevD.33.3203
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/0370-2693(95)00820-B
https://doi.org/10.1016/0370-2693(95)00820-B
https://doi.org/10.1007/BF01553984
https://doi.org/10.1103/PhysRevD.22.971
https://doi.org/10.1016/j.physrep.2020.04.001
https://doi.org/10.1007/s100520000307
https://doi.org/10.1134/S1547477117060061
https://doi.org/10.1134/S1547477117060061

