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Beam polarization effects on Z-boson pair production
at electron-positron colliders: A full one-loop analysis
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We present high-precision predictions for Z boson-pair production via electron-positron collisions by
taking into account a full set of one-loop order scattering amplitudes, i.e., electroweak (EW) corrections
together with soft and hard QED radiation. We provide a detailed numerical evaluation, from full EW
corrections to pure QED corrections, specifically focusing on the effect of initial beam polarization on the
production rate. The left-right asymmetry and angular distributions are also presented. The radiative
corrections are largely affected by initial beam polarizations. We get an improvement of around three times
with completely polarized beams of e} and ej;. We find that the radiative corrections can sizably modify the
production rate, typically yielding a total relative correction up to a few tens of a percent. This implies that
the full EW corrections are required for e"e™ — ZZ to match with percent-level accuracy.
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I. INTRODUCTION

The Standard Model (SM) [1-3] has been well estab-
lished as a self-consistent gauge theory. Starting with the
discovery of the Higgs boson [4,5] a decade ago, we have
increasing confidence in the consistency of the Standard
Model (SM) from the LHC experiments [6]. Despite its
many successes, there are remaining questions (such as the
hierarchy problem, neutrino masses, dark matter, the strong
CP problem, and the generation of a baryon asymmetry)
which require beyond the SM (BSM) physics. Current and
future experiments will continue to not only make sensi-
tivity tests of the SM but also to search for BSM physics to
meet the challenges listed above.

Proton-proton colliders have significant backgrounds,
which makes it harder to explore rare processes. On the
other hand, electron-positron colliders have cleaner back-
grounds and offer important opportunities to precisely
observe the interesting phenomena. Various proposals for
such colliders exist; the International Linear Collider (ILC)
[7-9] is one of the proposed linear colliders, which would
be operated in the c.m. energies of /s = 250-500 GeV
(extendable up to a 1 TeV) with collision modes of e~e™,
e"e , e y,and yy. At the ILC, it is also expected to use the
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electron and positron beams with 80% and 30% polar-
izations, respectively. Another linear collider is the
Compact Linear Collider (CLIC) [10], which is foreseen
to be operated a TeV scale high-luminosity capacity, in
stages at energies of /s = 380 GeV, 1.5 TeV, and 3 TeV,.
Furthermore, there are circular collider projects such as the
Circular Electron-Positron Collider (CEPC) [11] and
Future Circular Collider (FCC) [12]. The CEPC is pro-
jected with a circumference of 100 km and to have a
maximum of /s =240 GeV. The FCC project [12],
hosted in a 100 km tunnel at CERN, is considering three
collision types: FCC-ee, for electron-positron collisions;
FCC-hh, for hadron-hadron collisions; and FCC-eh, for
electron-hadron collisions. The FCC-ee [13], running at
different energies to research the production of Z, W, H and
11, is expected to be a Higgs, electroweak, and top factory
with high luminosity. The above lepton colliders are
expected to offer the unique opportunities for precise
measurements and signs of new physics, appearing in
the form of small deviations from the SM.

In parallel, high-precision predictions from theory are
required to get more precise measurements for clues of the
BSM physics or more sensitivity tests of the SM. This
means that it is necessary to go beyond the lowest-order
calculations for the most production channels. At least,
one-loop order corrections in the production channels must
be included to get adequate accuracy. However, the extent
to which higher-order computations beyond one-loop order
will be needed depends largely on the expected exper-
imental accuracy. In the present study, we focus on the
complete one-loop-order electroweak (EW) corrections and
beam polarization effects. The beam polarization has the
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ability to improve the corresponding signal-to-background
ratio along with the sensitivity of the observables [14—16].
Furthermore, the CP-violating couplings can be separated
from CP-conserving ones using beam polarization [16].

The main production reaction of the Z-boson pairs at the
e~e™ colliders are e"e™ — ZZ, which include the Born-
level contributions from electron exchanges via ¢ and u—
channels. Since there are no Yukawa or QCD contributions,
the identification of the EW corrections would be very
clean. The process at Born order was studied by
Refs. [17,18] a long time ago. Next, one-loop EW radiative
corrections were investigated by Ref. [19]. However, their
results directly depend on the soft cutoff parameter, since
the hard photon correction is not taken into account. In
addition to the above work, in Ref. [20], the high-energy
behavior of the various helicity amplitudes was investigated
considering all of the Minimal Supersymmetric Standard
Model contributions.

Furthermore, neutral gauge boson production via electron-
positron collisions have received a significant experimental
[21-23] and theoretical [24-28] interest, motivated by the
search for anomalous neutral gauge boson self-couplings. In
particular, Z-pair events provide an opportunity for the
investigation of possible triple neutral gauge boson cou-
plings, ZZy and ZZZ [29-31], not allowed at tree level in
the SM.

In the present work, we examine the Z-boson pair
production via electron-positron collisions in the SM,
including a full set of one-loop-order EW radiative cor-
rections, i.e., the EW corrections together with soft and
hard real photon emission. We provide a detailed numerical
discussion with particular emphasis on the effects of initial
beam polarization. Moreover, we consider the decompo-
sition of the EW corrections into the pure QED photonic
corrections along with the corresponding counterterms and
the remaining weak corrections. The left-right asymmetry
and angular distributions are also presented at the Born and
one-loop orders.

The rest of this paper is organized as follows. In Sec. II,
we provide some useful analytical expressions together
with the relevant Feynman diagrams and amplitudes.
General shapes of the real photon emission and the virtual
corrections are also discussed. In Sec. III, we give briefly
information on initial beam polarization. In Sec. IV, we give
a set of input parameters used in this study. In Sec. V, we
present a detailed analysis of numerical results. A com-
parison with the results of other approaches is also given.
Finally, in Sec. VI, we present a summary and conclusions.

II. THEORETICAL SETUP FOR A CROSS
SECTION

We first present our notation regarding the Born ampli-
tudes and one-loop EW contributions. The relevant pro-
duction process is expressed as

e (pr.o1)e™(pr.02) = Z(ki. M) Z(ky, 42),  (2.1)
where o, 0,5, 4, and 1, denote the helicities of initial
positron and electron and outgoing Z bosons, respectively.
The helicities take the values A, , = 0,+1and 6y, = +1/2.
Polarization vectors of outgoing Z bosons are denoted by
g,(ky, ;) and g, (k,, 4,). Neglecting the electron mass, the
momenta in the center of mass of the initial state system are
given by

D1 :g(l,(),(),—l),
)2 :\/75(1,0,0,—1-1),
ky :§(1,—Ksin0,0, —Kkcos0),
ky :\/75(1,+Ksin9, 0, +«kcos @), (2.2)
where
KI\/]—ij%, (2.3)

and /s and 0 denotes the center-of-mass energy and the
scattering angle, respectively. For further use, we also note
the Mandelstam variables:

s = (p1+ p2)?* = (ki + k)%,
t=(ky — p1)* = (ky — p2)*,

u=(ky = pi)* = (k1 = p2)*. (2.4)
The Z-boson polarization vectors are given by
1 .
é(k,A=+1)= —\ﬁ(o, 1,4,0),
1

8” k - = k77 ’ 7E )

bk =0)= 1 (k. 0.0.E)

1

e (k,A=-1) :\ﬁ(o,l,—i,O), (2.5)

which obey the condition ¢“k, = 0. The sum over physical
polarization states of the Z boson is given by

k k,
g e, (k, ) (k. 2) = =g, +—5. (2.6)
7

M3

The analytical and numerical evaluations are carried out
by using the following tools." The Feynman diagrams and

'Using the same tools, many calculations have been carried out
with significant results (see, e.g., Refs. [32-35] by one of us and
Refs. [36-40] by others).
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amplitudes are created by using FEYNARTS [41,42]. The
algebraic evaluation for amplitudes is provided technically
in the same way as defined in Ref. [35]. Then, the squaring
of amplitudes, the simplifying of fermion chains and
the numerical computation are carried out by using
FORMCALC [43]. The scalar loop integrals are calculated
via LOOPTOOLS [43]. The phase-space integrations are
calculated by using the Monte Carlo integration algorithm
VEGAS, implemented in the CUBA library [44]. We have
checked the cross sections of Born and hard photon
radiation processes against the results obtained by using
WHIZARD [45,46] and CALCHEP [47].

A. Born amplitudes

At lowest order, the process ete™ — ZZ includes the
leading contributions from #- and wu-channel electron-
exchange diagrams. The corresponding Feynman diagrams
are given in Fig. 1, where a diagram with a Higgs field
coupling to electrons is omitted. It is suppressed by a factor
m,/+/s and thus can be neglected. The explicit expressions are
given for the Born matrix elements from these diagrams as

1)

My = g Yo maf (et = cirs)
X (pr = o + m. )¢ (ky)[c, — ciyslu(pa, m,),
(2.7)
—ig2 _
M, = 3 v(pr.me )¢ (k)[cy, —cqrs]

4u~ mﬁ}CW
x (po =i +me )¢ (ky)[c§ — cqrslu(py,m,),

(2.8)
|

@

FIG. 1. The lowest-order Feynman diagrams contributing to
e"et - Z7.

where g=-e/sy, sy =sin0y, and cy = cosby =
My, /M. The vector and axial vector couplings are defined
as c{, = IJ; — 2053 and cg = I}; for the fermion type f. For
electrons, these are ¢§, = —1/2 + 2s3, and ¢§ = —1/2. The
Born-level total amplitude is

2
Mpom = ZMZ (29)
i1

For arbitrary polarizations of the leptons and bosons, the
differential cross section reads

do\ ¢'e =722 K 1
<E> :m Z Z(1+201P1)(1+202P2)

Bom o122

61,02,41,
X |MB0m

2, (2.10)

where P and P, are the polarization degrees of the incoming
electron and positron. The sum runs over all included boson
polarizations. Following the square of total amplitude and the
summation over final helicities, we have

dt Born Cw

where the electron mass m, is neglected for simplicity. This
result is consistent with the results in the literature [17]. The
above coupling term can be also written in terms of chiral
coupling constants as (c$)* + (c§)* + 6(c%)?(c4)* =
8(c¢)* +8(c%)*. Then, the integrated cross section is
obtained by

; —et =277
ol et=2Z _ l fmax @ °e dt
Bormn 21 dt ’

Imin Born

(2.12)

where the lower and upper bounds of the integral are
defined as

1

M%—Es(l + k). (2.13)

I max,min =

do\ =72 gt (eh) 4 (ch) +6(ch)*(ci) [u ¢ s 11
= =AML =) =ML 5+ )|,
< ) 1287252 b t * u Mz ut 2\ 2 + u?

(2.11)

B. One-loop EW radiative corrections

The radiative corrections consist of three parts. The first
comes from virtual loop corrections, the second one is
soft photon radiation, and the last one corresponds to
hard real photon radiation. We now discuss them for
e~et - ZZ below.

1. Virtual corrections

We consider full EW O(a) contributions at one-loop
level for the process e~ e™ — ZZ. The virtual loop correc-
tions for this process come from three types of diagrams:
vertex type, self-energy, and box type. Here, we do not
provide their explicit analytical expressions since they
are not particularly illuminating. Instead, we present a
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FIG. 2. The vertex-correction diagrams contributing to e~e™ — ZZ.

complete list of Feynman diagrams created by FEYNARTS.
At one-loop order, the process (2.1) has a total of 161
one-loop diagrams (112 vertextype + 34 self-energy +
15 boxtype) as shown in Figs. 2-4. We use the following
labels on the internal lines: f stands for all fermions in SM,
G is the charged Goldstone boson, and u_ is the ghosts.
The gauge vector bosons (y, Z, and W¥) are denoted by
wavy lines, and the Higgs and Goldstone bosons are
denoted by the dashed lines. In diagrams with two arrows
on the same lines of the loop, particles move both clock-
wise and counterclockwise.

The one-loop diagrams can topologically divided into s,
t, and u channels with the mediator of gauge bosons (y, Z,
W), Higgs boson (h°), and charged Goldstone bosons
(GF). We can also separate them into QED and weak
corrections. The diagrams of QED virtual corrections are
obtained by the possible virtual photon attachment and
fermion loop insertion to the Born-level diagrams.

First, in Fig. 2, we present the vertex-correction dia-
grams, which consist of triangle corrections to #-channel

+ et Z
et f Zo\et W.,G Zp\¢ Uy Z =
v, Z v, Z Vs Lo _ac
TNz Wz STz T
e f e W,G e Uy = s
()] 2
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et P e’ V4 et p et Z
e | e e | e
e p e e 7 e
e o < ® 7

¢ (5)oED
€+
V4

e

Ve
e ‘ z

©
FIG. 3. The self-energy diagrams contributing to e~e* — ZZ.

electron exchange, bubbles, and triangle vertices attached
to the initial or final state via a mediator of y, Z, and h°.
They can also be divided into three classes. The first
comes from the vertex corrections ZZA*/Z*. Here, the off-
shell field is marked by an asterisk. These are given with
diagrams 1-4 and 6-8 in Fig. 2. The second is due to the
vertex corrections eeh®, and it is shown in diagram 5
in Fig. 2. Both types are s-channel contributions. The
fermion loop contributions to the vertex of eeh® are
proportional to the electron mass and hence are suppressed.
The third type is the vertex corrections Zee* in the t and u
channels. The Zee* correction is shown in diagrams 9-20
of Fig. 2.

Second, in Fig. 3, we show the self-energy diagrams,
which consist of all possible loops of ¢~ or v,- with gauge
bosons 7, Z, or W* on the electron propagator via ¢ and u
channels. Also, all possible loops of fermions, W and G
bosons are included on the y4° or Zh° mixing propagator in
s channel. Diagrams 4 and 5 in Fig. 3 are obtained by QED
correction, while others are weak corrections.
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FIG. 4. The box-type diagrams contributing to e"et — ZZ.
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Finally, Fig. 4 shows the irreducible one-loop diagrams
(box-type diagrams). They consist of all possible box loops
of e”, v,-, vector bosons y, Z, W*, Higgs and Goldstone
bosons. These are mainly #- and u#-channel contributions.
Diagrams 1 and 7 in Fig. 4 are obtained by QED correction,
while others are weak corrections. Diagrams 2, 4, 8, and 10
are due to neutral current correction, and other diagrams are
due to charged current correction.

The total amplitude for the virtual contributions is
defined as the summation of triangle-type, self-energy,
and box-type corrections:

M iy = Mp + Mg + Mp. (2.14)
The differential cross section of the virtual corrections is
calculated by

do e"et =277 1
(G8) = X jarmp)a v 2er)

virt 61250
K *
X ks 2Re[M}y o OM yin], (2.15)

where |6M ;| is not included because its contribution
is so small that it can be neglected. The one-loop
Feynman diagrams, which form the virtual O(a)
corrections O6M,;;, have been calculated in the ’t
Hooft-Feynman gauge. We use the on-shell (OS)
renormalization scheme (see Ref. [48]) to fix all the
renormalization constants.

The virtual contributions have UV and IR divergences.
These divergences can be regularized by extending the
dimensions of spinor and spacetime manifolds to D =
4 —2¢ [49] and adding a photon mass parameter,
respectively. We adopt all Feynman rules of the counter-
terms (shown in Fig. 5) and of the renormalization
conditions from Ref. [48]. The redefinition of parameters
and fields is carried out in the OS scheme. This turns the
Lagrangian into a bare term and a counter-term. After
applying the renormalization procedure, a UV-finite
virtual contribution is achieved. Although, the soft IR
singularity due to virtual photonic loop corrections still
exists. It is regularized by giving the photon a fictitious
mass, m,. The virtual cross section is independent of the
UV regularization parameter Cyy = 1/e —yg + log(4n)
but still a function of the IR regularization parameter m,.
From the Kinoshita-Lee-Nauenberg theorem [50,51],2 it
is canceled in the limit m, — 0 by adding the real photon
corrections. We have checked numerically that our results
do not depend on m,. After adding the virtual and real
corrections, the results are still collinear singular. This
singularity comes from the initial-state radiation part.
We use the phase-space slicing method® [53-56] to

“This was also shown perturbatively in QED by Schwinger [52].

e* et er et
) < © NG < @
zZ et 7
e’ e e
e 7 e Z
e e~
) (©)

FIG. 5.

The counterterm diagrams.

FIG. 6. The Feynman diagrams for the real photon radiation.

handle the collinear singularities in the photon radiation
off the initial state.

2. Real corrections

Real photon emission gives rise to the kinematically
different reaction from e*e™ — ZZ, presented by

et (pr,o1)e” (P2, 062) = Z(ky, A1) Z(ka, )y (k3. 43),
(2.16)

where k3 and A3 are the 4-momenta and helicity of the
radiated photon. We present the bremsstrahlung Feynman
diagrams in Fig. 6, obtained from the Born diagrams by
adding a photon emitted from a lepton line. The lowest-
order of real-photon emission provides an O(a) correction
to ete” - ZZ.

The differential cross section of ete™ — ZZy reads

do \ ¢'e—~2zZy 1 1
(d_Q)real =5. 2. 7 (1+2P10)(1+2Py0))

0124123

x |M01762,/11,/12,/13 |2

e rzy (2.17)

with the three-particle phase-space integral

*We have developed the necessary code for evaluating of
collinear contributions and implemented it in FORMCALC.
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/dg3 H/ 27r32k0 (p1+p2 Zk)
(2.18)

According to the radiated photon energy E, =

\/ |/;3|2+m}%, the bremsstrahlung phase space can be

separated into two regions: soft and hard. Hence, the real
photon radiation correction can be organized as

e~et =77y
d real

dGsoft( (219)

s) + dahard (As) ’

where A; = AE,/(+/s/2) is the soft cutoff energy param-
eter. The bremsstrahlung photon is named soft when
E, < AE, = A;\/s/2, whereas it is hard if E, > AE,.
The soft photon correction is given by approximation

[48,571,
—d an/ d3k3|: kl kz :|2
OBorn - )

B 2m? Jky<ak, 2E, [k ks ko - ks

(2.20)

dasoft -

where AE, satisfies E, < AE, < +/s. Integrating the soft
photon phase space in the center-of-mass system gives

do gy = OsoftdOBom (221)
with
2AE 2
e ) ()
VA m}, S
1 m> m2 7>
12 In —. 2.22
eow () ()45 e

Both the soft and hard photon corrections depend on the
soft cutoff parameter A, but the real correction is inde-
pendent of this parameter. We note that the hard photon
emission must be taken account into to remove this
dependency. Furthermore, adding the virtual and soft
corrections removes the m, dependency.

In addition to the divergences mentioned above, there
also appear mass singularities as a consequence of the
collinear photon emission off massless particles, so-called
collinear divergences. However, the smallness of the
electron mass induces the quasicollinear IR divergences
from the photon radiation off the electron/positron. To deal
with this, we apply the phase-space slicing method.
According to this method, the hard bremsstrahlung phase
space can be divided into collinear and finite regions,
dolelarii+_>zzy(As) = do—coll(A_w Ac) + dgfin(As’ Ac)? (223)
where A, denotes the angular cutoff parameter. In the
hard collinear region (E, > AE,,cosf,, > 1—A.), the

integrand is numerically unstable, whereas in the hard
finite region (E, > AE,,cosf,, <1—A,), it is finite
(numerically stable). Here cos d,, is the cosines of angle
between the electron/positron and bremsstrahlung photon.
In the stable regions, the integration is carried out numeri-
cally, while it is semianalytically calculated in the unstable
regions [58] by using the approximation

2
a 1=4;
dGcoll = Z 2_ sz / dx daBorn( V XS)
i-1 <" 0

1 4 x? SA, 2x
X In -,
l-x \2m?) 1-x
where the approximation A, > 2m?2/s has been taken. To
avoid overcounting in the soft energy region, the integra-

tion over all possible factors x is constrained by the soft
cutoff parameter A,.

(2.24)

3. Classification of full corrections
As aresult, the IR- and UV-finite EW corrections consist
of four parts,

dol s =% = doyn(m,) + dogn(m,, Ay)

+ dacoll(Am Ac) + daﬁn(A.\'v Ac)’ (225)
where they are from virtual corrections, soft photon
corrections, collinear corrections, and finite hard photon
corrections, respectively.

We have numerically checked that our results are
independent of m,, soft cutoff parameter Ay, and angular
cutoff parameter A The virtual, soft photon, and hard
photon emission corrections are shown as a function of
both A and A, at /s = 250 GeV in Fig. 7. It is obvious
that the virtual plus soft and the hard photon emission
corrections significantly depend on A and A, whereas the
total corrections do not depend on them. Moreover, the
relative correction 6 joop/ Gpor is independent of A and A,
over several orders of magnitude. To more clearly show the
cutoff independence, we have also given the values by
tables next to Fig. 7. Finally, our results are also stable over
nine digits when varying m, from 1072 GeV to the default
value of 1 GeV. Our numerical results below have been
obtained for A; = 1073, A, = 1072, and the range of
scattering angles of the final particles |cos 8| < 0.99.

To discuss the origin of the large correction, we also
consider the pure QED corrections dgpp as individual in
addition to the full EW corrections &ryy. The QED
corrections consist of virtual-photon exchange, the corre-
sponding counterterms, and real-photon emission. Hence,
we can express the QED relative correction as

5QED = 5virt,QED + Oreal- (226)
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1077 0.9889

FIG. 7. Phase-space slicing method. The virtual, soft, and hard photon radiation corrections as a function of soft cutoff parameter A,
(upper plot) and angular cutoff parameter A, (lower plot) at /s = 250 GeV.

The QED-like diagrams consist of only A and f fields as
virtual lines. In this study, the one-loop QED contributions
come from the sum of the real-photonic corrections and
contributions of diagrams 4 and 5 of Fig. 3, 1 and 7 of
Fig. 4, and 1 and 9-12 of Fig. 2.

The remaining corrections (non-QED) can be called
weak corrections Oy, Which include the massive gauge
bosons Z° and W*. The genuine weak relative correction
can be obtained from

5Weak = 5Tota1 - 5QED' (227)

In the above definition of dywe., the weak corrections are
obtained by subtracting the pure QED corrections from the
full EW radiative corrections. Thus, we can write the full
O(a) EW relative correction as

OTotal = OQED T Oweak-

(2.28)

Overall, we can factorize the full EW corrected cross
section into the Born cross section and the relative
corrections. Therefore, the one-loop cross section 6o

becomes

O1-loop — GBom(l + 5T0tal)

= GBom(] + 5QED + 5Weak)v (229)

leading to

oy — OBom
By = — oo __Bom (2.30)

OBom

where X can be “QED,” “weak,” and “total.”
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III. BEAM POLARIZATION

Polarization effects are important in e™e™ colliders and
can be used to provide significant advantages. These effects
could benefit searches for new physics with small deviation
from the SM predictions in two ways. First, properly
chosen combinations of beam polarization can strengthen
the signal and suppress the background in many cases.
Second, it is possible to establish smart observables that
contain beam polarization information. With the above
motives, we analyze the effect of beam polarizations on the
production rate of eTe™ —» ZZ.

The polarizations with a sign for e~ and e beams are
given by [59], respectively,

Ne- — Ny n,+ —n,+
b gD lgng)
(neg + nez) (ne; + neZ)

where n,:+ and n,. are the number of the left- and right-

handed e*’s (e7 and e%) in the beam, respectively. Here,
P, /P, is equal to +1 (—1) for the 100% right-handed
(left-handed) polarized e~ /et beams.

If a normalization n,+ + n,+ = 1 is applied, the normal-

ized number of e;’s and e;’s can be obtained as

1+ P,
er 2 )

1-P,-

n n

Consequently, the cross section for any beam polarizations
can be defined by [16,59,60]

of e = 11~ Po)(1 = P o,
+ (1 +P)(1+P,-)ogr
+(1=P,)1+P,)org
+(1+P,)1=P,)or], (3.3)

where o;;, orr, 0rr, and op; indicate the cross sec-
tions with completely polarized beams of the four
possible cases. Namely, RL, LR, RR, and LL stand
for (P,+,P,-) = (+1,-1),(=1,+1), (+1,+1), (=1, -1),
respectively. Figure 8 shows these spin configurations,
the corresponding fractions (the fourth column), and the
total spin projections onto the eTe~ direction (the last
column). This figure is adapted from Ref. [16].

Now, we give an expression of the left-right asymmetry
Argr, which has several advantages such as it being
independent of detector efficiency asymmetries and its
measurement having negligible systematic error. It is
defined by

_O'(Pe+ :—I—l,Pe— :—1)—6(Pe+ :_lvPe‘ :_|_1)

A p=
LR G(P€+:+1an‘:_1)+0(Pe+ :—I’Pe_:_Fl)

et e
oL —— <> (1*§e+)(1*§r L
ORR —e—=—— —>> (1+§@+)(1+§r) o
i = = (M)
n ~e=— = () )

FIG. 8. The longitudinal spin configurations in electron-positron
collisions. The thick arrow denotes the direction of motion of the
particle, and the double arrow denotes its spin direction.

or equivalently
(3.4)

for a given process. For the process e™ e~ — ZZ considered
in this study, it is obtained by
4 4
ABom _ (CZ) _ (Cf?)
LR — 4

= 0.40979
(ci)* + (k)

(3.5)

at the Born level.

If et e~ is annihilated into a vector particle, only o r and
orr (J = 1 configurations) have a nonzero contribution. In
this study, the 6, ; and oy have the tiny values due to small
electron mass effects, so they can be neglected. In this case,
we can also rewrite the left-right asymmetry as [16]

1 1 /6., -0
Apg = — A% = <¥> 3.6
P et P o t+o, (3.6)

in terms of the effective polarization P and the measured
left-right asymmetry A%,

(Pe' _Pﬁ)
(1 _Pe’PeJr)’

obs _ O—+ — 04—
LR — ’

3.7
o_. +o0,_ (37

P =

where the corresponding cross sections are given by

1

o = Z[(l +|Po+||Pe-|)(6re + 01R)
+ (|Pe+| +|P.-|)(orL — OLR)]
1

61 =3[0+ 1PellP o + 010)

—= (|Pe+| + |Pe-1) (0 — 01R)]- (3.8)

Another parameter, the effective luminosity L. is given by

'Ceff _
L

(1=P,-P,), (3.9)

N[ =
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which basically reflects the fraction of particles that are
interacting.

IV. PARAMETER SETTINGS

A set of input parameters must be specified with their
corresponding numeric values, in order to provide consis-
tent higher-order predictions in the SM. We set the input
parameters as follows (see also Ref. [61]):

(i) Mass parameters are

m, = 0.510998928 MeV,
= 105.6583715 MeV,

m, = 73.56 MeV,
my = 73.56 MeV,

m, = 1.77682 GeV, m, = 95 MeV,
My, = 80.385 GeV, m, = 1.275 GeV,
M, = 91.1876 GeV, my, = 4.66 GeV,

M, = 125 GeV, m, = 173.21 GeV.
Here, the u- and d-quark masses are calculated as a
effective parameters and are specially given for the
M z-mass scale via the hadronic contributions

5
Aal(lad (Mz) = Z Qf<1 ———>
f u,c,d,s,b
~ 0.027547. (4.1)
According to Ref. [61], s-quark mass m is an

estimate of a so-called current quark mass in the
MS scheme at scale u~2 GeV. m.=m.(m,) is
the “running” mass in the MS scheme, and m,, is the
T(1S) bottom quark mass.

(i) The fine structure constant is

a(0) = 1/137.03599907. (4.2)
(ii1)) The Fermi constant is
Gr = 1.1663787(6) x 107 GeV~2, (4.3)

which is conventionally defined via the muon
lifetime.
The renormalization scale uy is fixed to center-of-mass
energy, 1/s.

On the other hand, it is important to specify the
electromagnetic coupling a = €?/(4x) for the EW O(a)
corrections. For an obvious choice of «, there are two
different methods as follows: the fine-structure constant
a(0) in the Thompson limit [2(0) scheme] and the running
electromagnetic coupling a(Q?) at any energy scale Q. It is
possible to use the value of a(M2%)~1/129 [a(M2)
scheme], which is calculated by analyzing the experimental
ratio R = o(e”e™ — hadrons)/c(e”e™ — u~u™) [62,63].
Another choice is a G, scheme given by

a(G/l) =

V26,M5y (1 (4.4)

M2
T M> Z>
An effective value of a in this scheme is obtained as
a(G,) ~ 1/132 from the Fermi constant G,,.

The G, scheme provides the possibility of absorbing
some important universal corrections associated with the
renormalization of the weak mixing angle into leading-
order contributions. At next-to-leading order (NLO), the
@(0) and G, schemes are related by

a(G,) = a(0)[1 + ArV] + O(a?), (4.5)
where Ar(l) denotes the EW correction to muon decay at
NLO [48,64]. In Sirlin’s relation, the resummation is

achieved by the replacement (1 + Ar()) _)m in

Eq. (4.5). One then obtains a much closer agreement
between the two schemes. This fact also reveals that the
G, scheme provides more accurate results above the M z-
mass scale unless one applies the leading-log resummation
in the strict NLO a scheme.

Actually, the suitability of the scheme directly relates to
the nature of the considered process. In all cases, a common
coupling factor " should be used in full gauge-invariant
subgroups; otherwise, significant consistency relations
disappear [65].

In this study, we present the results obtained by both the
a(0) scheme and G, scheme and discuss the difference due
to these choices.

V. NUMERICAL RESULTS AND DISCUSSIONS

We examine the Z-boson pair production in electron-
positron collision, by taking into account a full one-loop EW
O(a) corrections, including soft and hard QED radiation. We
provide the center-of-mass energy dependence of Born and
one-loop cross sections. To discuss the origin of the large
correction, we also present the relative QED and weak
corrections [as defined in Eq. (2.30)] as a function of the
center-of-mass energy. We include the spin polarization
effects of the initial electron and positron beams in the total
cross sections. We discuss how the considered process is
affected by beam polarization. The left-right asymmetry and
angular distributions are also presented.

First of all, for the numerical verification of Born-level
and hard photon bremsstrahlung calculations, we use three
different tools FEYNARTS&FORMCALC, CALCHEP, and
WHIZARD. In Table I, we give the results obtained by them
for Born-level process e“e™ — ZZ and hard process
e~et — ZZy at \/s = 250, 500, and 1000 GeV. It is found
that Born-level results are an excellent agreement. The hard
photon bremsstrahlung results are in good agreement up to
five digits.

In Fig. 9, we plot the Born and one-loop cross sections
and the relative corrections as a function of center-of-mass
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TABLE 1. The Born and hard photon bremsstrahlung cross
sections obtained by FEYNARTS&FORMCALC (FA&FC), WHI-
ZARD, and CALCHEP.

/s 250 GeV 500 GeV 1000 GeV
O.Born(e—e+ N ZOzO) (fb)
FA&FC 991.500(2) 315.463(9) 79.592(8)
WHIZARD 991.501(5) 315.464(3) 79.595(1)
CALCHEP 991.50 315.46 79.593
Ghard—y(e—e+ N ZOZOQ/) (fb)

FA&FC 144.443(4) 52.751(9) 14.852(4)
WHIZARD 144.457(1) 52.739(5) 14.851(3)
CALCHEP 144.46 52.758 14.859

energy. We also show the proposed energies of future
colliders with the vertical solid lines. The center-of-mass
energy ranges from 190 GeV to 1.5 TeV in steps of 10 GeV.
Since the colliding energy +/s starts near the threshold of
2m, the Born and one-loop cross sections increase quickly
with the opening of the phase space, reach a maximum
value, and then fall off rapidly with the increment of /5.
This is also the expected behavior. The one-loop cross
section reaches a maximum of 1109.93 fm with Oy, =
—8.45% at /s = 210 GeV and then decreases to 40.04 fb
with Sro = +14.17% at /s = 1.5 TeV. The pure QED
corrections make a positive contribution and increase from
—8.1% to +31.15% when /s goes from 200 GeV to
1.0 TeV. On the other hand, the weak corrections make a
negative contribution, and its relative correction decreases

N1

—
S
=

0=(c,, /o

1-loop  ~ Born

-1)x100

annnllnnnnilnnnnilnnnnilnnnnllnn KA
200 400 600 800 1000 1200 1400
\s [GeV]

FIG. 9. Born and one-loop cross sections as a function of /s.
The relative corrections in a percentage is also shown at the
bottom panel. The vertical solid lines show the proposed energies
for various future colliders.

from —4.63% to —17.69%. The QED and weak corrections
partially compensate each other, providing relative correc-
tions of around —12.73% at the first point and +13.46% at
1.0 TeV. The EW radiative corrections significantly
increase with the /s. This is due to the presence already
at the one-loop order, of large double and single logarithm
terms behaving like (a/z)In?s and (a/x)Ins.

These results show that the pure QED and weak
corrections are the same order of magnitude, so that both
are equally important. However, the QED correction makes
the main contribution to the total EW correction. The
relative radiative correction due to full EW one-loop
contributions in the vicinity /s close to the threshold of
production ZZ becomes rather large. This effect is due to
the Coulomb singularity in Feynman diagrams, which
includes the instantaneous virtual photon exchange in
the loop that has a small spatial momentum. Overall, the
full EW one-loop corrections enhance the Born cross
section. While the energy-dependent structure of both
the QED and weak corrections is clearly visible, it almost
disappears in the total corrections at higher energies. For
proposed colliding energies of the future collider projects,
CEPC (at /s =240 GeV), FCCee (at /s = 350 GeV),
CLIC (at /s = 380 GeV), and ILC (at /s = 500 GeV),
the unpolarized born-level cross sections reach 1051.44
(with Opp = —2.20%), 588.23 (with 1o = +4.73%),
513.82 (with Opg = +5.70%), and 315.46 fb (with
OTotal = +8.66%), respectively. The production rate of
e~ et — ZZ is larger by around 1 order of magnitude than
from the yy-collision mode (see Refs. [66,67]).

In Fig. 10, we plot the virtual, soft, and hard photonic
corrections as a function of /s. The virtual corrections
decrease from 0.24 to -0.06, while the soft bremsstrahlung
corrections remain nearly constant with a value of -0.91
with the increment of \/s. However, hard bremsstrahlung
corrections, i.e., collinear and noncollinear parts, start from

) L. . . . .2 . LA B
TE| -~ - soft —-=--coll ]
1,6 | - = -virt —--—--hard finite ]

[ | - = -virttsoft|| —----hard total ]
1,2} 4
’ L 6Total

o/\ r u]]ml]:l]l:l]l]l]]]llml;
N 0,81 pUOODOODOOoO -
* N

P I 1 PN
800 1000 1200
\s [GeV]

400

600

L. .
200 1400

FIG. 10. The effect of different individual contributions on
cross sections as a function of /s.
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FIG. 11. The ratios of cross sections and relative corrections in

two different schemes, a(0) and G, schemes, as a function of /s.

their minimum values and then increase rapidly with the
increment of /s. Consequently, the virt + soft and hard
bremsstrahlung corrections are partially canceled, as they
are combined into the full EW corrections. The soft and
hard bremsstrahlung corrections make the negative and
positive dominant contributions to the full EW corrections,
respectively.

For a(0) and G, schemes, we present the ratios of
cross sections in Fig. 11(a) and the relative corrections in
Fig. 11(b) as a function of /s, respectively. In Table II, we
also provide our numerical results obtained in the a(0) and
G, schemes for /s = 250, 500, and 1000 GeV. The Born
cross section increase by about 7.39% in the G, scheme as
compared to the a(0) scheme. When /s goes up from
200 GeV to 1.5 TeV, the one-loop cross section in the G,
scheme is from 6.58% to 7.69% larger than ones in the a(0)
scheme. The QED relative corrections in the G, scheme
increase by up to about 4%, while the weak relative
corrections decrease by up to about 5%, as compared to
the a(0) scheme. However, the difference between total
relative corrections in considered schemes is 1%, so small
that it can be considered as a theoretical uncertainty.

TABLE 1I.

Born and one-loop cross sections and relative

corrections of e~ — Z°Z° in the a(0) scheme and G, scheme

for various values of +/s.

Vs 250 GeV 500 GeV 1000 GeV
olete” — 707%) (fb)
0—(1;(0(21 991.50 315.46 79.59
Uggm 1064.83 338.88 85.48
611(10) 981.59 342.77 90.31
-loop
o 1051.67 368.51 97.24
-loop
S(ete™ — Z°7%) (%)
58%)])3 +6.35 +19.50 +31.15
58%1) +6.39 +20.38 +32.27
5{;(/0)1( -7.35 -10.85 —17.69
eal
Sut —7.63 —11.61 —18.52
eal
5%(21 —-1.00 +8.65 +13.46
5% —-1.24 +8.77 +13.75
Total

Now, we examine the initial beam polarization depend—

P
ence of the Born and the one-loop cross sections (aBom

e+e

foop ) ON V/s. Also, we present the total relative

corrections in order to see effect of polarization configu-
rations on the EW corrections. Figure 12(a) shows unpo-
larized and completely polarized initial beams cases. Here,
we use the following notation: o®™ denotes the total cross
section with the 100% right-handed polarized positron
(P, = +1) and the 100% left-handed polarized electron
(P,- = —1) beams, (e R ey ). Others can be defined analo-
gously. We note that 6™+ and 6®R are very small [O(10710)
pb] as expected and are thus not included here. All curves
for polarized and unpolarized cases increase quickly with
the opening of the phase space, reach a maximum value,
and then fall off rapidly with the increment of +/s. Their
maximum values are reached at around /s ~ 210 GeV.
The one-loop polarized cross sections alf_lfonp and o loop can
be enhanced by about factors of 1.5 and 2.5, respectively,
compared with the unpolarized case. For instance, at
V/s =250 GeV, ok reaches a value of 2.80 pb, yielding
a total relative correction of about —10.71%. At
Vs =250 GeV, okR | reaches a value of 1.17 pb, yielding
a total relative correction of +22 20%. While oRL s
around two times larger than okw . the relative corrections
of the former are smaller than that of the latter. Namely,
(ef ex) polarization case has larger EW radiative correc-
tions than other cases.

Figure 12(b) shows the results for various polarization
degrees of the initial beams, (P.+,P,-) = (0.0,-0.8),
(4+0.3,-0.8), (+0.6, —0.8), proposed by the future col-
liders. The cross sections at both Born and one-loop levels
are sorted according to various polarization degrees of

and o’
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FIG. 12. Polarized Born and one-loop cross sections as a function of +/s.

initial beams as follows: oRl > 06708 5 5+03-08 - 5%“3-31*‘0-8 = —9.90% at \/s = 250 GeV (ILC) and 6(1)1;)%3 -
0*70% > 6% > o™, There appears a similar energy 66 ph with 0708 = ~3.94% at /5 = 380 GeV (CLIC).

dependence behavior in polarized cases as in the unpolar-
ized case. The one-loop cross section with the polarization

degrees of (P,+, P,-) = (+0.6,-0.8), i.e., Ggﬁgg—o.s)’ has
a maximum of 2.05 pb, providing a total relative cor-
rection of —14.59%. When /s goes from 240 GeV
to 1.0 TeV, the relative corrections vary from about
—11% to +1.69%, +0.75%, and +0.14% for (P,+, P, ) =

(0.0,-0.8), (+0.3,-0.8), (+0.6, —0.8), respectively. We

In Figs. 13 and 14, the Born cross section and the total
relative correction are also presented in the plane of
polarization degrees of the incoming beams (P,+,P,-)
for /s =250 GeV and /s = 500 GeV, respectively. The
P, and P,- range from —1 to +1. We also show some
values by the contour lines. The beam polarization depend-

. . P, P
ence of the relative correction is calculated from 6y, ¢ =

_ ; A PP | PyPe .
obtain the following results for proposed polarization cases (Gl_jgop som ¢ — 1) by using Eq. (3.3). The Born cross
by the future collider projects: otlo(;i’p_ 08 — 1,51 pb with  section reaches its larger values at the left top corner

(a) L0 28 (b) 1,0 0,25
I2,4 0,20
0,5 2.0 0,5 0,15
0,10
+ 1.6 +
22 0,0 22 0,0 0.05
1,2
0,00
0.5 08 s 0,05
0,4 0,10
-1 -1 N
G0 05 00 0.5 1.0 0 Q0 05 00 0.5 o P
P P

FIG. 13. Beam polarization effects on the Born cross section and on the total relative correction for /s = 250 GeV. The color heat
maps correspond to the values of born cross section (left plot) and the total EW relative correction (right plot). The asterisk denotes the
unpolarized point (P,+, P,-) = (0,0).
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FIG. 14. Same as in Fig. 13 but for /s = 500 GeV.

0 < P, <+1and -1 < P,- < 0), whereas it has smaller
values at the right top and left bottom corners. As expected,
it has a maximum value at point (P,+, P, ) = (+1,—1),
namely, 100% left-handed polarized electron and 100%
right-handed polarized positron. The total relative correc-
tion reaches positive and larger values at the right bottom
corner (-1 < P,+ <0and0 < P,- < +1). As the values of
polarization degrees approach P,- — +1 and P, — —1,
the relative correction increases. Particularly, significant
positive corrections are observed in the region below the
0.10 contour line. Together with the larger cross sections,
smaller systematic errors can be expected for the cross
section measurement with the polarized beams than in the
unpolarized case.

A convenient observable is the left-right asymmetry when
applying polarized beams. This asymmetry is especially
important for high-precision measurements. Therefore, we
present the left-right asymmetry of the cross sections, which
isdefined in Eq. (3.4), as a function of center-of-mass energy
in Fig. 15. For Born level, the left-right asymmetry remains

0’561"'I"'I"'I"'I"'I"'I'_
Born |1
0,48-_ -~~~ 1-loop ]
[ AR == %p) O+ O ]
0,40F =
- L i
<
0’32 i 1-I RL LR RL LR ]
o :/\}7[2Onp = (Gl—lnﬂp o Gl—loon)/(cl—loop + cSl—lnop) 4
0,24f e .
016 v vt v vt v v ]
200 400 600 800 1000 1200 1400
\s [GeV]
FIG. 15. The left-right asymmetry as a function of /s.

constant at 0.40979 with the increment of /s. This value is
exactly the same as the result calculated theoretically in
Eq. (3.5). On the other hand, at one-loop level, the left-right
asymmetry decreases from 0.2616 to 0.2065, as the

0,50
0,45
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05
0,00

(@) 1.0 p—————
A (e'e—> Z'Z") @\s = 500 GeV

0,50
0,45
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05
0,0 0,00

0,0 0,5 1,0
P

0,25

(0.8,0.6)
0,25

(0.8,0.3)
0,24

FIG. 16. The left-right asymmetry in the plane of polarization
degrees of the incoming beams (P,+, P,-) for /s = 500.
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TABLE III. Born and one-loop cross sections, relative correction, and left-right asymmetry for various polarization configurations at
\/s = 250. Here, we define the scaling factor as Ri"* P a;;” Pe ag)(o, where X stands for Born or one-loop level.

PP, P
(Pe+’ Pe‘) Peff Leff/L AZI;S(BOHI) Agl}?(l—loop) OBorn (fb) Ul—loop (fb) 6T0tal(%) RBorn Rlel:;op
0, 0) 0 0.50 0 0 991.50 981.59 -0.99% 1.00 1.00
(+1.0,-1.0) —1.00 1.00 0.4098 0.2715 2795.61 2496.35 -10.71% 2.82 2.54
(-1.0,+1.0) +1.00 1.00 0.4098 0.2715 1170.39 1430.25 +22.20% 1.18 1.46
(0.0,—1.0) —1.00 0.50 0.4098 0.2715 1397.81 1248.17 —10.70% 1.41 1.27
(0.0,-0.8) —0.80 0.50 0.3278 0.2172 1316.54 1194.87 -9.24% 1.33 1.22
(0.0, +0.8) +0.80 0.50 0.3278 0.2172 666.46 768.43 +15.30% 0.67 0.78
(4+0.3,-0.8) -0.89 0.62 0.3635 0.2409 1676.40 1510.42 -9.90% 1.69 1.54
(-0.3,+0.8) +0.89 0.62 0.3635 0.2409 782.52 924.07 +18.09% 0.79 0.94
(4+0.6,-0.8) -0.95 0.74 0.3876 0.2568 2036.25 1825.98 -10.33% 2.05 1.86
(—=0.6,40.8) +0.95 0.74 0.3876 0.2568 898.59 1079.71 +20.16% 0.91 1.10

center-of-mass energy goes up from 190 to 1500 GeV.
Consequently, the radiative corrections can conveniently
be described by the one-loop induced deviation from its
value at Born level.

In Figs. 16(a) and 16(b), we plot the left-right asymmetry
of the cross sections A%, which is defined in Eq. (3.6), as a
function of polarization degrees of (P,+, P,-). Some values
are also shown with contour lines. We note that the results
are symmetric with respect to the exchange of P,+ < P,-,
since they only appear by their absolute values in the
Eq. (3.8). It is obvious that the left-right asymmetry A9%
increases as both |P,+| and | P,-| run from O to 1. The maxi-
mum values are reached at the point (|P,+|, |P.-|) = (1, 1).
These values are 0.40979 and 0.2657 for Born and one-
loop levels, respectively. In these figures, we also mark
some special points by an asterisk.

Table III presents the numerical values of the polarized
cross sections, the relative corrections, and the left-right
asymmetry A% for various polarization degrees of the

(@ 10'p——————r Ty
I SM s 250 GeV
—o— Born
- == - 1-loop
: a
I 8= (c1 ooy Tor~1)X100 1

do/dcosb(e” e— Z° Z°%) [pb]

cos(e)

initial beams. The values of effective polarization and
effective luminosity, which are calculated by Egs. (3.7)
and (3.9), respectively, are also given. It is clear that the
production rate can be enhanced if P,- and P, have
negative and positive signs, respectively. In particular, the
longitudinally (P,+,P,-) = (+1,—1) polarizations of the
initial beams significantly improve the cross section.
Figures 17(a) and 17(b) show the differential cross
sections at Born and one-loop levels as a function of the
angle between the coming electron and the outgoing Z
boson for /s =250 and 500 GeV, respectively. The
angular dependence of the QED, weak, and total EW
relative corrections is also shown in the same figures. For
Born and one-loop cross sections, the angular distribution
peaks significantly in the (symmetrically) forward and
backward directions. The relative corrections modify some-
what the Born angular distribution because their influence
is larger in the central region. The total corrections reach
their maximum values, when cos @ goes to the extreme points

(b) 10

Vs 500 GeV

—>—Bom
- =+ - 1-loop

0
10 5=(c  Io

1-loop’ ~Born

-1)x100
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FIG. 17. Born and one-loop angular distributions for (a) /s = 250 GeV and (b) /s = 500 GeV.
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—1 or +1 for /s =250 and zero point for /s = 500.
Namely, the Z bosons are dominantly produced in the
forward and backward directions for /s = 250, whereas
they are produced in the central region for /s = 500.
Therefore, it will be more likely to observe them in these
collision regions. For all values of cos 9, the QED corrections
make positive contributions, while the weak corrections
supply negative contributions. The same behavior is
observed as in the total cross sections. The QED and weak
contributions are partially offset by each other into EW
contributions. While both corrections show a significant
dependence on cos € separately, this decreases for full EW
corrections. When cos @ runs from 0 to +0.95 or —0.95, at
/s = 250 GeV, the total relative correction Sy, increases
from —3.71% to 4.30%, while it decreases 12.2% to 7.7%
at /s = 500 GeV.

VI. SUMMARY AND CONCLUSIONS

For further sensitivity testing of the SM, as well as to look
for clues on the BSM, high-precision calculations should be
performed. At least, a full set of one-loop corrections in the
production channels must be included to ensure adequate
accuracy. However, the extent to which higher-order com-
putations beyond one-loop order will be needed depends
largely on the expected experimental accuracy.

In this work, by considering a full set of one-loop EW
corrections, we have investigated the Z-boson pair pro-
duction at electron-positron collisions. The UV divergences
have been organized by dimensional regularization on the
OS scheme. Furthermore, the IR divergences have been
removed by the inclusion of the soft and hard bremsstrah-
lung corrections. Also, the collinear divergences have been
corrected by the phase-space slicing method. We have
verified the stability of our results against the angular and
soft cutoff parameters A, A, as well as the IR regulator
m,. We have also compared the results from WHIZARD and
CALCHEP for the Born and hard photon bremsstrahlung
cross sections with the results of the packages used in this
work and obtained very good agreement (up to six digits).

We have carried out the numerical evaluation for the a(0)
and G, schemes. The differences between these schemes
for the QED and weak relative corrections are about 4%
and 5%, respectively, whereas this is 1% for the total

relative correction. This can be considered as a theoretical
uncertainty.

Our results show that the Born cross section is commonly
increased by the one-loop EW radiative corrections and the
total relative correction is typically up to about 10%. The pure
QED and weak corrections are the same order of magnitude,
so both are important for precision calculation. The QED and
weak contributions are partially offset by each other into EW
contributions. However, the QED correction makes the main
contribution to the total EW correction.

Moreover, we have investigated the spin polarization
effects of the initial beams on the total cross sections. We
have observed that the radiative corrections have a large
polarization dependence. As a result, an improvement has
been observed by a factor of 2.5 with the 100% right-
handed polarized positron and the 100% left-handed
polarized electron beams, compared with the unpolarized
case. The left-right asymmetry and angular distributions
have also presented. The Born and one-loop angular
distributions are symmetric and strongly peaked in the
forward and backward directions. For all angles, the QED
corrections make positive contributions, while the weak
corrections supply negative contributions. The relative
corrections slightly change the Born angular distribution,
as their effect is usually larger in the central region.

In summary, an analysis of the one-loop EW radiative
corrections to Z-boson pair production in electron-positron
collisions has been carried out in the framework of the SM.
The initial beam effects on the cross sections have been
discussed in detail. It has been clearly shown that one-loop
EW radiative corrections significantly alter the lowest-
order results and should therefore be fully accounted for a
realistic description of experiments at future collider
energies. Our results provide precise predictions for
Z-boson pair production, which can be tested as experi-
ments achieve higher accuracy.
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