
A Generative Adversarial Approach for Sybil
Attacks Recognition for Vehicular Crowdsensing

Luis G. Jaimes ∗, Juan Calderon†‡, Scott Shriver∗, Antonio Hendricks§, Javier Lozada§, Sivasundaram Seenith‡,
Harish Chintakunta§

∗Department of Computer Science, Florida Polytechnic University Lakeland, FL 33805
{ljaimes, sshriver2380}@floridapoly.edu

§ Department of Electrical and Computer Engineering, Florida Polytechnic University
{ahendricks7304, jlozada7716, hchintakunta}@floridapoly.edu

†Department of Electronic Engineering, Universidad Santo Tomás, Colombia
juancalderon@usantotomas.edu.co

‡Computer Science & Engineering Department, Bethune Cookman University
{calderonj, sivasundarams}@cookman.edu

Abstract—Vehicular crowdsensing (VCS) is a subset of crowd-
sensing where data collection is outsourced to group vehicles.
Here, an entity interested in collecting data from a set of Places
of Sensing Interest (PsI), advertises a set of sensing tasks, and
the associated rewards. Vehicles attracted by the offered rewards
deviate from their ongoing trajectories to visit and collect from
one or more PsI. In this win-to-win scenario, vehicles reach
their final destination with the extra reward, and the entity
obtains the desired samples. Unfortunately, the efficiency of VCS
can be undermined by the Sybil attack, in which an attacker
can benefit from the injection of false vehicle identities. In
this paper, we present a case study and analyze the effects of
such an attack. We also propose a defense mechanism based
on generative adversarial neural networks (GANs). We discuss
GANs’ advantages, and drawbacks in the context of VCS, and
new trends in GANs’ training that make them suitable for VCS.

I. INTRODUCTION

Vehicular Crowdsensing (VCS) is a new computation
paradigm in which participants (vehicles) agree to use their on-
board sensors to collect sensing samples as they go with their
daily routines. A VCS system is composed of a cloud-based
platform or crowdsoucer (data buyer), and a set of vehicles
that collect data for the platform. The platform advertises a set
of sensing tasks at some PsI and the corresponding rewards
for completing each of these tasks. Attracted by the offered
rewards some of the vehicles in the nearby area evaluate the
convenience of visiting one or more PsIs.

Figure 1 shows a set of sensing tasks located in some
regions of a city. Some are located in popular places such as
highways and popular roads, while most of them are located in
remote and isolated areas. Here, a vehicle requires a minimum
effort to collect samples located in its own trajectory, in
contrast to the effort required to collect samples from remote
locations. Thus, the challenge consists in pursuing vehicles to
deviate from their pre-planned trajectories to visit these PsIs.
Incentive mechanism design approaches this problem from two
different perspectives, namely auction-based [1], and platform-
based mechanisms [2]. Auction-based approaches usually have
the form of recurrent reverse auctions in which participants
decide the value of their collected samples by submitting a

Fig. 1: Vehicular crowdsensing System

bid price. On the other hand, in the platform-based approach,
a participant’s reward depends on its level of contribution to
a sensing task versus other participants’ contributions to the
same task.

As autonomous vehicles become more prevalent in society,
opportunities to use those vehicles to perform environmental
analysis will present themselves. An anomalous vehicle tra-
jectory could present an individual spoofing themselves as
a legitimate vehicle in order to obtain financial incentives
for performing a sensing task. Unfortunately, VCS systems
are not immune to false identity or Sybil attacks [3] in
which malicious agents may benefit from fabricating and
using fake vehicles identities. The impact of these attacks on
auction-based MCS has been widely studied from an incentive
mechanism perspective [4], and from a mobile-location-based
perspective [5]. However, unlike the aforementioned research,
our focus is on the potential threats that Sybil attacks pose on
platform-based VCS systems. To the best of our knowledge,
this is the first work that analyses the effect of Sybil attacks
on platform-based VCS systems.

Here, the discussion is driven by a case study [6] which
allows to illustrate attacks to both the incentive mechanism,
and the mobility component of the system. We present a
deep learning approach to minimize the effect of Sybil attacks
on VCS based on adversarial generative networks. Here, we

cast the problem of recognizing fake vehicles identities to the
problem of vehicles’ trajectories anomaly detection. Thus, the
main goal of this approach is to make the system immune to
Sybil attacks by allowing the platform and honest participants
to learn how to recognize and ignore fake vehicles.

II. LITERATURE REVIEW

A pioneer work on Sybil attacks on vehicular networks is
the work of Gang Wang [3] who demonstrated that Sybil
attacks can be performed to compromise the integrity of
crowdsourced map applications. By using multiple instances
of an emulator of a mobile device operating system with the
app Waze installed, they were able to control those emulated
devices GPS and simulate device movements to give the
impression of being an authentic vehicle.

Zhang [7] proposed the use of Long Short-Term Memory
(LSTM) to extract features from packet data of electric ve-
hicles in order to differentiate legitimate vehicles from Sybil
attacks. In a VANET architecture, vehicles broadcast CAM
packets that contain information such as location, elevation,
and time continuously. By measuring the strength of the signal,
or RSSI, of these CAM packets, other vehicles or nodes can
determine if the disparity between broadcasted location and
the RSSI are realistic or not.

James Yu [8] proposed a deep learning approach to this
anomaly detection called BRAE, or Bayesian Recurrent Au-
toencoder. BRAE represents trajectories as random multivari-
ate data in a latent trajectory space and can determine the
probability of a trajectory being authentic or not.

Another approach to detecting anomalous trajectories is the
GM-VSAE [9]. A Gaussian Mixture Variational Sequence
Autoencoder, model proposed by Yiding Liu. This model
proposes a method of identifying anomalous trajectories in real
time online. This model comprises a route inference network
made of an RNN as well as a generative network designed to
assist in the real-time anomaly detection.

Another approach to anomalous trajectory detection is pro-
posed by Wang [10]. They argue that many approaches to
anomaly detection run into two problems: modeling normal
routes is very difficult due to the wide variety of possible
routes, and training is incredibly difficult due to the sparsity
of authentic route data for training. They propose using GCM,
or Geospatial Constraint Modeling, to overcome these issues.
A unique aspect to this GCM approach is that rather than
looking exclusively at the trajectory as a linear sequence, this
model looks for a relationship between the pairing of the
source and destination points against the midway points in
the trajectory. The source and destination points are considered
the constraints for the trajectory, and are used to consider the
probability of all points in between the constraints. [10]

Another approach called TrajGAN [11] aims to use GANs
combined with a Partially Observable Markov Decision Pro-
cess to generate trajectories. It works by breaking a series of
continuous latitude and longitude pairs into link sequences,
where at each link sequence the vehicle can decide to move
straight, left, right, or stop the vehicle. A value estimator is

used to calculate the return or accuracy of the possible moves,
with those values then used by a policy generator to make a
decision on how to get closer to the end of the trajectory. [11]

.

III. SYSTEM MODEL AND ADVERSARIAL MODEL

A. Vehicular crowdsensing system

Here, we present the most relevant elements of our
case study which the reader can review in detail in [6].
Our VCS system consists of a set of crowdsourcers
C = {c1, c2, . . . , CF }, and a set of participants V =
{v1, v2, . . . , vM} as shown Figure 2. Each crowdsourcer cj
advertises a sensing task and the corresponding reward Rj .
We assume participants are rational players who respond to
the crowdsourcer offers if they obtain a positive utility.

The utility of a participant sensing for crowdsourcer j is
define by

uji =
tji∑

i∈Wj
tji
Rj − kji t

j
i (1)

where Wj is the set of participants working on task j at the
same time than particiant i, with cardinality of wj , k

j
i is the

cost per unit of sensing data in which i incurs for working
for crowdsourcer j and tji is the number of samples (sensing
plan) i collects from j.

The utility of crowdsourcer j is proportional to the sam-
ples provided by their workers (vehicles) minus the re-
ward paid for the data, and is define as ūj = λj log

(
1 +∑

i∈Wj
log(1 + tji)

)
−Rj .

A participant decides to deviate from its ongoing trajectory
to visit and collect from a crowdsourcer j if it can obtain a
positive utility. However, it is impossible to predict in advance
that utility, given the uncertain behavior of other participants,
namely once participant i arrives at crowdsourcer j it may have
to share the reward Rj with none, one or several participants
who may be already collecting there. Equation 2 corresponds
to expecting utility of participant i visiting any crowdsourcer j
and finding 0,1,2,..participants already collecting there. Here,
A is the set participants with any chance to reach reach j at
the same time that i. This, dynamic is naturally model by the
Poisson binomial distribution [12]

EU ji =
∑

A⊂V,i∈A

∏
j∈A

Pj ×
∏
j /∈A

(1− Pj)× ui|A (2)

Another important factor to take into account is the optimal
amount of data a participant vi should collect (sensing plan
tji) when arriving at crowdsourcer cj , and finds kwj − 1
other participants already there. Here, we use Algorithm 1
to compute Nash Equilibrium (NE) sensing plan for all the
kwj participants working at the same time for cj

Thus, all the participants working for crowdsourcer cj sub-
mit their costs to cj , cj runs Algorithm 1 and returns to each
participant the corresponded sensing plan t. Unfortunately, it is
impossible for participant vi to compute in advance the sensing
plan of working for crowdsourcer cj (tji) without reaching
physically cj . This, because vi doesn’t know in advance how

Fig. 2: Example of a Sybil attack

Algorithm 1: Computation of the Nash equilibrium
Sensing Plans for Participants in Crowdsourcer j

1: Sort the set of contributors Wj (|Wj | = wj) in crowdsourcer j according to
their costs,
kj1 ≤ k

j
2 ≤ · · · ≤ k

j
wj

;

2: H ← {1, 2}, i← 3;

3: while i ≤ wj and kji ≤
k
j
i
+
∑
l∈H k

j
l

|H| do
4: H ← H ∪ {i}, i← i+ 1;
5: end while
6: for all i ∈ Wj do
7: if i ∈ H then

8: (tji)
∗ =

(|H|−1)Rj∑
l∈H k

j
l

(
1−

(|H|−1)k
j
i∑

l∈H k
j
l

)
;

9: else
10: (tji)

∗ = 0;
11: end if
12: end for
13: return ((tj1)

∗, (tj2)
∗, . . . , (tjwj

)∗);

many other participants it will find when arriving to cj . Thus,
vi compute the expected sensing plan ESP ji to evaluate the
convenience of deviating from its pre-planned trajectory to
visit cj . This probabilistic computation has form of Equation 3
and it is naturally model by the Poisson binomial distribution.

ESP ji =
∑

A⊂V,i∈A

∏
j∈A

Pj ×
∏
j /∈A

(1− Pj)× ti|A (3)

Figure 3 shows the flow of the decision making process of

Fig. 3: Evaluating next location to move

a vehicle (vehicle 1) whose move from source to destination.
Here, the red dash line corresponds to vehicle 1’s pre-planned
trajectory, while the blue one corresponds to the new trajectory
that results from vehicle 1’s vising some crowdsourcers. The
first deviation occurs when it decides to visit a crowdsoucer
offering a reward of 60. There, vehicles 1 finds that vehicles
3, 4, 5 are already there. Thus, vehicles 1, 3, 4, 5 submit their
cost to the corresponding crowdsourcer who computes their
sensing plans using Algorithm 1. Vehicles 1, 3, 4, 5 can now
use their sensing plans values to compute their actual utilities.
Vehicles 1 continues its journey and when it reaches the center
of the grid, and it has to decide whether to head to its final
destination or deviating again to visit either the crowdsourcer
that offers 200 or the one offering 80. Here, it compares EU200

1

and EU80
1 and chooses to visit the crowdsourcer yielding

the highest expected utility. However, before heading there,
vehicle 1 computes the expected sensing plan, namely the
expected optimal number of units of sensing data it needs
to collect to maximize its utility. We assign a constrain in
terms of the number of sensing samples a vehicle can collect
during its entire journey, namely we assign to each vehicle a
sensing capacity B = {b1, b2, . . . , bM} to avoid any unrealistic
infinite looping collection. Therefore, once a vehicle fills out
its sensing capacity it just heads to its final destination.

B. Threat Models

Threats to Incentive: We assume that users are selfish but
rational. Hence it is possible that user i maximizes its utility
by reporting a false cost value, and false sensing capacity.

Sybil Attack: Based on our system model, a user could
conduct Sybil attack by creating multiple fictitious identities
around a target crowdsourcer. Thus, discouraging honest par-
ticipants to visit these places, and thus downgrading the quality
of the outcome.

1) Example 1 - Threat to the incentive mechanism : Here,
a vehicle can fake its own cost to improve its utility or for
jeopardizing the system. Figure 2 shows vehicles v1, v2, v3 in
the cell located at the center of the bottom row. Let’s assume
the sensing costs of k1 = 1, k2 = 2, k3 = 4 respectively. Thus,
each vehicles uses Algorithm 1 to compute its sensing time
resulting in t1 = 20

0 , t2 = 10
0 , t3 = 0. Thus, v3 anticipating

this unfavorable outcome decides to jeopardize the efficiency

of the crowdsourcer by injecting two fake vehicles with costs
k4 = 0.3, k5 = 0.5. This move will kicked out all the reeal
participants v1, and v2 resulting in sensing plans t1 = 0, t2 =
0, t3 = 0, t4 = 7.81, t5 = 4.37. Thus, the platform will never
receive these samples.

2) Example 2 - Sybil attack : Figure 2a shows an sce-
nario which includes two participants (black vehicles) and
two sensing task or crowdsourcers (read marks) with their
respective offered rewards (200, and 185). To simplify the
example, let’s assume vehicles move one step at the time with
eight degrees of freedom in a synchronous fashion. Figure 1a
shows that at time t vehicles 1 and 2 are evaluating visiting
and collecting from the crowdsourcers offering rewards 200
and 185 respectively. At time t + 1 vehicle 1 naturally will
visit and collect from the nearby sensing task offering a
reward of 200. Vehicles 2 which is a malicious vehicle wants
to stop vehicle 1 from getting all the reward (200). Figure
1b shows vehicle 2 creating fake vehicle 3 (red) at time t.
Vehicle 1 then uses Equation 2 to compute EU200

1 , and EU815
1

respectively. Let’s simplify the computation by assuming equal
sensing cost. Then, Equation 1 simplifies to Rj

w2
j

where wj
is the number of participants working for crowdsourcer j.
Thus, EU200

1 = u(1)(P 200
1 ∗ (1 − P 200

2)) + u(2)(P1 ∗ P2)
= 200

1 (1 ∗ 7
8 + 200

4 (1 ∗ 1
8) = 181.25, and EU185

1 = u(1)P1 =
185
1 ∗1 = 185. Where u(1),and u(2) are the utilities that result

from finding one and two participants included i when i arrives
to crowdsourcer j. Figure 1c shows vehicle 1’s new position
at time t + 1. Here, vehicle 1 is visiting and collecting from
the crowdsourcer yielding the highest utility (185). Figure
1d shows now vehicle 2 landing with no competition and
collecting from crowdsourcer with R = 200. Here, vehicle
2 was able to deceive vehicle 1 by injecting fake vehicle 3 in
vehicle 1’s expected utility computation.

Here, it is reasonable to assume the platform can track
in real-time participants using their GPS signals, and then
make this information available to every participant. In this
scenario, fake vehicles can not just appear from out of the blue,
their trajectories have to be carefully fabricated to have some
chance to deceive the platform. Thus, we propose a defense
mechanism based on the idea of recognizing fake participants
based on their trajectories. The problem of building such a
classifier is the lack of training data, namely the availability
of fake trajectories that allows training such a classifier. Thus,
generative models seem to be a suitable framework to address
this problem.

C. Casting Sybil Recognition to Trajectory Anomaly Detection

Let V = {v1, v2, . . . , vM} be the set of M participant ve-
hicles, and S = {s1, s1, . . . , sM} and D = {d1, d2, . . . , dM}
their starting and final destination locations. In addition, we
consider a time-stamp associated with each of its GPS coor-
dinates. We model the set of M vehicles trajectories as a set
of multi-variable (longitude, latitude, time-stamp) time series
of different lengths. Thus, our approach consists in identify a
vehicle as a potential Sybil agent if the trajectory generated as
it travels from source to destination is out of the distribution of

trajectories generated by normal driving behaviors under the
actual traffic conditions. Formally speaking, consider T is the
set of all the possible trajectories available to all the vehicles
V under any driving condition, and T̂ the set of trajectories
generated by elements of V when following a normal travel
behavior under the current traffic conditions. Thus, we say
that vehicle vi with trajectory Ti is a Sybil agent if P (Ti|T̂)
< Th, where the Th is a learned parameter. In the absence of
fake or adversarial trajectories to build a trajectory classifier
(supervised), we found that the semi-supervised Generative
Adversarial Model (GAN) is a good framework to tackle this
task.

D. The Generative Adversarial Model (GAN)

The idea of GAN was motivated by the concept of Nash
Equilibrium (NE) in game theory. A GAN has two compo-
nents, the generator (G) whose job is to generate samples
from a distribution and make them pass as real samples,
and the discriminator (D) which checks whether the input
samples are coming from the distribution of the real or
from the generation of the generator. The discriminator and
the generator then form a min-max game, where both sides
continuously optimize themselves in the training stage and are
ultimately supposed to archive the NE. The training of the D to
maximize the probability of assigning the correct trajectories
to training examples and samples from the generator. This
could be determined if a sample x ∈ X is from the real
data set x ∼ pdata(x) or generated from the generator G ,
z ∈ G, z ∼ pz . The objective function for GAN if formulated
as follows.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz [log(1−D(G(z)))]

Discriminator D should enforce the output D(x) close to 1,
while enforcing the output ofD(G(z)) close to 0. The loss
function can be considered as a cross-entropy.

However, the cross-entropy loss function used in the GAN
can easily lead to the disappearance of gradient, which makes
the network difficult to train. Secondly in addition mode
collapse might be generated when generators only learn local
features of the trajectories. In order to overcome these two
problems, we use particle swarm optimization which explain
next. Particle swarm optimization (PSO) The global opti-
mum solution of the swarm particles defines as initial fitness
value denoted by x. The swarm consists of n-particles trav-
elling into n-dimensional search space with epoch t. During
each epoch, p particle produce a unique position vector x.
The cost function is also calculated by each particle p which
is considered as the local best fitness (pbestk) to fined the best
fitness called global best fitness (gbestk) of the swarm. The PSO
is formulated as follows

vtk+1 = vtk + cp(p
best
k − xtk) + cg(g

best
k − xtk)

xtk+1 = xtk + vtk+1

where xtk and vtk are the position vector and velocity vector
of epoch t, The PSO is used to optimize the parameters of the
generator network, where each particle represents a generator.
The length of the particle is the number of parameters that need
to be learned in the generator network. In our simulations, we
use Adam’s optimization algorithm to update network weights
iterative based on training data. Algorithm 2 sketches the main
components of our proposed PSO-based GAN.

Algorithm 2: PSO-Based GAN
Input: Particle number Pn, the minibatch size m, the discriminator’s updating steps
per iteration k, Adam’s hyper parameters α, β1, β2

for all training iterations do
for all k steps do

Sample of minibatch of m examplesx1, , xm) from data generating
distribution pdata(x)
Sample of minibatch of m noise samples z1, , zm) from pz

gθd ← ∇θd[
1

m

m∑
1

[logD(x
i
) + log(1−D(G(z

i
)))]

θd← Adam(gθd, θd, α, β1, β2)

gθg ← ∇θg [
1

m

m∑
1

[log(1−D(G(z
i
)))]

θg ← Adam(gθg, θg, α, β1, β2)

end for
Initialize xk swarms velocity vector vk , local (pbestk) and global (gbestk),
evaluate fitness function and update (pbestk), (gbestk)
for all j do

Sample of minibatch of m noise samples
Evaluate Pj
Pgbest, Pibest ← Pj

end forupdate xk swarms positions velocity vector vk
for all n do

Update particle xn, vn
end for

end for

E. Bidirectional GAN (BiGAN) for Anomaly trajectory detec-
tion

In this work, we use IGMM-GAN [13] an extension of
the BiGAN model [14] for anomaly detection of multi-modal
trajectory data. BiGAN is a GAN extension that allows the
generator not only to transform data from a distribution z into
fake generated trajectory G(z), but also introduce an encoder
E that allows generating a latent space E(x) from a real
sample x. Thus, the discriminator D not only have to learn
to distinguish between G(z), and x, but also now between
(tuples(x, E(X))) and (G(z),z)). Thus, once learned the
parameters of the distribution (mean, and standard deviation)
in the latent space, we can easily compute an anomaly score by
measuring the distance of a new encoded test sample in the
latent space to the learned cluster (distribution of the latent
space). Finally, the IGMM extends the BiGAN framework by
introducing an Infinite Gaussian Mixture Model which allows
finding the number of clusters in the latent space. This addition
allows to compute anomaly scores in multi-modal time series
such trajectories with components in space (GPS coordinates),

and time (timestamp). These scores are proportional to the
Mahalanobis distance between the clusters in latent space and
any new encoded trajectory in the test set.

IV. PERFORMANCE EVALUATION

This section presents the preliminary results of our GAN-
based Sybil recognition system.

A. Experimental Setup

TABLE I: Simulation Parameteres

Parameters Parameters (cont.)
Target Area 5200 x 5200 mt Distance Capacity 7
Cell Size 100 x 100 mt Crowdsourcer Radius 30
Crowdsourcers 20 Memory Size 2
Crowdsoucer location random Gate Buffer Interval 30
Reward Distribution Simulation count 3

µ 1000
σ 5

Participant Capacity Autonomous Vehicles
µ 10− 90 Trajectory source random
σ 5 Trajectory destination (0, 0)

Num vehicles 150

1) trajectory generation: Table 1 shows the system param-
eters for trajectory generation. We generate 150 trajectories
by running the Approximated Trajectory Nash Equilibrium
(ATNE) Vehicular crowdsensing system described in [6].
ATNE uses the simulation of Urban Mobility SUMO [15]
capabilities to simulate realistic vehicular displacement, Open
Street Maps (OSM) [16] for mapping, and velocity information
per street from Uber Movement speed dataset [17]. The
simulation takes place in a sub-region of 5200x5200 meters
from the downtown of the city of London.

Here, each trajectory includes the vehicle ID, latitude,
longitude, time, velocity, and acceleration. In this scenario, tra-
jectories center around vehicles deviating from their ongoing
trajectory to visit and collect from places of sensing interest,
namely these trajectories resemble real driving conditions in
the context of vehicular crowdsensing.

We train the discriminator using trajectories starting from
random places on the map. Here, the vehicles follow the ATNE
protocol for data collection and head to their final destination
which corresponds to location coordinate (0, 0)

For the purpose of this experiment we use a batch size of
50, and 40,000 epochs.

B. Experiment

The goal of the first experiment is to compute the ability
of the GAN model to discriminate between real and fake par-
ticipants. Here, we use the 150 trajectories from participants
of a vehicular crowdsensing system (VCS) whose mobility
patterns are influenced by ATNE [6] incentive mechanism.
Here, the set of trajectories is split in an 80/20 partition for
training and validation. In addition, eight participants whose
mobility patterns follow a random deviation from the original
trajectories as described in [6] are used as a held out class.
Here, we set one trajectory at the time from the held-out set as
the anomalous class, and train for 40,000 epochs. We repeat

Fig. 4: ROC AUC scores of IGMM-GAN using SUMO data,
x-axis: trajectories in the held-out set, y-axis: AUC-ROC score

this process for each trajectory in the held-out set. Figure
5, shows the Area Under the Curve of Receiver Operator
Characteristic AUC-ROC scores for each trajectory in the held-
out set. A higher score means the discriminator is less likely
to classify an authentic trajectory as fake, and vice versa. The
x-axis represents 8 test cases the discriminator went through,
while the y-axis represents the AUC-ROC score. The results
span the range of 90 to 97 percent.

Figure 6 shows the generator and discriminator loss by
epoch and the accuracy of the discriminator for trajectory
number 2. This figure is consistent with the low value of the
AUC-ROC score for that trajectory

Fig. 5: Generator, and discriminator Loss. Accuracy of the
discriminator for trajectory number 2 in held out class, x-axis:
number of epochs, y-axis: loss, and accuracy

V. CONCLUSION

In this paper, we present a framework for Sybil attack
detection in the context of platform-based vehicular crowd-
sensing systems. The proposed approach is based on vehicles’
trajectory anomaly detection. Here, the discussion is driven
by a particular vehicular crowdsensing case study. We present

examples of attacks to both the incentive mechanism and the
mobility model. In addition, we present the components of the
framework which is based on generative adversarial models.
Finally, we present preliminary results of our work.

ACKNOWLEDGMENT

This material is based upon work primarily supported by
the National Science Foundation (NSF) under NSF Award
Number 1739409. Any opinions, findings and conclusions, or
recommendations expressed in this material are those of the
author(s), and do not necessarily reflect those of the NSF.

REFERENCES

[1] Luis G Jaimes, Idalides J Vergara-Laurens, and Andrew Raij. A survey
of incentive techniques for mobile crowd sensing. IEEE Internet of
Things Journal, 2(5):370–380, 2015.

[2] Dejun Yang, Guoliang Xue, Xi Fang, and Jian Tang. Crowdsourcing
to smartphones: Incentive mechanism design for mobile phone sensing.
In Proceedings of the 18th annual international conference on Mobile
computing and networking, pages 173–184, 2012.

[3] Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng, and
Ben Y Zhao. Ghost riders: Sybil attacks on crowdsourced mobile
mapping services. IEEE/ACM transactions on networking, 26(3):1123–
1136, 2018.

[4] Jian Lin, Ming Li, Dejun Yang, Guoliang Xue, and Jian Tang. Sybil-
proof incentive mechanisms for crowdsensing. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications, pages 1–9. IEEE,
2017.

[5] Mohamed Baza, Mahmoud Nabil, Mohamed Mohamed Elsalih Abdel-
salam Mahmoud, Niclas Bewermeier, Kemal Fidan, Waleed Alasmary,
and Mohamed Abdallah. Detecting sybil attacks using proofs of work
and location in vanets. IEEE Transactions on Dependable and Secure
Computing, 2020.

[6] Alireza Chakeri, Xin Wang, Quentin Goss, M Ilhan Akbas, and Luis G
Jaimes. A platform-based incentive mechanism for autonomous vehicle
crowdsensing. IEEE Open Journal of Intelligent Transportation Systems,
2:13–23, 2021.

[7] Yi-Ying Zhang, Jing Shang, Xi Chen, and Kun Liang. A self-learning
detection method of sybil attack based on lstm for electric vehicles.
Energies, 13(6):1382, 2020.

[8] JQ James. Sybil attack identification for crowdsourced navigation: A
self-supervised deep learning approach. IEEE Transactions on Intelligent
Transportation Systems, 2020.

[9] Yiding Liu, Kaiqi Zhao, Gao Cong, and Zhifeng Bao. Online anomalous
trajectory detection with deep generative sequence modeling. In 2020
IEEE 36th International Conference on Data Engineering (ICDE), pages
949–960. IEEE, 2020.

[10] Haiquan Wang, Jiachen Feng, Leilei Sun, Kaiqiang An, Guoping Liu,
Xiang Wen, Runbo Hu, and Hua Chai. Abnormal trajectory detection
based on geospatial consistent modeling. IEEE Access, 8:184633–
184643, 2020.

[11] Seongjin Choi, Jiwon Kim, and Hwasoo Yeo. Trajgail: Generating
urban vehicle trajectories using generative adversarial imitation learning.
Transportation Research Part C: Emerging Technologies, 128:103091,
2021.

[12] Yili Hong. On computing the distribution function for the poisson
binomial distribution. Computational Statistics & Data Analysis, 59:41–
51, 2013.

[13] Kathryn Gray, Daniel Smolyak, Sarkhan Badirli, and George Mohler.
Coupled igmm-gans for deep multimodal anomaly detection in human
mobility data. arXiv preprint arXiv:1809.02728, 2018.

[14] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial
feature learning. arXiv preprint arXiv:1605.09782, 2016.

[15] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura
Bieker. Recent development and applications of sumo-simulation of
urban mobility. International journal on advances in systems and
measurements, 5(3&4), 2012.

[16] Ming Wang, Qingquan Li, Qingwu Hu, and Meng Zhou. Quality analysis
of open street map data. International archives of the photogrammetry,
remote sensing and spatial information sciences, 2:W1, 2013.

[17] Data retrieved from Uber Movement. (c) 2020 uber technologies.,
https://movement.uber.com. 1, 2,3.

