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ABSTRACT Intuitive control of powered prosthetic lower limbs is still an open-ended research goal. Current
controllers employ discrete locomotion modes for well-defined and frequently encountered scenarios such
as stair ascent, stair descent, or ramps. Non-standard movements such as side-shuffling into cars and
avoiding obstacles are challenging to powered limb users. Human locomotion is a continuous motion
comprising rhythmic and non-rhythmic movements, fluidly adapting to the environment. It exhibits strong
inter-joint coordination and the movement of a single joint can be largely predicted based on the movement
of the rest of the body. We explore a continuous and unified kinematics estimation strategy for a wide
variety of movements without the need for labeled examples. Our data-driven approach uses natural body
motion from the intact limbs and trunk to generate a kinematic reference trajectory for prosthetic joints.
Wearable sensors were worn by 63 subjects without disabilities to record full-body kinematics during typical
scenarios (flat ground and stairs), and non-rhythmic and atypical movements (side shuffles, weaving through
cones, backward walking). A Recurrent Neural Network (RNN) was trained to predict right ankle and knee
kinematics from the kinematics of other joints as inputs. Results were assessed on 3 different test subjects
previously unseen by the network. All predictions had a RMSE of less than 7.5 degrees and a high correlation
across activities. These offline predictions were robust to subject-specific variations such as walking speed
and step length. Additionally, to test the feasibility of using a data-driven reference towards prosthetic control
in real-time, a systems test was designed with a single participant. The controller acquired live kinematics,
generated predictions using a pre-trained neural network, and demonstrated the capability to actuate the knee
joint of a powered prosthesis for the treadmill walking task.

INDEX TERMS Prosthetic limbs, biomechatronics, rehabilitation robotics.

I. INTRODUCTION
Powered limbs are getting more and more capable in their
hardware capacity [1], [2]. The new devices are lighter and
more powerful with multiple joints and degrees of freedom.
However, given the vast space of possible movements,
intuitive control of powered limbs is still challenging,
especially for multiple joints [3]. We demonstrate here
a single unified controller for a range of rhythmic and
non-rhythmic activities including the transitions in between.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

Normative kinematic data were collected from subjects with
no amputations. This dataset was used to train a data-driven
controller to predict the reference trajectories of ankle and
knee prosthetic joints. In short, the coordination of the entire
body is exploited to produce desirable kinematic targets for
the prosthetic limb.

A. CONTROL BY CLASSIFICATION OF ACTIVITIES AND
GAIT PHASES
The most commonly encountered terrains and activities such
as flatground walking, stair ascent, etc. have been suc-
cessfully addressed in modern prostheses by categorization
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of control into a handful of ‘‘locomotion or activity
mode’’ [4]–[6].

At this stage, unstructured activities that require unique
non-repeated movements such as sports, getting in and
out of cars or restaurant booths, obstacle avoidance, and
navigating uneven terrain are challenging as they do not
cleanly correspond to commonly-used control modes [7],
[8]. Moreover, with most walking bouts lasting less than
30 seconds [9], mode transitions are common. Consequently,
active users often prefer passive devices for their simplicity
while adopting compensatory movements which can be
physically demanding and detrimental [10], [11].

A possible solution could be to define more modes
to encompass more types of activities. This requires the
construction of more mode-specific controllers and makes
the task of choosing the ‘right’ mode more difficult and
error-prone [12].

Another potential limitation on expanding the number
of modes is the tuning of the control parameters which
go with it. In current mode-based control, the gait cycle
within a mode is divided into phases (swing, stance), each
with distinct controllers and control parameters requiring
hours of tuning [13]. This phase-based control strategy
transitions between gait phases, within a mode using a
finite state machine approach [12]. Each state uses a set
of static parameters that are hard-coded into the controller.
The number of tuneable variables rapidly increases with
the number of parameters per control law, the number of
states per activity, the number of activity modes, and the
number of joints to be actuated. This has led to several
independent studies exploring strategies to reduce tuneable
parameters [14], or automatically tune these parameters using
methods such reinforcement learning [15], [16].

This strategy has difficulty handling abrupt mid-phase
changes in activities [12]. Each gait cycle must begin with the
particular gait phase (e.g heel-strike). Huang et al. [17] miti-
gated this problem by training multiple gait phase-dependent
classifiers for a continuous mode classification and using
an insole pressure sensor to detect the current phase. This
strategy mandates a cyclic progression through the gait
phase. This limits its flexibility to accommodate irregular or
unprogrammed gait patterns, e.g. walking in a crowd or over
rocky ground, and unexpected events such as tripping.

B. EXPLOITING WHOLE-BODY COORDINATION FOR
CONTINUOUS CONTROL
Another approach is to rely on the strong inter-joint
coordination exhibited by humans during locomotion [3],
[13], [18], [19]. This coordination of the whole body means
that movements of any one joint are highly correlated with
the movement of the rest of the body. The trajectory of
movements of the intact limbs provides the means to estimate
the movement of the missing limb with a high likeness
to observed behavior. This observation also motivates our
Coordinated Movement (CM) controller which will be
described in the following subsection.

An early approach called echo control replayed or
‘‘echoed’’ the movement of the sound leg on the prosthetic
limb [20]. However, this delayed playback failed when
asymmetric movements were desired and required the sound
leg to lead all movements.

Complementary Limb Motion Estimation (CLME) infers
the intended motion of affected limbs from the motion of
the residual limbs and maps this to a reference trajectory
for robotic prosthetic joints to track [18]. The mapping is
derived through regression of physiological gait recordings
of subjects with no disability and was evaluated on rhythmic
activities of flatground walking and stair ambulation.

As opposed to mode-based EMG control, direct EMG
control uses active and continuous input from the human
user muscle activity to determine prosthesis dynamics. Direct
EMG control mimics the biological neural control pathway
and provides intuitive coordination with the prosthesis.
It has the potential to not be constrained to rhythmic
locomotor tasks. Recent studies have explored controlling
joint position and torque, however current evidence is mostly
limited to target reaching tasks [21], [22] or well-defined
movements such treadmill walking, postural control, sitting,
stair climb [23]–[27].

A more recent success uses virtual constraints to define
joint trajectories as functions of a monotonic phase variable
that continuously represents the gait cycle across the entire
stride [13]. By learning the holonomic mapping from thigh
angle to foot position, the amputee user has more agency
over the timing and position of the prosthetic joint patterns,
allowing for atypical activities such as backward walking
and walking over obstacles [3]. This strategy has fewer
parameters to tune but still relies on several hard-coded phase
variable values to detect and progress through the gait phases.
Moreover, mapping a phase variable to normative flatground
walking restricts the possible atypical non-rhythmic activ-
ities to those that are kinematically similar to flatground
walking.

These strategies are ‘continuous’ in that they do not divide
the gait cycle into sub-phases. They reduce the burden of
tuning parameters, but do not easily accommodate different
modes or activities. Each movement class requires tuning of
specific parameters [3], [18] separately. We aim to build on
these approaches to provide continuous control, even across
different types of activities.

C. MACHINE LEARNING IN PROSTHETIC CONTROL
Advanced prosthetic control applies machine learning for
classification of input sensor signals (EMG and mechanical)
into discrete locomotion modes. The algorithms explored,
such as linear discriminant analysis (LDA), support vectors
machine (SVM), [17] are suitable for partitioning the total
movement space into limited and finite movement classes.
This process of classification requires labeling of the input
data with corresponding classes or locomotion modes, with
each class or mode characterized by a predefined movement
profile or trajectory.
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Recently, visual data was used for the classification of
the environment into 3 to 5 locomotion modes [28], [29].
This is a promising frontier towards adding redundancy
and robustness to the overall system by acquiring direct
information about the current and upcoming environment
rather than relying purely on user cues [12]. However, as with
all classification tasks, the process of labeling has been
known to be resource-intensive and fraught with subjectiv-
ity [30], [31]. Along with classification, machine learning is
suitable for regression tasks and has been explored towards
prosthesis control as well. CLME [18] uses linear regression
to continuously determine prosthetic joint positions. The
regressionmethod is suggested to be better suited for adapting
the controller to varying walking speeds [19]. The authors
explored Gaussian process regression to adapt prosthetic
knee motion to varying speeds for flatground walking. Such
a non-categorical strategy is more suitable for continu-
ous and instantaneous prostheses control. A large reper-
toire of movements could be realized without categorical
labels.

Deep learning paradigms, leveraging the availability of
large datasets, are state-of-the-art at such non-categorical
tasks. Processes with less clearly defined classes, such as
stock-market performance and weather patterns, can be
predicted by regression of their time-series data [32], [33].
We treat joint kinematic trajectories as the time series of
interest and use deep learning models to continuously predict
appropriate angles for the prosthetic joints, without explicitly
categorizing behavior into modes.

D. OUR COORDINATED MOVEMENT (CM) CONTROLLER
We have developed a continuous controller that can generate
prosthetic joint kinematic trajectories for a variety of
unstructured activities. Our data-driven approach is trained on
locomotion data collected from various activities to predict
kinematics of a target joint omitted from the input set of
joints. For example, in a trans-tibial prosthetic application,
this target joint would be the ankle joint. The body motion of
the person with the amputation would serve as the inputs and
the predictions generated by the network could be used for
the control of the prosthesis.

In [34], we demonstrated a proof of concept, generating
ankle joint trajectories, but for structured rhythmic activities
(flat ground walking and stair ambulation.) In [35] we
expanded the envelope of operation to include non-rhythmic
movements and agile maneuvers.

Our previous studies [34], [35] were limited to conceptual
and offline results on previously collected data on ankle
joints only. In this study, we have improved the system
to include the knee and ankle simultaneously. We measure
how the performance is affected by conditions such as the
sensor locations and amount of data. We also demonstrate
the feasibility of using this coordinated movement strategy to
control a single prosthetic joint. We describe here a real-time
controller to acquire live kinematics and actuate a powered
knee prosthesis [1] for treadmill walking. The preliminary

results of this study were included in the first author’s
doctoral dissertation [36]. In this peer-reviewed manuscript,
we collate the key results pertaining to the application of
CM control to unstructured activities. We also expand upon
and report the performance of CM control around hard and
atypical transitions.

The main contributions of this paper can be summarized as
follows:

1) We present a system to simultaneously predict the
knee and ankle joints angles based on inputs from
the rest of the body, for a previously unseen subject.
We investigate the offline performance of this system
for rhythmic and non-rhythmic activities, including the
transitions.

2) We analyze the dependence of the performance on the
complexity of the movements involved in the activity,
input sensor configuration, amount/variance of data.

3) We test the feasibility of real-time control of a single
joint (knee) robotic prosthetic leg for a treadmill
walking task. This demonstrates that data acquisition,
joint angle estimation, and actuation can all be achieved
within reasonable real-time speeds using standard
hardware.

II. METHODS
The study consisted of 3 main experiments:

1) Collecting the data from 63 non-amputees participants
performing various activities,

2) Offline Tests: Training a neural net to predict the
knee and ankle movements of 3 non-amputee subjects
(excluded from the training set),

3) Real-time Test: Using the trained model to control
the knee joint of a powered prosthesis for 1 non-
amputee participant (excluded from training and offline
tests).

A. PARTICIPANTS
Ambulation data was collected for a total of 63 participants
(34 male, median age 25) with no amputation or other mobil-
ity impairments. Recruitment and human subject protocols
were performed in accordance with the local University of
Washington Institutional Review Board approval and each
subject provided informed consent. De-identified data can
be made available, via a data use agreement, upon request
to the authors. 11 subjects performed flat ground walking
activity and 42 subjects performed stairs activity. To inves-
tigate atypical and non-rhythmic movements, 10 subjects
performed 3 activities from the Comprehensive High-Level
Activity Mobility Predictor (CHAMP) test (Table 1). The
CHAMP test was designed as a safe performance-based
measure of high-level mobility for those with lower-limb loss
(See Section II-B3).

B. ACTIVITIES
The movements targeted in this study were designed to be
more challenging to be categorized into modes.
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TABLE 1. Distribution of subjects across the 3 different activities.

1) FLAT GROUND
To replicate regular community ambulation, flat ground
activity consisted of walking on a long corridor in a public
building. This included random stopping to incorporate
transitions between steady-state walking and rest.

2) STAIRS
This activity consisted of stair ascent and descent in a
6-story public building. This included sections of flat ground
transitions in between levels.

3) COMPREHENSIVE HIGH-LEVEL ACTIVITY MOBILITY
PREDICTOR (CHAMP)
The CHAMP test was designed as a safe performance-based
measure of high-level mobility for those with lower-limb
loss (LLL). The CHAMP test consists of 5 activity sets, but
here we selected a subset of 3 activities that focus on agile
movement, as opposed to balance or endurance. These are
the Edgren Side Step, the Illinois Agility Test, and the T-test.
They include challenging abrupt changes in the movement
direction, running, and backward locomotion. These standard
tests are described in detail in [37], [38] and summarized
below.

a: CHAMP ACTIVITY 1: EDGREN SIDE STEP
Five cones are placed in a line three feet apart. The partici-
pant, starting from the center cone, sidesteps to the right until
their right foot crosses the outside cone. The participant then
sidesteps to the left until their left foot crosses the left outside
cone. The participant sidesteps back and forth to the outside
cones for 10 seconds.

b: CHAMP ACTIVITY 2: ILLINOIS AGILITY TEST
The test aims to complete a weaving running course in the
shortest possible time. The length of the course is 10 meters
and the width is 5 meters and cones mark the course. On the
‘Go’ command, the subject runs the course, without knocking
down any cones.

c: CHAMP ACTIVITY 3: T-TEST
A course 10 meters long and 3.5 meters wide is marked by
cones in a ‘T’ shape. Successful navigation requires side
shuffling to reach the left and rightmost cones as well as
backward walking to return to the starting location.

C. INSTRUMENTATION
We collected locomotion data using the Xsens Awinda
suit [39], consisting of 17 body-worn sensors placed at

key locations, shown in Fig 1. Each sensor has a tri-axial
gyroscope, accelerometer, magnetometer, and barometer.
Xsens Analyse software integrates these individual sensors
and renders a full-body avatar. After a system specified cali-
bration, the software provides position and joint kinematics
in a 3D environment. Although other data such as limb-
segment position, orientation, acceleration are available,
we used only joint angles for this study. All angles are
in 1 × 3 Euler representation of the joint angle vector (x,
y, z) in degrees, calculated using the Euler sequence ZXY
using the International Society of Biomechanics standard
joint angle coordinate system [40]. Data, sampled at 60 Hz,
from a total of 22 joints in 3 anatomical planes (sagittal,
frontal, transverse) were captured for each trial, which
results in 66 total possible features for our machine learning
methods.

D. DATA COLLECTION
The subject donned the Xsens suit and performed the
calibration procedure. A brief test was done using the
Xsens Analyze software to ensure that the quality of data
being recorded was good. The subjects then performed
10-15 minute trials of the desired activity. For flat ground and
stairs activity, the subjects were instructed to walk naturally at
a self-selected pace. The data for these activities was collected
in public spaces during active business hours, with the intent
that normal gait dynamics and corrections would appear in
the example data. The order of activities, starting and ending
points were randomized. The experiment was completed in
a single session which lasted less than 2 hours. In total,
750 minutes of data were collected from all subjects.

E. DATA PROCESSING
Sensor data was visually inspected to detect any potential
equipment malfunctions or calibration problems. Sensors
getting displaced from their original calibrated location is a
commonly seen issue with wearable motion capture systems.
If this was detected during the experiment, sensor placement
was corrected followed by recalibration and reinitialization
of the suit.

Xsens features a real-time engine that processes raw sensor
data for each frame, algorithmically fits the human body
model to estimate anthropomorphic joint and segment data.
A post-processing engine includes information from the past,
present, and future to get an optimal estimate of the position
and orientation of each segment. This ‘HD’ processing raises
the data quality by extracting more information from larger
time windows and modelling for skin artifacts, etc. but also
takes a significantly longer time.

We used HD processed data as training data for our neural
networks. The real-time benchtop test, however, used only
real-time (non-HD processed) data.

F. MACHINE LEARNING MODEL AND ARCHITECTURE
Previously [34], we investigated three different regression
models: Multivariate Linear Regression, Fully-Connected
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TABLE 2. Distribution of subject data for training, test and validation sets
for each of the cross validation runs. This process was repeated thrice
with random shuffling and the average result across the 3 runs was
reported.

FIGURE 1. Neural Network Architecture. Each layer computes information
based on the previous layer, but also using its own previous outputs and
an internal memory. For offline tests, we generate predictions for both
ankle and knee joints, and report the performance. For real-time tests,
we use the pre-trained network to generate predictions for only the knee
joint and control a prosthetic leg.

Deep Neural Network, and a variant of Recurrent Neural
Network - Long Short-Term Memory (LSTM) [41]. It was
shown that the Recurrent Neural Network with a short
time history of gait movements provided the best prediction
of the right ankle joint. In this study, we use the same
network architecture, shown in Fig.1. However, we increase
the number of joints predicted to two by including the knee
joint as well. The deep-learning networks were implemented
on PyTorch [42].

In the real-time prosthetic controller, the trained network
would be applied to predict joint trajectories for a user whose
movements would not have been captured in the training
dataset.

For the offline tests, we used a K-fold cross-validation
method to report generalized results. The subjects were
randomly split into training, validation, and test with no
overlapping subject data. Table 2 shows the distribution of
subjects. The validation data was used to tune the hyper-
parameters and the test set was used to report performance
for that particular run. This process was repeated thrice
with a random allotment of subjects as training, test, and
validation data. For each run, 57 subjects were included
in training set, 3 in test and 3 in validation set. The
final results reported were averaged across the three runs.
The data for the test (and validation) set was combined
from 3 test subjects such that all 3 activity types were
included.

Given a time series trajectory of M intact joints x ∈
<
M×T−1, we employ the LSTM network model to estimate

current target joint values ŷT at time instant T.

ŷT = f (x) (1)

where f is the LSTM network.

d: DATA NORMALIZATION AND RESHAPING
Each of the joint angles exhibits a different Range of Motion
(ROM). To prevent high-ROM joints from dominating
predictions, it is common practice to normalize all features
(generally 0 to 1). We normalized all joint angles for
every trial and saved the average scaling factor of the
training samples for de-normalizing the predicted joint
angles.

e: ROLLING TIME WINDOW
During training, LSTMs backpropagate errors a specific
number of time steps back. This parameter, known as the
sequence length, affects the time scale that the LSTM
cell state reasons about. Choosing a longer sequence
length increases the number of parameters that need to be
trained, increasing computational load and requiring more
training data. Choosing a shorter sequence length increases
the difficulty of learning time dependencies in the data.
In practice, choosing a sequence length appropriate to the
inherent temporal dynamics of the problem greatly simplifies
training and performance of the network [43]. Training
input samples were prepared as an overlapping rolling
window of time series data of desired sequence length. The
optimal sequence length was a hyperparameter we tuned
for.

f: LOSS FUNCTION AND NEURAL NETWORK
HYPERPARAMETER OPTIMIZATION
We used themean squared error (MSE) between the predicted
and measured joint angle as loss function to be optimized.
This is a common metric used for regression tasks in machine
learning. Apart from the sequence length, the network also
has several hyperparameters that need to be optimized for
different application domains.

g: HYPERPARAMETER OPTIMIZATION
A combination of random and grid search was applied
to optimize hyperparameters. Each batch was shuffled and
random Gaussian noise was added to each sample to reduce
over-fitting.

Optimized hyperparameters included batch size, number
of epochs, number of layers (L), number of units in each
layer (HU), the standard deviation of the injected noise, the
regularization parameter for L2 loss (λ), and learning rate.

Every 5 epochs, the performance of the model was
evaluated on a validation set. The best-performing model
was saved and used to generate predictions and metrics on
a test set. 30 trials were evaluated for each parameter set
and the average Root Mean Squared Error (RMSE) was
recorded. The optimal parameter value selection was based
not just on the absolute best performance but also considering
the overhead in time and computation needed to reach that
performance. The range of parameter values tested is shown
in Table 3. The optimal hyperparameter set was used to
compare and evaluate performance.
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TABLE 3. Hyperparameter values tested for optimal performance on
Obstacle course data-set.

h: DENORMALIZATION
To report results in the original scale, all predictions were
denormalized using average minimum and maximum scaling
factors extracted from the training set only. This is common
practice in machine learning as the test set scaling factors are
not known a priori.

G. ANALYSIS
We use Root Mean Squared Error (RMSE) and the Pearson
correlation coefficient (PCC) as our outcome measures to
report performance for different activities, sensor groups, and
quantity of data. Ideally, the RMSE will be equal to zero
degrees and PCC would be equal to 1.

1) PERFORMANCE BY ACTIVITY
We compared the performance of sagittal plane ankle and
knee joint angle predictions for models trained on data from:
• Flat ground walking with random stops
• Stair ascent and descent with flat ground sections
• CHAMP tests
We combine all the activities in training and report

errors for each activity evaluated separately. This prevents
averaging out of errors across activities.

2) DEPENDENCE ON SENSOR CONFIGURATION
We assessed performance for flat ground, stairs, and CHAMP
activities for the following sensor groups as inputs:
• Full body (20 joints) in all 3 anatomical planes
• Lower limb (6 joints) in all 3 anatomical planes

3) DEPENDENCE ON DATA
We assessed performance for different amounts of training
data by varying:
• Number of subjects included in training data.
• Percentage of data included from every subject in
training data.

a: SIGNIFICANCE AND EQUIVALENCE TESTING
R-package and Matlab were used for statistical analysis.
Simple rhythmic movements of flatground walking should
be easier to generalize than those involved in the CHAMP
tests. Hence, we expected the performance to vary with
activity. Similarly, more training examples collected from
more subjects should allow the network to learn more

variations and hence perform better. For these outcomes,
we use paired-sample t-tests. Effect sizes were calculated
using cohen’s d method [44].

In contrast, we expected most of the movement cues
for flatground walking to be present in the lower body.
We also expect a diminishing return by adding more training
examples from the same subject as they would likely be
similar. Hence, we hypothesize that sensor configuration
and percentage of data from every subject will not result in
significant differences in performance. For these outcomes,
we perform equivalence testing. A relevant bound around
the mean value is needed within which the results can
be considered ‘‘equivalent’’. We apply the ‘‘two one-sided
t-tests’’ (TOST procedure) [45], one for the lower bound
and one for the upper bound, to show that the change is
statistically equivalent to zero.

Upper and lower bounds of 3 degrees was used for the
flat ground activity. This value corresponds to the best case
minimum detectable change (MDC) for sagittal plane ankle
joint kinematics in literature [46], [47]. MDC for other
activities has not been established. We discuss the motivation
and implication of using this value in the discussion
section.

H. REAL-TIME EXPERIMENTS ON THE OPEN SOURCE LEG
The Coordinated Movement (CM) controller 1) acquires
kinematics 2) pre-processes the data (See Section II-F a,b),
3) predicts the prosthetic joint trajectories, and 4) translates
these predictions into lower-level controls. We performed a
proof of concept experiment using a real-time powered pros-
thesis to demonstrate acceptable latency and performance.

We used the Open Source Leg (OSL) [1], a mod-
ular lightweight robotic leg designed to be a com-
mon hardware testbed for prosthetic control research.
It provides an open-source API to control the position,
torque, and impedance of the knee and ankle joint,
making it an ideal platform to compare different control
strategies.

A person with no amputation wore the Xsens motion
capture suit and a bypass socket to attach the OSL while
ambulating on a treadmill at a self-selected speed (Fig 2).
A real-time controller built using Xsens Python SDK

acquired live kinematics as inputs. Right ankle and knee
joints were omitted as they were the intended target prosthetic
joints. An LSTM neural network (see Section II-F) pre-
trained on offline flat-ground walking data (to match the
treadmill walking) was used to predict right ankle and
knee joint kinematics from the inputs. These predicted joint
kinematics were encoded to actuator positions on the Open
Source Leg. Although the controller predicts both knee and
ankle joint trajectories, for the sake of simplicity and safety,
only the knee joint was actively controlled. A passive ankle
prosthetic was mounted on the bypass socket. The controller
ran on a GPU-powered laptop tethered to the OSL. The
participant was asked to walk at self-selected speed on the
treadmill.
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FIGURE 2. Real-time setup with Open Source Leg (OSL). The positions of
imus are indicated using circles. Green dashed circles mean that sensors
are placed on the posterior side of the body and are not shown in the
figure.An individual wearing the motion capture sensors walked on the
treadmill at a self-selected speed. Live kinematics from the suit were
used as inputs to a pre-trained network that generated right ankle and
knee predictions. These predictions were used to actuate the knee joint
of the OSL in real-time. The ankle was locked.

The right leg sensors of the Xsens system were placed on
the prosthesis (instead of the biological limb in the bypass
socket) to complywith the human subjectmodel of the system
as well as to acquire the current prosthetic knee angle.

III. RESULTS
The coordinated movement controller generated continuous
real-time trajectory predictions for all the activities as shown
in Fig. 3. Whole-body kinematics of 19 joints in 3 anatomical
planes were inputs to predict the instantaneous position of
the right ankle and knee joint. Fig 5 shows an example
of a smooth transition from stair descent to flatground.
A complete rotation executed during the Illinois Agility
Test (IAT) and transition from side-stepping to backward
walking executed during T-test activity is shown in Fig. 6. All
transitions were predicted successfully and instantaneously,
however, performance varied across different types of
activities. While the more structured activity of stair descent
had an RMS error of 2.68 degrees, the CHAMP transitions
showed a marked increase in the error of 5.9 and 7.6 degrees
respectively.

A. PERFORMANCE WITH RESPECT TO ACTIVITIES
Ankle and knee joint prediction performance varied with
activity (Fig. 4) but were within 7.5 degrees RMS error

TABLE 4. Pearson correlation coefficients of predictions with respect to
activities. Mean and standard deviations shown for ankle and knee joint
sagittal plane predictions. Correlation dropped significantly for both joint
predictions with increasing complexity of the activity.

TABLE 5. RMS errors of predictions as percentages of range of motion.
The CHAMP activity had the highest error percent for both joints.

and generally showed a high Pearson Correlation Coefficient
(PCC) > 0.85 (Table 4).
The CHAMP activity predictions had reduced performance

for both joints, suggesting that the complexity of movements
involved in an activity impacts prediction performance. PCC
reflected a sharper contrast (Effect Size = 7.9) but RMS
error showed a similar trend (Effect Size = 4.3). The RMS
error of predictions was generally within 12% of the range
of motion for each activity (Table 5). The only exception
was the ankle joint predictions for CHAMP activities with
about 16.3%. Similarly, the ankle joint predictions for
CHAMP activities (Table 4) had the lowest correlation of
0.72. Predictions for stairs activity with training data from
40 subjects had approximately the same performance as
the flat ground activity with 10 subjects. Training data
from more subjects could have a similar benefit to perfor-
mance for CHAMP activity as we discuss in the following
section.

B. DEPENDENCE ON SENSOR CONFIGURATION
All activities showed approximately the same performance
(<0.5-degree change) when only the lower-limb sensor data
was used as inputs. (Fig 7). Significant equivalence was
determined for flat-ground activity using the TOST procedure
as described in Section II G. Equivalent performance with
a reduced set of sensors has beneficial implications for
deployment with minimum instrumentation. The perfor-
mance showed slight but statistically significant degradation
in the case of more complex activities like stairs and CHAMP.
We expect a larger sample size of participants and movement
repertoire to elucidate the impact of sensor placement on
various activities.

C. DEPENDENCE ON DATA
Fig. 8 shows performance with varying amount of stair
activity data. Prediction RMS error significantly decreased
(p<0.001) with data from more subjects included in
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FIGURE 3. Ankle (left) and knee (right) joint predictions for 3 different activities generated by the same network.The trajectories shown for a test
subject whose data was not part of the training data. About 3 seconds of actual measured (green) and predicted (red) trajectory for flat-ground
(top), stair ascent-descent (middle), and Illinois Agility Test (bottom) activities are shown. Though these activities are presented separately, the
network that generated these predictions was trained on a combination of all of them and did not require activity categorization.

FIGURE 4. RMS error with respect to individual activities for ankle
joint (red) and knee joint (blue) sagittal plane predictions. Performance
was within 8 degrees RMS error for all activities and both joints.
Statistical analysis showed that complexity of activity significantly
increased RMS Error.

training the models (blue). This is an important result
suggesting that the performance of hard activities can be
improved with training data from more subjects. Interest-
ingly, the error remained approximately the same even
when half the data from all subjects was not included
in the training (orange). This could be because adding
more data from the same subject does not add any new
variation to the overall repertoire of movements seen by the
network.

FIGURE 5. Ankle joint predictions showing continuous seamless
transition from flat ground walking to stair descent.

D. REAL-TIME TEST
A single individual who was not a part of the training cohort
was used for a systems test. Kinematics were collected as they
walked on a treadmill at a self-selected pace. These data were
played as inputs to predict ankle and knee joint trajectories for
the Coordinated Movement controller for a prosthetic limb
in real-time (Fig. 9). The actuated trajectory had an RMS
error of 8.1 degrees with respect to the network predicted
trajectory. Visual analysis shows that the predictions were
noisier than the offline results seen in Fig. 4 for flat ground
activity due to reduced quality of input kinematics in the
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FIGURE 6. Knee joint predictions showing continuous seamless transitions in 180-degree rotation executed during the Illinois Agility
Test (left) and from side-stepping movement to backwards walking in T-test (right). Swing (blue) and stance (pink) phase depicted with
background color.

FIGURE 7. RMS error for ankle joint predictions with respect to activities
with fullbody (blue) and lower limb only(green) sensors as network
inputs. Using only the lower limb sensors for training showed equivalent
performance for flat ground activity and a slightly worse performance in
the case of more complex activities. # indicates statistical equivalence.

real-time scenario. The whole pipeline was operated at 60Hz
and the system noted a low latency (<80ms) in generating
and executing these trajectories.

IV. DISCUSSION
This study aims to address the challenges faced by powered
lower limb users during unstructured activities such as side
shuffling andweaving around obstacles.We demonstrate here
that a data-driven approach could be applicable to realize
continuous control of multi-joint powered prostheses without
explicit categorization of movements.

A. AUGMENTING CONTINUOUS CONTROL
Coordinated Movement control offers a way to expand the
repertoire of prosthetic movements without tuning activity,
specific controllers. This shifts the burden of design from
tuning controller parameters to collecting examples of
representative movements and training predictive neural
networks.

FIGURE 8. RMS error with respect to the number of subjects (red, bottom
X-axis) and percentage of data used from all subjects (blue, top X-axis)
for stair ascent and descent data. More subjects included in training data
resulted in a statistically significant performance gain. Keeping the total
number of subjects the same (n=40), but using only 50% of the data
showed approximately the same performance.

In [3], a single-phase variable mapped to prosthesis
joints allowed the execution of atypical movements like
backwardwalking, kicking a football, etc. The phase variable,
also the control input, restricted to the prosthetic side
thigh angle eases instrumentation needs. However, the thigh
angle is not a monotonic signal throughout the stride with
discontinuities at the beginning or end. Using thigh angle
and footswitches to differentiate stance and swing phases, the
authors noted jumps and oscillations during transitions [13].
To circumvent this, the gait cycle was divided into different
sections corresponding to different states of a Finite State
Machine, and a piecewise control was implemented across
the complete cycle [3]. The states of the FSM corresponded
to monotonic thigh angle trajectory and provided continuity
and directionality along the stride. However, it comes at
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FIGURE 9. Knee joint predicted (red) and actuated trajectories (blue)
during the real-time tests with treadmill walking activity. For this trial, the
actuated trajectory had an RMS error of 8.1 degrees with respect to the
network predicted trajectory (red).

the expense of more control states with hard-coded state
transition rules and parameters. Moreover, since the FSM
states were parameterized based on normative flatground
walking trajectory, the non-rhythmic movements possible
were encompassed within that repertoire. Adding other
non-rhythmic movements to the fold, or even rhythmic
activities such as stair ascent would require a different FSM
with state transition rules pertaining to the corresponding
kinematic trajectories.

CM can be thought of as a more expressive continuous
controller. Despite the added instrumentation, the inclusion
of more of the body allows for a variety of possible whole-
body movements. We show here the sensor configuration
can be limited to the lower body without a significant
loss in performance for simple activities. The likelihood
of having different output prosthetic joint positions for a
given control input is also lower and avoids jumps and
oscillations within a stride. The addition of time-history of
joint poses as the inputs, as opposed to just a single time
instant, also benefits the number of possible output config-
urations, needed for a wider range of movements. However,
this expressiveness could also be harder for the user to
predict.

Direct continuous EMG control has also garnered interest
to mimic the biological neural control paradigm. Using
continuous muscle signals to modulate prosthesis dynamics,
this strategy can theoretically be applied to achieve control for
unstructured and non-rhythmic activities. Potential benefits
include restored reflexive muscle activity and improved
prosthesis embodiment [25]. However, practically mapping
of multiple muscle activity to joint dynamics, especially
position, is an extremely complex many-to-many relationship
and is a topic of research. Several methods like principal
component analysis, non-negative matrix factorization, mus-
culoskeletal models have shown success [22], [26]. Current
evidence is mostly limited to target reaching tasks [21], [22]
or well-defined movements such treadmill walking, postural

control, sitting, stair climb [23]–[27]. Achieving desired
control requires training, aid of visual feedback [21], [22],
[24] and is associated with overall increasedmental load [27].
We expect direct EMG to benefit from the intelligence
and movement repertoire afforded by CM control; much
like NMI [4], where combining EMG and mechanical
sensors improved overall locomotion mode classification
accuracy. CM strategy’s ability to determine the desired
unstructured movement using natural body movements could
be augmented by direct EMG to modulate the torque and
effort within the movement.

B. A UNIFIED CONTROLLER FOR VARIED ACTIVITIES
Our CM controller was trained on data from different
activities and can generate movement for any of them, as well
as the transitions between them, seamlessly. For example,
Fig. 5 shows an example of ankle angle as a user transitioned
fromwalking on flat ground to descending stairs. Even harder
changes in movements such as turning around involving rapid
changes from and back to the flat ground straight walking,
as well as transitions to backwards walking were predicted by
the same network (Fig 6). However, the error was increased
for these harder movement transitions.

Although a single CM controller can generate predictions
for all activities included in the training data, the performance
for each activity varied. The CHAMP activity predictions
(Fig.4) showed significantly higher RMS error than flat
ground activity. This could be due to the complex collective of
movements that included weaving around obstacles, walking
sideways and backward. This suggests that complexity of
activity impacts performance and it seems likely that more
training data could benefit such activities, as we discuss
below.

C. SENSOR CONFIGURATION
An interesting result is that using only lower limb sensors
had approximately the same performance as using full-body
sensors (Fig.7). This suggests that, in the interest of minimum
instrumentation and cost, this system could be deployed
with just lower-limb sensors without compromising overall
performance.

We expected the CHAMP activity to benefit from the inclu-
sion of the upper body sensors given the relatively complex
movements involved. Evidently, most of the information for
the activities in this study was captured by the lower limb
data. However, this result should be considered with a caveat.
Upper limb movements are integral to maintain dynamic
stability and perhaps more intricate activities that demand
whole-body coordination would benefit from full-body
data.

D. PERFORMANCE DEPENDENCE ON DATA
The performance was significantly improved when more
subjects were included in the training data. This peak
performance was maintained even when half the data
from every subject was excluded from training (Fig. 8).
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These results have two implications for more efficient data
collection protocols in the future. Firstly, as expected, a data-
driven approach relies on, and benefits by including data
from more subjects. Secondly, less data from more subjects
is better than more data from fewer subjects.

With an equal number of subjects (n=10), the RMS error
of predictions for stair activity was significantly greater
error than flat ground activity. The inclusion of 30 more
subjects (n=40) reduced this error by almost 2 degrees,
bringing it closer to flat ground prediction performance. This
suggests that relatively more training data are needed for
more complex activities to achieve a performance similar
to simple rhythmic activities. We expect the result to
hold for CHAMP activity, including the transition sections,
as well.

E. CONTROLLING KNEE AND ANKLE SIMULTANEOUSLY
All control methods require tuning of parameters, but the bur-
den of this generally depends on how many parameters need
to be tuned. Recent work has pointed out this problem [14]
and methods for automatic tuning are being investigated [15],
[16]. Controlling multiple degrees of freedom, such as both
ankle and knee, or additional planes of motion, can greatly
increase the number of required parameters to be tuned. If the
controller is specific to a locomotion mode, then adding
additional modes requires additional tuning as well. The
coordinated movement regression approach that we describe
here is comparatively insensitive to additional degrees of
freedom. The process remains the same: collect examples
of desirable movement profiles, and perform regression on
the desired degrees of freedom to be controlled. We suggest
(though this study does not explicitly demonstrate) that this
approach could produce more complex control outputs with
a comparatively less tuning burden.

Predicting both knee and ankle is more difficult than
predicting only the ankle for two reasons. The first is simply
that the network has two outputs to learn. The second is
that the knee joint input data itself is highly salient for
predicting the ankle joint. In our previous work [34], [35],
we predicted only the ankle joint. The error we observe in
the present study is higher, but only noticeably so in the
CHAMP activity (Fig. 10) with a 21% increase. We speculate
that simpler movements contain more redundant informa-
tion in the remaining joints. For more complex activities
like CHAMP, the value of the ipsilateral knee joint is
higher.

The difficulty of controlling multi-joint robotic limb was
highlighted during the real-time test. As we discuss below
in-depth, the predicted trajectory during the real-time test
was noisier than offline results. The disturbance observed by
the user was compounded and more pronounced with both
ankle and knee joints of the OSL being actively controlled.
To simplify the test procedure and also to ensure participant
safety, only the knee joint of the OSL was actively controlled
by the network predictions. A passive ankle was attached to
the distal end of the bypass socket.

FIGURE 10. Change in degree RMS error for ankle joint predictions
without the ipsilateral knee as one of the input joints. Cyclic activities like
flat ground walking offer more redundancy in other joints whereas
unique activities require more input joints for prediction. A relatively
complex CHAMP activity showed a 1 degree or 21% increase in error
comparing the ankle only results in our previous study and the knee and
ankle results of this study. Asterisk indicates statistical significance.

F. REAL-TIME TEST
The real-time test was designed to test the feasibility of
a data-driven controller to actuate a prosthetic leg. The
system showed low latency in predicting and generating
the reference trajectories. The whole pipeline of operations
resulted in a lag of less than 80ms in the response of the
prosthetic leg. For upper-limb prostheses, a delay greater
than 300ms is considered significant [48]. This value has
not been established for lower-limb prostheses, but it can be
generally deduced that lower delays are desirable, especially
during load bearing phases. Despite switching to the passive
ankle, estimates were still generated in real-time for both knee
and ankle, to demonstrate the computational feasibility and
latency. We expect the minimum inherent lag of this strategy
to be lower than 80ms when optimized for a production-level
implementation. Although training this kind of model can be
quite computationally expensive, runtime implementations
can be made to be significantly faster than what we report
here.

In offline tests, normative biological limb trajectory was
used as ground truth to quantify prediction errors. For
a real-time test, however, there is no such thing as a
ground truth trajectory; the user moves in concert with the
prosthesis, reacting to it as a coupled system. Fig. 9 depicts
a representative 10-second window from the experiment.
The predicted knee trajectory (red) appears appropriate,
and the device can approximately track it (blue). However,
we observed that the predicted trajectories were noisier than
in offline experiments, characterized by greater variance
and undesirable features such as the back-and-forth spikes
at the extrema. These disturbances were more perceptible
with both ankle and knee joints of the OSL being actively
controlled, and sometimes compromised the stability of the
participant. Substituting the active ankle joint with a passive
ankle allowed the participant to walk more easily, albeit
with occasional kickbacks. Smoother position-based com-
mand trajectories could be obtained, if desired, to improve
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comfort or confidence in the system. On the other hand,
a system commanded by impedance-based trajectories
may be more forgiving of such inherent noise of the
predictions.

We suspect that the noisier outputs could be due to noisier
inputs from the motion capture system. Raw motion-tracking
data is inherently noisy. The Xsens real-time engine mitigates
this by accommodating sensor drifts and correlating indepen-
dent sensor data to a human body model. A post-processing
engine further improves data quality by including past,
present, and future samples. While offline analysis has the
benefit of using clean post-processed data, real-time control
does not. This results in poorer prediction performance. This
deviation in the distribution of the data in the test compared
to training, known as covariate shift, is commonly seen in
machine learning. This could be alleviated by using raw
unprocessed data, or processed data with artificial noise,
as training inputs to simulate the real-time data. Generation
of synthetic training data using Generative Adversarial
Networks (GAN) could allow the network to be more robust
to sensor noise [49]. A more thorough long-term solution
could be to engineer an algorithmically light version of
the post-processing engine to operate on real-time data as
well.

1) LIMITATIONS
a: ERROR METRIC
Our objective was to replicate normative joint trajectories for
every instant in time. We chose our outcome measure to be
the RMS error, commonly used for regression tasks. This
makes it difficult to objectively compare with mode-based
strategies which report accuracy in the percentage of accurate
mode classification. However, the RMS metric has been used
in continuous direct myoelectric control studies to report
performance. For the case of flatground walking, we see [23]
and [22] report an RMS error of around 6 degrees and
7.5 degrees in the sagittal plane for ankle joint kinematics.
In comparison, we report an error of 5.6 degrees for the same.

Jahanandish et al. applied Gaussian Process Regression
on spatio-temporal ultrasound features from leg muscles
to evaluate continuous task-invariant learning of knee joint
kinematics [50]. They report a RMS error of 4.7 and
10.7 degrees for flatground walking and stair ascent activity
respectively. In comparison, we observe an RMS error of
3.6 and 4.4 degrees for the same. It is however unclear
if the degree error reported in all the studies is within
an acceptable threshold for practical use. For the case
of flat ground walking, the RMS error is comparable to
the Minimal Detectable Change (MDC) values of around
3 and 5 degrees [46], [47] for ankle and knee joints in the
sagittal plane.

For the lack of a better measure, we use an MDC of
3 degrees to determine equivalence in the case of flat-
ground activity. A similar approach has been used in other
studies [51] but to show a statistical difference due to
intervention. Even though the 3 degree bound was the

lowest value seen in literature, it would still be large
enough to show statistical equivalence for all the activities
in this study. However, statistical equivalence should not be
confounded with practical equivalence. These MDC values
correspond to gait measurement, and may not equate to MDC
for a load-bearing prosthetic application. MDC for other
activities and more importantly minimal clinically important
difference (MCID) for gait and prosthetic control is critically
lacking [52].

Another metric used to report fidelity of the trajectories
is the Pearson Correlation Coefficient (PCC). [3] reported
0.80 to 0.95 correlation for knee trajectories for flatground
walking at various speeds. The PCC we observe for knee
joint for flatground activity is 0.97. Once again, PCC for other
more complex activities is lacking in the literature.

Regardless of the control strategy, objective metrics like,
PCC, classification accuracy, and RMSE are poor windows
into the more important subjective experience of the user.
In [53], Zhang et al. investigated the effects of various
kinds of errors in locomotion mode classification on user
perception of instability. The study evidenced that the timing
with respect to the gait phase of the control disturbances
caused due to errors is an important factor. So another way
to look at error could be to look at the maximum stance-
phase error. For example, for flat-groundwalking, the average
RMSE for ankle and knee were 5.6 and 3.6 degrees, and
the average max error during the stance phase was 6.77 and
8.99 degrees. Albeit higher in value, this has similar strengths
and weaknesses as RMS. A study similar to [53], tying the
objective metric of RMS to the subjective experience of the
user, could lend insight for better comparison.

b: USE OF NORMATIVE TRAJECTORIES
We show that deep networks can represent and adapt to
users not directly measured during training. So even though
the prosthetic user’s own gait may not have been recorded
prior to amputation, this approach could still be employed.
However, a major assumption with this approach is that
normative trajectories collected from unimpaired subjects can
be replayed for prosthesis users. Normative trajectories have
been successfully used for prosthetic control [3], [18] and
as tuning objective to optimize powered limb impedance
parameters [15]. We expect a similar performance with our
controller.

However, as prior studies have concluded, a more complex
reference objective that accounts for variations of weight and
dexterity of prosthetic limbs could be necessary. Since the
dynamics of the prosthesis are different from those of the
physiological leg, it could make sense to generate controls
that take that into account.

c: POSITION CONTROL
The tuning of the lower-level controller gains (PID) will most
likely be needed to ensure safe and comfortable ambulation.
An impedance or torque-based prosthetic controller is likely
to be more comfortable. Current commercial wearable
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sensors provide only position estimates, limiting the target
predictions in this study to joint kinematics only. However,
there is an increased interest in estimating joint kinetics
using wearable sensors [54], [55]. Upon availability of such
reference data for training, this data-driven methodology can
be used to generate joint torque predictions as well.

Using only a single test participant in understanding the
real-time performance of this strategy is a limitation.This
is a first-step feasibility demonstration, but not yet a robust
examination of controller performance. Moreover, although
the controller predicts both knee and ankle joint trajectories,
for the sake of simplicity and safety, only the knee joint was
actively controlled.

2) IMPROVEMENTS AND FUTURE WORK
In a follow-up study to improve CM controller perfor-
mance, [56], the application of Attention [57] technique to
neural network drastically reduced RMS errors to less than
one degree. However, real-time results on actual hardware
will be evaluated as future work. Wen et al. [15] explored
the application of reinforcement learning to automatically
tune prosthetic controller parameters for flatground walking.
Collaterally, the adaptive tuner reduced the average RMS
error of the robotic knee angle from 5.83 degrees to
3.99 degrees. A similar approach could potentially adopt
CM-generated reference trajectories to individual preference,
improving performance.

Experiments in preparation are geared towards assessing
the performance of this control strategy on human subjects as
well as to compare it to other mode-based control strategies.

Non-time varying and subject specific features contain rich
contextual information and have shown to improve network
accuracy in bio-medical applications [58]. Including non
temporal subject-specific data that affect gait kinematics,
such as gender [59], body dimensions [60], age [61] etc. could
possibly improve performance.

V. CONCLUSION
Sixty-three subjects wore a motion capture suit and
performed various rhythmic and non-rhythmic activities.
A recurrent neural network was trained to predict ankle and
knee kinematics using the remaining joint kinematics as
inputs. Performance was within 7.5 degrees RMS error for
test subjects excluded from training examples. These errors
are generally less than 12% of the ROM of the corresponding
activities.

A systems study was conducted, demonstrating that the
data-driven predictions and controller can be run in real-time
on real hardware with low latency. Further work is necessary
to understand how useful this control strategy is for more
realistic ambulation.
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