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Complexity of locomotion
activities in an outside-of-the-lab
wearable motion capture dataset

Abhishek Sharma'* and Eric Rombokas'?

'Department of Mechanical Engineering, University of Washington, Seattle, WA, United States,
’Department of Electrical Engineering, University of Washington, Seattle, WA, United States

Gait complexity is widely used to understand risk factors for injury,
rehabilitation, the performance of assistive devices, and other matters of
clinical interest. We analyze the complexity of out-of-the-lab locomotion
activities via measures that have previously been used in gait analysis
literature, as well as measures from other domains of data analysis. We
categorize these broadly as quantifying either the intrinsic dimensionality,
the variability, or the regularity, periodicity, or self-similarity of the data from
a nonlinear dynamical systems perspective. We perform this analysis on a novel
full-body motion capture dataset collected in out-of-the-lab conditions for a
variety of indoor environments. This is a unique dataset with a large amount
(over 24 h total) of data from participants behaving without low-level
instructions in out-of-the-lab indoor environments. We show that
reasonable complexity measures can yield surprising, and even profoundly
contradictory, results. We suggest that future complexity analysis can use
these guidelines to be more specific and intentional about what aspect of
complexity a quantitative measure expresses. This will become more important
as wearable motion capture technology increasingly allows for comparison of
ecologically relevant behavior with lab-based measurements.

KEYWORDS

complexity, wearable motion capture, out-of-the-lab datasets, gait analysis, real-
world scenario, on-field movement analysis, human locomotion

1 Introduction

Measurement of the complexity of motor output (Decker et al., 2010; Morrison and
Newell, 2015) is a common and essential component of gait analysis. It can be used for
basic science, providing a window into how the brain generates movement Ting and
McKay (2007), performs sensation, and how neural control interacts with biomechanics
(Duysens et al., 2013). It can also be used for clinical gait analysis, with real implications
for prescription of interventions and functional classification e.g., (Steele et al., 2015a). For
example, a decrease in motor output complexity might indicate a reduced ability to adapt
to stresses (Peng et al., 1993; Amaral et al., 1998; Goldberger et al., 2002). According to this
reasoning, decreased complexity could indicate a reduced capacity for rejection of
variability Goldberger et al. (2002), or a deterioration of the complex human rhythms
of movement associated with healthy function Decker et al. (2010). It might also serve as a
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TABLE 1 Activities and subject details.

Activities # Subjects

Forward walking 9 females; 11 males

Backward walking 4 females; 5 males
Sidestepping 4 females; 5 males

Classrooms and Atrium 12 females; 11 males

tool to examine how well the current techniques used in control
of assistive devices approximate the natural human gait. For
example, it is well known that human gait exhibits variability
(one measure of complexity) across strides due to several factors
like environment or fatigue, while the control of assistive devices
is often rigid and deterministic. Since different activities exhibit
varying degrees of complexity, it may be that if a deterministic
control technique works for one activity with low variability, it
will not translate well to different, highly variable, activity. Thus,
examining the variability (and more broadly, the complexity) of
different activities, is needed.

In the past, gait datasets have been largely confined to in-the-
lab environments. Most available gait data has been restricted to
uncluttered level ground ambulation or walking on a treadmill.
As a result, much of the analyses and conclusions about human
gait are drawn from a limited context. For example, there are no
previous studies that compare commonly recorded gait activities
like forward walking in a straight line to daily unconstrained
walking in public places in terms of their complexity. However,
recent developments in wearable sensors have driven increased
interest in measuring human movement under a more diverse set
of activities and situations. This makes it possible to analyze and
compare these activities with the most commonly analyzed
activity: flat ground walking in a straight line.

It is actually not trivial to quantitatively measure and define
the relative complexity of different activities (Morrison and
Newell, 2015). From our natural experience of life, we
understand that avoiding obstacles, navigating challenging
terrain, or dealing with uncertainty in the environment should
result in more complex movement. We also intuit that movement
outside of a gait lab, in the presence of other people and a
changing environment, should result in more complex
movement. But what, precisely and quantitatively, does that
mean? There are several reasonable quantitative measures of
complexity that actually are measuring different aspects of the
data, and can be contradictory.

In this manuscript, we attempt to define reasonable
boundaries for these questions, and demonstrate some
experiments and measurements that begin to answer them.
Our goal is to contribute to a standard practice of gait
complexity analysis, and especially comparison of different
activities, as movement studies increasingly take place in more
natural, unconstrained contexts. We present a multi-subject (See

Frontiers in Bioengineering and Biotechnology

02

10.3389/fbioe.2022.918939

Age (yrs) Height (cm)
262+ 2.7 174 + 10.9
215+ 24 1734 + 6.9
218 + 22 172.8 + 6.8
228 %27 1712 £ 9.7

Table 1) full body kinematics dataset that captures diverse
activities like forward walking, backward walking, side
stepping, avoiding obstacles by stepping over them, navigating
around obstacles in structured and controlled environments as
well as unstructured and uncontrolled natural environments, and
stair ascent and descent. We qualitatively and quantitatively
compare these activities to straight-line forward walking.

First, we provide background and context for complexity
analysis in Section 2. We also present the potential contradictions
in different complexity measures using a toy example. In
Methods (Section 3), we describe the experiment, data
analysis details, and quantitative outcome calculation methods.
In Results and Discussion (Section 4) we present comparisons of
the relative complexity of the different activities, and consider the
importance of these outcomes, especially when different notions
of complexity result in apparent differences. Finally, we discuss
some limitations of our analysis.

2 Background: Complexity analysis

Previous analyses of complexity may be generally categorized
as being inspired by three notions (Decker et al., 2010; Morrison
and Newell, 2015): 1) dimensionality, 2) variability, and 3)
nonlinear dynamics. Here we use measures from each of
these. As we describe in the Results and Discussion, there can
be important differences in the apparent complexity of gait
depending on the specific measures being used.

2.1 Complexity in terms of dimensionality

This approach assumes that the greater the number of
dimensions (degrees of freedom) required to describe the
data, the greater the complexity of the data (Morrison and
Newell, 2015). A
dimensionality of the data is Principal Component Analysis

common method used to capture
(PCA). Dimensionality is defined as the number of principal
components required to capture a certain level of variance in the
data. The greater number of PCs required to explain the desired
level of variance in the data, the greater the complexity of the
data. There are a variety of other matrix factorization algorithms
are used to identify underlying regularities or synergies in
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movement data (Steele et al., 2015b). As we have shown in other
work, there are other advantageous nonlinear methods of
identifying the underlying dimensionality (Portnova-Fahreeva
et al,, 2020; Boe et al., 2021). However, the most straightfoward
method commonly used in the current gait literature is PCA
(Morrison and Newell, 2015), so we will constrain ourselves to
that measure for this analysis.

2.2 Complexity in terms of variability

An alternative way to measure complexity is to assess the
amount of deviation in a signal. For example, the Standard
Deviation (SD) or Coefficient of Variation are common measures
that use this approach (Morrison and Newell, 2015). This allows the
complexity of even very low-dimensional data to be quantified
meaningfully. For multi-variate data the determinant of the
covariance matrix, also known as Generalized Variance (Wilks,
1932), can be used a variance measure. Another measure of
variability (GaitSD) has been proposed in (Sangeux et al., 2016),
to measure the variability of gait waveforms across strides. Larger
variability implies greater complexity under these definitions.

2.3 Complexity in terms of non-linear
dynamics

Tools from non-linear dynamical system theory have been
used to measure the regularity and periodicity of gait signals
across time (Decker et al., 2010). describes two kinds of analyses:
State space examination and self-similarity evaluation, used to
assess gait complexity.

State-space examination is done using the Largest Lyapunov
Exponent (LyE) and Correlation Dimension. The LyE measures the
average exponential rate of separation of neighboring trajectories of
the attractor, while Correlation Dimension is a measure of the fractal
dimension of the attractor. A positive LyE indicates aperiodic signals
while a negative or zero LyE are associated with periodic signals.
Random data are generally characterized by a large Correlation
Dimension and LyE values while deterministic (periodic or chaotic)
data exhibit smaller values.

Self-similarity evaluation is done to examine the presence of
repeating patterns in the gait signal. Entropy based measures like
approximate entropy (ApEn), sample entropy (SampEn),
detrended fluctuation analysis (DFA) and multiscale entropy
(MSE) are used to this end (Costa et al., 2005).

2.4 Contradictions in measures of
complexity

These are all reasonable, but potentially contradictory,

quantitative measures of complexity because they are
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measuring different characteristics of the data. We can
understand this from the following 2D toy example in
Figure 1 as follows: In the first row, we see two Gaussian data
clouds which we can imagine as being generated by two different
activities. Consider if we define variance of the data as the
measure of complexity. We could reasonably use Generalized
Variance for multi-dimensional data (Wilks, 1932), which is
defined as the determinant of the covariance matrix (2). We
would rank the red cloud to have greater complexity, because the
red cloud implies people need to attain a broader range of distinct
states with their body. On the other hand, if we use
dimensionality as the measure of complexity, we would not be
able to distinguish between the two activities, as both equally
employ the 2 available degrees of freedom.

In the second row, we see that a dimensionality measure
would rank the blue activity to be more complex, since the red
activity seems to be generated by a single independent factor,
while the generalized variance would rank both the activity
clouds to be of similar complexity.

These examples highlight that we need to exercise caution
when discussing complexity. Although it appears to be a concrete
and quantitative concept, it is necessary to be more specific about
what kind of complexity we are measuring. In the toy example,
simple visualization of the data helps to provide an intuitive
grounding, but as we analyze time series data from many sensors
simultaneously, we cannot rely on intuition. In the remainder of
this manuscript, we will demonstrate this concretely using five
standard complexity measures.

3 Methods
3.1 Experiments and subjects

For each data collection session, the subject was briefed about
the experiment and informed consent was obtained. All activities
were approved by the Institutional Review Board at University of
Washington. The entire dataset will be made available on a public
repository  (https://github.com/abs711/The-way-of-the-future)
and more details about the data are presented in (Sharma
et al., 2022) Subjects’ joint kinematics were recorded using an
Xsens Awinda full body motion capture system (Xsens
Technologies, Enschede, Netherlands), consisting of 17 body-
worn inertial measurement units placed at each segment of
the limbs, as well as sternum, sacrum, shoulder scapula, and
forehead. After a system specified n-pose calibration, the
software provides joint kinematics in a 3D environment. All
angles are in 1 x 3 Euler representation of the joint angle vector
(%, ¥, z) in degrees, calculated using the Euler sequence ZXY using
the International Society of Biomechanics standard joint angle
coordinate system (Wu et al., 2002). Data were sampled at 60 Hz,
from a total of 22 joints in 3 anatomical planes (sagittal, frontal,
transverse) for each trial. The kinematics data were reprocessed
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FIGURE 1

Toy Example to demonstrate some cases when different measures of complexity can fail to discriminate two distinct datasets and lead to
contradictory outcomes. This example deals with only variance and dimensionality, but similar parallels exist for the other measures of complexity,

such as stability from a nonlinear dynamics perspective.

using the ‘HD’ processing feature, provided by the manufacturer
for offline use, to enhance quality and remove noise (Myn et al.,
2015).

In this manuscript we limit the complexity analysis to
kinematics data from only the lower limb joints: hip, knee
and ankle from sagittal, transverse, and frontal planes for
both the limbs. Thus, a total of 3 anatomical planes from
6 lower limb joints were used in our analysis i.e., 18 degrees
of freedom.

Subjects ambulated in a variety of ways, including
walking, sidestepping without crossing legs, navigating
through obstacles, making turns, etc. as they deemed
necessary in order to navigate the environment. Their
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speed was self-selected and their path around obstacles
was not instructed. The movement was performed outside
of alaboratory, in the corridors, indoor rooms and atrium of
a building. The architecture for one of the classrooms and
the atrium is shown in Figures 2, 3. The dataset was
manually parsed into six activities for analysis. The
activities that were parsed out for complexity analysis
are: 1) Forward walking (straight line), 2) Backward
walking (straight line), 3) Left sidestepping, 4) Right
sidestepping, 5) Navigating in classrooms, and 6)
Navigating in an atrium.

The numbers of participants and demographic information
for each of the activities are shown in Table 1.
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Future Paths

—, Path Taken
So Far

. Obstacles

FIGURE 2

Classroom: Architecture of one of the classrooms. The arrangement of obstacles was not controlled and varies across subjects. The subject
walked at self-selected speed and along self-selected path, The experimenter directed the subject to change their path only if the subject repeated

the same path more than 2 times.

Classroom 2

* pillar

Atrium

Doors

Path Taken So Far

%41

Obstacles

Pillars

Classroom4

FIGURE 3

Classroom3

Atrium: Architecture of the Atrium. The arrangement of obstacles was not controlled and varies across subjects. The subject walked at self-
selected speed and along self-selected path, The experimenter directed the subject to change their path only if the subject repeated the same path

more than 2 times.

3.2 Data analysis

In the Background: Complexity Analysis section above, we
described three major notions that can be used to analyze
complexity: Dimensionality, Variability, and Nonlinear
Dynamics. We used measures related to these notions as

described below, to analyze the complexity of activities.
3.2.1 Dimensionality

The dimensionality of an activity is defined as the number of
PCA principal components required to explain 95% variance in
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the activity (Noso;). We used the function ’pca’ from the Statistics
and Machine Learning Toolbox. MATLAB 2020b for the
the of
18 dimensional time series from each trial. The mean and

analysis. Noso, was computed using matrix
standard deviation of Ngs, across trials are reported for each

activity.

3.2.2 Variability

We examined variability according to two different measures.
The first is the Determinant of the data covariance matrix. It is
not in standard use for human movement analysis, but it is a

frontiersin.org



Sharma and Rombokas

longstanding way to quantify variance in multidimensional data
(Wilks, 1932). The second measure is GaitSD, which measures
how variable the gait cycles are from one another (Sangeux et al.,
2016). GaitSD is described in Eq. 1.

Xij = ith gait cycle defined over T time instances, T = 101
1 N
X;= N ZXU , N = number of gait cycles

i=1
Zj:lz:\:ll(x"f B Xf)z

VSD? =
GvsS T(N-1)

P
GaitSD = ZGVSDi P (number ofjoints) =18.
k=1

(1)

Gait cycles were determined using the foot contact data
provided by Xsens, and all the joint angles were time
normalized to 101 points using the MATLAB command- ‘interpl’.

3.2.3 Nonlinear dynamics

Following methods from (Decker et al., 2010; Busa and van
Emmerik, 2016), we used the Largest Lyapunov Exponent (LyE),
and Multiscale Entropy (MSE). These measures were calculated
using ankle, knee, and hip kinematics in the sagittal plane.

To calculate the LyE, we first reconstructed the state space from one
dimensional time series (sagittal ankle, knee, and hip separately), using
Takens' theorem (Noakes, 1991). The delay for reconstruction was
estimated using Average Mutual Information (AMI) (Fraser and
Swinney, 1986). It was set to be the first local minimum of AML
Embedding dimensions were determined using Global False Nearest
Neighbors (GFNN) analysis (Kennel et al, 1992). Embedding
dimension was set to the minimum value that satisfied percent false
nearest neighbour less than 10%. LyE were then determined using
MATLAB’s Predictive Maintenance Toolbox. The package calculates
LyE using the algorithm developed by (Rosenstein et al., 1993).

Multiscale Entropy is a way to analyze the self-similarity of a
one dimensional time series. There are multiple ways to calculate
MSE (Humeau-Heurtier, 2015), but here we use a robust variant,
Composite multiscale Entropy (CMSE), proposed in (Wu et al.,
2013). The Complexity Index (CI) is defined in Eq. 2. m and r
were chosen as 2 and 0.2 respectively in accordance with (Bisi
et al.,, 2018) and values of 7 ranged from 1 to 20.

N
CI =) CMSE(x,7,m,r)
=1
T = time scale index, N (Total number of time scales) = 20

@

4 Results and discussion

For each of the activities, we calculated the complexity
measures of Dimensionality (Figures 4, 5), Variability
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(Figure 6), and Nonlinear Dynamics (Figures 7, 8). For
each of these, we report the relative complexity of the
activities and discuss when the results are contradictory or
unexpected.

4.1 Dimensionality: Sidestepping is the
most complex activity?

Figure 4A shows variance explained across subjects, from
PCA of Lower Limb (18 dof) for the different activities. The
number of principal components required to explain 95% of the
variance (Noso) is shown in Figure 4B. We observe that left and
right sidestepping require the most components to explain the
variance, while forward walking requires the fewest. Complexity
analysis in terms of dimensionality as measured by PCA, then,
concludes that sidestepping is the most complex activity while
forward straight line walking is the least.

Dimensionality is appealing as a measure of complexity
because it aligns with the intuition that a “more complex”
task should require more independence among its degrees of
freedom. Dimensionality has been successfully used in gait
analysis and has aligned with clinical notions of mobility and
the scientific notion of synergies (Latash et al., 2007; Rombokas
et al,, 2012; Steele et al., 2015a). However, in this study we show
that using PCA
counterintuitive

and variance accounted for” yields

results. Although forward walking is
measured as least complex, left and right sidestepping arise as
the most complex, while navigating freely amongst challenging
obstacles, as in the classroom activity, is measured as less
complex than unobstructed sidestepping.

This result is surprising because from our experience of life,
we understand that avoiding obstacles, navigating challenging
terrain, dealing with uncertainty in the environment, etc. should
result in more complex movement in Classrooms and Atrium. It
should require us to use more degrees of freedom to navigate.
This result can be interpreted in two mutually exclusive ways: 1)
Even though sidestepping and backward walking are expected to
be highly repetitious, they are less practiced, and thus show less
coordination between joints. Thus, the data has more degrees of
freedom than expected. 2) Alternatively, the result could be
interpreted to indicate that PCA should not be used to
measure and compare dimensionality when the two datasets
have different overall absolute variance (See Figure 5). For
example from Figure 4B, we see that Sidestepping has a
dimensionality of approximately 11. Now, from Figure 5, we
see that 11" PC for Classrooms and Atrium has greater variance
that for Sidestepping activities, but is ignored when 95% variance
is used as the criterion to decide the dimensionality of data. This
highlights the need for further examination of our intuition about
the complexity of locomotion activities, and to be aware of these
issues when using PCA for measuring the dimensionality of
activities.
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FIGURE 4

(A) Percent variance accounted for by each principal component and the sum of the first n principal components (line plots), for different
activities. These were calculated using the data from all subjects. (B) Ngsy values for all the activities. Ngsy is the number of principal components
required to explain 95% variance in the data from each subject. Ngsy, indicates all other activities have higher dimensionality, and therefore
complexity, than forward walking. Surprisingly, this metric indicates that left and right sidestepping are more complex than walking in a natural

environment.
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FIGURE 5

Absolute variance accounted for by each principal component, for different activities. These were calculated using the data from all subjects.
We see that the last few principal components for Classroom and Atrium show considerably larger amount of variance than sidestepping, even
though they are ignored by PCA when measuring dimensionality (see Figure 4).

6 7 10 1" 12

Principal Component

4.2 Variability: Classroom walking or
backward walking is the most complex

activity?

Figure 6A shows the generalized variance for the different

activities. Forward walking shows the smallest generalized
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variance indicating tighter coordination of joints, while
Classroom shows the largest value, indicating more
variability in joint angles and less coordination amongst
them. Figure 6B shows that backward walking has the largest
GaitSD, indicating greater stride to stride variability of joint
kinematics.
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FIGURE 6

Variability: We use two different measures of variability-(A) Generalized Variance (geometric mean of the variances along the Principal
Components) which measures the spread of the multi-dimensional data. Walking in classroom exhibits greater complexity in the joint angles, than
other activties according to this metric, (B) GaitSD which measures variability of gait kinematics across strides, ranks backward walking to be of
greatest complexities. The values reported are inter-subject mean and standard deviation.

Largest Lyapunov Exponent

Forward Backward Left Right Classroom Atrium

FIGURE 7
Largest Lyapunov Exponent(Mean + SD) The values reported are mean and standard deviation across the trials from all the subjects. Walking in
classrooms and atrium shows greater complexity than other activities.

Variability is a perfectly reasonable way to quantify the distributed across different dimensions ie. relative (or
complexity of data. While PCA uses variance and covariance percent) variance. It can be instructive to look at absolute
to measure complexity, it only looks at how variance is variance as well. Here we use generalized variance and GaitSD

Frontiers in Bioengineering and Biotechnology 08 frontiersin.org



Sharma and Rombokas

10.3389/fbioe.2022.918939

35 T T T

T
I Ankle
I Knee

Multi-Scale Entropy Complexity Index

Forward Backward Left

FIGURE 8

Right Classroom Atrium

Multiscale Entropy (Mean + SD) The values reported are mean and standard deviation across the trials from all the subjects. Sidestepping shows

greater irregularity and thus complexity, than other activities.

to measure variability in two distinct ways. Generalized variance
is a measure of how much volume in the state space is occupied
by a given activity. In other words how many different
configurations of joints are achieved by a given activity.
Navigating the Classroom and the Atrium must be expected
to show greater generalized variance than other repetitious
activities, because they require extemporaneous movements to
avoid obstacles, change directions, etc. Generalized Variance
comes out to be highest for those activities, matching our
expectation.

GaitSD measures the variability of joint angles across gait
cycles. It is not sensitive to the amplitude of joint angles (and thus
the volume occupied in the joint-space) but instead the
deviations at different phases in a gait cycle from the mean
gait cycle. In other words, trying to do a repetitious activity but
failing to do it exactly would have a greater GaitSD value than
doing many kinds of movements but with more precision. This
might explain why backward walking has a greater GaitSD value
than other activities. Backward walking is presumably less
practised in daily life than the other activities. Sidestepping
also shows slightly higher values than other regularly practised
activities like forward walking, walking in the classrooms and
atrium.

This highlights that variability can be measured in
different ways but more importantly the different measures
need not agree. GaitSD, a measure of gait consistency, rates
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backward walking to have almost twice the amount of gait
variability than unrestricted classroom walking. Further
examination is required to understand the mechanisms
leading to this observation, because naively we would
expect unrestricted classroom and atrium walking to have
greater variability than backward walking which is expected to
be repetitious.

4.3 Nonlinear dynamics: Classroom or
sidestepping is the most complex activity?

Figure 7 shows the LyEs for different activities. For the most
part, the activities show positive LyE values indicating non-
periodic gait signals. Classroom and Atrium show largest LyE
of all the activities, across all the joints. For the knee joint, LyE of
sidestepping for some subjects are negative or close to 0, while
other subjects have large positive LyE (close to 6). This might be
an artifact of noise in the data and needs more investigation.
Figure 8 shows the analysis of ankle, knee and hip joint
trajectories, using MSE, computed using sample entropy (Sg)
over 20 time-scales.

Human gait can be modelled as a dynamical system. Non-
linearity in dynamical systems leads to different kinds of
complexities than the ones we analyzed above. This has to do
with periodicity, regularity and predictability of temporal
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dynamics of the system. We used LyE and Multi-scale Entropy to
analyze complexity from this point of view.

LyE measures how quickly neighbouring trajectories in the
dynamical system converge (negative values) or diverge (positive
values). Larger positive values indicate faster divergence and thus
lesser predictability of gait further into the future. Since,
Classroom and Atrium exhibit largest values, they should be
expected to be less predictable. This is expected because
navigating obstacles would require significant deviation of gait
from the immediate history, thus less predictability into the
future.

Multi-Scale Entropy measures how many repeating patterns
are there in a signal over different time-scales. Intuitively, it
measures the regularity, or predictability, of a signal. We see that
unusual activities i.e. sidestepping and backward walking show
more irregularity in gait than more common activities i.e.
forward walking, Classroom and Atrium. This might be a
result of lack of practice in sidestepping and backward walking.

Once again we find major disagreement between the two
measures used in this analysis, highlighting contradictions
between different types of complexities in temporal dynamics.

4.4 Complexity cannot be defined as a
unitary concept

These results demonstrate that there are several ways to
measure different aspects of data complexity. These measures
often do not rank activities similarly. For example,
dimensionality as measured using PCA ranks sidestepping to
be the most complex, but gait cycle variability as measured using
GaitSD ranks backward walking to be the most complex, while
divergent nonlinear dynamics as measured using LyE ranks
the

of movement

atrium  as most Looking forward for

should

probably be avoided as a single concept in favor of specific

complex.

practitioners analysis, complexity
measures. For example, when we use PCA analysis, we should
state that we are measuring degrees of freedom, not accounting
for the scale of the variance. We summarize the rankings of
complexity in Figure 9. As can be seen, no column,
corresponding to activities, is agreed upon in complexity

ranking by the different methods.

4.5 Forward walking is the least complex
activity

Most of the measures agreed on forward walking being the
simplest activity. Although GaitSD and LyE did not strictly rank
it as the least complex, it is very close, as can be seen in Figures 6,
7. This is expected since forward walking is highly practiced and
repetitious, and does not involve deviations to account for
obstacles.
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Forward Backward Left T Most complex

PCA

Variance

gaitSD

Largest
Lyapunov
Exponent

Multi-Scale
Entropy

Least complex

FIGURE 9

Overview of how each complexity measure ranks the six
activities. While there are some similarities, it can be seen that each
measure is sensitive to different characteristics of the complexity
of the data, and that many of the results are surprising or
counterintuitive.

4.6 Practical recommendations

» PCA ranks sidestepping to be more complex and backward
walking to be as complex as walking around obstacles in
classrooms and atrium. This is counterintuitive. On further
analysis, we found that sidestepping does not necessarily
have more variance in the last PCs than classroom and
atrium, as can be seen from Figure 5. This can be
understood from the 2D toy example, as shown in
Figure 1, bottom row. As can be seen, even if the minor
principal component has the same variance for both blue
and red clouds, PCA would rank the blue cloud to be more
complex than red cloud, because it ignores the absolute
variance and only accounts for relative variance. Thus, we
need to account for absolute variance, before we use PCA
to rank the dimensionality of different activities. To
measure the absolute variance, we recommend that
researchers use Generalized Variance.

Usually, in the gait literature, variance is used to analyze
one-dimensional signals. In our analysis, we used
Generalized Variance as a measure of absolute variance
for multi-dimensional data. We found that the resulting
complexity ranking of the activities aligned well with our
expectations. Thus, we recommend using Generalized
Variance to measure the scale of the data.

In our analysis, we found that Largest Lyapunov Exponent
values to be quite different from (Buzzi et al., 2003). This
could be attributed to sensitivity of the measure to noise in
the data or the length of the data. In addition, computation
of Largest Lyapunov Exponent assumes a time-invariant
and autonomous dynamical system. Thus, we recommend
against the use of the measure, unless the accompanying
assumptions are tested for.

In the gait literature, complexity is an umbrella term that
measures different aspects of the data-dimensionality,
variance and nonlinear dynamics. Since these measures
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do not always agree, we recommend against the usage of
the term ‘complexity’ and instead using the terms that
emphasize the metric being used e.g. dimensionality.

5 Limitations

Dimensionality, as a concept used in mathematics, is much
broader than we are using it here for gait analysis. For example,
dimensionality can be defined as the number of Euclidean
dimensions, topological dimensions (Sudrez, 1994), fractal
We
components as it has a precedent in gait analysis. Even in

dimensions, etc. only use number of principal
terms of integer dimensions or degrees of freedom, other
dimentionality reduction techniques like autoencoders could
be used to estimate dimensionality (Portnova-Fahreeva et al.,
2020; Boe et al., 2021).

Calculation of the Largest Lyapunov exponent requires the
assumption that the system is autonomous, and time invariant
(Sato et al., 1987; Rosenstein et al., 1993). This assumption could
be broken by learning effects, fatigue, etc. Additionally the
Largest Lyapunov exponent requires large amounts of data to
be confidently calculated. So, care must be taken to ensure that
adequate data sizes are used. It has been shown that accurate
Lyapunov dimension calculation requires hundreds of gait cycles,
and can be sensitive to preprocessing choices, such as using a
fixed number of strides or a fixed number of data points (Hussain
et al,, 2020). When comparing activities that have very different
total amounts of data, or different standards for preprocessing,
care must be taken for this measure to be meaningful. This factor
is not limited to Lyapunov dimension for gait; some measures,
such as those used in heart rate variability estimation, have been
shown to require small data sizes, while others require more data
for robust estimation (Chou et al., 2021).

Since the data collection process is time consuming, any
particular participant could not perform all of the different
activities. While there is no missing data from any particular
participant, each performed only a subset of the possible
activities, as shown in Figure 1. As a result, the analyses we
present here cannot account for individual differences in
complexity. Individual gait characteristics could be practically
important, for example in designing assistive devices, and should
be accounted for also.

The data were also measured for a narrow age range of young
people indoors, in an experimental session. We anticipate that
their movement was more reflective of their natural patterns for
those environments compared to being in a gait analysis
laboratory. However, there were still factors that could
produce “demand characteristics” (Rosenthal and Rosnow,
2009). These are changes in behavior due to expectations,
whether conscious or not, of the purpose of the experiment or
control over

increased conscious normally unconscious

movements.
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Wearable motion capture provides a convenient and versatile
means to record movement without instrumentation of the
space, but it also is sensitive to challenges in calibration,
placement of markers, and precision of recording. There are
degrees of freedom with less range of motion that are nonetheless
important biomechanically, such as knee and ankle frontal plane,
that are measured with less validity than gold-standard marker-
based tracking systems.

This analysis does not include statistical significance testing.
We have calculated the common complexity measures and
their
appropriate, or other commonly used reports such as percent

reported mean and standard deviations where
variance explained in Figure 4A. The large differences or
similarities are apparent to see the performance of these
include

measures, but a more formal treatment could

statistical significance testing.

6 Conclusion

In this manuscript, we examine the complexity of different
of
complexity pertaining to dimensionality, variability and

human locomotion activities using various measures
nonlinear dynamics. We find that most of the measures rank
the most commonly analyzed activity, walking forward in a
straight line, to be the least complex. More importantly,
different measures disagree about the relative complexity of
the remaining activities. Thus, defining complexity as a single
notion is challenging and we might need to be cognizant of what
aspect of the data we wish to analyze when using any particular

measure.
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