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Abstract—Modern scientific workflows couple simulations with
Al-powered analytics by frequently exchanging data to accelerate
time-to-science to reduce the complexity of the simulation planes.
However, this data exchange is limited in performance and
portability due to a lack of support for scientific data formats
in AI frameworks. We need a cohesive mechanism to effectively
integrate at scale complex scientific data formats such as HDF5,
PnetCDF, ADIOS2, GNCEF, and Silo into popular AI frameworks
such as TensorFlow, PyTorch, and Caffe. To this end, we designed
Stimulus, a data management library for ingesting scientific
data effectively into the popular AI frameworks. We utilize the
StimOps functions along with StimPack abstraction to enable the
integration of scientific data formats with any AI framework. The
evaluations show that Stimulus outperforms several large-scale
applications with different use-cases such as Cosmic Tagger (con-
suming HDF5 dataset in PyTorch), Distributed FFN (consuming
HDF5 dataset in TensorFlow), and CosmoFlow (converting
HDFS5 into TFRecord and then consuming that in TensorFlow)
by 5.3x%, 2.9%, and 1.9x respectively with ideal I/O scalability up
to 768 GPUs on the Summit supercomputer. Through Stimulus,
we can portably extend existing popular AI frameworks to
cohesively support any complex scientific data format and
efficiently scale the applications on large-scale supercomputers.

Index Terms—scientific data format, HDF5, TensorFlow, Ten-
sor, Operators, Decoupled 1/0, transformation, integration, man-
agement, I/O acceleration, HPC

I. INTRODUCTION

Artificial Intelligence (Al) is being applied to solve complex
problems in a wide variety of applications. These applications
range from image recognition [1], natural language process-
ing [2], autonomous driving [3], and scientific domains such as
cosmology [4], materials science [5], and biology [6]. Appli-
cation developers in scientific domains utilize Al frameworks
(e.g., TensorFlow [7], PyTorch [8], and Caffe [9]) on HPC sys-
tems to solve a common class of problems such as clustering
data based on features and numerical regression optimizations.
These scientific applications are coupled with traditional sci-
entific computing simulations [10] (also known as inner-loop
modeling). Traditional scientific computing enhanced with Al-
based knowledge acceleration has the potential to increase
the performance and throughput of inner-loop modeling [11].
Efficient data coupling requires cohesive data exchange be-
tween scientific simulations and Al applications to drive the
advancement of scientific discoveries in many domains.

Cohesive data exchange between science and Al requires
interaction between the scientific data formats utilized
by traditional simulations and Al frameworks. Traditional
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simulations produce petabytes of data in scientific data formats
such as HDF5 [12], PnetCDF [13], ADIOS [14], Silo [15], and
GNCEF [16]. On the contrary, Al frameworks are designed and
optimized to utilize custom data formats such as TFRecord [7],
PyTorch-Dataset [8], and LMDB format [9]. To achieve effi-
cient data exchange [17] there are three possible approaches.
Firstly, simulations can produce data in Al formats. This is
undesirable as legacy simulations are fine-tuned for scientific
formats [18]. Secondly, scientific data can be converted into
Al formats. This approach is highly cost [19] and space [20]
prohibitive as petabytes of data have to be converted and
stored on the global file system. Lastly, Al frameworks can be
made compatible with scientific data formats. This approach
seems promising as it could enable an efficient cohesive
integration of scientific data formats within Al frameworks.

Cohesive integration of scientific data formats into popular
Al frameworks should consider performance as well as porta-
bility. Most application developers manually load data using
the native data APIs [21], [22] with no control over operation
pipelining, leading to non-scalable and inefficient I/O. To im-
prove this, scientists performed this integration by consuming
scientific data as a part of the graph execution of the Al frame-
work [23] at the API level. This approach lacks performance
because functions are defined in python as a combination of
existing operators at the API level. It prohibits the application
developer from having fine-grained control over the pipeline,
resulting in multiple data copies and missed optimization
opportunities such as aggregation and caching [23], [24]. The
approach also lacks portability as these implementations are
tightly coupled with the target scientific data format and Al
framework. This strong coupling is undesirable as application
developers often implement their models on different Al
frameworks to target specialized Al hardware [25] such as
Cerebras, GraphCore, Grog, etc. Many of these novel hardware
support only certain frameworks. Additionally, scientific data
representation is not compatible with the AI framework’s
tensor. For every data format and Al framework combination,
a strongly coupled approach would have to re-implement com-
mon functionalities and optimizations leading to duplication of
efforts across frameworks, more points of failure or errors, and
lower quality of service. Therefore, it is necessary to have a
new portable and performant approach to integrate scientific
data formats within popular Al frameworks.



We designed Stimulus, a data management framework for
cohesively integrating scientific data formats within an Al
framework to address the portability and performance chal-
lenge that exists in current HPC-AI workflows. To achieve
these goals, we introduce two novel concepts: the StimPack ab-
straction and StimOps functions. For portability, StimPack uni-
fies several data formats under a single data abstraction and Sti-
mOps makes StimPack compatible with any popular Al frame-
work. For performance, StimPack utilizes scientific data format
APIs which efficiently decouple I/O from sample processing
whereas StimOps manages the pipelining and parallelism of
the input pipeline to maximize I/O performance. Additionally,
StimPack functions are compatible with existing tensor oper-
ators for scientific data input pipelines (e.g., batch) as well
as existing optimizations for maximizing performance, such
as prefetching and caching. The utilization of StimPack ab-
straction and StimOps functions enables Stimulus to cohesively
integrate several scientific data formats with many popular Al
frameworks. We use HDF5 with TensorFlow and PyTorch on
the Summit supercomputer as our flagship use-case as these
choices of library and framework are popular in HPC environ-
ments [26], [27]. The contributions of this work include:

1) Design of the Stimulus architecture with a generalized in-
put pipeline for scientific data formats that are compatible
with production Al frameworks (Section III).

2) Design of StimPack abstractions to efficiently represent
popular scientific data formats within AI frameworks
(Section III-E).

3) Design and implementation of tensor operators for Stimu-
lus’ input pipeline to enable efficient data ingestion from
scientific data formats (Subsection III-D).

4) Tllustration of the performance impact of cohesive and
data-centric integration of scientific formats in Al frame-
works on the Summit supercomputer (Section IV).

II. BACKGROUND AND MOTIVATION

Al has revolutionized scientific computing by solving sev-
eral complex problems in the domain of physics [28], cos-
mology [19], materials science [5], meteorology [29], and
biology [22]. These applications utilize popular Al frameworks
such as TensorFlow and PyTorch and consume simulation data
stored in the different scientific data formats such as HDFS,
PnetCDF, etc.

In high-energy physics (HEP), detecting the signal of a new
particle using Al models is a common use-case [30]. The
application uses Caffe with 15 TB of structured scientific data
in HDFS data format with dozens of channels/variables and
6.4M events. Similarly, in meteorology, Al models are used
to understand extreme weather life cycles and predict their
future trends [31], [32]. These applications are implemented in
TensorFlow and consume terabyte datasets stored in HDF5 and
PnetCDF data format. Additionally, in the field of cosmology,
scientists utilize Al to determine the distribution of matter
in the universe [21], [33]. The applications utilize PyTorch
and TensorFlow as their Al framework and consume terabytes
of datasets stored in sparse HDF5 data format. Finally, in
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the field of 3D image segmentation, Al models are utilized
to robustly segment images with an unknown and variable
number of objects and highly variable object sizes [22]. In this
application, the AI model uses novel flood-filling networks
implemented in TensorFlow and consumes a sparse HDF5
dataset with separate metadata and data files.

A. Motivation

The above examples demonstrate that popular Al frame-
works such as TensorFlow and PyTorch are extensively used to
build science models. Additionally, these models consume data
in scientific formats such as HDF5, PnetCDF, silo, ADIOS,
and GNCF because these datasets are generated by scientific
simulations that have been fine-tuned to efficiently generate
data into these formats.

1) Need for Portability: The diversity of using popular
cloud Al frameworks in HPC systems to consume various
scientific data formats motivates us to build a portable solution
that applies to any popular Al framework and any scientific
data format. This is even more critical from the user per-
spective as many novel hardware (e.g., Cerebras, GraphCore,
and Groq) are supported by only certain frameworks. For
instance, the Cerebras Al chip compresses the compute power
of 850,000 Al-optimized cores onto a single chip and achieves
4.3x acceleration [25]. This chip supports APIs only as an
extension of TensorFlow for integrating the chip with applica-
tions. Another example is the Goya Inference Processor, which
is based on the scalable architecture of Habana’s proprietary
Tensor-Processing Core (TPC) and includes a cluster of eight
programmable cores [34]. This chip supports APIs as an
extension of PyTorch framework. In these examples, when
users port their models to different Al hardware, having a
portable data management library across different frameworks
reduces redundant and error-prone development efforts.

2) Need for Performance: Scientific data format currently is
consumed using custom tightly coupled solutions that integrate
a particular dataset into a specific Al framework. We tested
the applications on the Summit supercomputer at ORNL [35]
and scaled it from 32 nodes to 128 nodes with 6 processes
(one for each GPU) per node with a 2 TB dataset (strong
scaling). Also, the “Optimized I/O” is calculated based on
manual decoupled I/O, overlapping of I/O and compute, and
increased I/O parallelism through multi-threading within each
process for all use-cases.

Use-case 1: TensorFlow with native HDF5 APIs. Distributed
Flood Filling Networks (DFFN) [22] are built inTensorFlow
and consume HDFS5 files using manual data ingestion and
h5py APIs. In DFFN, the dataset is read by the application
using the HDF5 library (as TF does not natively support
the HDF5 data format). Next, the data is processed using
Python functions provided by TF and then fed to the training
phase using the tensor representation. The percentage of 1/0
to total time increases (from 26% to 43% for the largest
scale) as the application scale increases, moving the I/O cost
of the application farther away from the optimal I/O time
(Figure 1(a)). Through optimal I/O, we can achieve a speedup
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(a) Distributed FFN (TensorFlow). (b) Cosmic Tagger (PyTorch).

Fig. 1. Potential I/O improvement through cohesive integration in existing
applications of up to 2.9x-3.4x when we ideally parallelize, overlap, and
maximize PFS bandwidth.

of 2.9x on the largest scale. This is because each process
in the application currently performs I/O and processes data
using a single thread without any I/O optimization such as
parallelism, pipelining, or prefetching since the HDF5 calls
and Al-model computations are not executed as part of the
Al framework’s graph execution.
Use-case 2: PyTorch with data loader using HDF5 APIs.
Cosmic Tagging with UNet [21] is implemented in PyTorch
and consumes HDF5 dataset using the DataLoader frame-
work, which implements the input pipeline at the API level.
The percentage of I/O over overall time increases (up to 90%
for the largest scale) with application scale, moving the I/O
cost of the application farther away from the optimal I/O
time (Figure 1(b)). HDF5 I/O using Datal.oader framework
in PyTorch is performed per sample. As the image samples
are small, the application cannot extract maximum bandwidth
from GPFS. Instead, the “Optimized 1/O” decouples and
parallelizes the I/O workers to achieve optimal PFS bandwidth,
which increases I/0 bandwidth by 3.4 x. Additionally, the inte-
gration at API level (using Datal.oader) is not portable to Ten-
sorFlow or Caffe as they do not utilize Datal.oader abstraction.
Currently scientific Al applications tightly couple data
ingestion with the AI framework, which impacts both
performance and portability (as observed from these use-
cases). This existing situation motivates a move towards a
more decoupled and generic solution that could cohesively
integrate scientific data formats with popular Al frameworks.

III. STIMULUS

Stimulus is a data management library for scientific Al
applications in High-Performance Computing (HPC) environ-
ments. The primary goals of Stimulus are to achieve a portable
and performant integration of scientific data formats within
popular AI frameworks. We introduce two novel concepts
in Stimulus to achieve these goals, namely, the StimPack
abstraction and StimOps functions. The StimPack abstraction
unifies several scientific data formats under a simple interface
that masks the implementation complexity of individual data
formats. On the other hand, the StimOps functions provide
a generic data ingestion pipeline that can be executed by
any tensor-operator-based framework such as TensorFlow,
PyTorch, or Caffe. Stimulus achieves portability using these
two ideas, as the StimPack abstraction unifies several scientific
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Fig. 2. Stimulus integrates with the existing Al framework at an API level and
tensor infrastructure level. All of the data management features provided by
StimOps and StimPack are packed into the Stimulus library. The Stimulus API
and the Stimulus Operators act as a facade layer to invoke routines from the
Stimulus library. The StimOps are executed as a part of the overall execution
graph of the AI workflow.

silo

data formats under a single interface and the StimOps functions
make the input pipeline for scientific data generic across
any popular Al framework. Additionally, Stimulus achieves
performance using the StimPack abstraction, as the implemen-
tation includes efficient usage of scientific data format APIs
and optimization flags to maximize I/O performance. Also, the
StimOps functions enable fine-grained control over the input
pipeline at a lower-level (i.e., C++ implementations), enabling
I/0 optimizations such as decoupling of I/O and sample
processing, operation parallelism, and operation pipelining.

A. Architecture

To achieve the portability and performance objectives, Stim-
ulus defines StimOps functions and the StimPack abstraction to
build a solution that efficiently integrates several scientific data
formats with popular Al frameworks. Stimulus integrates with
existing Al frameworks at an API level and internal tensor
infrastructure level to seamlessly integrate existing toolkits
in a typical HPC-AI software stack. To provide modularity,
all the Stimulus functionality (i.e., StimPack abstractions and
StimOps functions) are packed into the Stimulus Library (i.e.,
a .so file), which is used as a system dependency by the Al
frameworks. This means we provide hooks within the existing
Al framework infrastructure to act as a skeleton to call the
Stimulus library to perform data management for scientific Al
applications. This architecture can be presented with software
interaction and examples of scientific Al applications
(Figure 2). The Cosmic Tagger application (blue line in the
figure), which utilizes PyTorch APIs to build the input pipeline
and construct the AI model, consumes the HDF5 dataset
using the Stimulus APIs. The Stimulus APIs define the input
pipeline as a collection of tensors implemented at the custom
tensor infrastructure level. Using this mechanism, the input
pipeline defined by Stimulus is inserted into the execution
graph of the Al framework and therefore is run cohesively by
the underlying runtime. The Stimulus Operators defined at the
infrastructure level act as a facade layer to invoke StimOps



import stimulus.tensorflow as st

import tensorflow as tf

# Load HDFS Fi Stimulus

2.h5" imagel_ds. labell_ds

2.h5", image2_ds, label2_ds

ds = tf Dataset.from_slices(files

ds = ds.interleave(lambda x: st HDF5(x
transfer_size=1048576
read_threads-4

cycle_length-4, block_length-16

FORTIENEN

files - FIXED", 4096

"FIXED", 8192

<o

for image_batch, label batch in ds
train(image_batch, label_batch

(a) Tensorflow Example with HDF5

import stimulus.pytorch as st

import torch

from torch.utils.data import DataLoader
# Load ADIOS2 File with Stimulu

1

2

3

4

5. dataset - st.ADIOS2("/pfs/images_1.2.bp", imagel_var, labell_var, (FIXED", 4896
6

7

8

data_loader - Dataloader(dataset, batch_size-4, shuffle-True
for imgs, labels in data_loader
train(image_batch, label batch

(b) PyTorch Example with ADIOS2

Fig. 3. Stimulus API integrated with TensorFlow and PyTorch. The functions
are compatible with dataset APIs for both frameworks and can be used with
other input pipeline operators such as batch, filter, and shuffle.

functions from the Stimulus Library (4th layer in the figure).
The StimOps utilize the StimPack abstraction to access the
requested data format to perform I/O and generate samples
during runtime. The Stimulus operators (at the 3rd layer) also
manage parallelism and pipelining details to maximize the
performance of the graph execution within the Al runtime.
A similar flow is presented for TensorFlow applications
(e.g., DFFN green arrows in the figure). Essentially, through
Stimulus, the AI framework is enhanced with input pipeline
operators and scientific data format implementations while
maintaining portability and performance.

B. Stimulus API Integration

The Stimulus API (Figure 2 level 2 available at
https://github.com/scs-lab/stimulus) is developed in Python
as most scientific Al applications built with TensorFlow,
PyTorch, and Caffe are implemented using the Python
APIL. The Stimulus API is designed as an independent
Python module installed as a typical python package using
pip or setup.py file. The users can install stimulus for a
specific Al framework or all Al frameworks based on the
application. Once installed, Stimulus can be imported for a
particular framework as import stimulus.<framework> as st
(Figure 3). Once imported in the application, we could
utilize the data format classes (namely, HDF5, NC, Silo,
GNCG, and ADIOS2) to define the input sources. Each
of these classes require a tuple as input containing
the filename, dataset_name, label_name, and
sample_boundaries. These attributes are defined by the
StimPack abstraction described later. Additionally, Stimulus
API takes user inputs of I/O transfer size and read parallelism
per process. The I/O transfer size determines the granularity
of I/0 performed by the Scientific Format I/O Operator. In
contrast, the read parallelism parameter determines the number
of parallel threads used to perform I/O. In our experience, the
transfer size should be equal to the parallel file system’s stripe
size (e.g., Lustre), and the read parallelism threads should be
equal to —number_of_cores (hor pnode) to maximize CPU

number_of_processes

utilization and I/O performance. Stimulus’ APIs can be used
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by the user with existing input pipeline operators such as
batch, shuffle, iterators, etc. (Figure 3). As demonstrated in
the examples, it is extremely intuitive and easy to integrate
scientific datasets and Al frameworks using Stimulus APIs.

C. Stimulus Operators Facade

The Stimulus Operators (Figure 2 level 3) act as a facade to
invoke implementations of StimOps functions. The operators
utilize the custom tensor infrastructure from TensorFlow [36],
PyTorch [37], and Caffe2 [38]. The facade contains an Al
framework-specific interface to define custom operators for the
input pipeline. The implementation of the interface is provided
by the StimOps functions using the Proxy design pattern.
Using these software engineering techniques, we can separate
the definitions and declarations of the input pipeline and
enable code reuse and modularization. Each facade for an Al
framework has interfaces for three operators: Scientific Format
I/O Operator, Input Sample Creator, and Sample Converter.
These operators are implemented as a part of Stimulus Library
and will be discussed in the next subsection.

D. StimOps functions

The input pipeline is defined at the Stimulus API layer but
implemented within the StimOps functions. The input pipeline
is defined as a three-operator graph: Scientific Format I/O
Operator, Input Sample Creator, and Sample Converter. The
Scientific Format 1/O Operator defines a routine to read data
from different scientific formats. Here, the operator utilizes
the StimOps functions from the Stimulus library, which uses
the StimPack abstraction to perform I/O. The Input Sample
Creator converts the data read from the scientific format (in
the form of bytes) into samples (in a high-dimensional matrix).
Finally, the Sample Converter converts the memory represen-
tation of a scientific data format into a tensor representation.
This operator enables the integration of Stimulus operators and
existing Al framework operators. The purpose of using three
operators is to enable pipelining and parallelism. In general,
for a given I/O request from the data source, the operators are
executed sequentially. However, these reads can be pipelined
with other reads for creating a deep input pipeline for Al
models. Additionally, reads from different parts of the file are
parallelized to maximize I/O bandwidth.

1) Portability: The StimOps functions are agnostic of Al
framework-specific implementations. We utilize the Stimulus
Operators Facade (discussed in previous Subsection III-C)
to interface them to the StimOps functions. The StimOps
operator is defined as a generic template which is specialized
at compile time to any tensor-based Al framework (Figure 4).
The StimOps class takes a TENSOR template parameter,
representing the data communication mechanism in Al
frameworks. This TENSOR template parameter is set to
tensorflow::Tensor or torch::Tensor by the Stimulus Operators
Facade at compile time for TensorFlow and PyTorch. There are
three simple steps for each operator: a) convert tensor objects
to C++: Tensor infrastructure communicates data as tensor
objects. We need to deserialize them into structures to utilize



template<typename TENSOR
class Stimops
TENSOR ScientificIOOperator (TENSOR dataset_t, TENSOR options_t
convert tensor into C++ objects as args
std: tuple args - extract(IO_OPERATOR, options_t
call stimulus
stimulus: :Data d = ScientificIOOperatorFactory. GetOp(args) execute

library

pack output into tenso
torch: :Tensor output
return output

convert(d

TENSOR InputSampleCreator(TENSOR dataset_t, TENSOR options_t

ert tensor into C++ objects as args

extract(SAMPLE_CREATOR, options_t
timulus library

std: tuple args
call
auto operator

InputSampleCreatorFactory . GetOp(args) execute
pack output into tensor

torch: :Tensor output = convert(d

return output

TENSOR SampleC

conve

verter (TENSOR dataset_t, TENSOR options_t
nsor into Ci+
extract (SAMPLE_CONVERTER, options_t

stimulus library

objects as args
std:tuple args =

call
torch: :Tensor output
return output

SampleConverterFactory GetOp(args) execute

Fig. 4. Pseudocode of StimOps Implementation for any tensor-based Al
framework. It utilizes the template pattern and are specialized based on
invocation from the Stimulus Operators Facade.
them within Stimulus. To incur a low overhead of serializa-
tion/deserialization, we utilize byte array serialization of the
structures. This is extremely fast, and no additional memory is
required. b) Invoke the operations within the Stimulus library:
Here, we utilize the factory pattern to select the appropriate
data format implementation of the operator from the StimPack
abstraction. Finally, ¢) repack the output into tensor objects:
This is done using byte array serialization. Using these three
generic steps, we can define the StimOps functions for any
tensor-based Al framework (Figure 4). Finally, converting
scientific data into tensor objects using Sample Converter
enables users to combine Stimulus with existing input pipeline
operations such as batch, filter, transformations, and iterations.
2) Performance: Splitting the input pipeline into three
operators has four performance benefits. First, the operators of
the pipeline are independent of each data element in the file.
This enables Stimulus to execute a deep pipeline within the
Al runtime to ensure the data ingestion rate matches the GPU
computation. Second, the operators acting on different data
elements can be efficiently parallelized based on CPU-core
availability. Third, the operators decouple I/O from sample
creations for the input pipeline. The read granularity of data
from data sources such as PFS, Burst Buffers, or node-local
devices does not match the sample size, which is often small.
This enables Stimulus to extract maximum performance from
the underlying data source. Finally, the converter operator
transforms the scientific data into Tensor objects. This enables
users to enhance the Stimulus pipeline with existing optimiza-
tions within Al frameworks. For instance, we have combined
Stimulus with data optimizations such as prefetching and
caching from TensorFlow data pipeline to further optimize the
input pipeline without reimplementing these routines within
Stimulus. This shows the power of a modular and decoupled
input pipeline for scientific data formats.

E. StimPack Abstraction

The StimPack abstraction is designed in low-level C++ lan-
guage. The StimPack abstraction represents popular scientific
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data formats such as HDF5, PnetCDF, ADIOS2, GNCF, and
Silo. The abstraction consists of an interface (i.e., C++ abstract
class) with predefined methods and attributes common across
all scientific data formats. The StimPack Dataset is a
common representation for any scientific format. Based on our
investigation, all scientific formats utilize a structured multi-
dimensional representation to store data. For example, we
have Dataset for HDF5 and PnetCDF, Attributes in ADIOS2,
and n-dimensional Mesh in Silo. The St imPack Dataset
consists of four fields, name: represents filename or object
name, field name and label_name: represents dataset name,
attribute name, or mesh name corresponding to where data
and label is stored respectively, and finally sample_boundary:
a map of all boundaries of the sample. Stimulus advocates to
have a common API (as proposed by many libraries such as
Keras [39]) to build I/O optimizations in a portable fashion.
In most cases, the predefined classes should be sufficient
to achieve their intended purpose but application developers
can further extend the StimPack abstraction by building a
custom interface.

Every scientific data format within StimPack contains three
functions: ScientificlOOperator, InputSampleCreator, and the
SampleConverter. The ScientificlOOperator function performs
the I/O from the data source for each data format based on the
provided transfer size using native scientific data format APIs.
The InputSampleCreator function splits the binary form of the
data into individual samples. The operator requires the user’s
knowledge of the sample’s boundaries within the dataset to
extract the samples. Users can define these boundaries in two
modes: FIXED (i.e., each sample is of fixed size given by the
user) or VARIABLE (i.e., the user provides a sample index
map and its range within the dataset). The VARIABLE sample
index enables users to set their custom boundaries to define
and construct a sample. The user sets this information during
the definition of the input pipeline (example in Figure 3
Line 4). Finally, the SampleConverter function transforms
the scientific data format’s data sample representation into a
tensor compatible format. The in-memory representation of
a scientific data sample depends on the format. For instance,
HDFS5 dataset samples are represented as a multi-dimensional
array with a start, end, and stride sizes; ADIOS2 samples
are represented as a single-dimensional array in row-major
format; Silo samples are represented in a custom data structure
such as DBquadmesh with an API to extract information.
This demands special care when we need to convert a sample
into a tensor object. We need to utilize scientific data format
APIs to achieve this transformation. The steps to achieve this
conversion are given as follows. First, the Sample Converter
needs to convert custom samples into a standardized multi-
dimensional array in memory. Then, we can convert the
in-memory array into a tensor object using Al framework
operators such as convert_to_tensor in TensorFlow,
torch.tensor in PyTorch, and workspace.FeedBlob
in Caffe. This process converts existing in-memory data into
a tensor object using the same data pointers in C++. The
approach achieves a zero-copy conversion from in-memory



// HDF5 implementation
template<typename TENSOR>
class HDF5: public StimPack<TENSOR>
stimulus::Data ScientificIOOperator(stimulus::dataset dataset_t
/% allocate arrays for hyperslab #/

H5F_ACC_RDONLY, HSP_DEFAULT
H5P_DEFAULT
/* find rank, element_size, and elements_per_dim from dataset +/

hid_t file = H5Fopen(dataset_t . name_ c_str
hid_t dataset = H5Dopen(file, dataset_t.field_name.c_str

size_t num_elements - transfer_size_ / (element_size
size_t start = element_index_ * num_elements
/% define memory and file hyperslabs */

+ elements_per_dim

Data return_data
/* Read data from file hyperslab into memory hyperslab into the
allocated return_data.buffer_ */
H5Dread(dataset, HST_NATIVE_INT, memspace, dataspace, HSP_DEFAULT
return_data.buffer_

status =

/* Close HDF5 datastructure and set booking values */

return return_data

stimulus::Data InputSampleCreator(stimulus::Data data_t
stimulus: :dataset dataset_t
Data sample
/% for each sample calculate sample offset and size. This is linear
calculation for FIXED and iteration over map for VARIABLE */
for(auto sb: sample_boundaries
sample buffer_ = malloc(sb.size
sample size_ - sb.size
memcpy (sample buffer_, (char+)data_t buffer_ + sb.offset, sb. size
co_yield sample

co_return sample

TENSOR SampleConverter(stimulus::Data data_t
/* allocate output tensor based on TENSOR APIs */
auto output_flat = output_tensor->flat<int32>
if (output_flat.size() > @
memepy (output_flat.data data_t buffer_ data_t.size_

return output_tensor

(a) HDF5 Implementation of StimPack

// ADIOS2 implementation
template<typename TENSOR>
class ADIOS2: public StimPack<TENSOR>
stimulus: :Data ScientificIOOperator(stimulus::dataset dataset_t
adios2: :Mode: :Read

/* calculate read boundaries and element size from variable*

auto bpReader = bpI0.Open(dataset_t.name_

num_elements = transfer_size/element_size

start = source.index * num_elements

end = (source index + 1) * num_elements

/% select the appropriate variable into bpDatax/
Data return_data

bpReader Get (bpData, return_data.buffer_

/* Close ADIOS datastructures and set booking values *

return return_data

(b) ADIOS2 Implementation of StimPack

Fig. 5. Implementation of StimPack abstraction for HDF5 and ADIOS2.
The APIs are utilized to efficiently read data from the source and convert
in-memory representations into tensor objects. We utilize high-performance
co-routine calls to optimize control flow for the Al framework’s runtime.

data format representation to tensor representation.

1) Portability: The StimPack abstraction described above
is the abstract class that is implemented by scientific data
formats. We have defined a generic function as a template
that provides hooks for implementing data format-specific
operations. For data formats with multiple datasets or multi-
variate datasets within the file, the different data types/datasets
can be chained together by defining different data sources at
the Stimulus API level with the same filename but different
dataset/attribute names. The StimPack abstraction represents
these structured scientific formats accurately. We present the
implementation details for HDF5 and ADIOS2 in Figure 5.
The critical thing to note is that we build routines to opti-
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mally consume data from scientific formats and re-use this
implementation across any Al framework. Other data formats
are implemented as a part of our repository.

2) Performance: StimPack alleviates for users the burden
of building their data ingestion pipeline from scratch. Users
define their dataset and optimization parameters (e.g., transfer
size, read parallelism, etc.) based on the underlying HPC
system, and Stimulus takes care of efficient data ingestion from
scientific data. Users do not worry about complicated concepts
such as hyperslab, chunking, co-routines, compression, or
prefetching. Instead, they define their jobs at a high level,
and the system optimizes the input pipeline transparently.
The read within the ScientificlOOperator function uses data
sharding to enable data parallelism for AI frameworks [40].
Each thread reads a part of the overall data in the Al
application based on the size of the data. Additionally, if the
transfer size does not match the sample boundaries, we read
the largest number of samples that can fit the given transfer
size. Finally, Stimulus also identifies special cases such as
small files, irregular sample boundaries, etc., and optimizes
the system through the StimPack abstraction. For instance,
for small HDF5 files, Stimulus uses the HSLT library to
load the HDFS5 file into memory and remove the data access
penalty from the PFS. The standardization of the interface
and transparent optimizations enable users to get performance
from scientific data format in a portable manner.

IV. EVALUATIONS

A. Methodology

To evaluate the effectiveness of Stimulus’ design, we first
showcase the internal performance of StimOps functions
and StimPack abstractions. We then test the end-to-end
performance for Al applications such as Cosmic Tagging,
Cosmoflow, and Distributed Flood Filling Networks (DFFN)
to showcase Stimulus’ overall impact in HPC environments.
We run these tests five times, and the variance in the data is
noted in the figures.

1) Testbed: The Summit supercomputer [35] consists of
4608 nodes, each equipped with two IBM Power 9 CPUs
(total 44 cores) and 6 NVIDIA Volta GPUs (V100) with 16
GB HBM2 memory. Each Power 9 CPU is connected to 3
Volta GPUs using NVIDIA high-speed interconnect NVLink,
capable of 300 GB/s bi-directional bandwidth. Each node has
512 GB of system memory. Dual rail EDR Infiniband cards
connect all the nodes using a non-blocking fat-tree topology.
The nodes can access a POSIX-based IBM Spectrum Scale
parallel file system with a current capacity of 3 PB and an
approximate maximum speed of 30 GB/s. We utilized 128
computer nodes (i.e., 768 Volta GPUs) for the largest scale in
our evaluations.

2) Software Used: We used the TensorFlow profiler to
measure the benchmark’s performance. Additionally, we used
the VaniDL analysis tool [41], which provides high-level
aggregated I/O insights into a traced application. We used
TensorFlow 2.1.0 and PyTorch 1.7 with Horovod 0.19.5 for
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distributed training. Finally, we used NumPy version 1.19.1,
h5py version 2.10.0, and mpidpy version 3.0.3.

3) Applications: We use a collection of synthetic
benchmarks to showcase different performance metrics on
the designed components. We use the DLIO benchmark [42],
a representative of scientific deep learning applications in
HPC systems. Additionally, we utilize three scientific Al
application kernels: Neutrino and Cosmic Tagging with
UNet [21], Distributed Flood Filling Networks (DFFN) [22],
and Cosmoflow [19] using DLIO Benchmark Suite [42].

B. Scientific Format Input Pipeline

To showcase the performance, we first do a break-down of
all operations supported within the Input Pipeline and then
measure their end-to-end performance for different use-cases
(Figure 6 and 7).

1) Anatomy of Scientific Format Input Pipeline: Scien-
tific Format Input Pipeline combines StimOps functions and
TensorFlow’s input pipeline operators defined by the user.
Therefore, it is crucial to measure its performance across
various APIs supported in this input pipeline. To test this, we
build a simple input pipeline with a dataset of 1024 samples,
each of size 1 MB. We build an input pipeline similar to
Figure 3. We run the synthetic workload with a batch size of
64 samples over 16 steps and 1000 epochs. We calculate the
time using Tensorflow Profiler for each operation and calculate
the average time.The HDF5Dataset marked in Figure 6(a)
is the high-level API provided by Stimulus, which con-
tains the StimOps functions. The operations HDF5Dataset:1/0
and prefetch are 1/0O operations, and hence they have the max-
imum cost. In this case, they perform almost the same number
of I/O operations. The cost of data processing operations, such
as HDF5Dataset:Sample, HDF5Dataset:Converter, interleave,
map, filter, batch, and shuffle, depend on the operation type.
These operations are performed on data already in-memory
and hence are memory-bound in performance. Finally, gener-
ating the Iterator is an in-memory operation of existing data to
the training loop and therefore has a relatively low cost similar
to a batch operation. This result shows a general distribution
of the scientific format input pipeline cost in Al applications.

2) Performance of StimOps functions: Scientific Format
Input Pipeline should have a high-performance throughput
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Fig. 7. Performance of StimPack data formats for TensorFlow and PyTorch
is comparable to an IOR baseline on the PFS. Stimulus can achieve up to
98% of the PES bandwidth.

for each of the StimOps functions. The throughput of these

functions depends upon the availability of threads within the
execution pipeline. To evaluate their performance, we execute
each Stimulus operator with different threads over 10000
operations in a single node. We calculate each operation’s
throughput within our system in operations per second. The
I/0 Operator is bound by the GPFS file system’s performance,
whereas the node’s memory performance bounds the sample
Creator and Converter (Figure 6(b)). Therefore, we see a
significant throughput difference between the I/O operator and
memory operators. Additionally, each operator’s throughput
increases as we have more execution threads since these
operations can occur in-parallel and will extract higher
performance from the system. Generally, the input pipeline
graph is executed over CPU cores and the AI model over
GPUs. Therefore, the results show that the implementation
efficiently utilizes multi-core CPUs.

3) Performance of StimPack abstraction: The performance
of our StimPack abstractions for various data formats is crucial
for maximizing the performance of the AI framework. To
evaluate their performance, we execute the input pipeline of
reading a 32GB dataset with a transfer size of 1MB, with each
dataset containing samples of size 128 KB. We perform this
test across HDF5 (H), ADIOS2 (A), Silo (S), PnetCDF (NC),
and GNCF (GN) with TensorFlow and PyTorch framework
on 32 nodes. For each data format, we calculate the extracted
bandwidth from the PFS. As a baseline, we performed 32GB
reads using a transfer size of IMB from the PFS using the IOR
benchmark and observed the maximum read bandwidth of 60
GB/s. The StimPack test shows that StimPack implementation
of scientific data formats achieves an average bandwidth of
57.60 GB/s for both PyTorch and TensorFlow (Figure 6(a)).
The distribution in performance among data formats is an
average of 58.31 and std of 1.65 for TensorFlow and an
average of 56.89 and std of 2.03 for PyTorch. This is due to
the performance difference between the APIs of individual sci-
entific data formats. Additionally, we observe that TensorFlow
achieves an 8-10% better performance across all the tests than
PyTorch (average over 10 executions). This difference can be
accounted for based on the tensor execution engine difference
between the two Al frameworks. Overall, Stimulus achieves
95-98% of the overall PFS bandwidth achieved by IOR.

C. Impact of Data and Processing Decoupling

Data loading and pre-processing decoupling are essential
in an Al application. This is because samples for Al training
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are generally in kilobytes, which is extremely inefficient data

access for large parallel file systems such as GPFS. Stimulus
separates data reading (using Scientific Format I/O Operator)
with sample pre-processing (using Input Sample Creator) to
optimize this, as explained in III-D. To test this optimization,
we vary the data reading granularity (i.e., data transfer size)
from 4 KB to 16 MB by step size four. We use a synthetic
benchmark with 32 K samples for each of these cases, each of
size 8 KB, and a batch size of 4 images. The benchmark runs
for 1000 steps, and we measure the total time for performing
I/O and the aggregate bandwidth achieved in each case. We run
the benchmark over 128 nodes with four processes per node.
Figure 8(a) shows the results. On the x-axis, we have varying
transfer sizes; on the y-axis we have time in seconds, and the
y2-axis represents bandwidth in GB/s. We see that until the
transfer size matches the GPFS Stripe size of 1 MB, we have
low bandwidth of 1.2 GB/s. Once we match the transfer size
perfectly, the application can achieve a peak I/O bandwidth
of 2.7 GB/s per node and a total aggregated bandwidth of 240
GB/s (peak I/O bandwidth of Summit). This demonstrates
the importance of matching data access granularity with the
file system to achieve the application’s best performance.
D. Impact of Data Prefetching

As Stimulus follows a cohesive integration within Al frame-
works, it can utilize existing input pipeline optimizations. Data
Prefetching is an essential optimization in TensorFlow for Al
applications [43]. It enables efficient overlapping of I/0 with
model computations by reading data beforehand. However, as
shown in many studies [44], [45], [46], data prefetching effi-
ciency depends on the amount of prefetching cache allowed in
the system. We use a synthetic benchmark with a dataset with
32 K samples to test this, each of 8 KB and a batch size of 4
samples. We set the prefetching cache as a percentage of over-
all I/O and measure the I/O performance as time. We observe
that, as we increase the prefetching cache, the I/O performance
increases (Figure 8(b)). This is because more and more data
is already found in the cache’s memory. However, the benefit
reduces for larger prefetching cache size as models are bound
with initial data that needs to be brought in. Specifically, we
see little benefit in performance after 70% of the data is already
cached. Overall, enabling existing prefetching optimization
improves I/O time by 4.42x for 70% prefetching cache.

E. HDF5 Al Application Performance

This section demonstrates the effectiveness of Stimulus to
optimize end-to-end scientific Al applications’ performance.

(a) Data and Processing Decoupling.
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Specifically, we strong-scale test Neutrino and Cosmic Tag-
ging with UNet (Cosmic Tagger), Distributed Flood Filling
Networks (DFFN), and Cosmoflow. The input pipeline is
executed over the CPU, and the computations occur over
the GPU. In Stimulus, we four-thread I/O and preprocessing
parallelism along with the prefetching optimization.

1) CosmicTagger: Cosmic Tagger is a convolutional
network for separating cosmic, background, and neutrino
in a neutrino dataset. The application is written with the
PyTorch framework and reads a 10 TB dataset stored in
HDF5 format using the Dataloader framework. By default,
every process reads 43008 samples. Each sample contains
three sparse images of size 1280x2048 of average size 40
KB. The application is run for 150 steps and one epoch. At
each step, each process reads and pre-process 32 images.

2) Distributed Flood Filling Networks: DFFN is a
recurrent 3D convolutional network for segmenting neurons
from a brain tissue’s image. The application reads a 4.5 TB
dataset stored in an HDF5 file. Every process reads 18678
samples, each of size 32x32x32. The samples are read by
the application with 4096 fields of view. The application runs
for 400 steps in one epoch with a batch size of 32 images.

3) Cosmoflow: CosmoFlow is a 3D convolutional neural
network model for studying the features in the distribution of
dark matter. The application contains a dataset of size 2 TB
in HDF5 format. This dataset is converted offline into 1024
TFRecord files. The dataset is accessed using TensorFlow’s
tf.data APIs. Each TFRecord file consists of 262,144
samples, each of size 128x128x 128 x4. The application runs
for four epochs with 256000 steps. The batch size is one. That
is, each process reads one image from the dataset at each step.

4) Analysis: For Cosmic Tagger (Figure 9(a)), the
Datalloader API of PyTorch framework (D in the figure)
results in an exponential increase in I/O cost as the scale
increases (shown in Figure through I/O to Compute Ratio).
This is because the DatalLoader framework consumes the file in
the sample granularity. As the samples in the dataset are small
(6KB), the application achieves a low aggregate bandwidth
of 11 GB/s. For Stimulus (S in the figure), data access scales
much better as the I/O performed matches the stripe size of the
PFES (i.e., 1 MB) and therefore extracting higher I/O bandwidth
from the PFS. Additionally, the pipelining operations (due to
the three operators) and I/O parallelism (due to lower-level
of implementation) enables Stimulus to further optimize the
data pipeline by 30%. Through these optimizations, Stimulus
achieves a speedup of 3.4 x on I/O as compared to the baseline.

For DFFN (Figure 9(b)), the native HDF5 access (N in
the figure) results in an exponential increase in I/O cost as
the scale increases (shown in Figure through I/O to Compute
Ratio). This is because manually reading data from the HDF5
file does not execute TensorFlow’s execution runtime. This
serializes the input reading, pre-processing, and Al model
computations leading to sub-optimal I/O and data operator
performance. For Stimulus (S in the figure), data access
scales much better than the native HDF5 approach. This is
because Stimulus performs I/O at a bigger granularity (i.e., 1
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Fig. 9. HDF5 Applications. a) Cosmic Tagger using Stimulus (S) achieves a speedup of 3.4x on I/O and 3 overall compared to the native Datal.oader (D)
on the largest scales. b) DFFN using Stimulus achieves a speedup of 2.9x on I/O and 2.29x overall compared to the native hSpy APIs (N) on the largest
scales. ¢) Cosmoflow using Stimulus achieves an overall speed up 1.9x overall compared to converting the dataset (C) on the largest scales while achieving
comparable I/O performance. The speedup in I/O in all cases is achieved but Stimulus via data pipelining, parallel I/O, and larger transfer sizes resulting in
higher PFS bandwidth. Additionally, Stimulus doesn’t require conversion of scientific format into an Al framework-specific format for optimizing 1/O.

MB) than the sample (40KB) and hence extracts much higher
bandwidth from the parallel file system (improvement of
2.2x). Additionally, the read and pre-processing parallelism
further improve the I/O performance for the application (total
improvement of 1.3x). Finally, the whole input pipeline is
hidden effectively behind the computation (0.01 seconds per
step) of the previous step (total improvement 2.9x).

For Cosmoflow (Figure 9(c)), the default flow is first to
convert the HDF5 dataset into TFRecord and then consume it
with t £.data APIs (C in the figure). The I/O in the baseline
is extremely efficient with good default reading transfer size
(default 256 KB), data pipelining, and data parallelism.
However, the conversion of the dataset from HDF5 to
TFRecord offsets the benefit of loading data efficiently and
increasing the footprint of data storage (2x more storage).
For Stimulus (S in the figure), data access scales much better
than in the conversion approach. The I/O is slightly better
than TFRecord due to a much more optimal transfer size
of 1MB, which matches the PFS’s stripe size. However,
due to the conversion on the baseline, Stimulus is overall
1.9 faster on the largest scales. In conclusion, Stimulus can
achieve close to native data format’s I/O performance while
not needing any additional preprocessing such as conversion.

V. RELATED WORK

Scientists have proposed several solutions to optimize
scientific data access in modern Al frameworks. These
optimizations stem from the inadequacies suffered by
different Al frameworks in data management. Pumma et
al. proposed LMDBIO-DM [9], an enhanced version of
LMDBIO-LMM [47] that optimizes the I/O access of
Caffe in a distributed-memory environment. However, these
optimizations target specific cloud data formats, such as data in
a distributed database. Essen et al. [48] proposed LBANN by
utilizing node-local storage devices to store datasets and utilize
that to read datasets into Al frameworks. Finally, Caffe [49]
supports an extension to read HDFS5 files. As scientific
formats are manually ingested by application developers,
these optimizations cannot extend in general to scientific data
formats efficiently, which is the target of our work. Yosuke
et. al. proposed a methodology [24] to ingest large amounts
of dataset in HDF5 file format by utilizing a new parallel
I/O pipeline within the LBANN infrastructure to enable an
efficient I/O pipeline for scientific data formats. Similarly, Sam
et. al. proposed a novel tournament method [50] for complex
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generative models, which minimizes communication and
enables efficient partitioning of large data sets. Additionally,
Kurth et. al. proposed injection of HDFS5 dataset reading within
the execution graph of TensorFlow to enable efficient I/O ac-
cess from the PFS [23]. However, these approachs are applied
at the application layer (i.e., specific to DL framework and
data format targeted) which makes them non-portable across
different Al frameworks and unable to maximize performance.

In Stimulus, the data management occurs in a lower-level
(i.e., tensor infrastructure runtime) using StimOps functions
and StimPack abstraction. This makes our solution portable
across multiple scientific data formats and popular Al
frameworks. Additionally, the two novel concepts enable
performance improvement over all existing methodologies.

VI. CONCLUSION

Stimulus demonstrates an efficient input pipeline of
scientific data formats in popular AI frameworks with a
throughput of 5.3M operations per second. Additionally, the
input pipeline extracts 2x to 3.7 x better performance from the
GPFS file system by utilizing optimizations such as decoupled
I/0, operation parallelism, and prefetching. Finally, Stimulus
outperforms existing solutions by 2x to 5.3x faster training
performance with up to 768 GPUs on Summit supercomputer
under a diverse set of workloads such as Cosmic Tagger
(using HDF5 with PyTorch), Cosmoflow (using HDF5 with
Tensorflow after conversion to TFRecord), and Distributed
FFN (using HDF5 with TensorFlow). Stimulus efficiently inte-
grates several scientific data formats such as HDF5, PnetCDF,
Silo, ADIOS, and GNCF into various Al frameworks such
as PyTorch and TensorFlow. Additionally, Stimulus’ design
enables a modular approach to abstract common I/O and
runtime functionality through StimPack and StimOps respec-
tively. Finally, Stimulus cohesively integrates several scientific
data formats for popular Al frameworks while maximizing
portability and performance on the Summit supercomputer.
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