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ARTICLE INFO ABSTRACT

Keywords: Over the past few decades, in silico modeling of organ systems has significantly furthered our understanding of

Esophagus their physiology and biomechanical function. In spite of the relative importance of the digestive system in normal

lS)tor'naclh' functioning of the human body, there is a scarcity of high-fidelity models for the upper gastrointestinal tract
eristalsis

including the esophagus and the stomach. In this work, we present a detailed numerical model of the upper
gastrointestinal tract that not only accounts for the fiber architecture of the muscle walls, but also the multi-
phasic components they help transport during normal digestive function. Construction details for 3D models of
representative stomach geometry are presented along with a simple strategy for assigning circular and longi-
tudinal muscle fiber orientations for each layer. We developed a fully resolved model of the stomach to simulate
gastric peristalsis by systematically activating muscle fibers embedded in the stomach. Following this, for the
first time, we simulate gravity-driven bolus emptying into the stomach due to density differences between
ingested contents and fluid contents of the stomach. Finally, we present a case of retrograde flow of fluid from the
stomach into the esophagus, resembling the phenomenon of acid reflux. This detailed computational model of
the upper gastrointestinal tract provides a foundation for future models to investigate the biomechanics of acid

Fluid-structure interaction
Immersed boundary method
Incompressible multiphase flow
Biomechanics

reflux and probe various strategies for gastric bypass surgeries to address the growing problem of obesity.

1. Introduction and motivation

The digestive system is one of the main organ systems of the body
and is responsible for ingestion, transport, breakdown and absorption of
food necessary for normal body function. In spite of its importance, little
attention has been paid to in silico modeling of this organ system
compared to extensive modeling efforts for the cardiovascular, respira-
tory and skeletal systems of the human body. Modeling of organ systems
can further our understanding of the role of biomechanical processes in
these systems and help differentiate between physiological and patho-
logical conditions. This can lead to improvements in treatment planning
and overall outcomes. Up to this point, computational investigations of
gastrointestinal biomechanics have focused on the fluid and solid
problems separately [1-5]. Flow in the stomach was generated by fully
specifying the motion of gastric walls with time [2,3] without ac-
counting for the interaction between the elastic stomach wall structure
and the internal fluid contents. While this approach reveals important

details about flow fields in the stomach during gastric peristalsis [6,7], it
provides little information on the relationship between pressure fields
that drive flow and the material properties of the surrounding muscular
structures. This information is valuable for probing the integrity of the
muscle wall and relate measurable lumen pressures to material prop-
erties of the esophagus and stomach walls [8]. It must be noted that a
significant amount of work has also been done to study the spread and
absorption of pharmacological agents such as tablets and pills in the
stomach [9-12]. Other numerical models of the gastrointestinal tract
have accounted for electrical activity in the walls and the complex
interaction between slow waves generated by the interstitial cells of
Cajal, spike potentials and their overall role in eliciting contractions of
the muscle wall [13-15]. However, the combined effect of contraction
strength and the structure’s material properties on the motion of the
confined fluid contents remains to be explored.

In addition to the coupled fluid-solid phenomena observed during
bolus transport and gastric mixing, it is important to note that the
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contents of the digestive system often include more than one homoge-
neous fluid. Air is often present in the gastric lumen and there are slight
differences in the density of ingested food and the surrounding gastric
fluid (which is similar to water). These density differences can signifi-
cantly affect the internal flow fields. Therefore, it is important to capture
the net effect of the elastic structure on the multiphasic components in
any reasonably detailed model of the upper GI tract. In the upright po-
sition, gravity is often sufficient to cause fluid from the esophagus to
empty into the stomach [16-18]. This necessitates the use of two fluid
components to model gravity-driven emptying in the esophagus. In light
of the studies summarized above, we aimed to develop a model that
accounted for the complete two-way fluid-structure interaction (FSI)
problem in the stomach along with a multiphasic approach that accounts
for density differences observed during normal physiologic functioning
of the upper GI tract.

2. Mathematical modeling of FSI and multiphase flow

2.1. Overview of the immersed boundary formulation and solution
method

The computational model of the upper gastrointestinal tract pre-
sented in this work is an extension of the model previously developed
and validated by Kou et al. [19-21] to analyze esophageal peristalsis and
bolus transport using the immersed boundary method. Below, we sum-
marize the mathematical formulation of the immersed boundary finite
element (IBFE) method that was used to model the interaction between
the fluid and solid components in this work. The IB method employs an
Eulerian description for mass (incompressibility) and momentum con-
servation in the entire fluid-structure computational domain. For the
hyperelastic structure, a Lagrangian approach is used to describe the
solid’s deformation and stress fields. Integral transforms that use Dirac
delta function kernels exchange velocity and stress information between
the two subdomains. Derivation of the continuum version of IB equa-
tions for a three-dimensional solid immersed in fluid is presented in Boffi
et al. [22]. The discretized version of these equations were derived and
implemented by Griffith and Luo [23]. The complete set of governing
equations can be summarized as follows,

opu(x, )
ot
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Here, Egs. (1) and (2) describe momentum and mass conservation,
respectively, of the entire fluid domain and the structures immersed
within it. If p and y are constant, these equations become identical to the
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Incompressible Navier-Stokes (INS) equations for a single fluid. As seen
from the viscous term in Eq. (1), we assumed the fluid to be Newtonian
even though most consumed foods are complex non-Newtonian fluids.
We chose this modeling approach as water is the most common fluid
used during clinical evaluation of esophageal motility. Unlike previous
versions of the immersed boundary formulation used in Refs. [19,21] to
model esophageal transport, Eq. (1) accounts for a variable density and
viscosity that allows for more than one homogeneous fluid present in the
domain. Eulerian and Lagrangian reference coordinates are labeled as x
and s, respectively. The combined multiphase fluid-structure system
occupies the space QCR® and the structure’s reference configuration
occupies the space U. Velocity and pressure in the Eulerian description
are denoted by u and p, respectively. The elastic force densities in the
Eulerian and Lagrangian descriptions are denoted by f¢ and F¢, respec-
tively. In the Lagrangian frame, the structure’s current position, velocity
and first Piola-Kirchoff stress are denoted by x(s,t), dy(s,t)/ot and P,
respectively. The structure’s elastic force density is spread into the
surrounding fluid using Eq. (3) which then affects fluid flow as seen from
the presence of f in Eq. (1). Elastic force density from the structure F¢ is
computed using P° and an arbitrary Lagrangian test function V(s)
through a weak form of the principle of virtual work in Eq. (4). This is
done by projecting P° onto the finite-element space defined by V. The
intermediate Lagrangian velocity of the structure U® is computed by
interpolating fluid velocity using the delta function as shown in Eq. (5).
This intermediate velocity is then projected into the space defined by V
(s) using Eq. (6) to obtain the final Lagrangian velocity of the structure.
The reason for this additional step is that the Eulerian equations are
solved using the finite volume method whereas the Lagrangian equa-
tions are discretized using finite elements. As such, the intermediate
velocity field must be projected onto the space defined by the finite
element basis functions [24]. This final Lagrangian velocity is then in-
tegrated to obtain the updated position of the structure’s nodes. The
combination of Egs. (5) and (6) ensures that the no-slip boundary con-
dition is enforced at the fluid-solid boundary. The constitutive model of
the structure is given by Eqn. (7) and is used to compute P° from the
current deformed configuration of the structure. Thus, Egs. (1)-(7)
illustrate the mathematical model used to capture the dynamics of the
structure due to the surrounding fluid and vice versa. Complete details
pertaining to the spatio-temporal discretization of the governing equa-

+ V-pu(x, Hu(x, )] = —Vp(x,t) + V-[u(Vu(x,7) + Vux,1)" ) ] + pg + £(x,1), €))

tions and the Eulerian-Lagrangian interaction equations, can be found in
Refs. [19,21,23-25].

Briefly, the solution method consists of the following steps to obtain
quantities y and u for the next time step n + 1 from the quantities at the
current time step n. First, the nodal locations of the Lagrangian structure
are advanced by half a timestep using interpolated fluid velocity.
Interpolation is achieved through the discrete version of Eq. (5) to
compute an intermediate Lagrangian velocity field U°. Once this quan-
tity is projected onto the basis functions used to describe the Lagrangian
fields using Eq. (6), ™"'/2 is computed. With the updated configuration
of the structure, solid stresses are computed and Eq. (4) is used to find
the internal force density F. This force is spread to the Eulerian domain
using an operator S defined using Eq. (3) to find f71/2, Once the
updated Eulerian spreading force is computed, the mass and momentum
conservation equation for the entire computation domain Egs. (1) and
(2) are used to compute u™* and p"*/2, The domain is discretized using
a Cartesian staggered-grid scheme with second-order accurate finite
difference approximations for the divergence, gradient and Laplace
operators. The convective term is discretized using the xsPPM7 version
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of the Piecewise Parabolic Method (PPM) [26]. Temporal update of this
nonlinear term is computed using the Adams-Bashforth method for the
intermediate step. The second-order Crank-Nicolson scheme is used to
handle the viscous, linear terms. Finally, the Lagrangian structure’s
nodal positions are corrected using the updated fluid velocity and an
updated velocity restriction operator obtained by discretizing Eq. (6). In
summary, to advance to the next timestep, the solution method consists
of one force evaluation, one force spreading, two Lagrangian velocity
computations and a solution of the Navier-Stokes equations. Additional
details on the solution method can be found in the Supplementary Ma-
terial. Complete mathematical details of the discrete operators derived
from the continuous equations along with details on the preconditioned
solver used to solve the conservation equations for the computational
domain can be found in Refs. [23,24,26,27].

2.2. A brief description of the multiphase flow solver and interface
treatment

As outlined in Sec. 2.1, the conservative form of the Navier-Stokes
equations are used to model the overall fluid motion. Density and vis-
cosity are functions of space and time in Eq. (1). As the material de-
rivative of p remains zero, Eq. (2) is equivalent to the general form of the
equation for conservation of mass in a continuum. This conservative
form of the governing equations is discretized using a staggered grid
approach with the traditional description of vector components defined
on cell faces and scalar quantities defined at cell centers. By using mass
flux density alongside the conservative form of the governing equations,
the numerical scheme consistently transports mass and momentum
which prevents any non-physical fluid motions. Special care is taken for
the treatment of the nonlinear advection term which uses a third-order
upwind scheme to maintain monotonicity with higher order accuracy.
The overall fluid solver is second-order accurate for moderate density
ratios as commonly observed in gastrointestinal flows. Complete details
of the numerical implementation and tests for accuracy are provided in
Refs. [25,27].

The interface between the two fluids of different density is tracked
using the level-set method. In this study, the solid structures are assumed
to be of the same density as the ambient fluid (water, unless mentioned
otherwise). As such, no additional level set is needed to track the density
field of the structure and it remains neutrally buoyant. A scalar function
@(x, t) denotes the value of the level set field in the domain. The variable
¢ is a signed distance function which satisfies the Eikonal equation
|[Ve|| =1, and has a value of zero at the interface between the two fluids.
The level set field is advected using the fluid velocity field with the
equation
% + V-(pu) =0. ®
ot

Fluid material properties are assigned based on the sign of ¢ at any
given location. As is well known with traditional usage of level-set
methods, linear advection leads to a gradual loss of the signed dis-
tance property | Vg|| = 1, of the ¢ field. Reinitialization is conducted at
each time step by solving the following equation using a pseudo-time
stepping scheme

I

3 TS@)(IVel =1) =0. ©)

This ensures that the advected level set field obeys the signed dis-
tance property at every stage. During reinitialization, although the ¢
field satisfies the || V¢|| = 1 property, it might lead to changes in the mass
of individual phases. To avoid this error, an additional term that pe-
nalizes this mass loss is also solved to conserve the volume of each phase.

9o _
or

Further details on the discrete versions of these equations along with

—AV. (10)
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additional analysis on diffusion and distortion at the fluid-fluid interface
can be found in Nangia et al. [27].

2.3. Software implementation of the mathematical model

Computations using the governing equations previously described
were performed using the IBFE and Multiphase Flow modules within the
IBAMR open source framework [28] which is a distributed-memory
parallel implementation of the IB method written in C++. Equations
are solved on a Cartesian finite-volume grid with adaptive mesh
refinement (AMR). Fluid variables and the AMR strategy are handled
using data structures provided by the SAMRAI library [29] which uses a
patch-based implementation approach. In addition to the zero level-set
interface, the entire structure is located on the finest level of the finite
volume grid. This ensures that both the fluid-solid interface and the
zero-level set are described using the smallest possible mesh spacing for
improved resolution. The structure is discretized using first-order finite
elements and data related to Lagrangian operations is handled by the lib
Mesh finite-element library [30]. The PETSc solver library [31] is used
to compute numerical solutions for the discretized equation systems.
The novel multiphase flow solver developed by Nangia et al. [27] used
in this work has been extensively validated for a wide variety of
benchmarks ranging from cases involving two fluids to Lagrangian
structures interacting with the interface between two fluids. Details of
the verification along with accuracy and convergence rates of the overall
method can be found in Refs. [25,27]. Computations were performed
using clusters PSC Briges-2 and SDSC Comet through the XSEDE pro-
gram. Additional computations were conducted on the Northwestern
University high performance computing cluster Quest. All simulations
used 96 cores spread over four nodes unless mentioned otherwise.

3. Stomach geometry, associated fiber-architecture, and
boundary conditions

3.1. Creating a solid model of the stomach

In Fig. 1, we show a few images of the human stomach as commonly
seen in literature describing human anatomy. Such images formed the
foundation for the construction of a 3D stomach structure. The geometry
of the esophagus remains identical to the ones used in previous studies
[19-21]. It consists of a thick-walled cylindrical tube with five layers,
each having a distinct fiber architecture that corresponds to various
mucosal and muscle layers in a human esophagus. The stomach geom-
etry however, is far more complex and requires the construction of some
key geometric elements which will then be used to generate the stomach
structure.

It is clear from Fig. 1 that the human stomach has three primary
structural features. The first being the rounded top known as the fundus.
The second is the curved nature of the organ which leads to an upper and
lower surface commonly known as the ‘lesser’ and ‘greater’ curvature. In
the distal portion, there is a pyloric sphincter at the end of the stomach
which controls and restricts the flow of fluid into the duodenum and
small intestine for further digestion. Based on earlier studies, the cross-
sectional area of the stomach is assumed to have an elliptical profile [21,
34]. With these simplifications, we construct a set of planes that follow
the center line of the stomach profile as shown in Fig. 2. This step is
similar to the approach taken by Ferrua et al. [1] to construct a volume
that depicts the stomach cavity. In the present study, we wish to create
the muscle walls that envelope this cavity for our immersed structure.
Each plane contains an elliptical cross section that is constructed using
the lesser and greater curvatures as guidelines. Once the set of ellipses
are available, they are used to create a sweep that generates the volume
that serves as the stomach’s cavity. With a similar operation, a larger
volume is created that is the union of the cavity and the inner circular
muscle layer. With a boolean subtraction operation, the cavity is
excluded from the larger volume which results in the circular muscle
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(forms sling)

(b) Fiber orientations and muscle layers of the stomach.

Muscle fibers from the esophagus continue to form the

muscle layers of the stomach [33].

Fig. 1. Representative stomach geometry obtained from literature on upper gastrointestinal tract anatomy and biomechanics. These images highlight the primary
geometric features of the stomach along with the orientations of fibers in the various muscle layers of the stomach walls. The three key geometric features are: 1) The
fundus and its positioning with respect to the esophagus, 2) the lesser and greater curvatures of the stomach, and 3) the pyloric sphincter and its approximate muscle

thickness. Images reproduced with permission from [32,33].

Pyloric sphincter

Fig. 2. Solid model of the stomach based on images from Fig. 1. The image on the left shows all the primitive geometric entities that were used to create the 3D
volume. The three curves corresponding to the lesser curvature, greater curvature and the center line are visible. Also visible are the elliptical cross sections used to
generate the stomach profile at distinct points along the centerline. The image in the middle shows the outer surface of the composite 3D volume which consists of the
stomach cavity and the circular muscle layer. The rightmost image shows a cross sectional slice of the final structure used for the circular muscle layer. The thickness
is highlighted in red. The structure is hollow which will be occupied by the fluid during IB simulations. This 3D model was created using SolidWorks R2018.

layer of the stomach wall. With a simple inflation operation, an outer
thick-walled shell of this structure is created which serves as the longi-
tudinal muscle layer of the stomach. Table 1 summarizes the dimensions
of the structure used to describe the stomach model. With the con-
struction of these two structures, the required geometry for creating a
finite element mesh of the stomach’s layers is complete. The esophageal
structure is a thick walled cylinder and is meshed using Q1 hexahedral
elements with trilinear basis functions. The number of elements in the
axial, radial and circumferential directions are 120, 8 and 32, respec-
tively. The cylinder’s inner and outer diameters are 5 mm and 8 mm. The
cylinder height is 9 cm. The mesh used for the stomach consisted of
189365 P1 tetrahedral elements with 41414 nodes. The dimensions of
the stomach structure are provided in Table 1. All simulations were run
with an adaptive time stepping scheme with a maximum time step of

size 1.5 x 107> s and a maximum CFL number of 0.35 in the domain.

3.2. Assigning fiber directions for the circular and longitudinal muscle
layers

In addition to geometric details, one must also consider the specific
orientation of fibers within the stomach wall’s muscle layers. During
gastric peristalsis, these fibers contract in a systematic way to induce a
propagating reduction in lumen area which then creates fluid flow
within the stomach. As seen in Fig. 1, the stomach has three identifiable
muscle layers: circular, longitudinal and oblique. They are named based
on the orientation of fibers in each layer with respect to the centerline.
Unlike the esophagus, these three stomach layers are not distinct from
each other and fibers from one layer can continue on into another layer
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Table 1

Dimensions of key features of the stomach model shown in Fig. 2. When empty,
stomach volume is around 250 mL [40]. By choosing specific values for the
lengths of the lesser and greater curvature, cavity volume is increased to
resemble the stomach geometry after the consumption of a meal.

Geometric feature Value Source
Length of lesser curvature 22.16 -
cm
Length of greater curvature 33.25 Ferrua et al. [2]
cm
Length of the centerline 24.8 cm -
Cavity volume 0.85L Ferrua et al. [36]
Widest diameter 9.5 cm Schulze [37]
Pyloric sphincter diameter (relaxed) 1.6 cm Deeg et al. [38]
Muscle layer thickness (both LM and 2.75mm  Liebermann-Meffert et al.
CM) [39]

Table 2
Complete set of activation timings and contraction strengths for each stomach
plane used to simulate gastric peristalsis.

Plane Activation Activation Max. Plane status info
num. begin time end time () contraction
(ta) strength (max)

1 - - 0.0 always inactive

2 - - 0.0 always inactive

3 - - 0.0 always inactive

4 1.0 1.5 0.2 -

5 1.25 1.75 0.3 -

6 1.5 2.0 0.4 -

7 1.75 2.25 0.5 -

8 2.0 2.5 0.5 -

9 2.25 2.75 0.5 -

10 2.5 3.0 0.5 -

11 2.75 3.25 0.5 -

12 0.0 - 0.2 pylorus plane
(permanently active
after t = 1.0 s)

13 - - 0.0 always inactive

14 - - 0.0 always inactive

in very complex ways. For the purposes of this study, we model only the
circular and longitudinal muscle layers while acknowledging the fact
that the oblique layer is equally important and has a significant effect on
gastric peristalsis during normal function. In addition to these intricate
muscle fiber orientations, the stomach has ‘sling’ fibers that have a
significant effect on fluid entering the stomach through the esophagus.
As these fibers are part of the oblique layer, they have not been imple-
mented in this model. However their presence must be accounted for to
make accurate predictions from the computational model.

To assign fiber directions for the circular muscle layer, we first
generate a finite element mesh of the structure using the open source
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meshing software Gmsh [35]. This underlying mesh is used along with
the planes defined in Fig. 2 to assign a fiber orientation for each element
using a simple procedure. For every element in the mesh, the closest
neighbor element with a face that lies on the solid’s boundary is found.
As the circular muscle layer is relatively thin, such a neighbor is rela-
tively close to any element under consideration. The sides of this face are
oriented along the surface of the solid structure. A projection of one of
these sides on the plane closest to this element gives us the orientation of
the circular muscle fiber for this element. An example of this step is
shown in Fig. 3. With the help of the boundary face, we obtain vectors
that are tangential to the surface. Projecting these tangent vectors onto
the planes that define the circular profiles gives us a vector that is
tangential to this circle. This procedure is repeated for every element in
the mesh which results in the final fiber architecture for the circular
muscle layer as seen in Fig. 3. During meshing, additional elements were
added via local mesh refinement at the pyloric sphincter region to better
capture the small diameter profile and its thicker walls. This leads to a
greater density of fibers at the location of the sphincter as is evident in
the rightmost image of Fig. 3.

For the longitudinal muscle layer fiber orientation, we first generate
a set of guide curves that travel along the surface of the stomach.
Manually placed points that lie on the outer surface of the stomach are
joined using 3D splines. Using each curve’s trajectory, tangent directions
are computed for several equally spaced points on these curves as seen in
Fig. 4. Following this step, for each element center, we identify two
curves that are closest to it. Points on these curves that are closest to the
element center are found and the average of the tangent vector for each
of these points is assigned as the fiber orientation for said element. This
ensures that fibers are generally oriented along the trajectories of the
guide curves and there is a smooth variation of fiber vectors across all
the elements in the layer. This process of assigning longitudinal fiber
directions and the final fiber orientations obtained is visualized in Fig. 4.

3.3. Strain energy functions for the matrix and fiber components of the
stomach wall

In this section, we summarize the constitutive relations and material
properties used to describe the matrix and fiber components for the two
muscle layers of the stomach wall. Like most continuum mechanics-
based models of muscular tissue, each layer is assumed to be similar
to a composite material that consists of anisotropic fibers embedded in
an isotropic tissue matrix. Based on previous studies of esophageal
transport by Kou et al. [19], we use the bi-linear constitutive model
proposed by Yang et al. [41] to describe the behavior of the circular and
longitudinal muscle layers of the gastric wall. Material constants
applicable to the gastric wall are similar to the values chosen for the
esophageal wall in Kou et al. [19] It should be noted that there are
significant differences in material properties of the esophagus’ circular

Fig. 3. A demonstration of assigning the circular muscle fiber orientation for an element using neighboring sides located on the solid boundary. The face ABC lies on
the surface. Each of its sides are tangents to the solid surface. By projecting one of these tangents on to the plane, we obtain the fiber orientation for this element
(shown in green). Image on the right shows the final fiber architecture for the circular muscle layer. Blue dots indicate element centers and brown lines indicate the

element’s fiber direction.
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Fig. 4. Assigning fiber orientations to elements in the longitudinal muscle layer. Left: Guide curves drawn on the stomach surface. Center: Tangents to the guide
curves used to assign fiber orientations to each element in the mesh. Right: Visualizing longitudinal fiber orientations for all elements in this muscle layer.

and longitudinal muscle layers compared to the corresponding muscle
layers of the stomach wall [8]. However, as fibers in the stomach orig-
inate from respective muscle layers in the esophagus [33], we choose the
same material properties as a first order approximation of the system.
The strain energy function y for each layer of the stomach structure is
thus written as the sum of two parts

V' = Wonatrix T Vhiber> an

which uses the incompressible neo-Hookean constitutive model for the
isotropic matrix and a bi-linear fiber model with orientation a for in-
dividual fibers. The orientation vector a is a function of s and its dis-
tribution was summarized in Figs. 3 and 4. The complete expression for
y used for the circular (CM) and longitudinal (LM) layer, respectively
can be written as

Cem/im C’CM o [ VI 2

Acm/Lm
12

Here, the first invariant of the right Cauchy-Green strain tensor C is
denoted as I; and the magnitude of stretch of an individual fiber is
denoted asI; = C : (a ® a). The non-dimensional rest length of a CM or
LM fiber is denoted by ¢y v and its default value is 1.0, indicating that
the reference configuration of the element is equivalent to its unde-
formed shape. Muscular contractions are generated by systematically
reducing these rest lengths to a value less than 1. The element then
contracts to achieve a zero stress-state, thus reducing the length of the
fiber as is observed during a muscular contraction. The following values
were chosen for the material constants occurring in Eqn. (12): Comyim =
0.4 kPa, and Ceypy = 4.0 kPa.

For immersed boundary methods involving elastic solids, it has been
observed that the divergence-free property of the fluid velocity is lost
when this Eulerian variable is interpolated onto the Lagrangian domain
through the discrete version of Eq. (5). In addition to this, errors
occurring during time integration can also lead to changes in volume of
the structure [19,23,42]. In this work, we employ the stabilization
method proposed by Vadala-Roth et al. [24] to reinforce the incom-
pressibility constraint in the solid domain. This is done by using modi-
fied invariants in the strain energy functions given above and by using
an additional term Pg; = 2,J(J — 1)F~". Here, f; is a numerical bulk
modulus with J being the determinant of F, the deformation gradient.
With this combination of modified invariants along with an additional
stress to penalize volumetric changes, the overall method is observed to
be more robust and is able to handle large elastic deformations without
unphysical distortions in the finite element mesh.

3.4. Boundary conditions

In order to apply the immersed boundary method, the entire struc-
ture, which includes the esophagus and the stomach, was immersed in

Ny

o,

295 mm

Fig. 5. Stomach model immersed in a fluid medium. The fluid domain takes the
form of a cuboid with the velocity specified as zero at its 6 outer surfaces. Also
shown are the lengths of the fluid domain in each direction. The domain is
adaptively meshed using three AMR levels. The finest level provides an effective
domain resolution of 200 x 100 x 196 cells in the x-, y- and z-direction,
respectively. For the solid structure, portions of the finite-element mesh in the
green boxes were held fixed using a penalty tethering force applied to the
nodes. This provided support to the overall structure during fluid flow.

the fluid as shown in Fig. 5. The fluid domain is in the form of a cuboid
with dimensions 300 mm x 150 mm x 295 mm. We specified zero-
velocity Dirichlet boundary conditions at all the six outer faces of the
fluid domain. The viscosity of the fluid was 0.01 Pa -s. Based on the
different applications discussed in the next section, the fluid density
varies between 0.9 and 1.5 g/cm>. To simulate gastric peristalsis, the
structure included only the stomach, and a shorter fluid domain with a
height of 250 mm was used. The boundary conditions for the fluid
domain were identical for all examples.

4. Application of gastroesophageal modeling principles to
simulate commonly observed physiological processes

In the previous sections, we outlined the formulation and construc-
tion of the building blocks needed to model physiological processes in
the upper gastrointestinal tract. In this section, we systematically
assemble these models to showcase three examples of gastrointestinal
motility and fluid flow observed due to the motion of the esophagus and
stomach’s walls.
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4.1. Example 1: simulation of flow and wall motion during gastric
peristalsis

In the first application of the concepts outlined above, we present
muscular contraction-induced gastric peristalsis in a closed stomach.
Unlike previous studies, gastric peristalsis is induced not by specifying
the kinematics or time-varying nodal positions of the stomach wall, but
by activating muscle fibers within the elastic structure to reduce lumen
area. As explained in Sec. 3.3, contractions can be induced by locally
reducing the value of 1. By varying this value along the stomach walls in
a controlled manner, we can generate a contraction that travels from the
body of the stomach, towards the pylorus. For this example, we assume
that the stomach is closed and is filled with a homogeneous fluid similar
to water but with a higher viscosity (u = 0.01 Pa -s). These fluid prop-
erties are identical to the ones used to study the transport of a bolus from
the esophagus into the stomach in Kou et al. [21].

Due to the complexity of the stomach’s geometry, it is not possible to
use a straightforward mathematical expression to reduce A in a wave-like
manner to induce peristalsis. To achieve peristalsis, we ‘activate’ the
planes defined in Fig. 2 in a sequential manner to contract elements that
are near specific planes. First, we activate the plane that spans the
thickest part of the pyloric sphincter. This ensures that the sphincter is
closed and does not allow any fluid to leave the cavity. This is similar to
the normal functioning of the stomach where the pylorus offers a very
high resistance to flow so that mixing is optimum before fluid enters the
intestine [43]. Subsequently, each plane starting from the body of the
stomach is activated one after the other. When a plane is activated, all
elements near it have their rest lengths changed using the following
expression:

1 (1=t
rcurr_rmaxexp<_2_0_2(lb_tg) > (13)
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Here, (1 — reyry) is the activated value of A and (1 — ryay) is the smallest
value of A which occurs when the contraction strength is at its peak at
any given location. Each plane is active for time interval t, < t < t, and
tavg = (ta + t»)/2. The exponential function with ¢ = 1 ensures that el-
ements near inactive planes have rq,; =~ 0 and as t exceeds tp, Tcurr
gradually goes back to zero. This ensures that the contraction travels
smoothly along the stomach. It should be noted that the contraction
intensity of all elements activated by each plane is uniform and is not a
function of distance of the element from the plane.

Velocity and pressure fields observed during gastric peristalsis are
shown in Figs. 6 and 7, respectively. With the pylorus partially closed,
circular muscle contractions force fluid towards the distal part of the
stomach. Due to the contraction acting on a confined fluid, fluid is forced
to travel in a retrograde direction with respect to the traveling peristaltic
wave. This formation of a ‘jet’ is well reported in numerical and clinical
studies of digestion in the stomach and our model reproduces this
behavior as well. Although the rest length of fibers in the pyloric
sphincter are reduced to induce closure, the pyloric sphincter is not fully
closed. This leads to a small amount of fluid to exit the stomach cavity
during peristalsis. This is similar to emptying in the stomach where a
majority of the contents are forced back towards the proximal region
and a small volume of fluid leaves to enter the duodenum.

4.2. Example 2: simulation of gravity-driven bolus emptying

Ingested food enters the stomach by traveling along the esophageal
lumen and across the esophagogastric junction (EGJ). In the previous
sections, we outlined the construction of the stomach geometry and
simulation of gastric peristalsis. In this section, we combine this model
with our previously developed model for the esophagus [19,21] to
simulate emptying due to gravity. Prior studies did not account for the
effect of gravity and the difference in density between ingested bolus

(a) Pylorus closed and velocity fields

near it. body.

(b) Contraction begins in the stomach (¢) Contraction continues along the

stomach.

(d) Contraction at the midsection.

Velocity vectors (units: 10 cm/s)
Var: U

|
0.0000 0.02500

(e) Contraction near the pylorus.

0.05000

(f) Contraction ends. (time r = 3.5 s)

0.07500 0.1000

Fig. 6. Velocity vector fields observed during gastric peristalsis generated by muscular activations summarized in Table 2. Also seen is the generation of a fluid jet
due to the contraction wave. Velocity vectors in the first frame show fluid flow around the pylorus as it is being closed.
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(a) Pressure fields near the closed py-

lorus. body.

—
1.0 25 4.0

(d) Contraction at the midsection.

(b) Contraction begins in the stomach

(e) Contraction near the pylorus.

(c) Contraction continues along the

stomach.

|
2.9 4.8

|
-4.2 -1.2 1.9 4.9 8.0

(f) Contraction ends. (time ¢ = 3.5 s)

Fig. 7. Pressure fields observed during gastric peristalsis generated by muscular activations summarized in Table 2. The high pressure zones (marked by red
contours) force the fluid from these regions to their neighboring regions as seen in the high magnitude velocity vectors in Fig. 6. The pressure fields are represented in

their non-dimensional quantities with 1 unit of pressure = 10 Pa.

and the surrounding fluid. In this example, we introduce a pill-shaped
bolus (i.e., a cylinder capped at both ends resembling a capsule) with
a greater density and viscosity compared to the surrounding fluid. The
initial level-set function used to generate the pill-shape is as follows,

— i (p—a)(b—a)
h_mm{max<m,0.0), 1.0}, 14
sdf(p) =||(p —a) — (b —a)h|| —r. as)

Here, p represents the three dimensional coordinates of any point in the
domain whose signed distance from the capsule surface needs to be
computed. The three-dimensional vectors a and b denote the centers of
the circles that form the ends of the cylindrical portion of the pill shape.
The radius of the cylinder and the spherical volumes that cap the cyl-
inder at both ends are equal and denoted by r. Equation (14) clamps the
value of h between 0 and 1 depending on the location of p relative to the
ends of the cylinder. This value is then used to compute the signed
distance function for all points in the domain using Eq. (15). All points
within the capsule region (with a negative level set value) were assigned
a density of 1.5p; and a dynamic viscosity of 3ur where py and uy are
material properties of the surrounding ambient fluid taken from previ-
ous studies [19]. This formed the initial shape of the bolus with a volume
of 3.5 mL, occupying the esophageal lumen before entering the stomach.

The evolution of the bolus as it enters the stomach is shown in Fig. 8.
The first instant of Fig. 8 shows the location of the zero-level set as
constructed by Eq. (15). For this test case, the active portion of the
stomach wall is disabled. This is based on the fact that gastric peristalsis
is rarely observed when the volume of fluid entering the stomach is
small, as it is specified for this test case. The bolus fully exits the
esophagus while the peristaltic contraction just begins traveling over the
esophagus. This shows that the difference in density between the bolus
and the ambient fluid was sufficient to achieve gravity-induced bolus
transport. It must be emphasized that there is a subtle but important
difference between the simulation shown here and emptying occurring
in a human subject. When food enters the esophagus, the stomach walls

expand, allowing its volume to increase in a process called gastric ac-
commodation. This leads to a decrease in pressure in the gastric cavity
allowing the bolus to enter the stomach. In this test case however,
emptying is made possible by leaving the pyloric sphincter open. One
can observe the development of greater fluid velocity at this location as
the bolus enters the stomach. Due to ambient fluid exiting the stomach
cavity through the pylorus, the heavier bolus is able to enter to stomach
and break up as shown in Fig. 8. We address this limitation below and
future work will be geared towards implementing realistic behavior of
the stomach walls to model gastric accommodation.

4.3. Example 3: simulating a transient LES relaxation (tLESR) event and
retrograde flow of stomach contents into the esophagus

In this final example showcasing the application of previously
developed concepts, we construct a test case for retrograde (reverse)
flow of stomach contents into the esophagus. This flow is driven by
buoyancy forces due to differences in density. Similar flow patterns
occur during commonly observed phenomena like eructation (belching),
acid reflux and emesis (vomiting). Under normal conditions, the EGJ
remains closed and prevents acidic stomach contents from entering the
esophagus and harming its delicate inner mucosal layer. Retrograde
flow occurs when this barrier is opened either by infrequent muscular
relaxation in a healthy subject or mechanical weakening due to patho-
logical developments like hiatal hernia or a hypotensive LES [44]. There
are two primary forces that drive this retrograde flow: 1) greater pres-
sure in the gastric cavity due to contraction or tone in the walls of the
fundus, or, 2) differences in density between the confined and ambient
fluids, leading to a pressure gradient generated by the buoyancy forces.
For this test case, we disable the active component in the stomach walls
and consider it to be a simple, hyperelastic container that serves to
confine the fluid within its boundaries. Thus, gravitational effects
combined with the differences in density lead to retrograde fluid flow.

Modeling this retrograde flow requires three key ingredients: (1) A
closed structural barrier that resembles a sphincter at the distal end of
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Fig. 8. Gravity-driven bolus emptying into the stomach. Figures in the top row show the evolution of the surface of the bolus as it enters the stomach. This is
constructed by visualizing the zero-level set surface in the domain. Figures in the middle and bottom rows show the contours of fluid velocity and pressure,
respectively in a two-dimensional plane slicing the esophagus and stomach in half. The velocity and pressure are represented in their non-dimensional form where 1

unit of velocity = 10 cm/s and 1 unit of pressure = 10 Pa.

the esophagus, (2) A lower density fluid resting against this closed
barrier, and (3) a controlled opening of the sphincter to allow this fluid
to escape into the esophagus. We obtain this configuration by first
closing the sphincter as shown in Fig. 9a. The initial configuration of the
fluid is that of a spherical bubble in the middle of the gastric cavity. The
bubble is then allowed to rise and reach the closed sphincter. The fluid is
then allowed to reach steady state as shown in Fig. 9c. After this steady
state configuration is reached, the sphincter opening is modeled by
increasing the rest length of the circular muscle fibers in the closed
segment. A similar behavior occurs during transient lower esophageal
sphincter relaxation(tLESR). This spontaneous relaxation of the LES

periodically allows air trapped in the stomach to escape [45]. Following
this type of opening in the model presented here, the lighter fluid is then
able to increase the area of the sphincter and enter the esophageal lumen
as shown in Fig. 9f. Thus, this model is able to account for all three
features which are necessary to develop future models to study tLESRs,
acid reflux and the mechanical competency of the esophagogastric
junction to prevent reflux. In addition to visualizing the density field
during retrograde flow, we also construct fluid velocity magnitude and
pressure contours in Figs. 10 and 11 to provide a complete picture of
fluid motion. Pressure contours have been adjusted to exclude the effect
of gravity. Without this correction, variation in pressure fields driving
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Fig. 9. Retrograde flow of a lower density fluid (p = 900 kg/m®) from the stomach into the esophagus. Ambient fluid is water (p = 1000 kg/m>), shown in red.
Figure (c) is a temporary steady state where the fluid has settled in the fundus and prevented from entering the esophagus by the closed sphincter. Figure (d) shows

the density field shortly after the sphincter is programmed to open.

flow would not be visible as pressure variations due to increase in the
height of the fluid column are far greater.

There are several key things to note about the successful imple-
mentation of this model. Observe that the LES does not appear to be fully
closed (no physical contact between the walls as seen in Fig. 9a). Due to
the delta function kernels used in the immersed boundary method, the
fluid-solid interface is smeared. This ensures that although the LES does
not appear to be closed, it is effectively closed because the Lagrangian
forcing from the esophagus’ walls extends into the lumen and offers
some resistance to fluid flow. Another physiological detail that must be
emphasized is that the distance between the LES and the stomach was
increased to make the physiological problem more amenable for simu-
lation. In reality, the LES spans the region where the stomach meets the
cylindrical tube forming the angle of His. Similarly, the effect of surface
tension between the two fluids has not been modeled. Finally, the most
important limitation of this model was the small difference in density
between the ambient and trapped fluid in the stomach. Ideally, the
density ratio modeled should be equal to 103, reflecting a problem
involving air and water. However, this led to significant buoyancy forces
being applied on the entire stomach structure causing large, unrealistic
deformations. Thus, a smaller density ratio was chosen to develop this
test case. This deficiency can be rectified by including the restraining
effect of the diaphragm on the stomach and ensuring that the esophagus
is filled with air as it is in human subjects. Future modeling attempts will
account for these details and treat the contents of the stomach as air and
water with the appropriate surface tension effects for a better depiction
of the true physical problem.
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5. Model limitations and future work

Due to the immense complexity of most organ systems, coupled with
limitations on computational resources available, it is challenging for a
model to capture all the physics relevant to normal physiologic function.
For the gastrointestinal tract in particular, it is not only homogeneous
fluid and solid mechanics, but also granular flow, chemical kinetics and
tissue electro-mechanical activity that governs overall organ function.
The model presented in this work does not account for the absorption
and mechanical breakdown of solid food in the stomach due to the
pulverizing action of gastric peristalsis. Similarly, most commonly
consumed foods are complex non-Newtonian fluids, unlike the fluids
modeled in this work. It also does not account for the complex inter-
action between the structure’s strain fields and their influence on in-
tensity of peristalsis and gastric accommodation which normally occurs
in the stomach walls as they distend and respond to the amount of food
due to distension-induced mechanoreceptors [46,47]. As explained in
Sec. 1, models presented by other researchers have accounted for elec-
trical activity or chemical kinetics but no work has been done that ac-
counts for the most important physical interaction in the GI system i.e.
between the fluid contents and the elastic structures that modify their
flow fields.

Another important but rectifiable limitation of this work is the usage
of an idealized stomach and esophagus geometry. The assigned fiber-
architecture was also procedurally generated and not based on real
clinical imaging. In reality, the esophagus is not a perfectly straight
cylinder and the stomach’s shape is far more complex than shown in
Fig. 2. For the purposes of this study, we chose to construct the 3D model
from pictorial representations of the stomach in commonly available
literature on human anatomy. Muscle layers were then constructed
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Fig. 10. Velocity magnitude contours observed during retrograde flow of fluid entering the esophageal lumen. Each frame corresponds to the instant shown in Fig. 9.
Velocity scale shown below represents 1 unit = 10 cm/s of velocity magnitude. Velocity variation in frame A is due to the closing of the EGJ.

based on rough estimates of muscle thickness and inflating the idealized
stomach cavity volume. The oblique muscle layer was not modeled as
well. Similar to the esophagus, the stomach has mucosal and submucosal
layers with a large amount of gastric folds. These can unfold when the
stomach expands to increase its volume. In addition to this, these folds
can affect the fluid’s velocity profile near the stomach wall. Thus,
assuming a smooth inner surface for the stomach wall is another limi-
tation of this study. Ideally, the esophagus and stomach geometry would
be obtained from medical imaging of a subject (e.g., MRI or CT scan) and
segmenting the data to isolate various muscle layers and generate a
realistic 3D structure for simulation. In a future work, we aim to obtain
data from 4D-MRI scans [48] and generate patient-specific geometries
for improved simulation and analysis. These advanced imaging tech-
nologies also enable detailed visualization of flow within the gastric
lumen. Measurements collected from these studies will be essential to
validate the model against experimental data obtained from control
subjects. For muscle fiber architecture, diffusion tensor imaging [49,50]
or sectioning microscopy [51,52] has been used to find the orientation of
individual fibers. However, for future studies, we aim to stick to
rule-based algorithms [53] to assign fiber architecture and move to
medical imaging-based approaches when some of the more pressing
limitations have been addressed. Alongside these factors, downstream
pressure conditions and non-uniform fiber architecture can influence the
speed of the bolus as it travels along the lumen. Accounting for these
details is essential to ensure that estimated time for complete bolus
transport accurately reflects observed physiology. By accounting for all
these factors, continuous improvement of the above model will enable
validation of numerical results with measurements obtained from
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clinical subjects.

In addition to the technical limitations mentioned above, it must be
noted that there were a few features of the esophagogastric junction
(EGJ) that were not fully captured in the present model. The EGJ is the
location where the esophagus continues on into the stomach. It is an
anatomically complex region with two important components: 1) an
intrinsic sphincter, commonly known as the lower esophageal sphincter
(LES), and, 2) an extrinsic sphincter which consists of the crural dia-
phragm and other surrounding structures at the EGJ [54]. The combi-
nation of these two structures forms the primary barrier that prevents
stomach acids from entering the esophagus. In the model presented
above, the LES is adequately captured by the circular muscle fiber ar-
chitecture which can be programmed to contract or relax to allow fluid
to enter the stomach. However, the extrinsic sphincter which consists of
sling fibers from the crural diaphragm has not been modeled. These fi-
bers wrap around the esophagus and are responsible for creating a sig-
nificant asymmetry in the pressure profile at the EGJ [55]. In addition to
these fibers, an additional structure called the phrenoesophageal liga-
ment (PEL) is responsible for tethering the esophagus to the diaphragm.
This tethering adds a significant amount of longitudinal tension to the
esophagus which can affect the motion of the EGJ during emptying or
reflux. This tension is primarily responsible for the esophagus returning
to its original configuration after longitudinal muscle contraction [56].
The presence of these two elements, i.e. the PEL and sling fibers, is
particularly important in the context of gastroesophageal reflux disease
(GERD) and hiatal hernia as their integrity is compromised in this dis-
ease state. As such, future efforts will be acutely directed towards
developing a detailed model of the PEL and gastric sling fibers to
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Fig. 11. Variation of pressure in the domain during retrograde flow. Hydrostatic component of pressure has been removed to better visualize pressure fields that
drive fluid flow. As such, the lower density fluid that is confined in the stomach cavity appears to be at a higher pressure value. Once the EGJ opens, fluid enters the
esophageal lumen. Pressure contours represent 10 Pa of pressure for 1 unit value.

properly capture their overall effect on EGJ function in normal and
pathological scenarios.
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