
Estimating means of bounded random variables by betting

Ian Waudby-Smith1 and Aaditya Ramdas12

Depts. of Stat. & Data Science1, and Machine Learning2, Carnegie Mellon Univ. †
E-mail: ianws@cmu.edu, aramdas@cmu.edu

Abstract. We derive confidence intervals (CIs) and confidence sequences (CSs) for
the classical problem of estimating a bounded mean. Our approach generalizes
and improves on the celebrated Chernoff method, yielding the best closed-form
"empirical-Bernstein" CSs and CIs (converging exactly to the oracle Bernstein
width) as well as non-closed-form "betting" CSs and CIs. Our method combines
new composite nonnegative (super)martingales with Ville’s maximal inequality,
with strong connections to testing by betting and the method of mixtures. We
also show how these ideas can be extended to sampling without replacement.
In all cases, our bounds are adaptive to the unknown variance, and empirically
vastly outperform prior approaches, establishing a new state-of-the-art for four
fundamental problems: CSs and CIs for bounded means, when sampling with
and without replacement.

1. Introduction

This work presents a new approach to two fundamental problems: (Q1) how do we
produce a confidence interval for the mean of a distribution with (known) bounded
support using n independent observations? (Q2) given a fixed list of N (nonrandom)
numbers with known bounds, how do we produce a confidence interval for their
mean by sampling n ≤ N of them without replacement in a random order? We
work in a nonasymptotic and nonparametric setting, meaning that we do not employ
asymptotics or parametric assumptions. Both (Q1) and (Q2) are well studied
questions in probability and statistics, but we bring new conceptual tools to bear,
resulting in state-of-the-art solutions to both.

We also consider sequential versions of these problems where observations are made
one-by-one; we derive time-uniform confidence sequences, or equivalently, confidence
intervals that are valid at arbitrary stopping times. In fact, we first describe our
techniques in the sequential regime, because the employed proof techniques naturally
lend themselves to this setting. We then instantiate the derived bounds for the more
familiar setting of a fixed sample size when a batch of data is observed all at once.
Our supermartingale techniques can be thought of as generalizations of classical
†Correspondence address: 5000 Forbes Ave, 132H Baker Hall, Pittsburgh, PA 15213, USA
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methods for deriving concentration inequalities, but we prefer to present them in the
language of betting, since this is a more accurate reflection of the authors’ intuition.

Arguably the most famous concentration inequality for bounded random variables
was derived by Hoeffding (1963). What is now referred to as “Hoeffding’s inequality”
was in fact improved upon in the same paper where he derived a Bernoulli-type upper
bound on the moment generating function of bounded random variables (Hoeffding,
1963, Equation (3.4)). While these bounds are already reasonably tight in a worst-case
sense, the resulting confidence intervals do not adapt to non-Bernoulli distributions
with lower variance. Inequalities by Bennett (1962), Bernstein (1927) and Bentkus
(2004) improve upon Hoeffding’s, but such improvements require knowledge of
nontrivial upper bounds on the variance. This led to the development of so-called
“empirical Bernstein inequalities” by Audibert et al. (2007) and Maurer and Pontil
(2009), which outperform Hoeffding’s method for low-variance distributions at large
sample sizes by estimating the variance from the data. Our new, and arguably
quite simple, approaches to developing bounds significantly outperform these past
works (e.g. Figure 1).‡ We also show that the same conceptual (betting) framework
extends to without-replacement sampling, resulting in significantly tighter bounds
than classical ones by Serfling (1974), improvements by Bardenet and Maillard (2015)
and previous state-of-the-art methods due to Waudby-Smith and Ramdas (2020).

For providing intuition, our approach can be described in words as follows: If we
are allowed to repeatedly bet against the mean being m, and if we make a lot of money
in the process, then we can safely exclude m from the confidence set. The rest of this
paper makes the above claim more precise by showing smart, adaptive strategies
for (automated) betting, quantifying the phrase “a lot of money”, and explaining
why such an exclusion is mathematically justified. At the risk of briefly losing the
unacquainted reader, here is a slightly more detailed high-level description:

For each m ∈ [0, 1], we set up a “fair” multi-round game of statistician
against nature whose payoff rules are such that if the true mean happened
to equal m, then the statistician can neither gain nor lose wealth in
expectation (their wealth in the m-th game is a nonnegative martingale),
but if the mean is not m, then it is possible to bet smartly and make
money. Each round involves the statistician making a bet on the next
observation, nature revealing the observation and giving the appropriate
(positive or negative) payoff to the statistician. The statistician then plays
all these games (one for each m) in parallel, starting each with one unit of
wealth, and possibly using a different, adaptive, betting strategy in each.
The 1− α confidence set at time t consists of all m ∈ [0, 1] such that the
statistician’s money in the corresponding game has not crossed 1/α. The
true mean µ will be in this set with high probability.

Our choice of language above stems from a game-theoretic approach towards prob-
ability, as developed in the books by Shafer and Vovk (2001, 2019) and a recent
‡github.com/wannabesmith/betting-paper-simulations has code to reproduce figures. The

betting module of the Python package in github.com/gostevehoward/confseq has the main
algorithms, but the package also contains implementations from other papers.

https://github.com/WannabeSmith/betting-paper-simulations
https://github.com/gostevehoward/confseq
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paper by Shafer (2021), but from a purely mathematical viewpoint, our results are
extensions of a unified supermartingale approach towards nonparametric concentra-
tion and estimation described in Howard et al. (2020, 2021); related supermartingale
approaches were studied by Kaufmann and Koolen (2021), Jun and Orabona (2019).
We elaborate on this viewpoint in Section 4.1. The most directly related works to
our own are by Hendriks (2018), whose preprint has initial explorations of methods
similar to ours for with-replacement sequential testing and estimation, and Stark
(2020), who credits Kaplan for a computationally intractable variant of our approach
for sequential testing in the without-replacement case. Apart from several novel
results, the present paper extends these past works in depth, breadth and unity : our
work contains a deeper empirical and theoretical investigation from statistical and
computational viewpoints, places our work in a broader context of related work in
both settings, and unifies the with- and without-replacement methodology for both
testing and estimation in both fixed-time and sequential settings.

We now have the appropriate context for a concrete formalization of our problem,
which is slightly more general than introduced above. After that, we describe the
game, why the rules of engagement result in valid statistical inference, and derive
computationally and statistically efficient betting strategies.

Time-uniform confidence sequences
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Fixed-time confidence intervals
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Figure 1. Time-uniform 95% confidence sequences (upper row) and fixed-time 95%
confidence intervals (lower row) for the mean of independent and idenically distributed (iid)
draws from a Beta(10, 30) distribution (unknown to the methods). The betting approaches
(Hedged and Hedged-CI) adapt to both the small variance and asymmetry of the data,
outperforming the other methods. For a detailed empirical comparison under a larger variety
of settings, see Section C; for additional comparisons under non-iid data, see Section E.5.

Outline. We summarize the broad approach in Section 2. As a warmup, we derive
a new predictable plug-in method for deriving confidence sequences using exponential
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supermartingales (Section 3), which already leads to computationally efficient and
visually appealing empirical Bernstein confidence intervals and sequences. We then
further improve on the aforementioned methods by developing a new martingale
approach to deriving time-uniform and fixed-time confidence sets for means of
bounded random variables, and connect the developed ideas to betting (Section 4).
Section B discusses some principles to derive powerful betting strategies to obtain
tight confidence sets. We then show how our techniques also extend to sampling
without replacement (Section 5). Revealing simulations are performed along the way
to demonstrate the efficacy of the new methods, with a more extensive comparison
with past work in Section C. Section 6 summarizes how betting ideas have shaped
mathematics, outside of our paper’s focus on statistical inference. We postpone
proofs to Section A and further theoretical insights to Section E.

2. Concentration inequalities via nonnegative supermartingales

To set the stage, let Qm be the set of all distributions on [0, 1], where each distribution
has mean m. Note that Qm is a convex set of distributions and it has no common
dominating measure, since it consists of both discrete and continuous distributions.

Consider the setting where we observe a (potentially infinite) sequence of [0, 1]-
valued random variables with conditional mean µ for some unknown µ ∈ [0, 1]. We
write this as (Xt)

∞
t=1 ∼ P for some P ∈ Pµ, where Pµ is the set of all distributions

P on [0, 1]∞ such that EP (Xt | X1, . . . , Xt−1) = µ. This includes familiar settings
such as independent observations, where Xi ∼ Qi ∈ Qµ, or i.i.d. observations where
all Qi’s are identical, but captures more general settings where the conditional
distribution of Xt given the past is an element of Qµ. When one only observes n
outcomes, it suffices to imagine throwing away the rest, so that in what follows, we
avoid new notation for distributions P over finite length sequences.

We are interested in deriving tight confidence sets for µ, typically intervals, with
no further assumptions. Specifically, for a given error tolerance α ∈ (0, 1), a (1− α)
confidence interval (CI) is a random set Cn ≡ C(X1, . . . , Xn) ⊆ [0, 1] such that

∀n ≥ 1, inf
P∈Pµ

P (µ ∈ Cn) ≥ 1− α. (1)

As mentioned earlier, the inequality by Hoeffding (1963) implies that we can choose

Cn :=

(︄
Xn ±

√︃
log(2/α)

2n

)︄
∩ [0, 1]. (2)

Above, we write (a± b) to mean (a− b, a+ b) for brevity.
This inequality is derived by what is now known as the Chernoff method (Boucheron

et al., 2013), involving an analytic upper bound on the moment generating function
of a bounded random variable. However, we will proceed differently; we adopt a
hypothesis testing perspective, and couple it with a generalization of the Chernoff
method. As mentioned in the introduction, we first consider the sequential regime
where data are observed one after another over time, since nonnegative supermartin-
gales — the primary mathematical tools used throughout this paper — naturally
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arise in this setup. As we will see, these sequential bounds can be instantiated for a
fixed sample size, yielding tight confidence intervals for this more familiar setting.
These will be much tighter than the Hoeffding confidence interval (2), which is itself
one such fixed-sample-size instantiation (Howard et al., 2020, Figures 4 and 6).

Let us briefly review some terminology. For succinctness, we use the notation
Xt

1 := (X1, . . . , Xt). Define the sigma-field Ft := σ(Xt
1) generated by Xt

1 with F0

being the trivial sigma-field. The canonical filtration F := (Ft)∞t=0 refers to the
increasing sequence of sigma-fields F0 ⊂ F1 ⊂ F2 ⊂ · · · . A stochastic process
(Mt)

∞
t=0 is called a test supermartingale for P if (Mt)

∞
t=0 is a nonnegative process

adapted to F , M0 = 1, and

EP (Mt | Ft−1) ≤Mt−1 for each t ≥ 1. (3)

(Mt)
∞
t=0 is called a test martingale for P if the above “≤” is replaced with “=”. We

sometimes shorten (Mt)
∞
t=0 to just (Mt) for brevity. If the above property holds

simultaneously for all P ∈ P, we call (Mt) a test (super)martingale for P. We say
that a sequence (λt)

∞
t=1 is predictable if λt is Ft−1-measurable for each t ≥ 1, meaning

λt can only depend on Xt−1
1 . (In)equalities are interpreted in an almost sure sense.

2.1. Confidence sequences and the method(s) of mixtures
Even though the concentration inequalities thus far have been described in a setting
where the sample size n is fixed in advance, all of our ideas stem from a sequential
approach towards uncertainty quantification. The goal there is not to produce one
confidence set Cn, but to produce an infinite sequence (Ct)

∞
t=1 such that

sup
P∈Pµ

P (∃t ≥ 1 : µ /∈ Ct) ≤ α. (4)

Such a (Ct)
∞
t=1 is called a confidence sequence (CS), and preferably limt→∞Ct = {µ}.

It is known (Howard et al., 2021, Lemma 3) that (4) is equivalent to requiring that
supP∈Pµ P (µ /∈ Cτ ) ≤ α for arbitrary stopping times τ with respect to F .

As detailed in the next subsection, one general way to construct a CS is to invert
a family of sequential tests based on applying Ville’s maximal inequality (Ville, 1939)
to a test (super)martingale. In fact, Ramdas et al. (2020) proved that this is (in
some formal sense) a universal method to construct CSs, meaning that any other
approach can in principle be recovered or dominated by the aforementioned one.

Designing test supermartingales is nontrivial, and the task of making it have “power
one” against composite alternatives is often accomplished via the method of mixtures.
This can arguably be traced back (in a nonstochastic context) to Ville’s 1939 thesis
and (in a stochastic context) to Wald (1945). Robbins and collabarators (Robbins
and Siegmund, 1968; Robbins, 1970; Darling and Robbins, 1967a) applied the method
to derive CSs, and these ideas have been extended to a variety of nonparametric
settings by Howard et al. (2020, 2021). The latter paper describes several variants:
conjugate mixtures, discrete mixtures, stitching and inverted stitching.

These works form our vantage point for the rest of the paper, but we extend them
in several ways. First, we describe a “predictable plug-in” technique that is implicit
in the work of Ville. It can be viewed as a nonparametric extension of a passing
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remark in the parametric setting in the textbook by Wald [1945, Eq.10:10] and later
explored in the parametric case by Robbins and Siegmund (1974).

Like Ville’s work in the binary setting, the predictable plug-in method connects
the game-theoretic approach and the aforementioned mixture methods — succinctly,
the plugged-in value determines the bet, where each bet is implicitly targeting
a different alternative (much like the components of a mixture). Following this
translation, prior work on using the method mixtures for confidence sequences can
be viewed as using the same betting strategy (mixture distribution) for every value
of m. We find that there is significant statistical benefit to betting differently for
each m (but tied together in a specific way, not in an ad hoc manner). One must
typically specify the mixture distribution in advance of observing data, but betting
can be viewed as building up a data-dependent mixture distribution on the fly (this
led us to previously name our approach as the “predictable mixture” method). These
sequential perspectives are powerful, even if one is only interested in fixed-sample
CIs.

2.2. Nonparametric confidence sequences via sequential testing
As seen above, it is straightforward to derive a confidence interval for µ by resorting to
a nonparametric concentration inequality like Hoeffding’s. In contrast, it is also well
known that CIs are inversions of families of hypothesis tests (as we will see below),
so one could presumably derive CIs by first specifying tests. However, the literature
on nonparametric concentration inequalities, such as Hoeffding’s, has not commonly
utilized a hypothesis testing perspective to derive concentration bounds; for example
the excellent book on concentration by Boucheron, Lugosi, and Massart (2013)
has no examples of such an approach. This is presumably because the underlying
nonparametric, composite hypothesis tests may be quite challenging themselves,
and one may not have nonasymptotically valid solutions or closed-form analytic
expressions for these tests. This is in contrast to simple parametric nulls, where
it is often easy to calculate a p-value based on likelihood ratios. In abandoning
parametrics, and thus abandoning likelihood ratios, it may be unclear how to define a
powerful test or calculate a nonasymptotically valid p-value. This is where betting and
test (super)martingales come to the rescue. Ramdas et al. (2020, Proposition 4) prove
that not only do likelihood ratios form test martingales, but every (nonparametric,
composite) test martingale is also a (nonparametric, composite) likelihood ratio.

Theorem 1 (4-step procedure for supermartingale confidence sets).
On observing (Xt)

∞
t=1 ∼ P from P ∈ Pµ for some unknown µ ∈ [0, 1], do

(a) Consider the composite null hypothesis Hm
0 : P ∈ Pm for each m ∈ [0, 1].

(b) For each index m ∈ [0, 1], construct a nonnegative process Mm
t ≡

Mm(X1, . . . , Xt) such that the process (Mµ
t )

∞
t=0 indexed by µ has the

following property: for each P ∈ Pµ, (Mµ
t )

∞
t=0 is upper-bounded by a test

(super)martingale for P , possibly a different one for each P .
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(c) For each m ∈ [0, 1] consider the sequential test (ϕmt )∞t=1 defined by

ϕmt := 1(Mm
t ≥ 1/α),

where ϕmt = 1 represents a rejection of Hm
0 after t observations.

(d) Define Ct as the set of m ∈ [0, 1] for which ϕmt fails to reject Hm
0 :

Ct := {m ∈ [0, 1] : ϕmt = 0} .

Then (Ct)
∞
t=1 is a (1−α)-confidence sequence for µ: supP∈Pµ P (∃t ≥ 1 : µ /∈ Ct) ≤ α.

The above result relies centrally on Ville’s inequality (Ville, 1939), which states
that if (Lt) ≡ (Lt)

∞
t=1 is (upper bounded by) a test martingale for P , then we have

P (∃t ≥ 1 : Lt ≥ 1/α) ≤ α. See (Howard et al., 2020, Section 6) for a short proof.

Proof (Theorem 1). By Ville’s inequality, ϕmt is a level-α sequential hypothesis
test, in the sense that for any P ∈ Pµ, we have P (∃t ≥ 1 : ϕµt = 1) ≤ α. Now, by
definition of the sets (Ct)

∞
t=1, we have that µ /∈ Ct at some time t ≥ 1 if and only if

there exists a time t ≥ 1 such that ϕµt = 1, and hence

sup
P∈Pµ

P (∃t ≥ 1 : µ /∈ Ct) = sup
P∈Pµ

P (∃t ≥ 1 : ϕµt = 1) ≤ α, (5)

which completes the proof. □

At a high level, this approach is not new. Composite test supermartingales for P have
been used in past works on concentration inequalities and/or confidence sequences
(which are related but different), from the initial series of works by Robbins and
collaborators in the 1960s and 1970s, to de la Peña et al. (2007), to recent work by Jun
and Orabona (2019, Section 7.2) and Howard et al. (2020, 2021). Test martingales
have also been explicitly considered in some hypothesis testing problems (Vovk et al.,
2005; Shafer et al., 2011); the latter paper popularized the term “test martingale” that
we borrow, but unlike us, used it primarily for singleton P = {P}. We highlight an
(independently developed) unpublished preprint by Hendriks (2018) that has overlaps
with the current paper in the with-replacement setting, and some complementary
results. For singleton (parametric) classes P, Wald’s sequential likelihood ratio
statistic is a test martingale, so all of the above methods can be viewed as inverting
nonparametric or composite generalizations of Wald’s tests.

Nevertheless, we make two additional comments. First, the requirement in step (b)
of the algorithm that the process (Mm

t ) be upper-bounded by a test (super)martingale
for each P ∈ P was posited by Howard et al. (2020), and has recently been christened
a e-process for P (Ramdas et al., 2021) (see also Grünwald et al. (2019)). E-processes
are strictly more general than test (super)martingales for P in the sense that there
exist many interesting classes P for which nontrivial test (super)martingales do not
exist, but one can design powerful e-processes for P. Second, one must take care
to design test (super)martingales for each m that are tied together across m in a
nontrivial manner that improves statistical power while maintaining computational
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tractability. All the confidence sets in this paper (both in the sequential and batch
settings) will be based on this 4-step procedure, but with different carefully chosen
processes (Mm

t ). In the language of betting, we will come up with new, powerful
ways to bet for each m, and also tie together the betting strategies for different m.

2.3. Connections to the Chernoff method
By virtue of (Ct)∞t=1 being a time-uniform confidence sequence, we also have that
Cn is a (1 − α)-confidence interval for µ for any fixed sample size n. In fact, the
celebrated Chernoff method results in such a confidence interval. So, how exactly
are the two approaches related? The answer is simple: Theorem 1 generalizes and
improves on the Chernoff method. To elaborate, recall that Hoeffding proved that

sup
P∈Pµ

EP [exp(λ(X − µ)− λ2/8)] ≤ 1, for any λ ∈ R, (6)

and so if Xn
1 are independent (say), the following process can be used in Step (b):

Mm
t :=

t∏︂
i=1

exp
(︁
λ(Xi −m)− λ2/8

)︁
. (7)

Usually, the only fact that matters for the Chernoff method is that EP [Mm
t ] ≤ 1, and

Markov’s inequality is applied (instead of Ville’s) in Step (c). To complete the story,
the Chernoff method then involves a smart choice for λ. Setting λ :=

√︁
8 log(1/α)/n

recovers the familiar Hoeffding inequality for the batch sample-size setting. Taking a
union bound over Xn

1 and −Xn
1 yields the Hoeffding confidence interval (2) exactly.

Using our 4-step approach, the resulting confidence sequence is a time-uniform
generalization of Hoeffding’s inequality, recovering the latter precisely including
constants at time n; see Howard et al. (2020) for this and other generalizations.

In recent parlance, a statistic like Mm
t , which has at most unit expectation under

the null, has been called a betting score (Shafer, 2021) or an e-value (Vovk, 2021)
and their relationship to sequential testing (Grünwald et al., 2019) and estimation
(Ramdas et al., 2020) as an alternative to p-values has been recently examined. In
parametric settings with singleton nulls and alternative hypotheses, the likelihood
ratio is an e-value. For composite null testing, the split likelihood ratio statis-
tic (Wasserman et al., 2020) (and its variants) are e-values. However, our setup is
more complex: Pm is highly composite, there is no common dominating measure to
define likelihood ratios, but Hoeffding’s result yields an e-value. (In fact, it yields
test supermartingale and hence an e-process, which is an e-value even at stopping
times.)

In summary, the Chernoff method is simply one powerful, but as it turns out,
rather limited way to construct an e-value. This paper provides better constructions
of Mm

t , whose expectation is exactly equal to one, thus removing one source of
looseness in the Hoeffding-type approach above, as well as better ways to pick the
tuning parameter λ, which will correspond to our bet.
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3. Warmup: exponential supermartingales and predictable plug-ins

A central technique for constructing confidence sequences (CSs) is Robbins’ method
of mixtures (Robbins, 1970), see also Darling and Robbins (1967a); Robbins and
Siegmund (1968, 1970, 1972, 1974). Related ideas of “pseudo-maximization” or
Laplace’s method were further popularized and extended by de la Peña et al. (2004,
2007, 2009), and has led to several other followup works (Abbasi-Yadkori et al., 2011;
Balsubramani, 2014; Howard et al., 2020; Kaufmann and Koolen, 2021).

However, beyond the case when the data are (sub)-Gaussian, the method of
mixtures rarely leads to a closed-form CS; it yields an implicit construction for Ct
which can sometimes be computed efficiently (e.g. using conjugate mixtures (Howard
et al., 2021)), but is otherwise analytically opaque and computationally tedious.
Below, we provide an alternative construction — called the “predictable plug-in” —
that is exact, explicit and efficient (computationally and statistically).

In the next section, our CSs avoid exponential supermartingales, and are much
tighter than the recent state-of-the-art in Howard et al. (2021). The ones in this
section match the latter but are simpler to compute, so we present them first.

3.1. Predictable plug-in Cramer-Chernoff supermartingales
Suppose (Xt)

∞
t=1 ∼ P for some P ∈ Pµ where Pµ is the set of all distributions on∏︁∞

i=1[0, 1] so that EP (Xt | Ft−1) = µ for each t. The Hoeffding process (MH
t (m))∞t=0

for a given candidate mean m ∈ [0, 1] is given by

MH
t (m) :=

t∏︂
i=1

exp (λ(Xi −m)− ψH(λ)) (8)

with MH
0 (m) ≡ 1 by convention. Here ψH(λ) := λ2/8 is an upper bound on the

cumulant generating function (CGF) for [0, 1]-valued random variables with λ ∈ R
chosen in some strategic way. For example, to maximize MH

n (m) at a fixed sample
size n, one would set λ :=

√︁
8 log(1/α)/n as in the classical fixed-time Hoeffding

inequality (Hoeffding, 1963).
Following Howard et al. (2021), we have that (MH

t (µ))∞t=0 is a nonnegative
supermartingale with respect to the canonical filtration. Therefore, by Ville’s maximal
inequality for nonnegative supermartingales (Ville, 1939; Howard et al., 2020),

P
(︁
∃t ≥ 1 :MH

t (µ) ≥ 1/α
)︁
≤ α. (9)

Robbins’ method of mixtures proceeds by noting that
∫︁
λ∈RM

H
t (m)dF (λ) is also a

supermartingale for any “mixing” probability distribution F (λ) on R and thus

P

(︃
∃t ≥ 1 :

∫︂
λ∈R

MH
t (µ)dF (λ) ≥ 1/α

)︃
≤ α. (10)

In this particular case, if F (λ) is taken to be the Gaussian distribution, then the
above integral can be computed in closed-form (Howard et al., 2020). For other
distributions or altogether different supermartingales (i.e. other than Hoeffding), the
integral may be computationally tedious or intractable.
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To combat this, instead of fixing λ ∈ R or integrating over it, consider constructing
a sequence λ1, λ2, . . . which is predictable, and thus λt can depend on Xt−1

1 . Then,

MPrPl-H
t (m) :=

t∏︂
i=1

exp(λi(Xi −m)− ψH(λi)) (11)

is also a test supermartingale for Pm (and hence Ville’s inequality applies). We call
such a sequence (λt)

∞
t=1 a predictable plug-in. While not always explicitly referred

to by this exact name, predictable plug-ins have appeared in works on parametric
sequential analysis by Wald (1947, Eq. (10:10)), Robbins and Siegmund (1974, Eq.
(4)), Dawid (1984), and Lorden and Pollak (2005) as well as in the information theory
literature (Rissanen, 1984). As we will see, these techniques also prove useful in
nonparametric testing and estimation problems both in sequential and batch settings.

Using MPrPl-H
t (m) as the process in Step (b) of Theorem 1 results in a lower

CS for µ, while constructing an analogous supermartingale using (−Xt)
∞
t=1 yields

an upper CS. Combining these by taking a union bound results in the predictable
plug-in Hoeffding CS which we introduce now.

Proposition 1 (Predictable plug-in Hoeffding CS [PrPl-H]). Suppose
that (Xt)

∞
t=1 ∼ P for some P ∈ Pµ. For any chosen real-valued predictable (λt)

∞
t=1,

CPrPl-H
t :=

(︄∑︁t
i=1 λiXi∑︁t
i=1 λi

±
log(2/α) +

∑︁t
i=1 ψH(λi)∑︁t

i=1 λi

)︄
forms a (1− α)-CS for µ,

as does its running intersection,
⋂︁
i≤tC

H
i .

A sensible choice of predictable plug-in is given by

λPrPl-H
t :=

√︄
8 log(2/α)

t log(t+ 1)
∧ 1, (12)

for reasons which will be discussed in Section 3.3. The proof of Proposition 1 is
provided in Section A.1. As alluded to earlier, predictable plug-ins are actually the
least interesting when using Hoeffding’s sub-Gaussian bound because of the available
closed form Gaussian-mixture boundary. However, the story becomes more interesting
when either (a) the method of mixtures is computationally opaque or complex, or
(b) the optimal choice of λ is based on unknown but estimable quantities. Both (a)
and (b) are issues that arise when computing empirical Bernstein-type CSs and CIs.
In the following section, we present predictable plug-in empirical Bernstein-type CSs
and CIs which are both computationally and statistically efficient.

3.2. Application: closed-form empirical Bernstein confidence sets
To prepare for the results that follow, consider the empirical Bernstein-type process,

MPrPl-EB
t (m) :=

t∏︂
i=1

exp {λi(Xi −m)− viψE(λi)} (13)
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where, following Howard et al. (2020, 2021), we have defined vi := 4(Xi− ˆ︁µi−1)
2 and

ψE(λ) := (− log(1− λ)− λ)/4 for λ ∈ [0, 1). (14)

As we revisit later, the appearance of the constant 4 is to facilitate easy comparison
to ψH , since limλ→0+ ψE(λ)/ψH(λ) = 1. In short, ψE is nonnegative, increasing on
[0, 1), and grows quadratically near 0.

Using MPrPl-EB
t (m) in Step (b) in Theorem 1 — and applying the same procedure

but with (Xt)
∞
t=1 and m replaced by (−Xt)

∞
t=1 and −m combined with a union bound

over the resulting CSs — we get the following CS.

Theorem 2 (Predictable plug-in empirical Bernstein CS [PrPl-EB]).
Suppose (Xt)

∞
t=1 ∼ P for some P ∈ Pµ. For any (0, 1)-valued predictable (λt)

∞
t=1,

CPrPl-EB
t :=

(︄∑︁t
i=1 λiXi∑︁t
i=1 λi

±
log(2/α) +

∑︁t
i=1 viψE(λi)∑︁t

i=1 λi

)︄
forms a (1− α)-CS for µ,

as does its running intersection,
⋂︁
i≤tC

PrPl-EB
i .

In particular, we recommend the predictable plug-in (λPrPl-EBt )∞t=1 given by

λPrPl-EB
t :=

√︄
2 log(2/α)ˆ︁σ2

t−1t log(1 + t)
∧c, ˆ︁σ2

t :=
1
4 +

∑︁t
i=1(Xi − ˆ︁µi)

2

t+ 1
, ˆ︁µt :=

1
2 +

∑︁t
i=1Xi

t+ 1
(15)

for some c ∈ (0, 1) (a reasonable default being 1/2 or 3/4). This choice was inspired
by the fixed-time empirical Bernstein as well as the widths of time-uniform CSs
(more details are provided in Section 3.3). The sequences of estimators (ˆ︁µt)∞t=1 and
(ˆ︁σ2t )∞t=1 can be interpreted as predictable, regularized sample means and variances.
This technique was employed by Kotłowski et al. (2010) for misspecified exponential
families in the so-called maximum likelihood plug-in strategy.

The proof of Theorem 2 relies on establishing that MPrPl-EB
t (m) is a test super-

martingale for Pm. This latter fact is related to, but cannot be derived directly from,
a powerful deterministic inequality for bounded numbers due to Fan et al. (2015).
One needs an additional trick from Howard et al. (2021, Section A.8) which swaps
(Xi −m)2 with (Xi − ˆ︁µi−1)

2, for any predictable ˆ︁µi−1, within the variance term vi.
It is this additional piece which yields both tighter and closed-form CSs; details are
in Section A.2. We remark that before taking the running intersection, the above
intervals are symmetric around the weighted sample mean, but this symmetry will
not carry forward to other CSs in the paper.

Figure 2 compares the conjugate mixture empirical-Bernstein CS (CM-EB) due to
Howard et al. (2021) with our predictable plug-in empirical-Bernstein CS (PrPl-EB).
The two CSs perform similarly, but our closed-form PrPl-EB is over 500 times faster
to compute than CM-EB (in our experience) which requires root finding at each step.
However, our later bounds will be tighter than both of these.
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Time-uniform empirical Bernstein confidence sequences
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Figure 2. Empirical Bernstein CSs produced via a predictable plug-in (PrPl) with (λt)
∞
t=1

from (15) match (or slightly improve) those obtained via conjugate mixtures (CM) by Howard
et al. (2021); the former is closed-form, but the latter is not and requires numerical methods.

Remark 1. Theorem 2 yields computationally and statistically efficient empirical
Bernstein-type CIs for a fixed sample size n. Recalling (15), we recommend using⋂︁
i≤nC

PrPl-EB
i along with the predictable sequence

λ
PrPl-EB(n)
t :=

√︄
2 log(2/α)

nˆ︁σ2
t−1

∧ c. (16)

We call the resulting confidence interval the “predictable plug-in empirical Bernstein
confidence interval” or [PrPl-EB-CI] for short; see Figure 3.

If X1, . . . , Xn are independent, then at the expense of computation, the above CI
can be effectively derandomized to remove the effect of the ordering of variables. One
can randomly permute the data B times to obtain ( ˜︁X1,b, . . . , ˜︁Xn,b) and correspond-
ingly compute ˜︂MPrPl-EB

n,b (m), one for each permutation b ∈ {1, . . . , B}. Averaging
over these permutations, define ˜︂MPrPl-EB

n (m) := 1
B

∑︁B
b=1

˜︂MPrPl-EB
n,b (m). For each

b, MPrPl-EB
n,b (µ) has expectation at most one (by linearity of expectation). Thus,˜︂MPrPl-EB

n (µ) is a e-value (i.e. it has expectation at most 1). By Markov’s inequality,˜︁CPrPl-EB
n := {m ∈ [0, 1] : ˜︂MPrPl-EB

n (m) < 1/α} is a (1− α)-CI for µ. This set is not
available in closed-form and the intersection

⋂︁
i≤n

˜︁CPrPl-EB
i no longer yield a valid

CI. In our experience, this derandomization procedure neither helps nor hurts. In
any case, both

⋂︁
i≤nCi and ˜︁Cn will be significantly improved in Section 4.4.

In Section E.3, we show that in iid settings the width of [PrPl-EB-CI] scales with
the true (unknown) standard deviation:

√
n

(︃
log(2/α) +

∑︁n
i=1 viψE(λi)∑︁n

i=1 λi

)︃
a.s.−−→ σ

√︁
2 log(2/α). (17)

Notice that (17) is the same asymptotic behavior that one would observe for CIs
based on Bernstein’s or Bennett’s inequalities, both of which require knowledge of the
true variance σ2, while [PrPl-EB-CI] does not. This is in contrast to the empirical
Bernstein CIs of Maurer and Pontil (2009) whose limit would be σ

√︁
2 log(4/α). In

the maximum variance case where σ = 1/2, (17) yields the same asymptotic behavior
as Hoeffding’s CI (2).
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Fixed-time empirical Bernstein confidence intervals
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Figure 3. Our predictable plug-in (PrPl) empirical Bernstein (EB) CI is significantly tighter
than those of Maurer and Pontil (2009) and Audibert et al. (2007).

Table 1. Below, we think of log x as log(x+ 1) to avoid trivialities. The claimed rates are easily checked by approximating the sums as integrals, and taking derivatives.
For example, d

dx log log x = 1/x log x, so the sum of
∑︁

i≤t 1/i log i ≍ log log t. It is worth remarking that for t = 1080, the number of atoms in the universe, log log t ≈ 5.2,
which is why we treat log log t as a constant when expressing the rate for Wt. The iterated logarithm pattern in the the last two lines can be continued indefinitely.

Strategy (λi)
∞
i=1

∑︁t
i=1 λi

∑︁t
i=1 λ

2
i Width Wt

≍ 1/i ≍ log t ≍ 1 1/ log t

≍
√︁
log i/i ≍

√
t log t ≍ log2 t ≍ log3/2 t/

√
t

≍ 1/
√
i ≍

√
t ≍ log t ≍ log t/

√
t

≍ 1/
√
i log i ≍

√︁
t/ log t ≍ log log t ≍

√︁
log t/t

≍ 1/
√
i log i log log i ≍

√︁
t/ log t ≍ log log log t ≍

√︁
log t/t

Until now, we presented various predictable plug-ins — (λPrPl-Ht )∞t=1, (λ
PrPl-EB
t )∞t=1,

and (λ
PrPl-EB(n)
t )nt=1 — but have not provided intuition for why these are sensible

choices. Next, we discuss guiding principles for deriving predictable plug-ins.

3.3. Guiding principles for deriving predictable plug-ins
Let us begin our discussion with the predictable plug-in Hoeffding process (11) and
the resulting CS in Proposition 1, which has a half-width

Wt =
log(2/α) +

∑︁t
i=1 λ

2
i /8∑︁t

i=1 λi

To ensure that Wt → 0 as t→∞, it is clear that we want λt
a.s.−−→ 0, but at what rate?

As a sensible default, we recommend setting λt ≍ 1/
√
t log t so that Wt = ˜︁O(

√︁
log t/t)

which matches the width of the conjugate mixture Hoeffding CS (Howard et al., 2020,
Proposition 2) (here ˜︁O treats O(log log t) factors as constants). See Table 3.3 for a
comparison between rates for λt and their resulting CS widths.

Now consider the predictable plug-in empirical Bernstein process (13) and the
resulting CS of Theorem 2, which has a half-width

Wt =
log(2/α) +

∑︁t
i=1 4(Xi − ˆ︁µi−1)

2ψE(λi)∑︁t
i=1 λi
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By two applications of L’Hôpital’s rule, we have that

ψE(λ)

ψH(λ)

λ→0+−−−−→ 1. (18)

Performing some approximations for small λi to help guide our choice of (λt)∞t=1

(without compromising validity of resulting confidence sets) we have that

Wt ≈
log(2/α) +

∑︁t
i=1 4(Xi − µ)2λ2i /8∑︁t
i=1 λi

. (19)

Thus, in the special case of i.i.d. Xi with variance σ2, for large enough t,

EP (Wt | Ft−1) ≲
log(2/α) + σ2

∑︁t
i=1 λ

2
i /2∑︁t

i=1 λi
. (20)

If we were to set λ1 = λ2 = · · · = λ⋆ ∈ R and minimize the above expression for a
specific time t⋆, this amounts to minimizing

log(2/α) + σ2t⋆λ⋆2/2

t⋆λ⋆
, (21)

which is achieved by setting

λ⋆ :=

√︃
2 log(2/α)

σ2t⋆
. (22)

This is precisely why we suggested the predictable plug-in (λPrPlt )∞t=1 given by (15),
where the additional log(t+1) is included in an attempt to enforce Wt = ˜︁O(

√︁
log t/t).

The above calculations are only used as guiding principles to sharpen the confidence
sets, but all such schemes retain the validity guarantee. As long as (λt)

∞
t=1 is [0, 1)-

valued and predictable, we have that (ME
t (µ))∞t=0 is a test supermartingale for Pµ

which can be used in Theorem 1 to obtain different valid CSs for µ.
Foreshadowing our attempt to generalize this procedure in the next section, notice

that the exponential function was used throughout to ensure nonnegativity, but that
any other test supermartingale would have sufficed. In fact, if a martingale is used
in place of a supermartingale, then Ville’s inequality is tighter.

Next, we present a test martingale, removing a source of looseness in the confidence
sets derived thus far. We discuss its betting interpretation, provide other guiding
principles for setting λi (equivalently, for betting), which will involve attempting to
maximize the expected log-wealth in the betting game.

4. The capital process, betting, and martingales

In Section 3, we generalized the Cramer-Chernoff method to derive predictable
plug-in exponential supermartingales and used this result to obtain tight empirical
Bernstein CSs and CIs. In this section, we consider an alternative process which can
be interpreted as the wealth accumulated from a series of bets in a game. This process
is a central object of study in the game-theoretic probability literature where it is
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referred to as the capital process (Shafer and Vovk, 2001). We discuss its connections
to the purely statistical goal of constructing CSs and CIs and demonstrate how
these sets improve on Cramer-Chernoff approaches, including the empirical Bernstein
confidence sets of the previous section.

Consider the same setup as in Section 3: we observe an infinite sequence of
conditionally mean-µ random variables, (Xt)

∞
t=1 ∼ P from some distribution P ∈ Pµ.

Define the capital process Kt(m) for any m ∈ [0, 1],

Kt(m) :=

t∏︂
i=1

(1 + λi(m) · (Xi −m)), (23)

with K0(m) := 1 and where (λt(m))∞t=1 is a (−1/(1−m), 1/m)-valued predictable
sequence, and thus λt(m) can depend on Xt−1

1 . Note that for each t ≥ 1, we have
Xt ∈ [0, 1], m ∈ [0, 1] and λt(m) ∈ (−1/(1−m), 1/m). Here and below, 1/m should
be interpreted as∞ when m = 0 and similarly for 1/(1−m) and m = 1, respectively.
Importantly, (1 + λt(m) · (Xt − m)) ∈ [0,∞), and thus Kt(m) ≥ 0 for all t ≥ 1.
Following similar techniques to the previous section, the reader may easily check that
Kt(µ) is a test martingale. Moreover, we have the stronger result summarized in the
following central proposition.

Proposition 2. Suppose a draw from some distribution P yields a sequence
X1, X2, . . . of [0, 1]-valued random variables, and let µ ∈ [0, 1] be a constant. The
following four statements imply each other:

(a) EP (Xt | Ft−1) = µ for all t ∈ N, where Ft−1 = σ(X1, . . . , Xt−1).

(b) There exists a constant λ ∈ R\{0} for which (Kt(µ))∞t=0 is a strictly positive
test martingale for P .

(c) For every fixed λ ∈ (− 1
1−µ ,

1
µ), (Kt(µ))

∞
t=0 is a test martingale for P .

(d) For every (− 1
1−µ ,

1
µ)-valued predictable sequence (λt)

∞
t=1, (Kt(µ))∞t=0 is a test

martingale for P .

Further, the intervals (− 1
1−µ ,

1
µ) mentioned above can be replaced by any subinterval

containing at least one nonzero value, like [−1, 1] or (−0.5, 0.5). Finally, every test
martingale for Pµ is of the form (Kt(µ)) for some predictable sequence (λt).

The proof can be found in Section A.3. While the subsequent theorems will primarily
make use of (a) =⇒ (d), the above proposition establishes a core fact: the
assumption of the (conditional) means being identically µ is an equivalent restatement
of our capital process being a test martingale. Thus, test martingales are not
simply “technical tools” to deal with means of bounded random variables, they are
fundamentally at the very heart of the problem definition itself.

Proposition 2 can be generalized to another remarkable, yet simple, result: for
any set of distributions S, every test martingale for S has the same form.
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Proposition 3 (Universal representation). For any arbitrary set of (pos-
sibly unbounded) distributions S, (Mt) is a test martingale for S if and only if
Mt =

∏︁t
i=1(1 + λiZi) for some Zi ≥ −1 such that ES [Zi|Fi−1] = 0 for every S ∈ S,

and some predictable λi such that λiZi ≥ −1. The same claim also holds for test
supermartingales for S, with the aforementioned “= 0” replaced by “≤ 0”.

The proof can be found in Section A.4. The above proposition immediately makes
this paper’s techniques actionable for a wide class of nonparametric testing and
estimation problems. We give an example relating to quantiles later.

4.1. Connections to betting
It is worth pausing to clarify how the capital process Kt(m) and Proposition 2 can be
viewed in terms of betting. We imagine that nature implicitly posits a hypothesis Hm

0

— which we treat as a game providing us a chance to make money if the hypothesis is
wrong, by repeatedly betting some of our capital against Hm

0 . We start the game
with a capital of 1 (i.e. K0(m) := 1), and design a bet of bt := st|λmt | at each step,
where st ∈ {−1, 1}. Setting st := 1 indicates that we believe that µ > m while
st := −1 indicates the opposite. |λmt | indicates the amount of our capital that we are
willing to put at stake at time t: setting λmt = 0 results in neither losing nor gaining
any capital regardless of the outcome, while setting λmt ∈ {−1/(1−m), 1/m} means
that we are willing to risk all of our capital on the next outcome.

However, if Hm
0 is true (i.e. m = µ), then by Proposition 2, our capital process is

a martingale. In betting terms, no matter how clever a betting strategy (λmt )
∞
t=1 we

devise, we cannot expect to make (or lose) money at each step. If on the other hand,
Hm

0 is false, then a clever betting strategy will make us a lot of money. In statistical
terms, when our capital exceeds 1/α, we can confidently reject the hypothesis Hm

0

since if it were true (and the game were fair) then by Ville’s inequality (Ville, 1939),
the a priori probability of this ever occurring is at most α. We imagine simultaneously
playing this game with Hm′

0 for each m′ ∈ [0, 1]. At any time t, the games m′ ∈ [0, 1]
for which our capital is small (< 1/α) form a CS.

Both the Cramer-Chernoff processes of Section 3 and Kt(m) are nonnegative
and tend to increase when µ > m. However, only Kt(m) is a test martingale when
m = µ; the others are test supermartingales. A test martingale is the wealth
accumulated in a “fair game” where our capital stays constant in expectation, while
a test supermartingale is the wealth accumulated in a game where our capital is
expected to decrease (not strictly). Larger values of capital correspond to rejecting
Hm

0 more readily. Therefore, test supermartingales tend to yield conservative tests
compared to their martingale counterparts.

More generally, every nonnegative supermartingale can be regarded as the wealth
process of a gambler playing a game with odds that are fair or stacked against them.
In other words, there is a one-to-one correspondence between wealths of hypothetical
gamblers and nonnegative supermartingales. Taking this perspective, every statement
involving nonnegative supermartingales (and thus likelihood ratios) are statements
about betting, and vice versa. Mixture methods that combine nonnegative super-
martingales are simply strategies to hedge across various instruments available to the
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gambler. Thus, the gambling analogy can be entirely dropped, and our results would
find themselves comfortably nestled in the rich literature on martingale methods for
concentration inequalities, but we mention the betting analogy for intuition so that
the mathematics are animated and easier to absorb.

Ville introduced martingales into modern mathematical probability theory, and
centered them around their betting interpretation. Since then, ideas from betting
have appeared in various fields, including probability theory, statistical testing and
estimation, information theory, and online learning theory. While our paper focuses
on the utility of betting in some statistical inference tasks, Section F provides a brief
overview of the use of betting in other mathematical disciplines.

4.2. Connections to likelihood ratios
As alluded to in the previous subsection, useful intuition is provided via the connection
to likelihood ratios. Kt(m) is a “composite” test martingale for Pm, meaning that
it is a nonnegative martingale starting at one for every P ∈ Pm (recall that P is a
distribution over infinite sequences of observations with conditional mean m).

If we were dealing with a single distribution such as Q∞, meaning a product
distribution where every observation is drawn iid from Q, then one may pick any
alternative Q′ that is absolutely continuous with respect to Q, to observe that the
likelihood ratio

∏︁t
i=1Q

′(Xi)/Q(Xi) is a test martingale for Q∞.
However, since Pm is highly composite and nonparametric and is not even

dominated by a single measure (as it contains atomic measures, continuous measures,
and all their mixtures), it is unclear how one can even begin to write down a
likelihood ratio. Nevertheless, Ramdas et al. (2020, Proposition 4) show that if (Mt)
is a composite test martingale for any S, then for every distribution Q ∈ S, Mt

equals the likelihood ratio of some Q′ against Q (where Q′ depends on Q).
Thus, not only is every likelihood ratio a test martingale, but every (composite)

test martingale can also be represented as a likelihood ratio. Hence, in a formal sense,
test martingales are nonparametric composite generalizations of likelihood ratios,
which are at the very heart of statistical inference. When this observation is combined
with Proposition 2, it should be no surprise any longer that the capital process Kt(m)
(even devoid of any betting interpretation) is fundamental to the problem at hand.
In Section E.6 we also observe connections to the empirical likelihood of Owen (2001)
and the dual likelihood of (Mykland, 1995).

4.3. Adaptive, constrained adversaries
Despite the analogies to betting, the game described so far appears to be purely
stochastic in the sense that nature simply commits to a distribution P ∈ Pµ for some
unknown µ ∈ [0, 1] and presents us observations from P . However, Proposition 2 can
be extended to a more adversarial setup, but with a constrained adversary.

To elaborate, recall the difference between Q and P from the start of Section 2
and consider a game with three players: an adversary, nature, and the statistician.
First, the adversary commits to a µ ∈ [0, 1]. Then, the game proceeds in rounds. At
the start of round t, the statistician publicly discloses the bets for every m, which
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could depend on X1, . . . , Xt−1. The adversary picks a distribution Qt ∈ Qµ, which
could depend on X1, . . . , Xt−1 and the statistician’s disclosed bets, and hands Qt to
nature. Nature simply acts like an arbitrator, first verifying that the adversary chose
a Qt with mean µ, and then draws Xt ∼ Qt and presents Xt to the statistician.

In this fashion, the adversary does not need to pick µ and P ∈ Pµ at the start
of the interaction, which is the usual stochastic setup, but can instead build the
distribution P in a data-dependent fashion over time. In other words, the adversary
does not commit to a distribution P , but instead to a rule for building P from the
data. Of course, they do not need to disclose this rule, or even be able express what
this rule would do on any other hypothetical outcomes other than the one observed.
The results in this paper, which build on the central Proposition 2, continue to hold
in this more general interaction model.

A geometric reason why we can move from the stochastic model first described to
the above (constrained) adversarial model, is that the above distribution P lies in the
“fork convex hull” of Pµ. Fork-convexity is a sequential analogue of convexity (Ramdas
et al., 2021). Informally, the fork-convex hull of a set of distributions over sequences
is the set of predictable plug-ins of these distributions, and is much larger than
their convex hull (mixtures). If a process is a nonnegative martingale under every
distribution in a set, then it is also a nonnegative martingale under every distribution
in the fork convex hull of that set. No results about fork convexity are used anywhere
in this paper, and we only mention it for the mathematically curious.

4.4. The hedged capital process
We now return to the purely statistical problem of using the capital process Kt(m)
to construct time-uniform CSs and fixed-time CIs. We might be tempted to
use Kt(µ) as the nonnegative martingale in Theorem 1 to conclude that Bt :=
{m ∈ [0, 1] : Kt(m) < 1/α} forms a (1− α)-CS for µ. Unlike the empirical Bernstein
CS of Section 3, Bt cannot be computed in closed-form. Instead, we theoretically
need to compute the family of processes {Kt(m)}m∈[0,1] and include those m ∈ [0, 1]
for which Kt(m) remains below 1/α. This is not practical as the parameter space
[0, 1] is uncountably infinite. But if we know a priori that Bt is guaranteed to produce
an interval for each t, then it is straightforward to find a superset of Bt by either
performing a grid search on (0, 1/g, 2/g, . . . , (g− 1)/g, 1) for some large g ∈ N, or by
employing root-finding algorithms. This motivates the hedged capital process, defined
for any θ,m ∈ [0, 1] as

K±
t (m) := max

{︁
θK+

t (m), (1− θ)K−
t (m)

}︁
, (24)

where K+
t (m) :=

t∏︂
i=1

(1 + λ+i (m) · (Xi −m)),

and K−
t (m) :=

t∏︂
i=1

(1− λ−i (m) · (Xi −m)),

and (λ+t (m))∞t=1 and (λ−t (m))∞t=1 are predictable sequences of [0, 1
m)- and [0, 1

1−m)-
valued random variables, respectively.
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K±
t (m) can be viewed from the betting perspective as dividing one’s capital into

proportions of θ and (1−θ) and making two series of simultaneous bets, positing that
µ ≥ m, and µ < m, respectively which accumulate capital in K+

t (m) and K−
t (m). If

µ ̸= m, then we expect that one of these strategies will perform poorly, while we
expect the other to make money in the long term. If µ = m, then we expect neither
strategy to make money. The maximum of these processes is upper-bounded by their
convex combination,

M±
t := θK+

t + (1− θ)K−
t .

Both K±
t andM±

t can be used for Step (b) of Theorem 1 to yield a CS. Empirically,
both yield intervals, but only the former provably so.

Theorem 3 (Hedged capital CS [Hedged]). Suppose (Xt)
∞
t=1 ∼ P for some

P ∈ Pµ. Let (λ̃
+
t )

∞
t=1 and (λ̃

−
t )

∞
t=1 be real-valued predictable sequences not depending

on m, and for each t ≥ 1 let

λ+t (m) := |λ̃
+

t | ∧
c

m
, λ−t (m) := |λ̃

−
t | ∧

c

1−m
, (25)

for some c ∈ [0, 1) (some reasonable defaults being c = 1/2 or 3/4). Then

B±
t :=

{︁
m ∈ [0, 1] : K±

t (m) < 1/α
}︁

forms a (1− α)-CS for µ,

as does its running intersection
⋂︁
i≤tB

±
i . Further, B±

t is an interval for each t ≥ 1.
Finally, replacing K±

t (m) by M±
t (m) yields a tighter (1− α)-CS for µ.

For reasons given in Section B.1, we recommend setting λ̃
+
t = λ̃

−
t = λPrPl±t as

λPrPl±
t :=

√︄
2 log(2/α)ˆ︁σ2

t−1t log(t+ 1)
, ˆ︁σ2

t :=
1/4 +

∑︁t
i=1(Xi − ˆ︁µi)

2

t+ 1
, and ˆ︁µt :=

1/2 +
∑︁t

i=1Xi

t+ 1
,

(26)
for each t ≥ 1, and truncation level c := 1/2 or 3/4; see Figure 4. A reasonable point
estimator for µ is argminm∈[0,1]K±

t (m) or argminm∈[0,1]M±
t (m) (see Figure 18).

Remark 2. Since K±
t (m) ≤ M±

t (m), the latter confidence sequence is tighter.
In the proof of Theorem 3, we use a property of the max function to establish
quasiconvexity of K±

t (m), implying that B±
t is an interval. We find the difference in

empirical performance negligible (Figure 5). For the interested reader, Section E.4
constructs a (pathological) CS that is almost surely not an interval.

Remark 3. Theorem 3 yields tight hedged CIs for a fixed sample size n. Recall-
ing (26), we recommend using

⋂︁
i≤nB

±
i , and setting λ̃

+
t = λ̃

−
t = λ̃

±
t given by

λ̃
±
t :=

√︄
2 log(2/α)

nˆ︁σ2
t−1

. (27)

We refer to the resulting CI as the “hedged capital confidence interval” or [Hedged-CI]
for short, and demonstrate its superiority to past work in Figure 6.
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Time-uniform confidence sequences: high-variance, symmetric data
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Time-uniform confidence sequences: low-variance, asymmetric data
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Figure 4. Predictable plug-in Hoeffding, empirical Bernstein, and hedged capital CSs
under two distributional scenarios. Notice that the latter roughly matches the others in the
Bernoulli(1/2) case, but shines in the low-variance, asymmetric scenario.
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Figure 5. A comparison of capital processes K+
t (m), K−

t (m), the hedged capital process
K±

t (m), and its upper-bounding nonnegative martingale,M±
t (m) under four alternatives

(from left to right): m ≪ µ, m < µ, m > µ, m ≫ µ. When m < µ, we see that K+
t (m)

increases, while K−
t (m) approaches zero, but the opposite is true when m > µ. Notice that

not much is gained by taking a sumM±
t (m) rather than a maximum K±

t (m), since one of
K+

t (m) and K−
t (m) vastly dominates the other, depending on whether m > µ or m < µ.
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Fixed-time confidence intervals: high-variance, symmetric data
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Fixed-time confidence intervals: low-variance, asymmetric data
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Figure 6. Hoeffding (H), empirical Bernstein (EB), and hedged capital CIs under two
distributional scenarios. Similar to the time-uniform setting, the betting approach tends to
outperform the other bounds, especially for low-variance, asymmetric data.

Similar to the discussion after Remark 1, if X1, . . . , Xn are independent, then
one can permute the data many times and average the resulting capital processes to
effectively derandomize the procedure.

The proof of Theorem 3 is in Section A.5. Unlike the empirical Bernstein-type CSs
and CIs of Section 3, those based on the hedged capital process are not necessarily
symmetric. In fact, we empirically find through simulations that these CSs and CIs
are able to adapt and benefit from this asymmetry (see Figures 4 and 6). While
it is not obvious from the definition of B±

t , bets can be chosen such that hedged
capital CSs and CIs converge at the optimal rates of O(

√︁
log log t/t) and O(1/

√
n),

respectively (see Section E.2) and such that for sufficiently large n, hedged capital
CIs almost surely dominate those based on Hoeffding’s inequality (see Section E.1).
However, the implications of time-uniform convergence rates are subtle, and optimal
rates are not always desirable in practical applications (see (Howard et al., 2021,
Section 3.5)). Nevertheless, we find that hedged capital CSs and CIs significantly
outperform past works even for small sample sizes (see Section C). Some additional
tools for visualizing CSs across α and t are provided in Section D.5.

In Section B, we discuss some guiding principles for deriving powerful betting
strategies, presenting the hedged capital CSs and CIs as special cases along with the
following game-theoretic betting schemes:

• Growth rate adaptive to the particular alternative (GRAPA),
• Approximate GRAPA (aGRAPA),
• Lower-bound on the wealth (LBOW),
• Online Newton step-m (ONS-m),
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• Diversified Kelly betting (dKelly),
• Confidence boundary bets (ConBo), and
• Sequentially rebalanced portfolio (SRP).

Each of these betting strategies have their respective benefits, whether computational,
conceptual, or statistical which are discussed further in Section B.

5. Betting while sampling without replacement (WoR)

This section tackles a slightly different problem, that of sampling without replacement
(WoR) from a finite set of real numbers in order to estimate its mean. Importantly,
the N numbers in the finite population (x1, . . . , xN ) are fixed and nonrandom. What
is random is only the order of observation; the model for sampling uniformly at
random without replacement (WoR) posits that at time t ≥ 1,

Xt | (X1, . . . , Xt−1) ∼ Uniform ((x1, . . . , xN )\(X1, . . . , Xt−1)) . (28)

All probabilities are thus to be understood as solely arising from observing fixed
entities in a random order, with no distributional assumptions being made on the
finite population. We consider the same canonical filtration F = (Ft)Nt=0 as before.
For t ≥ 1, let Ft := σ(Xt

1) be the sigma-field generated by X1, . . . , Xt and let F0 be
the empty sigma-field. For succinctness, we use the notation [a] := {1, . . . , a}.

For each m ∈ [0, 1], let Lm := {xN1 ∈ [0, 1]N :
∑︁N

i=1 xi/N = m} be the set of all
unordered lists of N ≥ 2 real numbers in [0, 1] whose average is m. For instance, L0
and L1 are both singletons, but otherwise Lm is uncountably infinite. Let Pm be
the set of all measures on FN that are formed as follows: pick an arbitrary element
of Lm, apply a uniformly random permutation, and reveal the elements one by one.
Thus, every element of Pm is a uniform measure on the N ! permutations of some
element in Lm, so there is a one-to-one mapping between Lm and Pm.

Define P :=
⋃︁
m Pm and let µ represent the true unknown mean, meaning that

the data is drawn from some P ∈ Pµ. For every m ∈ [0, 1], we posit a composite null
hypothesis H0

m : P ∈ Pm, but clearly only one of these nulls is true. We will design
betting strategies to test these nulls and thus find efficient confidence intervals or
sequences for µ. It is easier to present the sequential case first, since that is arguably
more natural for sampling WoR, and discuss the fixed-time case later.

5.1. Existing (super)martingale-based confidence sequences or tests
Several papers have considered estimating the mean of a finite set of nonrandom
numbers when sampling WoR, often by constructing concentration inequalities
(Hoeffding, 1963; Serfling, 1974; Bardenet and Maillard, 2015; Waudby-Smith and
Ramdas, 2020). Notably, Hoeffding (1963) showed that the same bound for sampling
with replacement (2) can be used when sampling WoR. Serfling (1974) improved
on this bound, which was then further refined by Bardenet and Maillard (2015).
While test supermartingales appeared in some of the aforementioned works, Waudby-
Smith and Ramdas (2020) identified better test supermartingales which yield explicit
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Hoeffding- and empirical Bernstein-type concentration inequalities and CSs for
sampling WoR that significantly improved on previous bounds. Consider their
exponential Hoeffding-type supermartingale,

MH-WoR
t := exp

⎧⎨⎩
t∑︂

i=1

⎡⎣λi
⎛⎝Xi − µ+

1

N − (i− 1)

i−1∑︂
j=1

(Xj − µ)

⎞⎠− ψH(λi)

⎤⎦⎫⎬⎭ , (29)

and their exponential empirical Bernstein-type supermartingale,

MEB-WoR
t := exp

⎧⎨⎩
t∑︂

i=1

⎡⎣λi
⎛⎝Xi − µ+

1

N − (i− 1)

i−1∑︂
j=1

(Xj − µ)

⎞⎠− viψE(λi)

⎤⎦⎫⎬⎭ , (30)

where (λt)Nt=1 is any predictable λ-sequence (real-valued for MH-WoR
t , but [0, 1)-valued

for MEB-WoR
t ), vi = 4(Xi − ˆ︁µi−1)

2 as before, and ψH(·) and ψE(·) are defined as in
Section 3. Defining MH-WoR

0 ≡MEB-WoR
0 := 1, Waudby-Smith and Ramdas (2020)

prove that (MH-WoR
t )Nt=0 and (MEB-WoR

t )Nt=0 are test supermartingales with respect
to F , and hence can be used in Step (b) of Theorem 1.

In recent work on election audits, Stark (2020) credits Harold Kaplan for proposing

MK
t :=

∫︂ 1

0

t∏︂
i=1

(︄
1 + γ

[︄
Xi

1− (i− 1)/N

µ−
∑︁i−1

j=1Xj/N
− 1

]︄)︄
dγ. (31)

The “Kaplan martingale” (MK
t )Nt=0 was employed for election auditing, but it is a

polynomial of degree t and is computationally expensive for large t (Stark, 2020).
Next, we mimic the approach of Section 4 to derive a capital process for sampling

WoR. We then derive WoR analogues of the efficient betting strategies from Section B.

5.2. The capital process for sampling without replacement
Define the predictable sequence (µWoR

t )t∈[N ] where

µWoR
t := E[Xt|Ft−1] =

Nµ−
∑︁t−1

i=1Xi

N − (t− 1)
. (32)

It is clear that µWoR
t ∈ [0, 1], since it is the mean of the unobserved elements of

{xi}i∈[N ]. (µWoR
t )t∈[N ] is unobserved since µ is unknown, so it is helpful to define

mWoR
t :=

Nm−
∑︁t−1

i=1Xi

N − (t− 1)
. (33)

Now, let (λt(m))Nt=1 be a predictable sequence such that λt(m) is
(︂
− 1

1−mWoR
t

, 1
mWoR

t

)︂
-

valued. Define the without-replacement capital process KWoR
t (m),

KWoR
t (m) :=

t∏︂
i=1

(︁
1 + λi(m) · (Xi −mWoR

i )
)︁

(34)

with KWoR
0 (m) := 1. The following result is analogous to Proposition 2.
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Proposition 4. Let XN
1 be a WoR sample from xN1 ∈ [0, 1]N . The following two

statements imply each other:

(a) EP (Xt | Ft−1) = µWoR
t for each t ∈ [N ].

(b) For every predictable sequence with λt(m) ∈
(︂
− 1

(1−µWoR
t )

, 1
µWoR

t

)︂
, (KWoR

t (µ))∞t=0

is a test martingale.

The other claims within Proposition 2 also hold above with minor modification,
but we do not mention them again for brevity. Further, Proposition 3 technically
covers WoR sampling as well. We now present a “hedged” capital process and powerful
betting schemes for sampling WoR, to construct a CS for µ = 1

N

∑︁N
i=1 xi.

5.3. Powerful betting schemes
Similar to Section 4.4, define the hedged capital process for sampling WoR:

K±,WoR
t (m) := max

{︄
θ

t∏︂
i=1

(︁
1 + λ+i (m) · (Xi −mWoR

i )
)︁
,

(1− θ)
t∏︂
i=1

(︁
1− λ−i (m) · (Xi −mWoR

i )
)︁}︄

for some predictable (λ+t (m))Nt=1 and (λ−t (m))Nt=1 taking values in [0, 1/mWoR
t ] and

[0, 1/(1−mWoR
t )] at time t, respectively. Using

(︂
K±,WoR
t (m)

)︂∞
t=0

as the process in
Step (b) of Theorem 1, we obtain the CS summarized in the following theorem.

Theorem 4 (WoR hedged capital CS [Hedged-WoR]). Given a finite
population xN1 ∈ [0, 1]N with mean µ := 1

N

∑︁N
i=1 xi = µ, suppose that X1, X2, . . . XN

are sampled WoR from xN1 . Let (λ̇
+
t )

∞
t=1 and (λ̇

−
t )

∞
t=1 be real-valued predictable

sequences not depending on m, and for each t ≥ 1 let

λ+t (m) := |λ̇+t | ∧
c

mWoR
t

, λ−t (m) := |λ̇−t | ∧
c

1−mWoR
t

,

for some c ∈ [0, 1) (some reasonable defaults being c = 1/2 or 3/4). Then

B±,WoR
t :=

{︂
m ∈ [0, 1] : K±,WoR

t (m) < 1/α
}︂

forms a (1− α)-CS for µ,

as does
⋂︁
i≤tB

±,WoR
i . Furthermore, B±,WoR

t is an interval for each t ≥ 1.

The proof of Theorem 4 is in Section A.9. We recommend setting λ̇
+
t = λ̇

−
t = λPrPl±t

as was done earlier in (26); for each t ≥ 1, and c := 1/2, let

λPrPl±t :=

√︄
2 log(2/α)ˆ︁σ2t−1t log(t+ 1)

, ˆ︁σ2t := 1
4 +

∑︁t
i=1(Xi − ˆ︁µi)2
t+ 1

, and ˆ︁µt := 1
2 +

∑︁t
i=1Xi

t+ 1
,

See Figure 7 for a comparison to the best prior work.
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WoR time-uniform confidence sequences: high-variance, symmetric data
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WoR time-uniform confidence sequences: low-variance, asymmetric data
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Figure 7. Without-replacement betting CSs versus the predictable plug-in supermartingale-
based CSs (Waudby-Smith and Ramdas, 2020). Similar to the with-replacement case, the
betting approach matches or vastly outperforms past state-of-the art methods.

Remark 4. As before, we can use Theorem 4 to derive powerful CIs for the
mean of a nonrandom set of bounded numbers given a fixed sample size n ≤ N .
We recommend using

⋂︁
i≤nB

±,WoR
i , and setting λ̇

+
t = λ̇

−
t = λ̇

±
t as in (27): λ̇±t :=√︂

2 log(2/α)
nˆ︁σ2

t−1
. We refer to the resulting CI as [Hedged-WoR-CI]; see Figure 8.

Remark 5. For some values of m near 0 or 1, mWoR
t could lie outside of [0, 1],

leading K±,WoR
t (m) to potentially be negative. However, it is impossible for K±,WoR

t (µ)
to be negative since µt ∈ [0, 1] always. In fact, a negative mt implies that the value
of m being tested is impossible, and thus one can reject that null immediately. In
particular, when running our method, one can instead use the modified capital process˜︁K±,WoR

t (m) := |K±,WoR
t (m)|/1(mt ∈ [0, 1]) (35)

which takes on the value +∞ if the denominator evaluates to zero. Note that˜︁K±,WoR
t (µ) still forms a nonnegative martingale since its denominator is always one

when m = µ.

Notice that constructing a WoR test martingale only relies on changing the fixed
conditional mean µ to the time-varying conditional mean µWoR

t :=
Nµ−

∑︁t−1
i=1 Xi

N−t+1 and
now designing (−1/(1− µWoR

t ), 1/µWoR
t )-valued bets instead of (−1/(1− µ), 1/µ)-

valued ones. In this way, it is possible to adapt any of the betting strategies in
Section B to sampling WoR, yielding a wide array of solutions to this estimation
problem.
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WoR fixed-time confidence intervals: high-variance, symmetric data
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WoR fixed-time confidence intervals: low-variance, asymmetric data
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Figure 8. WoR analogue of the hedged capital CI versus the WoR Hoeffding- and empirical
Bernstein-type CIs (Waudby-Smith and Ramdas, 2020). Similar to with-replacement, the
betting approach has excellent performance.

5.4. Relationship to composite null testing
This paper focuses primarily on estimation, but we end with a note that our CSs (or
CIs) yield valid, sequential (or batch) tests for composite null hypotheses H0 : µ ∈ S
for any S ⊂ [0, 1]. Specifically, for any of our capital processes Kt(m),

pt := sup
m∈S

1

Kt(m)

is an “anytime-valid p-value” for H0, as is ˜︁pt := infs≤t ps, meaning that

sup
P∈

⋃︁
m∈S Pm

P (pτ ≤ α) ≤ α for arbitrary stopping times τ .

Alternately, pt is also the smallest α for which our (1− α)-CS does not intersect S.
Similarly, et := infm∈S Kt(m) is an “e-process” for H0, meaning that

sup
P∈

⋃︁
m∈S Pm

EP [eτ ] ≤ 1 for arbitrary stopping times τ .

For more details on inference at arbitrary stopping times, we refer the reader to
Howard et al. (2020, 2021); Grünwald et al. (2019); Ramdas et al. (2020).

6. A brief selective history on betting and its mathematical applications

From a purely statistical perspective, this paper could be viewed as tackling the
problem of deriving sharp confidence sets for means of bounded random variables. In
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this pursuit, we find that a technique with excellent empirical performance happens
to have strong connections to the topics of betting and gambling. While we provide
a more detailed discussion in Section F, here we briefly summarize some of the ways
in which betting ideas have appeared in and shaped probability, statistical inference,
information theory, and online learning, in the broad context of our paper.

• Probability: The 1939 PhD thesis of Ville (1939) brought betting and mar-
tingales to the forefront of modern probability theory, by giving actionable
interpretations to Kolmogorov’s newly developed measure-theoretic probability,
and dealing a near-fatal blow to the theory of collectives by von Mises. Ville
showed that for any event A of probability measure zero (like sequences violating
the law of large numbers), he could design an explicit betting strategy that
never bets more than it has, whose wealth (a test martingale) grows to infinity
if the event A occurs. Ville worked with binary sequences, but his result holds
more generally; see Shafer and Vovk (2001).

One may view Ville’s result as a theorem in measure-theoretic probability
theory; what he effectively proved was: the event that a test (super)martingale
exceeds 1/α has probability at most α (Ville’s inequality in this paper). This
holds for any α ∈ [0, 1], treating 1/0 ≡ +∞, with the α = 0 case being the
most remarkable part. But Ville’s result is also an axiomatic building block for
game-theoretic probability (Vovk, 1993; Shafer and Vovk, 2001, 2019). Many
classical results in probability can been derived in completely game-theoretic
terms (Shafer and Vovk, 2001, 2019). The capital processes used for deriving
CSs are of the same form as those used to derive these foundational theorems
of game-theoretic probability, despite the two goals being quite different.

• Statistical inference: The famous book of Wald (1947) was the first to
thoroughly present and study sequential hypothesis testing. Despite not being
presented in this way by Wald, we know in hindsight that the sequential
probability ratio test (SPRT) is quite centrally based on the fact that the
likelihood ratio is a nonnegative martingale. Two decades later, Robbins and
colleagues built on Wald’s sequential testing work in several ways, including to
estimation via confidence sequences (Darling and Robbins, 1967a,b,c; Robbins
and Siegmund, 1968, 1969, 1970, 1972, 1974; Robbins, 1970; Lai, 1976). The
recent work of Howard et al. (2020, 2021); Ramdas et al. (2021); Wasserman
et al. (2020) extends the early work of Wald, Robbins and colleagues to a
broader class of problems using exponential supermartingales and “e-processes”,
which can be seen as nonparametric, composite generalizations of the SPRT
martingale. Connections between betting and the works of Wald, Robbins et al.,
and Howard et al. are implicit in those works, but can now be seen in hindsight,
and our paper makes these connections explicit.

• Information theory: Working in the new field of information theory, Kelly Jr
(1956) made direct connections to betting by showing that the capacity of
a channel (itself fundamentally related to entropy and the Kullback-Leibler
divergence) is given by the maximal rate of growth of wealth of a gambler in a
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simple game with iid Bernoulli(p) observations and known p. Breiman (1961)
generalized Kelly’s results significantly, and Krichevsky and Trofimov (1981)
extended these results beyond the case of known p using a mixture method.
Thomas Cover’s interest in these techniques spans several decades (Cover, 1974,
1984, 1987; Bell and Cover, 1980, 1988), culminating in his famous universal
portfolio algorithm (Cover, 1991). The results of Krichevsky-Trofimov and
Cover are essentially regret inequalities, leading directly to the final subfield
below.

• Online learning: The techniques of Krichevsky, Trofimov and Cover found
extensive applications to sequential prediction with the logarithmic loss (Cesa-
Bianchi and Lugosi, 2006). Here, one derives regret inequalities for the total
loss accumulated when predicting the next observation from a potentially
adversarial sequence. This problem is fundamentally connected to online convex
optimization, for which Orabona and colleagues use parameter-free betting
algorithms to derive regret inequalities (Orabona and Pal, 2016; Orabona and
Tommasi, 2017; Jun et al., 2017; Cutkosky and Orabona, 2018; Jun and Orabona,
2019). Rakhlin and Sridharan (2017) articulated a deep connection between
martingale concentration and deterministic regret inequalities, and Jun and
Orabona (2019, Section 7.1) derive concentration bounds for the general setting
of Banach space-valued observations with sub-exponential noise.
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Figure 9. A brief selective history of betting ideas appearing (often implicitly) in various
literatures. As discussed further in Section F, these subfields have rarely cited each other,
but ideas are now beginning to permeate. Several authors did not explicitly use the language
of betting, and their inclusion above is due to reinterpreting their work in hindsight.

7. Summary

Nonparametric confidence sequences are particularly useful in sequential estimation
because they enable valid inference at arbitrary stopping times, but they are un-
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derappreciated as powerful tools to provide accurate inference even at fixed times.
Recent work (Howard et al., 2020, 2021) has developed several time-uniform general-
izations of the Cramer-Chernoff technique utilizing “line-crossing” inequalities and
using various variants of Robbins’ method of mixtures (discrete mixtures, conjugate
mixtures and stitching) to convert them to “curve-crossing” inequalities.

This work adds new techniques to the toolkit: to complement the aforementioned
mixture methods, we develop a “predictable plug-in” approach. When coupled with
existing nonparametric supermartingales, it yields (for example) computationally
efficient empirical-Bernstein confidence sequences. One of our major contributions is
to thoroughly develop the theory and methodology for a new nonnegative martingale
approach to estimating means of bounded random variables in both with- and
without-replacement settings. These convincingly outperform all existing published
work that we are aware of, for CIs and CSs, both with and without replacement.

Our methods are particularly easy to interpret in terms of evolving capital
processes and sequential testing by betting (Shafer, 2021) but we go much further
by developing powerful and efficient betting strategies that lead to state-of-the-art
variance-adaptive confidence sets that are significantly tighter than past work in
all considered settings. In particular, Shafer espouses complementary benefits of
such approaches, ranging from improved scientific communication, ties to historical
advances in probability, and reproducibility via continued experimentation (also
see Grünwald et al. (2019)), but our focus here has been on developing a new state
of the art for a set of classical, fundamental problems.

There appear to be nontrivial connections to online learning theory (Kotłowski
et al., 2010; Kumon et al., 2011; Orabona and Tommasi, 2017; Cutkosky and
Orabona, 2018), and to empirical and dual likelihoods (see Section E.6 and an
extended historical review of betting in Section F). The reductions from regret
inequalities to concentration bounds described in Rakhlin and Sridharan (2017)
and Jun and Orabona (2019) are fascinating, but existing published bounds are
loose in the constants and not competitive in practice compared to our direct
approach. Exploring deeper connections may yield other confidence sequences or
betting strategies.

It is clear to us, and hopefully to the reader as well, that the ideas behind this
work (adaptive statistical inference by betting) form the tip of the iceberg—they lead
to powerful, efficient, nonasymptotic, nonparametric inference and can be adapted
to a range of other problems. As just one example, let Pp,q represent the set of all
continuous distributions such that the p-quantile of Xt, conditional on the past, is
equal to q. This is also a nonparametric, convex set of distributions with no common
reference measure. Nevertheless, for any predictable (λi), it is easy to check that

Mt =

t∏︂
i=1

(1 + λi(1Xi≤q − p))

is a test martingale for Pp,q. Setting p = 1/2 and q = 0, for example, we can
sequentially test if the median of the underlying data distribution is the origin.
The continuity assumption can be relaxed, and this test can be inverted to get a
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confidence sequence for any quantile. We do not pursue this idea further in the
current paper because the recent (rather different) nonnegative martingale methods
of Howard and Ramdas (2022) already provide a challenging benchmark for that
problem. Typically, one test martingale-based method cannot uniformly dominate
another, and the large gains in this paper were made possible because all previous
published approaches implicitly or explicitly employed test supermartingales, while
we employ test martingales that are computationally simple to implement.

To conclude, we opine that “game-theoretic statistical inference” is in its nascency,
and we expect much theoretical and practical progress in coming years. We hope the
reader shares our excitement in this regard.
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A. Proofs of main results

We first introduce a lemma which will aid in the proofs to follow.

Lemma 1 (Predictable plug-in Chernoff supermartingales). Suppose that
X1, X2, · · · ∼ P , and for some µ, vt and ψ(λ), we have that for any λ ∈ Λ ⊆ R,

EP [exp(λ(Xt − µ)− vtψ(λ)) | Ft−1] ≤ 1 for each t ≥ 1 . (36)

Then, for any Λ-valued sequence (λt)
∞
t=1 that is predictable with respect to F ,

Mψ
t (µ) :=

t∏︂
i=1

exp (λi(Xi − µ)− viψ(λi))

forms a test supermartingale with respect to F .

Proof. Writing out the conditional expectation of Mψ
t for any t ≥ 2,

E
(︂
Mψ
t (µ) | Ft−1

)︂
= E

(︄
t∏︂
i=1

exp (λi(Xi − µ)− viψ(λi))
⃓⃓⃓
Ft−1

)︄
(i)
=

t−1∏︂
i=1

exp (λi(Xi − µ)− viψ(λi))E [exp (λt(Xt − µ)− vtψ(λt)) | Ft−1]⏞ ⏟⏟ ⏞
≤1 by assumption

=Mψ
t−1(µ),

where (i) follows from the fact that exp (λi(Xi − µ)− viψ(λi)) is Ft−1-measurable
for i ≤ t− 1. Since F0 was assumed to be trivial, for M1 we have that

E[Mψ
1 (µ)|F0] = E [exp (λ1(X1 − µ)− v1ψ(λ1))]⏞ ⏟⏟ ⏞

≤1 by assumption

,

which completes the proof. □

A.1. Proof of Proposition 1
The proof proceeds in three steps. First, apply a standard MGF bound by Hoeffding
(1963). Second, we apply Lemma 1. Finally, we apply Theorem 1 to obtain a CS
and take a union bound.

Step 1. By Hoeffding (1963), we have that E [exp(λt(Xt − µ)− ψH(λt)) | Ft−1] ≤ 1
since Xt ∈ [0, 1] almost surely and since λt is Ft−1-measurable.

Step 2. By Step 1 and Lemma 1, we have that

MPrPl-H
t (µ) :=

t∏︂
i=1

exp (λi(Xi − µ)− ψH(λi))
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forms a test supermartingale.

Step 3. By Step 2 combined with Theorem 1, we have that

P

(︄
∃t ≥ 1 : µ ≤

∑︁t
i=1 λiXi∑︁t
i=1 λi

−
log(1/α) +

∑︁t
i=1 ψH(λi)∑︁t

i=1 λi

)︄
= P

(︂
∃t ≥ 1 :MPrPl-H

t (µ) ≥ 1/α
)︂
≤ α.

Applying the same bound to (−Xt)
∞
t=1 with mean −µ and taking a union bound, we

have the desired result,

P

(︄
∃t ≥ 1 : µ /∈

(︄∑︁t
i=1 λiXi∑︁t
i=1 λi

±
log(2/α) +

∑︁t
i=1 ψH(λi)∑︁t

i=1 λi

)︄)︄
≤ α,

which completes the proof. □

A.2. Proof of Theorem 2
By Lemma 1 combined with Theorem 1, it suffices to prove that

EP [exp {λt(Xt − µ)− vtψE(λt)} | Ft−1] ≤ 1.

For succinctness, denote

Yt := Xt − µ and δt := ˆ︁µt − µ.
Note that EP (Yt | Ft−1) = 0. It then suffices to prove that for any [0, 1)-bounded,
Ft−1- measurable λt ≡ λt(Xt−1

1 ),

E

[︄
exp

{︄
λtYt − 4(Yt − δt−1)

2ψE(λt)

}︄ ⃓⃓⃓
Ft−1

]︄
≤ 1.

Indeed, in the proof of Proposition 4.1 in Fan et al. (2015), exp{ξλ− 4ξ2ψE(λ)} ≤
1 + ξλ for any λ ∈ [0, 1) and ξ ≥ −1. Setting ξ := Yt − δt−1 = Xt − ˆ︁µt−1,

E

[︄
exp

{︄
λtYt − 4(Yt − δt−1)

2ψE(λt)

}︄ ⃓⃓⃓
Ft−1

]︄
= E

[︂
exp

{︂
λt(Yt − δt−1)− 4(Yt − δt−1)

2ψE(λt)
}︂ ⃓⃓
Ft−1

]︂
exp(λtδt−1)

≤ E
[︂
1 + (Yt − δt−1)λt | Ft−1

]︂
exp(λtδt−1)

(i)
= E

[︁
1− δt−1λt | Ft−1

]︁
exp(λtδt−1)

(ii)

≤ 1,

where equality (i) follows from the fact that Yt is conditionally mean zero, and
inequality (ii) follows from the inequality 1 − x ≤ exp(−x) for all x ∈ R. This
completes the proof. □
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A.3. Proof of Proposition 2
We proceed by proving (d) =⇒ (c) =⇒ (b) =⇒ (a) =⇒ (d).

Proof of (d) =⇒ (c). This claim follows from the fact that for λ ∈ (−1/(1−µ), 1/µ),
we have that (λ, λ, . . . ) is a (−1/(1− µ), 1/µ)-valued predictable sequence.

Proof of (c) =⇒ (b). By the assumption of (c), we have that for λ = 0.5, Kt(µ)
forms a test martingale. Furthermore, since Xi, µ ∈ [0, 1] for each i ∈ {1, 2, . . . }, we
have that 1 + 0.5(Xi − µ) > 0 almost surely for each i. Therefore, (Kt(µ))∞t=1 is a
strictly positive test martingale.

Proof of (b) =⇒ (a). Suppose that there exists λ ∈ R \ {0} such that Kt(µ) forms
a strictly positive martingale. Then we must have

Kt−1(µ) = E (Kt(µ) | Ft−1)

= Kt−1(µ) · E (1 + λ(Xi − µ) | Ft−1)

= Kt−1(µ) · [1 + λ(E(Xt | Ft−1)− µ)] .

Now since Kt−1(µ) > 0, we have that

1 + λ(E(Xt | Ft−1)− µ) = 1.

Since λ ̸= 0 by assumption, we have that E(Xt | Ft−1) = µ as required.

Proof of (a) =⇒ (d). Let (λt(µ))
∞
t=1 be a (−1/(1 − µ), 1/µ)-valued predictable

sequence. Then Kt(µ) is clearly nonnegative and K0(µ) = 1 by definition. Writing
out the conditional mean of the capital process for any t ≥ 1,

E (Kt(µ) | Ft−1) = Kt−1(µ) · E (1 + λt(µ)(Xi −m) | Ft−1)

= Kt−1(µ) · [1 + λt(µ)(E(Xi | Ft−1)− µ)]
= Kt−1(µ),

and thus Kt(µ) forms a test martingale.

The proof of the final part of the proposition is simple. Let (Mt) be a test
martingale for Pµ. Define Yt := Mt/Mt−1 if Mt−1 > 0, and as Yt := 0 otherwise.
Now note that Mt =

∏︁t
i=1 Yt and EP [Yt|Ft−1] = 1 for any P ∈ Pµ. In other words,

every test martingale is a product of nonnegative random variables with conditional
mean one. Now rewrite Yt as (1 + ft(Xt)) for some predictable function ft. Since Yt
is nonnegative, we must have ft(Xt) ≥ −1 , and since Yt is conditional mean one, we
must have ft(Xt) is conditional mean zero. Such a representation in fact holds true
for any test martingale, and we have not yet used the fact that we are working with
test martingales for Pµ. Now, the proof ends by noting that the only predictable
functions ft with the latter property under every P ∈ Pµ has the form λt(Xt−µ) for
some predictable λt; any nonlinear function of Xt would not have mean zero under
every distribution with mean µ.

This completes the proof of Proposition 2 altogether. □
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A.4. Proof of Proposition 3
We only prove the martingale part of the proposition, since the supermartingale
aspect follows analogously, and as mentioned early in the paper, inequalities and
equalities are meant in an almost sure sense.

First, it is easy to check that if (Mt) is a test martingale for S, then Mt is
the product of nonnegative conditionally unit mean terms, that is Mt =

∏︁t
i=1 Yi

such that for all S ∈ S, we have ES [Yi|Fi−1] = 1 and Yi ≥ 0. (Indeed, one can
identify Yi := Mi

Mi−1
1Mi−1>0.) Now, define Z ′

i := Yi − 1, and note that Z ′
i ≥ −1, and

ES [Z ′
i|Ft−1] = 0. Thus, Mt has been represented as

∏︁t
i=1(1 + Z ′

i). Now, the proof is
completed by noting that any such Z ′

i can be written as λiZi for a predictable λi
(this step is purely cosmetic). □

A.5. Proof of Theorem 3
First, we present Lemma 2 which establishes that the hedged capital process is a
quasiconvex function of m (and thus has convex sublevel sets). We then invoke this
lemma to prove the main result.

Lemma 2. Let θ ∈ [0, 1] and

K±
t (m) := max

{︁
θK+

t (m), (1− θ)K−
t (m)

}︁
≡ max

{︄
θ

t∏︂
i=1

(1 + λ+i (m) · (Xi −m)), (1− θ)
t∏︂
i=1

(1− λ−i (m) · (Xi −m))

}︄

be the hedged capital process as in Section 4. Consider the (1− α) confidence set of
the same theorem,

B±
t ≡ B±(X1, . . . , Xt) :=

{︃
m ∈ [0, 1] : K±

t (m) <
1

α

}︃
.

Then B±
t is an interval on [0, 1].

Proof. Since sublevel sets of quasiconvex functions are convex, it suffices to
prove that K±

t (m) is a quasiconvex function of m ∈ [0, 1]. The crux of the argument
is: the product of nonnegative nonincreasing functions is quasiconvex, the product
of nonnegative nondecreasing functions is also quasiconvex, and the maximum of
quasiconvex functions is quasiconvex.

To elaborate, we will proceed in two steps. First, we use an induction argument to
show that K+

t (m) and K−
t (m) are nonincreasing and nondecreasing, respectively, and

hence quasiconvex. Finally, we note that K±
t (m) := max

{︁
θK+

t (m), (1− θ)K−
t (m)

}︁
is a maximum of quasiconvex functions and is thus itself quasiconvex.

Step 1. First, since λ̇
+
t does not depend on m, we have that

1 + λ+t (m)(Xt −m) := 1 +
(︂
|λ̇+t | ∧

c

m

)︂
(Xt −m)
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is nonnegative and nonincreasing in m for each t ∈ {1, 2, . . . }. (To see this, consider
the terms with and without truncation separately.) Suppose for the sake of induction
that

t−1∏︂
i=1

(︁
1 + λ+i (m)(Xi −m)

)︁
is nonnegative and nonincreasing in m. Then,

K+
t (m) :=

t∏︂
i=1

(︁
1 + λ+i (m)(Xi −m)

)︁
=
(︁
1 + λ+t (m)(Xt −m)

)︁
·
t−1∏︂
i=1

(︁
1 + λ+i (m)(Xi −m)

)︁
is a product of nonnegative and nonincreasing functions, and is thus itself nonnegative
and nonincreasing. By a similar argument, K−

t (m) is nonnegative and nondecreasing.
K+
t (m) and K−

t (m) are thus both quasiconvex.

Step 2. Since the maximum of quasiconvex functions is quasiconvex, we infer that

K±
t (m) := max

{︁
θK+

t (m), (1− θ)K−
t (m)

}︁
is quasiconvex. In particular, the sublevel sets of quasiconvex functions is convex,
and thus

B±
t :=

{︃
m ∈ [0, 1] : K±

t (m) <
1

α

}︃
is an interval, which completes the proof of Lemma 2. □

Proof (Theorem 3). The proof proceeds in three steps. First we show that
K±
t (µ) is upper-bounded by test martingale. Second, we apply the 4-step procedure

in Theorem 1 to get a CS for µ. Third and finally, we invoke Lemma 2 to conclude
that the CS is indeed convex at each time t.

Step 1. We first upper bound K±
t (m) as follows:

K±
t (m) := max

{︁
θK+

t (m), (1− θ)K−
t (m)

}︁
≤ θK+

t (m) + (1− θ)K−
t (m) =:M±

t (m).

By Proposition 2, we have that K+
t (µ) and K−

t (µ) are test martingales for P. For
each P ∈ P, writing out the conditional expectation ofM±

t (µ) for any t ≥ 1,

EP
[︁
M±

t (µ) | Ft−1

]︁
= EP

[︂
θK+

t (µ) + (1− θ)K−
t (µ)

⃓⃓⃓
Ft−1

]︂
= θEP (K+

t (µ) | Ft−1) + (1− θ)EP (K−
t (µ) | Ft−1)

= θK+
t−1(µ) + (1− θ)K−

t−1(µ)

=M±
t−1(µ),

and M±
0 (µ) = θK+

0 (µ) + (1 − θ)K−
0 (µ) = 1. Therefore, (M±

t (µ))
∞
t=0 is a test

martingale for P.
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Step 2. By Step 1 combined with Theorem 1 we have that

B±
t :=

{︃
m ∈ [0, 1] : K±

t (m) <
1

α

}︃
forms a (1− α)-CS for µ.

Step 3. Finally, by Lemma 2, we have that B±
t is an interval for each t ∈ {1, 2, . . . },

which completes the proof of Theorem 3. □

A.6. Proof of Lemma 3
Following the proof of Lemma 4.1 in Fan et al. (2015), we have that the function

f(x) :=

⎧⎨⎩
log(1 + x)− x

x2/2
x ∈ (−1,∞) \ {0}

−1 x = 0

(37)

is an increasing and continuous function in x (note that f(0) is defined as −1 because
it is a removable singularity). For any y ≥ −m and λ ∈ [0, 1/m) we have

λy ≥ −mλ > −1. (38)

Combining (37) and (38), we have

log(1 + λy)− λy
λ2y2/2

≥ log(1−mλ) +mλ

λ2m2/2
,

and thus, log(1 + λy)− λy
(i)

≥ y2

m2
(log(1−mλ) +mλ) .

Above, (i) can be quickly verified for the case when λy = 0, and follows from (37)
and (38) otherwise. Rearranging terms, we obtain the first half of the desired result,

log(1 + λy) ≥ λy + y2

m2
(log(1−mλ) +mλ). (39)

Now, for any y ≤ 1−m and λ ∈ (−1/(1−m), 0], we have

λy ≥ (1−m)λ > −1,

and proceed similarly to before to obtain

log(1 + λy) ≥ λy + y2

(1−m)2
(log(1 + (1−m)λ)− (1−m)λ),

which completes the proof. □
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A.7. Proof of Proposition 5
Since sublevel sets of convex functions are convex, it suffices to prove that with
probability one, KhgKelly

n (m) is a convex function in m on the interval [0, 1].
We proceed in three steps. First, we show that if two functions are (a) both

nonincreasing (or both nondecreasing), (b) nonnegative, and (c) convex, then their
product is convex. Second, we use Step 1 and an induction argument to prove that∏︁t
i=1(1 + γ(Xi/m − 1)) is convex for any fixed γ ∈ [0, 1]. Third and finally, we

show that KhgKelly
n (m) is a convex combination of convex functions and is thus itself

convex.

Step 1. The claim is that if two functions f and g are (a) both nonincreasing
(or both nondecreasing), (b) nonnegative, and (c) convex on a set S ⊆ R, then
their product is also convex on S. Let x1, x2 ∈ S, and let t ∈ [0, 1]. Furthermore,
abbreviate f(x1) by f1, g(x1) by g1, and similarly for f2 and g2. Writing out the
product fg evaluated at tx1 + (1− t)x2,

(fg)(tx1 + (1− t)x2) = f(tx1 + (1− t)x2)g(tx1 + (1− t)x2)
= |f(tx1 + (1− t)x2)||g(tx1 + (1− t)x2)|
≤ |tf2 + (1− t)f2||tg1 + (1− t)g2|
= t2f1g1 + t(1− t) (f1g2 + f2g1) + (1− t)2f2g2,

where the second equality follows from assumption that f and g are nonnegative,
and the inequality follows from the assumption that they are both convex. To show
convexity of (fg), it then suffices to show that,(︂

tf1g1 + (1− t)f2g2
)︂
−
(︂
t2f1g1 + t(1− t) [f1g2 + f2g1] + (1− t)2f2g2

)︂
≥ 0. (40)

To this end, write out the above expression and group terms,(︂
tf1g1 + (1− t)f2g2

)︂
−
(︂
t2f1g1 + t(1− t) [f1g2 + f2g1] + (1− t)2f2g2

)︂
= (1− t)tf1g1 + t(1− t)f2g2 − t(1− t)[f1g2 + f2g1]

= t(1− t)
(︂
f1g1 + f2g2 − f1g2 − f2g1

)︂
= t(1− t)(f1 − f2)(g1 − g2).

Now, notice that t(1− t) ≥ 0 since t ∈ [0, 1] and that (f1 − f2)(g1 − g2) ≥ 0 by the
assumption that f and g are both nonincreasing or nondecreasing. Therefore, we
have satisfied the inequality in (40), and thus fg is convex on S.

Step 2. Now, we prove convexity of
∏︁t
i=1(1 + γ(Xi/m− 1)) for a fixed γ ∈ [0, 1].

First note that for any γ ∈ [0, 1], 1 + γ(Xi/m− 1) is a nonincreasing, nonnegative,
and convex function in m ∈ [0, 1]. Suppose for the sake of induction that conditions
(a), (b), and (c) hold for

∏︁n−1
i=1 (1 + γ(Xi/m− 1)). By the inductive hypothesis, we
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have that

n∏︂
i=1

(1 + γ(Xi/m− 1)) = (1 + γ(Xn/m− 1)) ·
n−1∏︂
i=1

(1 + γ(Xi/m− 1))

is a product of functions satisfying (a) through (c). By Step 1,
∏︁n
i=1(1+γ(Xi/m−1))

is convex in m ∈ [0, 1]. A similar argument can be made for K−
n (m), but instead of

the multiplicands being nonincreasing, they are now nondecreasing.

Step 3. Now, notice that for the evenly-spaced points (λ1+, . . . , λG+) on [0, 1/m],
we have that (γ1+, . . . , γG+) = (mλ1+, . . . ,mλG+) are G evenly-spaced points on
[0, 1]. It then follows that for any m and any g ∈ {0, 1, . . . , G},

m ↦→
n∏︂
i=1

(1 + λg+(Xi −m))

is a nonincreasing, nonnegative, and convex function in m ∈ [0, 1]. It follows that

1

G

G∑︂
g=1

n∏︂
i=1

(1 + λg+(Xi −m))

is convex in m ∈ [0, 1]. A similar argument goes through for 1
G

∑︁G
g=1

∏︁n
i=1(1 +

λg+(Xi −m). Finally, since θ ∈ [0, 1], we have that

θ

G

G∑︂
g=1

n∏︂
i=1

(1 + λg+(Xi −m)) +
1− θ
G

G∑︂
g=1

n∏︂
i=1

(1 + λg−(Xi −m))

is a convex combination of convex functions in m ∈ [0, 1]. It then follows that

{m ∈ [0, 1] : KhgKelly
t (m) < 1/α}

is an interval, which completes the proof. □

A.8. Proof of Proposition 4
Proof of (1) =⇒ (2). By definition of KWoR

t (µ), we have

E
(︁
KWoR
t (µ) | Ft−1

)︁
=

t−1∏︂
i=1

(︁
1 + λi(µ) · (Xi − µWoR

t )
)︁
· E
(︁
1 + λt(µ) · (Xt − µWoR

t ) | Ft−1

)︁
= KWoR

t−1 (µ) ·
(︁
1 + λt(µ) · (E(Xt | Ft−1)− µWoR

t )
)︁

= KWoR
t−1 (µ).

Since KWoR
0 (µ) ≡ 1 by convention, we have that KWoR

t (µ) is a martingale.
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Now, note that since Xt ∈ [0, 1] and λWoR
t (µ) ∈ [−1/(1−µWoR

t ), 1/µWoR
t ] for each

t by assumption, we have that 1 + λt(µ) ·
(︁
Xt − µWoR

t

)︁
≥ 0 and thus KWoR

t (µ) ≥ 0.
Therefore, KWoR

t (µ) is a test martingale.
Proof of (2) =⇒ (1). Suppose that KWoR

t (µ) is a test martingale for any (λt(µ))
N
t=1

with λt(µ) ∈ [−1/(1− µWoR
t , 1/µWoR

t ], but suppose for the sake of contradiction that
E(Xt⋆ | Ft⋆−1) ̸= µWoR

t⋆ for some t⋆ ∈ {1, 2, . . . }. Set λ1 = λ2 = · · · = λt⋆−1 = 0 and
λt⋆ = 1. Then,

KWoR
t⋆ (µ) ≡ KWoR

t⋆−1(µ) · (1 + λt⋆(Xt⋆ − µWoR
t⋆ )) = 1 +Xt⋆ − µWoR

t⋆ .

By assumption ofKWoR
t (µ) forming a martingale, we have that E

(︁
KWoR
t⋆ (µ) | Ft⋆−1

)︁
=

KWoR
t⋆−1(µ) = 1. On the other hand, since E (Xt⋆ | Ft⋆−1) ̸= µWoR

t⋆ , we have

E
(︁
KWoR
t⋆ (µ) | Ft⋆−1

)︁
= E

(︁
1 +Xt⋆ − µWoR

t⋆ | Ft⋆−1

)︁
̸= 1,

a contradiction. Therefore, we must have that E (Xt | Ft−1) = µWoR
t for each t,

which completes the proof of (2) =⇒ (1) and Proposition 4. □

A.9. Proof of Theorem 4
The proof that B±,WoR

t forms a (1−α)-CS for µ proceeds in exactly the same manner
as Theorem 3, noting that E (Xt | Ft−1) = µWoR

t instead of µ.
To show that B±,WoR

t is indeed an interval for each t ≥ 1, we note that the proof
of Theorem 3 applies since mWoR

t is increasing or decreasing if and only if m is
increasing or decreasing, respectively. □

B. How to bet: deriving adaptive betting strategies

In Section 4.4, we presented CSs and CIs via the hedged capital process. We suggested
a specific betting scheme which has strong empirical performance but did not discuss
where it came from. In this section, we derive various betting strategies and discuss
their statistical and computational properties.

B.1. Predictable plug-ins yield good betting strategies
First and foremost, we will examine why any predictable plug-in for empirical
Bernstein-type CSs and CIs (i.e. those recommended in Theorem 2 and Remark 1)
yield effective betting strategies. Consider the hedged capital process

K±
t (m) := max

{︄
θ

t∏︂
i=1

(1 + λ+i (Xi −m)), (1− θ)
t∏︂
i=1

(1− λ−i (Xi −m))

}︄
≡ max

{︁
θK+

t (m), (1− θ)K−
t (m)

}︁
,

where (λ+t (m))∞t=1 and (λ−t (m))∞t=1 are [0, 1/m]-valued and [0, 1/(1 − m)]-valued
predictable sequences as in Theorem 3. First, consider the “positive” capital process,
K+
t (µ) evaluated at m = µ. An inequality that has been repeatedly used to derive
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empirical Bernstein inequalities (Howard et al., 2020, 2021; Waudby-Smith and
Ramdas, 2020), including the current paper is the following due to Fan et al. (2015,
equation 4.12): for any y ≥ −1 and λ ∈ [0, 1), we have

log(1 + λy) ≥ λy − 4ψE(λ)y
2. (41)

where ψE(λ) is as defined in (14). If the predictable sequence (λ+t (m))∞t=1 is further
restricted to [0, 1), then by (41) we have

K+
t (µ) :=

t∏︂
i=1

(1 + λ+i (Xi − µ)) ≥ exp

(︄
t∑︂
i=1

λ+i (Xi − µ)−
t∑︂
i=1

4(Xi − µ)2ψE(λ+i )

)︄
(i)
≈ exp

(︄
t∑︂
i=1

λ+i (Xi − µ)−
t∑︂
i=1

4(Xi − ˆ︁µi−1)
2ψE(λ

+
i )

)︄
=MPrPl-EB

t (µ),

where (i) follows from the approximations ˆ︁µt−1 ≈ µ for large t. Not only does
the approximate inequality K+

t (µ) ≳ MPrPl-EB
t (µ) shed light on why a sensible

empirical Bernstein predictable plug-in translates to a sensible betting strategy, but
also why we might expect K+

t (m) to be more powerful than MPrPl-EB
t (m) for the

same [0, 1)-valued predictable sequence (λ+t (m))∞t=1. Moreover, K+
t (m) has the added

flexibility of allowing (λt(m))∞t=1 to take values in [0, 1/m] ⊃ [0, 1) which we find —
through simulations — tends to improves empirical performance (see Figure 19 in
Section E.2.2). Finally, a similar story holds for K−

t (µ) with the added caveat that
(λ−t )

∞
t=1 can instead take values in [0, 1/(1−m)] ⊃ [0, 1) which as before, seems to

improve empirical performance.
Despite the success of predictable plug-ins as betting strategies, it is natural to

wonder whether it is preferable to focus on directly maximizing capital over time.
As will be seen in the following section, these capital-maximizing approaches tend
to have improved empirical performance, but are not always guaranteed to produce
convex confidence sets (i.e. intervals). Nevertheless, it is worth examining some of
these strategies both for their intuitive appeal and excellent empirical performance.

B.2. Growth rate adaptive to the particular alternative (GRAPA)
As alluded to in Section 6, Kelly Jr (1956) dealt with capital processes, betting
strategies, etc. in the fields of information and communication theory in the pursuit
of maximizing the information rate over a channel. Kelly suggested that an effective
betting strategy is one that maximizes a gambler’s expected log-capital — i.e. the
growth rate of the gambler’s capital — under a particular alternative.§ However,
Kelly’s setup was a simplified special case of ours: Kelly’s observations were binary,
and the exact alternative was assumed known, while ours are merely bounded in
§This objective has also been arrived at indirectly as the dual in optimization programs for

deriving regret bounds for Kullback-Leibler-based UCB algorithms in multi-armed bandit
problems (Honda and Takemura, 2010; Cappé et al., 2013).
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[0, 1] with an unknown alternative. Nevertheless, the principle of maximizing the log-
capital can be adapted to our setting under bounded observations and an unknown
alternative. We summarize this adaptation here and refer to it as maximizing the
“growth rate adaptive to the particular alternative” or “GRAPA” for short.

Write the log-capital process at time t as

ℓt(λ
t
1,m) := log(Kt(m)) =

t∑︂
i=1

log(1 + λi(m)(Xi −m)), (42)

for a general [−1/(1−m), 1/m]-valued sequence (λt(m))∞t=1. If we were to choose a
single value of λHS := λ1 = · · · = λt which maximizes the log-capital ℓt “in hindsight”
(i.e. based on all of the previous data), then this value is given by

∂ℓt(λ
HS,m)

∂λHS
=

t∑︂
i=1

Xi −m
1 + λHS(Xi −m)

set
= 0.

However, λHS is clearly not predictable. Following Kumon et al. (2011) (who referred
to this as the “sequential optimization strategy”), we set (λGRAPA

t (m))∞t=1 such that

1

t− 1

t−1∑︂
i=1

Xi −m
1 + λGRAPA

t (m)(Xi −m)

set
= 0, (43)

truncated to lie between (−c/(1 − m), c/m) using some c ≤ 1. Importantly,
λGRAPA
t (m) only depends on X1, . . . , Xt−1, and is thus predictable.

This rule is a sequentially adaptive version of the worst-case “GROW” criterion
of Grünwald et al. (2019). To see the connection, one can derive (43) from a slightly
different motivation. At the t-th step, we want to choose λt(m) so that the wealth
multiplier (1 + λt(m)(Xt −m)) is as large as possible. The ideal choice would be

λ∗t (m) := argmax
λ∈[−1/(1−m),1/m]

EPµ [log(1 + λ(Xt −m)) | Ft−1], (44)

where Pµ is the unknown true distribution. Writing down the stationary condition
for this optimization problem by differentiating through the expectation, we get

EPµ

[︃
Xt −m

1 + λ∗t (m)(Xt −m)
| Ft−1

]︃
= 0. (45)

Since Pµ is unknown, using a simple empirical plug-in estimator yields (43).
CSs constructed from (λGRAPA

t (m))∞t=1 tend to have excellent empirical perfor-
mance, but can be prohibitively slow due to the required root-finding in (43) for each
time t and m ∈ [0, 1] (or a sufficiently fine grid of [0, 1]). A similar but computation-
ally inexpensive alternative to GRAPA is “approximate GRAPA” (aGRAPA), which
we derive now.
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B.3. Approximate GRAPA (aGRAPA)
Rather than solve (43), we take the Taylor approximation of (1 + y)−1 by (1− y) for
y ≈ 0 to obtain

1

t− 1

t−1∑︂
i=1

Xi −m
1 + λaGRAPA

t (m)(Xi −m)
≈ 1

t− 1

t−1∑︂
i=1

(︁
1− λaGRAPA

t (m)(Xi −m)
)︁
(Xi −m)

=
1

t− 1

t−1∑︂
i=1

(Xi −m)− λaGRAPA
t (m)

t− 1

t−1∑︂
i=1

(Xi −m)2

set
= 0,

which, after appropriate truncation leads what we call the “approximate GRAPA”
(aGRAPA) betting strategy,

λaGRAPA
t (m) := − c

1−m
∨ ˆ︁µt−1 −mˆ︁σ2t−1 + (ˆ︁µt−1 −m)2

∧ c

m
,

for some truncation level c ≤ 1. This expression is quite natural: we bet more
aggressively if our empirical mean is far away from m, and are further emboldened if
the empirical variance is small.
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Figure 10. λaGRAPA
t for various values of m under two distributions: Bernoulli(1/2) and

Beta(1, 1). The dotted lines show the “oracle” bets, meaning λaGRAPA
t with estimates of

the mean and variance replaced by their true values. As time passes, bets stabilize and
approach their oracle quantities.

As alluded to at the end of Section B.1, CSs derived using the capital process
Kt(m) with arbitrary betting schemes are not always guaranteed to produce a
convex set (interval). In fact, it is possible to construct scenarios where the sublevel
sets of KaGRAPA

t (m) are nonconvex in m (see Section E.4 for an example). In our
experience, this type of situation is not common, and one must actively search for
such pathological examples.
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B.4. Lower-bound on the wealth (LBOW)
Instead of maximizing log(Kt(m)), we may aim to do so for a tight lower-bound
on the wealth (LBOW). This technique has proven useful in the game-theoretic
probability literature (Shafer and Vovk, 2001, Proof of Lemma 3.3) and (Cutkosky
and Orabona, 2018, Proof of Theorem 1). Our lower bound will rely on an extension
of Fan’s inequality (41) to λ ∈ (−1/(1 − m), 1/m), summarized in the following
lemma.

Lemma 3. If y ≥ −m, then for any λ ∈ [0, 1/m), we have

log(1 + λy) ≥ λy + y2

m2
(log(1−mλ) +mλ).

On the other hand, if y ≤ 1−m, then for any λ ∈ (−1/(1−m), 0], we have

log(1 + λy) ≥ λy + y2

(1−m)2
(log(1 + (1−m)λ)− (1−m)λ).

Thus, for y ∈ [−m, 1−m], both of the above inequalities hold.

The proof is an easy generalization of inequality (41) by Fan et al. (2015), and also
follows from similar observations about the subexponential function ψE in Howard
et al. (2020, 2021), but we prove it from first principles in Section A.6 for completeness.
Using Lemma 3, we have for λL+ ∈ [0, 1/m), the following lower-bound on ℓ(λL+,m),

ℓ(λL+,m) := log

(︄
t∏︂
i=1

(1 + λL+(Xi −m))

)︄

≥ λL+
t∑︂
i=1

(Xi −m) +
log(1−mλL+) +mλL+

m2

t∑︂
i=1

(Xi −m)2, (46)

and for λL− ∈ (−1/(1−m), 0], we have

ℓ(λL−,m) := log

(︄
t∏︂
i=1

(1 + λL−(Xi −m))

)︄

≥ λL−
t∑︂
i=1

(Xi −m) +
log(1 + (1−m)λL−)− (1−m)λL−

(1−m)2

t∑︂
i=1

(Xi −m)2.

(47)

Importantly, if
∑︁t

i=1(Xi −m) is positive, then (46) is concave, while if negative,
(47) is concave. Maximizing (46) or (47) depending on the sign of

∑︁t
i=1(Xi −m) we

obtain the following “hindsight” choice for λL,

λL =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︁t
i=1(Xi −m)

m
∑︁t

i=1(Xi −m) +
∑︁t

i=1(Xi −m)2
if

t∑︂
i=1

(Xi −m) ≥ 0,

∑︁t
i=1(Xi −m)

−(1−m)
∑︁t

i=1(Xi −m) +
∑︁t

i=1(Xi −m)2
if

t∑︂
i=1

(Xi −m) ≤ 0.
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Of course, this choice of λL is not predictable and thus is not a valid betting
strategy in the framework of the current paper. This motivates the following strategy,
(λLt (m))∞t=1 given by

λLt (m) :=
−c

1−m
∨ ˆ︁µt−1 −m
ωt−1|ˆ︁µt−1 −m|+ ˆ︁σ2t−1 + (ˆ︁µt−1 −m)2

∧ c

m
, (48)

where ωt :=

{︄
m if ˆ︁µt −m ≥ 0 ,

1−m if ˆ︁µt −m < 0 .

Similarly to the aGRAPA betting procedure, LBOW is computationally-inexpensive
but is not guaranteed to produce an interval. The expression also carries similar
intuition to the GRAPA case.

B.5. Online Newton Step (ONS-m)
Betting algorithms play an essential role in online learning as several optimization
problems can be framed in terms of coin-betting games (Cutkosky and Orabona,
2018; Orabona and Tommasi, 2017; Jun et al., 2017; Jun and Orabona, 2019). While
the downstream application is different, the game-theoretic techniques of maximizing
wealth are almost immediately applicable to the problem at hand. Here, we consider
a slight modification to the Online Newton Step (ONS) algorithm due to Cutkosky
and Orabona (2018).

Algorithm 1: ONS-m.
Result: (λOt (m))Tt=1

λO1 (m)← 1;
for t ∈ {1, . . . , T − 1} do

yt ← Xt −m ;
Set zt ← yt/(1− ytλOt (m)) ;
At ← 1 +

∑︁t
i=1 z

2
i ;

λOt+1(m)← −c
1−m ∨

(︂
λOt (m)− 2

2−log(3)
zt
At

)︂
∧ c
m ;

end

Through simulations, we find that ONS-m performs competitively. However, its
lack of closed-form expression makes it a slightly more computationally-expensive
alternative to aGRAPA and LBOW, but not nearly as expensive as GRAPA (see
Table 2).

B.6. Diversified Kelly betting (dKelly)
Instead of committing to one betting strategy such as aGRAPA or LBOW, we can
simply take the average capital among D separate strategies. This follows from
the fact that an average of test martingales is itself a test martingale. That is, if
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Figure 11. Comparison of the wealth process under various game-theoretic betting strate-
gies with 100 repeats. In this example, the 1000 observations are drawn from a Beta(10,
10) distribution, and the candidate means m being tested are 0.5, 0.51, and 0.55 (from
left to right). Notice that these strategies perform similarly, but have varying computational
costs (see Table 2).

(λ1t )
∞
t=1, (λ

2
t )

∞
t=1, . . . , (λ

D
t )

∞
t=1 are D separate betting strategies, then

KdKelly
t (µ) :=

1

D

D∑︂
d=1

t∏︂
i=1

(︂
1 + λdi (µ)(Xi − µ)

)︂
forms a test martingale. Following Kelly’s original motivation to maximize (expected)
log-capital, notice that by Jensen’s inequality,

log
(︂
KdKelly
t

)︂
>

1

D

D∑︂
d=1

log

(︄
t∏︂
i=1

(︂
1 + λdi (µ)(Xi − µ)

)︂)︄
.

In other words, the log-capital of the diversified bets is strictly larger than the average
log-capital among the diverse candidate bets.

Grid Kelly betting (gKelly). While it is possible to use any finite collection of
strategies, we focus our attention on a particularly simple (and useful) example
where the bets are constant values on a grid. Specifically, divide the interval
[−1/(1 − m), 1/m] up into G evenly-spaced points λ1, . . . , λG. Then define the
gKelly capital process KgKelly

t by

KgKelly
t (m) :=

1

G

G∑︂
g=1

t∏︂
i=1

(1 + λg(Xi −m)) .

When used to construct confidence sequences for µ, KgKelly
t demonstrates excellent

empirical performance. Moreover, this procedure can be slightly modified into
“Hedged gKelly” (hgKelly) so that confidence sequences constructed using gKelly are
intervals almost surely.

In order to mimic the unknown optimal λ∗, D or G should not be kept constant,
but itself grow slowly (say logarithmically) with t. In game-theoretic terms, one
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should slowly add more strategies to the portfolio, in order to asymptotically match
the performance of the optimal one over time. (When adding a new λg to an existing
mixture, it obviously only begins to contribute to the wealth from the following step
onwards; formally G would be replaced by Gt, and

∏︁t
i=1(1 + λg(Xi −m) would be

replaced by
∏︁t
i=tg

(1 + λg(Xi −m) if λg was first introduced after tg − 1 steps.)

Hedged gKelly. First, divide the interval [−1/(1−m), 0] and [0, 1/m] into G evenly-
spaced points: (λ1−, . . . , λG−) and (λ1+, . . . , λG+), respectively. Then define the
“Hedged grid Kelly capital process” KhgKelly

t given by

KhgKelly
t (m) :=

θ

G

G∑︂
g=1

t∏︂
i=1

(︁
1 + λg+(Xi −m)

)︁
+

1− θ
G

G∑︂
g=1

t∏︂
i=1

(︁
1 + λg−(Xi −m)

)︁
,

where θ ∈ [0, 1] (a reasonable default being θ = 1/2).

Proposition 5. If (Xt)
∞
t=1 ∼ P for some P ∈ Pµ, then KhgKelly

t (µ) forms a
test martingale and BhgKelly

t :=
{︂
m ∈ [0, 1] : KhgKelly

t (m) < 1/α
}︂

is a CS for µ that
forms an interval for each t ≥ 1.

The proof in Section A.7 proceeds by showing that KhgKelly
t is a convex function of

m and hence its sublevel sets are intervals.

B.7. Confidence Boundary (ConBo)
The aforementioned strategies benefit from targeting bets against a particular null
hypothesis, Hm

0 for each m ∈ [0, 1], but this has the drawback of Kt(m) potentially
not being quasiconvex in m. One of the advantages of the hedged capital process as
described in Theorem 3 is that K±

t (m) is always quasiconvex, and thus its sublevel
sets (and hence the confidence sets B±

t ) are intervals.
In an effort to develop game-theoretic betting strategies which generate confidence

sets which are intervals, we present the Confidence Boundary (ConBo) bets. Rather
than bet against the null hypotheses Hm

0 for each m ∈ [0, 1], consider two sequences of
nulls, (Hut

0 )∞t=1 and (H lt
0 )

∞
t=1 corresponding to upper and lower confidence boundaries,

respectively. The ConBo bet λCB
t is then targeted against ut−1 and lt−1 using any

game-theoretic betting strategy (e.g. ∗GRAPA, ∗Kelly, LBOW, or ONS-m). Letting
λGt (m) be any such strategy, we summarize the ConBo betting scheme in Algorithm 2.

Corollary 1 (Confidence boundary CS [ConBo]). In Algorithm 2,

BCB
t forms a (1− α)-CS for µ,

as does
⋂︁
i≤tB

CB
i . Further, BCB

t is an interval for any t ≥ 1.

We can also adapt the ConBo betting scheme outlined in Algorithm 2 to the
without-replacement setting by replacing m by mWoR

t for each time t.
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Algorithm 2: ConBo
Result: (KCB

t (m))Tt=1

l0 ← 0 ; u0 ← 1;
KCB+

0 (m)← KCB−
0 (m)← 1;

for t ∈ {1, . . . , T} do
λCB+
t ← max

{︁
λGt (lt−1), 0

}︁
∧ c/m; // Compute ConBo bets

λCB−
t ←

⃓⃓
min

{︁
λGt (ut−1), 0

}︁⃓⃓
∧ c/(1−m);

KCB+
t (m)←

[︂
1 + λCB+

t (Xt −m)
]︂
· KCB+

t−1 (m); // Update capital

KCB−
t (m)←

[︂
1− λCB−

t (Xt −m)
]︂
· KCB−

t−1 (m);

KCB
t (m)← max

{︂
θKCB+

t (m), (1− θ)KCB−
t (m)

}︂
; // Hedging

BCB
t ← {m ∈ [0, 1] : Kt(m) < 1/α} ;

lt ← infBCB
t ; // Update confidence boundaries to bet against

ut ← supBCB
t ;

end

Corollary 2 (WoR confidence boundary CS [ConBo-WoR]). Under the
same conditions as Theorem 4, define λCB-WoR+

t and λCB-WoR−
t as in Algorithm 2

but with m replaced by mWoR
t . Then,

BCB-WoR
t :=

{︁
m ∈ [0, 1] : KCB-WoR

t < 1/α
}︁

forms a (1− α)-CS for µ,

as does
⋂︁
i≤tB

CB-WoR
i . Further, BCB-WoR

t is an interval for each t ≥ 1.

B.8. Sequentially Rebalanced Portfolio (SRP)
Implicitly, none of the aforementioned strategies take advantage of “rebalancing”,
meaning the ability to take ones capital Kt at time t, diversify it in any manner
at time t + 1, and repeat. This has had the mathematical advantage of being
able to write the resulting capital process (Kt(m))∞t=1 in the following general, but
closed-form expression:

Kt(m) :=

D∑︂
d=1

θd

t∏︂
i=1

(1 + λdi (m) · (Xi −m)),

where D ≥ 1 is as in Section B.6, (λ1t (m))∞t=1, . . . , (λ
D
t (m))∞t=1 are [−1/(1−m), 1/m]-

valued predictable sequences as usual, and (θd)
D
d=1 are convex weights such that∑︁D

d=1 θd = 1. However, a more general capital process martingale can be written but
instead of having a closed-form product expression, it can be written recursively as

KSRP
t (m) :=

Dt∑︂
d=1

(1 + λdt (m) · (Xt −m)) · θdt · KSRP
t−1 (m), (49)
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where (λdt )
Dt

d=1 are [1/(1−m), 1/m]-valued predictable bets, (θdt )
Dt

d=1 are predictable
convex weights that sum to 1 (conditional on Xt−1

1 ), and we have set the initial
capital KSRP

0 (m) to 1 as usual.
Adopting the betting interpretation, (49) is a rather intuitive procedure. At each

time step t, the gambler divides their previous capital KSRP
t−1 (m) up into Dt ≥ 1

portions given by θ1t ·KSRP
t−1 (m), . . . , θDt

t · KSRP
t−1 (m), then invests these wealths with

bets λ1t (m), . . . , λDt

t (m), respectively. The gambler’s wealths are then updated to

(1 + λ1t (m) · (Xt −m)) · θ1t · KSRP
t−1 (m), . . . , (1 + λDt

t (m) · (Xt −m)) · θDt

t · KSRP
t−1 (m),

which are then combined via summation to yield a final capital of (49).
It is now routine to check that the process given by (49) is a nonnegative martingale

when evaluated at µ since

E
(︁
KSRP
t (µ) | Xt−1

1

)︁
=

Dt∑︂
d=1

KSRP
t−1 (µ) · θ

Dt

t ·

⎛⎝1 + λt(µ)

⎛⎝E(Xt | Xt−1
1 )− µ⏞ ⏟⏟ ⏞

=0

⎞⎠⎞⎠
= KSRP

t−1 (µ)

Dt∑︂
d=1

θDt

t⏞ ⏟⏟ ⏞
=1

= KSRP
t−1 (µ).

Note that SRP is the most general and customizable betting strategy presented in
this paper, since it can be composed of any of the previously discussed strategies,
and includes each of them as a special case.

C. Simulations

This section contains a comprehensive set of simulations comparing our new confidence
sets presented against previous works. We present simulations for building both
time-uniform CSs and fixed-time CIs with or without replacement. Each of these are
presented under four distributional “themes”: (1) discrete, high-variance; (2) discrete,
low-variance; (3) real-valued, evenly spread; and (4) real-valued, concentrated.
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C.1. Time-uniform confidence sequences (with replacement)
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Figure 12. Comparing Hedged, hgKelly, PrPl-EB, and PrPl-H CSs alongside other time-
uniform confidence sequences in the literature; further details in Section D.1. Clearly, the
betting approach is dominant in all settings.
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C.2. Fixed-time confidence intervals (with replacement)
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Figure 13. Hedged capital, Anderson, Bentkus, Maurer-Pontil empirical Bernstein, and
predictable plug-in empirical Bernstein CIs under four distributional scenarios. Further
details can be found in Section D.2. Clearly, the betting approach is dominant in all settings.
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C.3. Time-uniform confidence sequences (without replacement)
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Figure 14. Hedged capital, Hoeffding, and empirical Bernstein CSs for the mean of a finite
set of bounded numbers when sampling WoR. Further details can be found in Section D.3.
Clearly, the betting approach is dominant in all settings.
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C.4. Fixed-time confidence intervals (without replacement)
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Figure 15. Fixed-time hedged capital, Hoeffding-type, and empirical Bernstein-type CIs
for the mean of a finite set of bounded numbers when sampling WoR. Further details can
be found in Section D.4. Clearly, the two betting approaches (Hedged and ConBo) are
dominant in all settings.
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Table 2. Typical computation time for constructing a CS from time 1 to 103 for the mean of
Bernoulli(1/2)-distributed random variables. The three betting CSs were computed for 1000
evenly-spaced values of m in [0, 1], while a coarser grid would have sped up computation. All
CSs were calculated on a laptop powered by a quad-core 2GHz 10th generation Intel Core i5.
Parallelization was carried out using the Python library, multiprocess (McKerns et al., 2011).

Betting scheme Interval (a.s.) Computation time (seconds)
ConBo+LBOW ✓ 0.08

Hedged+(λPrPl±
t )∞t=1 ✓ 0.25

hgKelly (G = 20) ✓ 1.38
aGRAPA 0.35
LBOW 0.25
ONS-m 12.45
Kelly 197.38

D. Simulation details

In each simulation containing confidence sequences or intervals and their widths, we
took an average over 5 random draws from the relevant distribution. For example, in
the “Time-uniform confidence sequences” plot of Figure 1, the CSs (PrPl-H, PrPl-EB,
and Hedged) were averaged over 5 random draws from a Beta(10, 30) distribution.
Computation times for various strategies are given in Table 2.

D.1. Time-uniform confidence sequences (with replacement)
Each of the CSs considered in the time-uniform (with replacement) case are presented
as explicit theorems and propositions throughout the paper. Specifically,

• PrPl-H: Predictable plug-in Hoeffding (Proposition 1);

• PrPl-EB: Predictable plug-in empirical Bernstein (Theorem 2);

• Hedged: Hedged capital process (Theorem 3); and

• hgKelly: Hedged grid-Kelly (Proposition 5).

Bernoulli [HRMS20] Section C compared these against the conjugate mixture
sub-Bernoulli confidence sequence by Howard et al. (2021), recalled below.

Hoeffding (1963, Equation (3.4)), presented the sub-Bernoulli upper-bound on
the moment generating function of bounded random variables for any λ > 0:

EP (exp {λ(Xi − µ)}) ≤ 1− µ+ µ exp{λ},

which can be used to construct an e-value by noting that

EP
(︂
exp

{︂
λ(Xi − µ)− log(1− µ+ µeλ)

}︂
| Fi−1

)︂
≤ 1.

Then, Howard et al. (2021) showed that the cumulative product process
t∏︂
i=1

(︂
exp

{︂
λ(Xi − µ)− log(1− µ+ µeλ)

}︂)︂
(50)
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forms a test supermartingale, as does a mixture of (50) for any probability distribution
F (λ) on R+: ∫︂

λ∈R+

t∏︂
i=1

(︂
exp

{︂
λXi − log(1− µ+ µeλ)

}︂)︂
dF (λ). (51)

In particular, Howard et al. (2021) take F (λ) to be a beta distribution so that the
integral (51) can be computed in closed-form. Using (51) in Step (b) in Theorem 1
yields the “Bernoulli [HRMS20]” confidence sequence.

There are yet other improvements of Hoeffding’s inequality, for example one that
goes by the name of Kearns-Saul (Kearns and Saul, 1998) but was incidentally noted
in Hoeffding’s original paper itself. This inequality, and other variants, are looser
than the sub-Bernoulli bound and so we exclude them here; see Howard et al. (2020)
for more details. Most importantly, none of these adapt to the true underlying
variance of the random variables, unlike most of our new techniques.

A-Bentkus [KZ21] We also compared our bounds against the “adaptive Bentkus
confidence sequence” (A-Bentkus) due to Kuchibhotla and Zheng (2021, Section 3.5).
These combine a maximal version of Bentkus et al.’s concentration inequality (Kuchib-
hotla and Zheng, 2021, Theorem 1) with the “stitching” technique Zhao et al. (2016);
Mnih et al. (2008); Howard et al. (2021) — a method to obtain infinite-horizon
concentration inequalities by taking a union bound over exponentially-spaced finite
time horizons.

D.2. Fixed-time confidence intervals (with replacement)
For the fixed-time CIs included from this paper, we have

• PrPl-EB-CI: Predictable plug-in empirical Bernstein CI (Remark 1); and

• Hedged-CI: Hedged capital process CI (Remark 3).

These were compared against CIs due to Hoeffding (1963), Maurer and Pontil (2009),
Anderson (1969), and Bentkus (2004) which we now recall.

H-CI [H63] These intervals refer to the CIs based on Hoeffding’s classical concen-
tration inequalities (Hoeffding, 1963). Specifically, for a sample size n ≥ 1, “H-CI
[H63]” refers to the CI,

1

n

n∑︂
i=1

Xi ±
√︃

log(2/α)

2n
.

Anderson [A69] These intervals refer to the confidence intervals due to Anderson
(1969) which take a unique approach by considering the entire sample cumulative
distribution function, rather than just the mean and variance. Consequently, however,
Anderson’s CIs require iid observations, rather than the more general setup we
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consider. We nevertheless find that even in the iid setting, our approach outperforms
Anderson’s.

Suppose X1, . . . , Xn
iid∼ P are [0, 1]-bounded with mean EP (X1) = µ. Let

X(1), . . . , X(n) denote the order statistics of Xn
1 with the convention that X(0) := 0

and X(n+1) := 1. Following the notation of Learned-Miller and Thomas (2019),
Anderson’s CI is given by[︄

n∑︂
i=1

uDKW
i

(︁
−X(n−(i+1)) +X(n−i)

)︁
, 1−

n∑︂
i=1

uDKW
i

(︁
X(i+1) −X(i)

)︁]︄
,

where uDKW
i =

(︂
i/n−

√︁
log(2/α)/2n

)︂
∨ 0. Learned-Miller and Thomas (2019,

Theorem 2) show that Anderson’s CI is always tighter than Hoeffding’s. The authors
also introduce a bound which is strictly tighter than Anderson’s which they conjecture
has valid (1− α)-coverage, but we do not compare to this bound here.

EB-CI [MP09] The empirical Bernstein CI of Maurer and Pontil (2009) is given by

1

n

n∑︂
i=1

Xi ±
√︃

2ˆ︁σ2 log(4/α)
n

+
7 log(4/α)

3(n− 1)
,

and ˆ︁σ2 is the sample variance.

Bentkus-CI [B04] Bentkus’ confidence interval requires an a-priori upper bound on
Var(Xi) for each i. As alluded to in the introduction, we do not consider concentration
bounds which require knowledge of the variance. However, since we assumeXi ∈ [0, 1],
we have the trivial upper bound, Var(Xi) ≤ 1

4 , which we implicitly use throughout
our computation of Bentkus’ confidence interval.

Define the independent, mean-zero random variables (Gi)
n
i=1 as

Gi :=

{︄
−1

4 w.p. 4
5

1 w.p. 1
5

,

an important technical device which has appeared in seminal works by Hoeffding
(1963, Equation (2.14)) and Bennett (1962, Equation (10)). Then the “Bentkus-CI”
is

1

n

n∑︂
i=1

Xi ±
W ⋆
α

n
,

where W ⋆
α ∈ [0, n] is given by the value of Wα such that

inf
y∈[0,n] : y≤Wα

E
[︁∑︁n

i=1(Gi − y)2+
]︁

(Wα − y)2+
= α.

Efficient algorithms have been developed to solve the above (Bentkus et al., 2006,
Section 9), (Kuchibhotla and Zheng, 2021).



26 Waudby-Smith and Ramdas

PTL-ℓ2 [PTL21] The work by Phan et al. (2021) proposes an interesting but
computationally intensive approach to constructing confidence intervals for means
of iid bounded random variables. Specifically, we will focus on their tightest bound
(according to (Phan et al., 2021, Figure 4)) which makes use of the ℓ2 norm in its
derivation (and which we thus refer to as PTL-ℓ2).

For example, computing PTL-ℓ2 confidence intervals¶ from a sampleX1, . . . , X300 ∼
Unif[0, 1] of n = 300 uniformly distributed random variables took upwards of 11
minutes while our betting confidence interval (Remark 3) took less than 0.5 sec-
onds. For this reason, we conduct a small-scale simulation of sample sizes 5-200
(see Figure 16). We find that PTL-ℓ2 performs extremely well for the low-variance
continuous distribution Beta(10, 30) but poorly for sample sizes closer to 200 for
Bernoulli data. Nevertheless, PTL-ℓ2 requires i.i.d. data (while we only require
boundedness and conditional mean µ) and PTL-ℓ2 does not have time-uniform or
without-replacement analogues.

D.3. Time-uniform confidence sequences (without replacement)
The WoR CSs which were introduced in this paper include

• Hedged-WoR: Without replacement hedged capital process (Theorem 4); and

• hgKelly-WoR: Without replacement analogue of hgKelly (Proposition 5).

The CSs labeled “H-WoR [WR20]” and “EB-WoR [WR20]” are the without-replacement
Hoeffding- and empirical Bernstein-type CSs due to Waudby-Smith and Ramdas
(2020) which we recall now.

H-WoR [WR20] Define the weighted WoR mean estimator and the Hoeffding-type
λ-sequence,

ˆ︁µWoR
t (λt1) :=

∑︁t
i=1 λi(Xi +

1
N−i+1

∑︁i−1
j=1Xj)∑︁t

i=1 λi(1 +
i−1

N−i+1)
, and λt :=

√︄
8 log(2/α)

t log(t+ 1)
∧ 1,

respectively. Then “H-CS [WR20]” refers to the WoR Hoeffding-type CS,

ˆ︁µWoR
t (λt1)±

∑︁t
i=1 ψH(λi) + log(2/α)∑︁t
i=1 λi

(︂
1 + i−1

N−i+1

)︂ .

EB-WoR [WR20] Analogously to the Hoeffding-type CSs, “EB-CS [WR20]” corre-
sponds to the empirical Bernstein-type CSs for sampling WoR due to Waudby-Smith
and Ramdas (2020). These CSs take the form

ˆ︁µWoR
t (λt1)±

∑︁t
i=1 4(Xi − ˆ︁µi−1)

2ψE(λi) + log(2/α)∑︁t
i=1 λi

(︂
1 + i−1

N−i+1

)︂ ,

¶We used code by Phan et al. (2021) with their default tuning parameters, available at
github.com/myphan9/small_sample_mean_bounds.

https://github.com/myphan9/small_sample_mean_bounds
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Figure 16. Various with-replacement fixed-time confidence intervals, including that of Phan
et al. (2021) (PTL-ℓ2-CI). While PTL-ℓ2-CI performs very well in the Beta(10, 30) regime, it
appears to suffer for Bernoulli(1/2) with larger n. In any case, PTL-ℓ2-CI relies on iid data,
while the other four methods do not.
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where in this case, we have

λt :=

√︄
2 log(2/α)ˆ︁σ2t−1t log(t+ 1)

∧ 1

2
, ˆ︁σ2t := 1/4 +

∑︁t
i=1(Xi − ˆ︁µi)2
t+ 1

, and ˆ︁µt := 1

t

t∑︂
i=1

Xi.

(52)

D.4. Fixed-time confidence intervals (without replacement)
The only fixed-time CI introduced in this paper is Hedged-WoR-CI: the without-
replacement hedged capital process CI described in Section 5. The other two are
both due to Waudby-Smith and Ramdas (2020) which we describe now.

H-WoR-CI [WR20] This corresponds to the CI described in Corollary 3.1 of
Waudby-Smith and Ramdas (2020). This has the form

ˆ︁µWoR
n ±

√︂
1
2 log(2/α)

√
n+ 1√

n

∑︁n
i=1

i−1
N−i+1

.

EB-WoR-CI [WR20] Similarly, this CI corresponds to that described in Corol-
lary 3.2 of Waudby-Smith and Ramdas (2020). Specifically, “EB-WoR-CI [WR20]” is
defined as ˆ︁µWoR

n (λn1 )±
∑︁n

i=1 4(Xi − ˆ︁µi−1)
2ψE(λi) + log(2/α)∑︁n

i=1 λi

(︂
1 + i−1

N−i+1

)︂ ,

where

λt :=

√︄
2 log(2/α)

nˆ︁σ2t−1

∧ 1

2
, ˆ︁σ2t := 1/4 +

∑︁t
i=1(Xi − ˆ︁µi)2
t+ 1

, and ˆ︁µt := 1
2 +

∑︁t
i=1Xi

t+ 1
,

(53)
and ˆ︁µWoR

n is defined as

ˆ︁µWoR
t (λt1) :=

∑︁t
i=1 λi(Xi +

1
N−i+1

∑︁i−1
j=1Xj)∑︁t

i=1 λi(1 +
i−1

N−i+1)
.

D.5. Betting “confidence distributions”: confidence sets at several resolutions
Figures 17 and 18 demonstrate two tools to visualize CSs at various α and t.
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Figure 17. This plot shows the aGRAPA CS for all α ∈ [0, 1/2] under Unif[0, 1] data.
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Figure 18. Here we plot the inverse wealth 1/Kt(m) in game m against m ∈ [0, 1], at
t = 25, 100, 250 for three different betting strategies. Note the different y-axis scales. Despite
not being normalized to yield a “confidence distribution”, this is a useful visual tool. For
example, the mode in each plot signifies the m against which we have minimum wealth,
which is a reasonable point estimator for µ. Further, the superlevel set for any α ∈ [0, 1]
yields exactly the (1− α)-CS for µ (for that corresponding time and strategy) since it yields
all m with wealth less than 1/α. Last, for any m ∈ [0, 1], the height (truncated at one) is
anytime-valid p-value for the null hypothesis that the mean equals m.

E. Additional theoretical results

E.1. Betting confidence sets are tighter than Hoeffding
In this section, we demonstrate that the betting approach can dominate Hoeffding
for sufficiently large sample sizes. First, we show that for any x,m ∈ (0, 1) and any
λ ∈ R, then γ ≡ γm(λ) can be set as

γm(λ) := exp
{︁
−mλ− λ2/8

}︁
(exp(λ)− 1),

so that

Hm(x) := exp
{︁
λ(x−m)− λ2/8

}︁⏞ ⏟⏟ ⏞
Hoeffding term

≤ 1 + γ(x−m)⏞ ⏟⏟ ⏞
Capital process term

=: Km(x)
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for any x,m ∈ [0, 1]. In particular, the Hoeffding-type and capital process su-
permartingales are built from precisely the above terms, respectively, and so if
Hm(x) ≤ Km(x) for any x ∈ [0, 1], then their respective supermartingales will satisfy
the same inequality almost surely.

Proposition 6 (Capital process dominates Hoeffding process). Suppose
x,m ∈ [0, 1] and λ ∈ R. Then there exists γm(λ) ∈ R such that

Hm(x) := exp
(︁
λ(x−m)− λ2/8

)︁
≤ 1 + γm(λ)(x−m) =: Km(x).

Note that Proposition 6 alone does not confirm that the Hoeffding-based CIs will be
dominated by capital process-based CIs since γ must be within [−1/(1−m), 1/m] for
Km(x) to be nonnegative. However, it is easy to verify that for all λ ∈ [−0.45, 0.45],
we have that γ ∈ [−1, 1] and thus Km(x) ≥ 0. When constructing a Hoeffding-type
(1−α)-confidence interval, for example, one would set λHn :=

√︁
8 log(2/α)/n, making

λHn ∈ [−0.45, 0.45] whenever n ≥ 40 log(2/α), in which case a capital process-based
CI will dominate a Hoeffding-based CI almost surely.

Proof (Proposition 6). We prove the result for λ ≥ 0 and remark that this
implies the result for the case when λ ≤ 0 by considering (1−x) and (1−m) instead
of x and m, respectively.

The proof proceeds in 3 steps. First, we consider the line segment Lm(x) con-
necting Hm(0) and Hm(1) and note that by convexity of Hm(x), we have that
Hm(x) ≤ Lm(x) for all x ∈ [0, 1]. We then find the slope of this line segment
and set γ to this value so that the line Km(x) := 1 + γ(x − m) has the same
slope as Lm(x). Finally, we demonstrate that Lm(0) ≤ Km(0), and conclude that
Hm(x) ≤ Lm(x) ≤ Km(x) for all x ∈ [0, 1].

Step 1. Note that Hm(x) is a convex function in x ∈ [0, 1], and thus

∀x ∈ [0, 1], Hm(x) ≤ Hm(0) + [Hm(1)−Hm(0)]x =: Lm(x).

Step 2. Observe that the slope of Lm(x) is Hm(1)−Hm(0). Setting γ := Hm(1)−
Hm(0) we have that Km(x) and Lm(x) are parallel.

Step 3. It remains to show that Km(0) ≥ Lm(0) ≡ Hm(0) for every m ∈ [0, 1].
Consider the following equivalent statements:

Km(0) ≥ Hm(0)

⇐⇒ 1−m [Hm(1)−Hm(0)] ≥ Hm(0)

⇐⇒ 1−m exp
(︁
λ− λm− λ2/8

)︁
≥ (1−m) exp

(︁
−λm− λ2/8

)︁
⇐⇒ 1 ≥ exp

(︁
−λm− λ2/8

)︁
[1−m+m exp(λ)]

⇐⇒ exp
(︁
λm+ λ2/8

)︁
≥ [1−m+m exp(λ)]

⇐⇒ a(λ) := exp
(︁
λm+ λ2/8

)︁
− [1−m+m exp(λ)] ≥ 0.
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Now, note that a is smooth and a(0) = 0 and so it suffices to show that its derivative
a′(λ) ≥ 0 for all λ ≥ 0. To this end, consider the following equivalent statements.

a′(λ) ≡
(︃
m+

λ

4

)︃
exp

(︁
λm+ λ2/8

)︁
−m exp(λ) ≥ 0

⇐⇒
(︃
m+

λ

4

)︃
exp

(︁
λm+ λ2/8

)︁
≥ m exp(λ)

⇐⇒ ln

(︃
1 +

λ

4m

)︃
+ λm+ λ2/8 ≥ λ

⇐⇒ b(λ) := ln

(︃
1 +

λ

4m

)︃
+ λm+ λ2/8− λ ≥ 0,

and hence it suffices to show that b(λ) ≥ 0. Similar to a(λ), we have that b(0) = 0
and so it suffices to show that its derivative, b′(λ) ≥ 0 for all λ ≥ 0. Indeed,

b′(λ) ≡ 1

4m+ λ
+m+

λ

4
− 1 ≥ 0

⇐⇒ c(λ) := 1 +m(4m+ λ) +
λ

4
(4m+ λ)− 4m− λ ≥ 0

Since c(λ) is a convex quadratic, it is straightforward to check that

argmin
λ∈R

c(λ) = 2− 4m,

and that c(2− 4m) = 0. In conclusion, if we set γ ≡ γm(λ) as

γm(λ) := Hm(1)−Hm(0) = exp
{︁
−mλ− λ2/8

}︁
(exp(λ)− 1),

then Hm(x) ≤ Km(x) := 1 + γm(λ)(x−m) for every m ∈ [0, 1]. This completes the
proof. □

E.2. Optimal convergence of betting confidence sets
In Section B, it was mentioned that for nonnegative martingales, Ville’s inequality is
nearly an equality and hence martingale-based CSs are nearly tight in a time-uniform
sense. However, it is natural to wonder what other theoretical guarantees betting
CSs/CIs can have in addition to their empirical performance. In the time-uniform
setting, CSs for the mean cannot attain widths which scale faster than ≍

√︁
log log t/t,

due to the law of the iterated logarithm. Similarly, fixed-time CIs cannot scale faster
than ≍ 1/

√
n. In this section, we show that it is possible to choose betting strategies

such that the resulting CSs and CIs scale at the optimal rates of O(
√︁

log log t/t) and
O(1/

√
n), respectively.

E.2.1. An iterated logarithm betting confidence sequence
We will establish the law of the iterated logarithm (LIL) convergence rate by carefully
constructing a capital process martingale whose resulting CS is — for sufficiently
large t — tighter than a larger CS which itself attains the required LIL rate.
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Before stating the result in Proposition 7, let ζ(s) :=
∑︁∞

k=1
1
ks be the Riemann

zeta function and for each k ∈ {1, 2, . . . }, define

λk :=

√︄
8 log (ksζ(s))

ηk+1/2
, and

γk(m) = exp
{︁
−mλk − λ2k/8

}︁
(exp(λk)− 1) ∧ 1,

where η > 1 is some user-chosen constant. Let kt denote the (unique) integer such
that logη t ≤ kt ≤ logη t+ 1. Define the process

KL
t :=

1

2
KL+
t (m) +

1

2
KL−
t (m)

where KL+
t (m) :=

1

kst ζ(s)

t∏︂
i=1

(1 + γkt(Xi −m)) and

KL−
t (m) :=

1

kst ζ(s)

t∏︂
i=1

(1− γkt(Xi −m)).

Note that KL+
t (m) and KL−

t (m) are both upper-bounded by the infinite mixtures

KL+
t (m) ≤

∞∑︂
k=1

1

ksζ(s)

t∏︂
i=1

(1 + γk(Xi −m)) and (54)

KL−
t (m) ≤

∞∑︂
k=1

1

ksζ(s)

t∏︂
i=1

(1− γk(Xi −m)), (55)

which themselves form nonnegative martingales when m = µ by Fubini’s theorem.
Consequently,

CL
t :=

{︃
m ∈ [0, 1] : KL

t (m) <
1

α

}︃
forms a (1− α)-CS for µ. The following proposition establishes the LIL rate of CL

t .

Proposition 7. The CS (CL
t )

∞
t=1 has a width of O(

√︁
log log t/t), meaning

ν(CL
t ) = O

(︄√︃
log log t

t

)︄
,

where ν is the Lebesgue measure.

Proof. The proof proceeds in three steps. In Step 1, we construct a distinct but
related CS (which we will denote by (C×

t )
∞
t=1) via the stitching technique (Howard

et al., 2021). In Step 2, we demonstrate that this stitched CS achieves the desired rate
by deriving an analytically tractible superset whose width scales as O(

√︁
log log t/t).

Finally, in Step 3, we will show that the stitched CS C×
t is a superset of CL

t for all t
sufficiently large, thus implying the final result.
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Step 1. Constructing the stitched CS C×
t : In the language of betting, the idea

behind stitching is to first divide one’s capital up into infinitely many portions
w1, w2, . . . such that

∑︁∞
k=1wk = 1, and then place a constant bet λk using a capital

of wk on a designated epoch of time, which will be chosen to be geometrically spaced.
In what follows, the portions wk will be given by wk = 1

ζ(s)ks , and we will divide
time {1, 2, 3, . . . } up into epochs demarcated by the endpoints ηk−1 and ηk for each
k ∈ {1, 2, 3, . . . } and for some user-specified η > 1 (e.g. η = 1.1). The constant
bets λk will be chosen so that they are effective between ηk−1 and ηk and lead to
O(
√︁

log log t/t) widths after being combined across epochs.
The construction of the stitched boundary essentially follows (a simplified version

of) the proof of Theorem 1 in Howard et al. (2021, Section A.1), but we present the
derivation here for completeness. Consider the Hoeffding-type process for a fixed
λ ∈ R:

Mλ
t (m) := exp

{︁
λSt(m)− tλ2/8

}︁
, (56)

where St(m) :=
∑︁t

i=1(Xi − m). As discussed in Section 3, Mt(µ) forms a test
supermartingale, and hence by Ville’s inequality we have

P

⎛⎜⎜⎝∃t ≥ 1 : St(µ) ≥
r + tλ2/8

λ⏞ ⏟⏟ ⏞
gλ,r(t)

⎞⎟⎟⎠ ≤ e−r.
We have typically used r = log(1/α) throughout the paper, but the above alternative
notation will help in the following discussion. Using the notation of Howard et al.
(2021, Section A.1), define the boundary above as gλ,r(t) := (r + tλ2/8)/λ, and let

λk :=

√︄
8rk

ηk−1/2
,

where rk := log

(︃
ksζ(s)

α/2

)︃
.

Some algebra will reveal that plugging the above choices of λk and rk into gλ,r(t)
yields

gλk,rk(t) :=

√︃
rkt

8

(︄√︃
ηk−1/2

t
+

√︃
t

ηk−1/2

)︄
,

resulting in the following concentration inequality for each k:

P (∃t ≥ 1 : St(µ) ≥ gλk,rk(t)) ≤ exp{−rk}.

Let kt denote the (unique) epoch number such that ηkt−1 ≤ t ≤ ηkt (i.e. such that
logη t ≤ kt ≤ logη t+ 1). Now, we take a union bound over k = 1, 2, 3, . . . resulting
in the following boundary,

P
(︁
∃t ≥ 1 : St(µ) ≥ gλkt ,rkt

(t)
)︁
≤

∞∑︂
k=1

exp{−rk} =
α/2

ζ(s)

∞∑︂
k=1

1

ks⏞ ⏟⏟ ⏞
ζ(s)

= α/2.
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Repeating all of the previous steps for −S(µ) and taking a union bound, we arrive
at the (1− α) stitched CS (C×

t )
∞
t=1 given by

C×
t :=

(︄
1

t

t∑︂
i=1

Xi ±
gλkt ,rkt

(t)

t

)︄
,

with the guarantee that P (∃t ≥ 1 : µ /∈ C×
t ) ≤ α.

Step 2. Demonstrating that C×
t achieves the desired LIL width: Now, we will simply

upper-bound gλkt ,rkt
(t) by an analytical boundary depending explicitly on t (rather

than implicitly through kt) to see that it achieves the desired LIL width. First,
notice that

√︁
ηkt−1/2/t+

√︁
t/ηkt−1/2 is uniquely minimized when t = ηkt−1/2 and

hence its maximum on the interval (ηkt−1, ηkt) must be at the endpoints. Therefore,√︁
ηkt−1/2/t+

√︁
t/ηkt−1/2 ≤ η1/4 + η−1/4 and thus for each k, we have

gλkt ,rkt
(t) ≤

√︃
rktt

8

(︂
η1/4 + η−1/4

)︂
for all ηkt−1 ≤ t ≤ ηkt .

Furthermore, for all ηkt−1 ≤ t ≤ ηkt , we have that kt ≤ logη t + 1. Applying this
inequality to the above, we obtain the final bound which does not depend on k,

gλkt ,rkt
(t) ≤

√︄
t log

(︁
2
(︁
logη t+ 1

)︁s
ζ(s)/α

)︁
8

(︂
η1/4 + η−1/4

)︂
for all k.

In conclusion, we have that

C×
t ⊆

⎛⎝1

t

t∑︂
i=1

Xi ±

√︄
log
(︁
2
(︁
logη t+ 1

)︁s
ζ(s)/α

)︁
8t

(︂
η1/4 + η−1/4

)︂⎞⎠ ,

and thus C×
t = O

(︂√︁
log log t/t

)︂
, as desired.

Step 3. Showing that CL
t ⊆ C×

t for all t large enough: This step in the proof
essentially follows immediately from the discussion in Section E.1. We justified that
for λ ≥ 0, setting γ as

γ = exp
{︁
−mλ− λ2/8

}︁
(exp(λ)− 1) ∧ 1,

yields 1 + γ(x−m) ≥ exp
{︁
λ(x−m)− λ2/8

}︁
for all x,m ∈ [0, 1] if λ is sufficiently

small (i.e. so that γ is not relying on truncation at 1). Since λk is decreasing in t, it
follows that for t sufficiently large,

t∏︂
i=1

(1 + γkt(Xi −m)) ≥ exp
{︁
λktSt(m)− λ2kt/8

}︁
almost surely.
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Therefore, for t sufficiently large,

KL+
t (m) :=

1

kst ζ(s)

t∏︂
i=1

(1 + γkt(Xi −m))

≥ 1

kst ζ(s)
exp

{︁
λktSt(m)− λ2kt/8

}︁
=: H∞+

t (m)

and similarly for KL−
t (m),

KL−
t (m) ≥ 1

kst ζ(s)
exp

{︁
−λktSt(m)− λ2kt/8

}︁
=: H∞−

t (m).

Therefore, for sufficiently large t, we have

CL
t :=

{︃
m ∈ [0, 1] : KL

t (m) <
1

α

}︃
⊆
{︃
m ∈ R : max

{︃
1

2
H∞+
t (m),

1

2
H∞−
t (m)

}︃
<

1

α

}︃
⏞ ⏟⏟ ⏞

(⋆)

and it is straightforward to verify that (⋆) is precisely C×
t .

In summary, we constructed a CS C×
t using the stitching technique in Step 1, and

then showed that ν(C×
t ) = O(

√︁
log log t/t) in Step 2. Finally in Step 3, we showed

that our discrete mixture betting CS CL
t is a subset of C×

t for t sufficiently large,
and hence by subadditivity of measures,

ν(CL
t ) = O

(︄√︃
log log t

t

)︄
,

which completes the proof. □

Remark 6. Notice that KL+
t and KL−

t can be made strictly more powerful if they
are replaced by adding additional terms, as long as the final sums are upper-bounded
by (54) and (55), respectively. In particular, any finite sum analogue of (54) and (55)
would have sufficed, as long as KL+

t and KL−
t form a term in each sum, respectively.

We presented KL+
t and KL−

t in their current forms for the sake of notational (and
computational) simplicity.

E.2.2. The
√
n-convergence of betting CIs

Proposition 8. Suppose Xn
1 ∼ P are independent observations from a distribu-

tion P ∈ Pµ with mean µ ∈ [0, 1]. Let λn ∈ (0, 1) such that λn ≍ 1/
√
n. Then the

confidence interval,

Cn :=

{︃
m ∈ [0, 1] : K±

n <
1

α

}︃
has an asymptotic width of O(1/

√
n).
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Proof. Writing out the capital process with positive bets, we have by Lemma 3
that for any m ∈ [0, 1],

K+
n (m) :=

n∏︂
i=1

(1 + λn(Xi −m))

≥ exp

(︄
λn

n∑︂
i=1

(Xi −m)− ψE(λn)
n∑︂
i=1

4(Xi −m)2

)︄

≥ exp

(︄
λn

n∑︂
i=1

(Xi −m)− 4nψE(λn)

)︄
=: B+

t (m),

and similarly for negative bets,

K−
n (m) :=

n∏︂
i=1

(1− λn(Xi −m))

≥ exp

(︄
−λn

t∑︂
i=1

(Xi −m)− 4nψE(λn)

)︄
=: B−

t (m).

For any θ ∈ (0, 1), consider the set,

Sn :=

{︃
m : B+

t (m) <
1

θα

}︃⋂︂{︃
m : B−

t (m) <
1

(1− θ)α

}︃
Now notice that the 1/α-level set of K±

n (m) := max {θK+
n (m), (1− θ)K−

n (m)} is a
subset of Sn:

Cn =

{︃
m : K+

n (m) <
1

θα

}︃⋂︂{︃
m : K−

n (m) <
1

(1− θ)α

}︃
⊆ Sn.

On the other hand, it is straightforward to derive a closed-form expression for Sn:⎛⎝∑︁n
i=1Xi

n
−

log
(︁

1
θα

)︁
+ 4nψE(λn)

nλn
,

∑︁n
i=1Xi

n
+

log
(︂

1
(1−θ)α

)︂
+ 4nψE(λn)

nλn

⎞⎠ ,

which in the typical case of θ = 1/2 has the cleaner expression,∑︁n
i=1Xi

n
± log(2/α) + 4nψE(λn)

nλn
.

As discussed in Section B, we have by two applications of L’Hôpital’s rule that
ψE(λn)
ψH(λn)

n→∞−−−→ 1, where ψH(λn) := λ2n/8 ≍ 1/n and thus the width Wn of Sn scales as

Wn := 2 · log(1/α) + 4nψE(λn)

nλn
≍ log(1/α)√

n
+

4n/n√
n
≍ 1√

n
.

Since Cn ⊆ Sn, we have that Cn has a width of O(1/
√
n), which completes the proof.

□
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Despite these results, the hedged capital CI presented and recommended in Section 4.4
does not satisfy the assumptions of the above proof. In particular, we recommended
using the variance-adaptive predictable plug-in,

λ
PrPl-EB(n)
t :=

√︄
2 log(2/α)

nˆ︁σ2
t−1

, ˆ︁σ2
t :=

1/4 +
∑︁t

i=1(Xi − ˆ︁µi)
2

t+ 1
, and ˆ︁µt :=

1/2 +
∑︁t

i=1Xi

t+ 1
,

(57)
using a truncation which depends on m,

λ+t (m) := λ±t ∧
c

m
, λ−t (m) := −

(︃
λ±t ∧

c

1−m

)︃
, (58)

and finally defining the hedged capital process for each t ∈ {1, . . . , n}:

K±
t (m) := max

{︄
θ

t∏︂
i=1

(1 + λ+i (m) · (Xi −m)), (1− θ)
t∏︂
i=1

(1− λ−i (m) · (Xi −m))

}︄
.

Furthermore, the resulting CI is defined as an intersection,

Bn :=

n⋂︂
t=1

{︃
m ∈ [0, 1] : K±

t (m) <
1

α

}︃
. (59)

All of these tweaks (i.e. making bets predictable, truncating beyond (0, 1), and taking
an intersection) do not in any way invalidate the type-I error, but we find (through
simulations) that they tighten the CIs, especially in low-variance, asymmetric settings
(see Figure 19).

E.3. On the width of empirical Bernstein confidence intervals
Recall the predictable plug-in empirical Bernstein confidence interval:

CPrPl-EB(n)
n :=

(︃∑︁n
i=1 λiXi∑︁n
i=1 λi

±
log(2/α) +

∑︁n
i=1 viψE(λi)∑︁n

i=1 λi

)︃
,

where

λt :=

√︄
2 log(2/α)

nˆ︁σ2t−1

, ˆ︁σ2t := 1
4 +

∑︁t
i=1(Xi − ˆ︁µi)2
t+ 1

, and ˆ︁µt := 1
2 +

∑︁t
i=1Xi

t+ 1
.

Below, we analyze the asymptotic behavior of the width of CPrPl-EB(n)
n in the i.i.d.

setting. In Proposition 9, we will show that if the data are drawn i.i.d. from a
distribution Q ∈ Qµ having variance σ2, then the half-width Wn of CPrPl-EB(n)

n scales
as

√
nWn ≡

√
n

(︃
log(2/α) +

∑︁n
i=1 viψE(λi)∑︁n

i=1 λi

)︃
a.s.−−→ σ

√︁
2 log(2/α), (60)

and hence the width is asymptotically proportional to the standard deviation.
First, let us prove a few lemmas about nonrandom sequences of numbers, which

will be helpful in what follows. These are simple facts for which we could not find a
proof to reference, so we prove them below for completeness.
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Figure 19. Hedged capital CIs with various added tweaks. The CIs labeled “No tweaks”
refer to those which satisfy the conditions of Proposition 8. The other three plots differ
in which “tweaks” have been added. Those with “PrPl” in the legend use the predictable
plug-in approach defined in (57); those with m in the legend have been truncated using m
as outlined in (58); finally, the plots with ∩ni=1 in their legends had their running intersections
taken as in (59).

Lemma 4. Suppose (an)
∞
n=1 is a sequence of real numbers such that an → a. Then

their cumulative average also converges to a, meaning that 1
n

∑︁n
i=1 ai → a.

Proof. Let ϵ > 0 and choose N ≡ Nϵ ∈ N such that whenever n ≥ N , we have

|an − a| < ϵ. (61)

Moreover, choose

M ≡MN >

∑︁N
i=1 |ai − a|

ϵ
(62)

and note that
n−N − 1

n
< 1. (63)

Let n ≥ max {N,M}. Then we have by the triangle inequality,⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

(ai − a)

⃓⃓⃓⃓
⃓ ≤ 1

n

N∑︂
i=1

|ai − a|+
1

n

n∑︂
i=N+1

|ai − a|

≤ 1

n

N∑︂
i=1

|ai − a|+
1

n
(n−N − 1)ϵ by (61)

≤ 2ϵ by (62) and (63),

which can be made arbitrarily small. This completes the proof of Lemma 4. □
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Lemma 5. Let (an)∞n=1 and (bn)
∞
n=1 be sequences of numbers such that

an → 0 and (64)
|bn| ≤ C for some C ≥ 0 and for all n ≥ 1. (65)

Then anbn → 0. Further, if (An) is a sequence of random variables such that An → 0
almost surely, then Anbn → 0 almost surely.

The proof is trivial, since |Anbn| ≤ C|An| which converges to zero almost surely. □

Now, we prove that a modified variance estimator is consistent.

Lemma 6. Let X1, . . . , Xn
i.i.d.∼ Q ∈ Qµ with Var(Xi) = σ2. Then the modified

variance estimator ˆ︁σ2n :=
1

n

n∑︂
i=1

(Xi − ˆ︁µi−1)
2

converges to σ2, Q-almost surely.

Proof. By direct substitution,

ˆ︁σ2n :=
1

n

n∑︂
i=1

(Xi − ˆ︁µi−1)
2 =

1

n

n∑︂
i=1

(Xi − µ+ µ− ˆ︁µi−1)
2

=
1

n

n∑︂
i=1

(Xi − µ)2⏞ ⏟⏟ ⏞
a.s.−−→σ2

− 2

n

n∑︂
i=1

(Xi − ˆ︁µi−1)(ˆ︁µi−1 − µ)⏞ ⏟⏟ ⏞
(⋆)

+
1

n

n∑︂
i=1

(µ− ˆ︁µi−1)
2

⏞ ⏟⏟ ⏞
(⋆⋆)

.

Now, note that ˆ︁µi−1−µ
a.s.−−→ 0 and |Xi−ˆ︁µi−1| ≤ 1 for each i. Therefore, by Lemma 5,

(Xi− ˆ︁µi−1)(ˆ︁µi−1−µ)
a.s.−−→ 0, and by Lemma 4, (⋆) a.s.−−→ 0. Furthermore, we have that

(µ− ˆ︁µi−1)
2 a.s.−−→ 0 and so by another application of Lemma 4, we have (⋆⋆)

a.s.−−→ 0.
This completes the proof of Lemma 6. □

Next, let us analyze the second term in the numerator in the margin of CPrPl-EB(n)
n ,

log(2/α) +
∑︁n

i=1 viψE(λi)∑︁n
i=1 λi

. (66)

Lemma 7. Under the same assumptions as Lemma 6,
n∑︂
i=1

viψE(λi)
a.s.−−→ log(2/α).

Proof. Recall that ψE(λ)
ψH(λ)

λ→0−−−→ 1, and ˆ︁σ2t t→∞−−−→ σ2. By definition of λi, we have

that λi
a.s.−−→ 0 and thus we may also write

ψE(λi)

ψH(λi)
= 1 +Ri and (67)√︄

σ2ˆ︁σ2t = 1 +R′
i (68)
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for some Ri, R′
i
a.s.−−→ 0. Thus, we rewrite the left hand side of the claim as

n∑︂
i=1

viψE(λi) =

n∑︂
i=1

viψH(λi)
ψE(λi)

ψH(λi)
=

n∑︂
i=1

vi(λ
2
i /8)(1 +Ri)

=

n∑︂
i=1

vi ·
2 log(2/α)

8ˆ︁nσ2i−1

· (1 +Ri)

=

n∑︂
i=1

vi ·
2 log(2/α)

8nσ2
· (1 +R′

i) · (1 +Ri)

=

n∑︂
i=1

4(Xi − ˆ︁µi−1)
2 · 2 log(2/α)

8nσ2
· (1 +Ri +R′

i +RiR
′
i).

Defining R′′
i = Ri + R′

i + RiR
′
i for brevity, and noting that R′′

i → 0 almost surely,
the above expression becomes

n∑︂
i=1

viψE(λi) =

n∑︂
i=1

(Xi − ˆ︁µi−1)
2 · log(2/α)

nσ2
· (1 +R′′

i )

=
log(2/α)

σ2

[︄
1

n

n∑︂
i=1

(Xi − ˆ︁µi−1)
2 · (1 +R′′

i )

]︄

=
log(2/α)

σ2

⎡⎢⎢⎢⎢⎢⎣
1

n

n∑︂
i=1

(Xi − ˆ︁µi−1)
2

⏞ ⏟⏟ ⏞
a.s.−−→σ2 by Lemma 6

+
1

n

n∑︂
i=1

(Xi − ˆ︁µi−1)
2R′′

i⏞ ⏟⏟ ⏞
a.s.−−→0 by Lemma 5

⎤⎥⎥⎥⎥⎥⎦ a.s.−−→ log(2/α),

which completes the proof of Lemma 7. □

Now, consider the denominator in (66).

Lemma 8. Continuing with the same notation,

1√
n

n∑︂
i=1

λi
a.s.−−→

√︃
2 log(2/α)

σ2
.
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Proof. Let R′
i be as in (68). Then,

1√
n

n∑︂
i=1

λi =
1√
n

n∑︂
i=1

√︄
2 log(2/α)

nˆ︁σ2i−1

=
1√
n

n∑︂
i=1

√︃
2 log(2/α)

nσ2
·
(︁
1 +R′

i

)︁
=

√︃
2 log(2/α)

σ2
· 1
n

n∑︂
i=1

(︁
1 +R′

i

)︁
⏞ ⏟⏟ ⏞
a.s.−−→1 by Lemma 4

a.s.−−→
√︃

2 log(2/α)

σ2
,

completing the proof of Lemma 8. □

We are now able to combine Lemmas 7 and 8 to prove the main result.

Proposition 9. Denoting the half-width of CPrPl-EB(n)
n as Wn, and assuming

the data are drawn iid from a distribution Q ∈ Qµ with variance σ2, we have

√
nWn ≡

√
n

(︃
log(2/α) +

∑︁n
i=1 viψE(λi)∑︁n

i=1 λi

)︃
a.s.−−→ σ

√︁
2 log(2/α). (69)

Thus, the width is asymptotically proportional to the standard deviation.

Proof. By direct rearrangement of the left hand side, we see that

√
n

(︃
log(2/α) +

∑︁n
i=1 viψE(λi)∑︁n

i=1 λi

)︃
=

log(2/α) +
∑︁n

i=1 viψE(λi)
1√
n

∑︁n
i=1 λi

a.s.−−→ log(2/α) + log(2/α)

σ−1
√︁

2 log(2/α)
= σ

√︁
2 log(2/α),

which completes the proof of Proposition 9. □

E.4. aGRAPA sublevel sets need not be intervals: a worst-case example
In the proof of Theorem 3, we demonstrated that the hedged capital process with
predictable plug-in bets yielded convex confidence sets, making their construction
more practical. However, this proof was made simple by taking advantage of the
fact that the sequences before truncation (λ̇

+
t )

∞
t=1 and (λ̇

−
t )

∞
t=1 did not depend on

m ∈ [0, 1]. This raises the natural question, of whether there are betting-based
confidence sets which are nonconvex when these sequences depend on m. Here, we
provide a (somewhat pathological) example of the aGRAPA process with nonconvex
sublevel sets.

Consider the aGRAPA bets,

λaGRAPA
t :=

ˆ︁µt−1 −mˆ︁σ2
t−1 + (ˆ︁µt−1 −m)2

where ˆ︁µt :=
1/2 +

∑︁t
i=1Xi

t+ 1
, ˆ︁σ2

t :=
1/20 +

∑︁t
i=1(Xi − ˆ︁µi)

2

t+ 1
.

(70)
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Furthermore, suppose that the observed variables are X1 = X2 = 0. Then it can be
verified that

KaGRAPA
2 (m) =

(︁
1 + λaGRAPA

1 (X1 −m)
)︁ (︁

1 + λaGRAPA
2 (X2 −m)

)︁
=

(︃
1 +

1/2−m
1/20 + (1/2−m)2

(−m)

)︃(︃
1 +

1/4−m
0.05625 + (1/4−m)2

(−m)

)︃
,

which does not yield convex sublevel sets. For example, KaGRAPA
2 (0.08) < 0.85 and

KaGRAPA
2 (0.4) < 0.85 but KaGRAPA

2 (0.03) > 0.85. In particular, the sublevel set,{︁
m ∈ [0, 1] : KaGRAPA

2 (m) < 0.85
}︁

is not convex. In our experience, however, situations like the above do not arise
frequently. In fact, we needed to actively search for these examples and use a rather
small “prior” variance of 1/20 which we would not use in practice. Furthermore, the
sublevel set given above is at the 0.85 level while confidence sets are compared against
1/α which is always larger than 1 and typically larger than 10. We believe that it may
be possible to restrict (λaGRAPA

t )∞t=1 and/or the confidence level, α ∈ (0, 1) in some
way so that the resulting confidence sets are convex. One reason to suspect that this
may be possible is because of the intimate relationship between λaGRAPA

t , λGRAPA
t ,

and the optimal hindsight bets, λHS. Specifically, we show in Section E.6 that the
optimal hindsight capital KHS

t is exactly the empirical likelihood ratio (Owen, 2001)
which is known to generate convex confidence sets for the mean (Hall and La Scala,
1990). We leave this question as a direction for future work.

E.5. Betting confidence sequences for non-iid data
The CSs presented in this paper are valid under the assumption that each observation
is bounded in [0, 1] with conditional mean µ. That is, we require that X1, X2, . . . are
[0, 1]-valued with E(Xt | Ft−1) = µ for each t, which includes familiar regimes such
as independent and identically-distributed (iid) data from some common distribution
P with mean µ. Despite the generality of our results, we made matters simpler by
focusing the simulations in Section C on the iid setting. For the sake of completeness,
we present a simulation to examine the behavior of our CSs in the presence of some
non-iid data.

In this setup, we draw the first several hundred or thousand observations indepen-
dently from a Beta(10, 10) — a distribution whose mean is 1/2 but whose variance is
small (≈ 0.012) — while the remaining observations are independently drawn from
a Bernoulli(1/2) whose mean is also 1/2 but with a maximal variance of 1/4. We
chose to start the data off with low-variance observations in an attempt to “trick” our
betting strategies into adapting to the wrong variance. Empirically, we find that the
hedged capital (Theorem 3) and ConBo (Corollary 1) CSs start off strong, adapting
to the small variance of a Beta(10, 10). After several Bernoulli(1/2) observations,
the CSs remain tight, but seem to shrink less rapidly. Nevertheless, we find that the
hedged capital and ConBo CSs greatly outperform the Hoeffding (Proposition 1) and
empirical Bernstein (Theorem 2) predictable plug-in CSs (see Figure 20). Regardless
of empirical performance, all methods considered produce valid CSs for µ.
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Figure 20. CSs for the true mean µ = 1/2 for non-iid data. In top pair of plots, the first
250 observations were independently drawn from a Beta(10, 10) while the subsequent
observations are drawn from a Bernoulli(1/2). The bottom pair of plots is similar, but with
2500 initial draws from a Beta(10, 10) instead of 250. In both cases, the betting-based CSs
(Hedged and ConBo) tend to outperform those based on supermartingales.

E.6. Owen’s empirical likelihood ratio and Mykland’s dual likelihood ratio
Let x1, . . . , xt ∈ [0, 1] and recall the optimal hindsight capital process KHS

t (m),

KHS
t (m) :=

t∏︂
i=1

(1 + λHS(xi −m)) where λHS solves
t∑︂
i=1

xi −m
1 + λHS(xi −m)

= 0.

Now, let Qm ≡ Qm(xt1) be the collection of discrete probability measures with
support {x1, . . . , xt} and mean m. Let Q ≡ Q(xt1) :=

⋃︁
m∈[0,1]Qm and define the

empirical likelihood ratio (Owen, 2001),

ELt(m) :=
supQ∈Q

∏︁t
i=1Q(xi)

supQ∈Qm

∏︁t
i=1Q(xi)

.

Owen (2001) showed that the numerator equals (1/t)t and the denominator equals
t∏︂
i=1

(1 + λEL(xi −m))−1 where λEL solves
t∑︂
i=1

xi −m
1 + λEL(xi −m)

= 0.

Notice that the above product is exactly the reciprocal of KHS
t and that λEL = λHS.

Therefore for each m ∈ [0, 1],

ELt(m) = (1/t)tKHS
t (m).

Furthermore, given the connection between the empirical and dual likelihood ratios for
independent data (Mykland, 1995), the hindsight capital process is also proportional
to the dual likelihood ratio in this case.
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F. An extended history of betting and its applications

(This is an expanded version of Section 6 and Figure 9.)
The use of betting-related ideas in probability, statistics, optimization, finance

and machine learning has evolved in many different parallel threads, emanating
from different influential early works and thus having different roots and evolutions.
Since these threads have had little interaction for many decades now, we consider it
worthwhile to mention them in some detail. Two notes of caution:

• We anticipate missing some authors and works in our broad strokes below, but a
thorough coverage would be better suited to a longer survey paper on the topic.
For example, we entirely skip the field of mathematical finance, since betting is
literally a foundation of the entire field (and theoretical and applied progress
on martingales, betting strategies, and related topics has been phenomenal).

• Many of the authors listed below have used the language of betting in their
works explicitly, but others have not — and may even prefer (or have preferred)
not to do so. Thus, our references should be treated with a pinch of salt, as
some connections that we draw to betting may be more apparent in hindsight
(to us) than foresight (to the authors).

If we had to pick the most critical early authors without whom our work would have
been impossible, it would be Ville, Wald, Kelly and Robbins; later influences on
us have been via Lai, Cover, Shafer, Vovk, Grunwald and the second author’s own
earlier works (Howard et al., 2020, 2021). These authors stand out below.

Probability. Ville’s 1939 PhD thesis (Ville, 1939) contained an important and
rather remarkable result of its time that connected measure-theoretic probability
with betting, and indeed brought the very notion of a martingale into probability
theory. In brief, Ville proved that for every event of measure zero, there exists a
betting strategy for which a gambler’s wealth process (a nonnegative martingale)
grows to infinity if that event occurs. For example, the strong law of large numbers
(SLLN) and the law of the iterated logarithm (LIL) are two classic measure-theoretic
statements that occur on all sequences of observations, except for a null set according
to some underlying probability measure (where the two null sets for the two laws are
different). Ville proved that it is possible to bet on the next outcome such that if
the LIL were false for that particular sequence of observations, then the gambler’s
wealth would grow in an unbounded fashion.

Doob’s monumental papers and book Doob (1953) in the following decades
stripped martingales of their betting roots and presented them as some of the most
powerful tools of measure-theoretic probability theory, with applications to many
other branches of mathematics. (However, betting could be viewed as instances of
“Doob’s martingale transform”.) These betting roots were revived in the 1960s with
the renewed interest in algorithmic definitions of randomness, due to Kolmogorov,
Martin-Löf (1966) and many others.

More recently, Shafer and Vovk (2001, 2019) have produced two seminal books that
aim bring betting and martingales to the front and center of probability and finance,



Estimating bounded means by betting 45

aiming to derive much (if not all) of probability theory from purely game-theoretic
principles based on betting strategies. The product martingale wealth process that
appears in our work also appears in theirs (indeed, it is a fundamental process),
but Shafer and Vovk did not explore the topics in our paper (confidence sequences,
explicit computationally efficient betting strategies, sampling without replacement,
thorough numerical simulations, and so on). Indeed, their book has a thorough
treatment of probability and finance, but with respect to statistical inference, there is
little explicit methodology for practice. Perhaps they were aware of such a statistical
utility, but they did not explicitly recognize or demonstrate the excellent power of
betting in practice (when properly developed) for problems such as ours.

Statistical inference. Using the power of hindsight, we now know that Wald’s
influential work on the sequential probability ratio test was implicitly based on
martingale techniques Wald (1945). Wald derived many fundamental results that he
required from scratch without having the general language that was being set up by
Doob in parallel to his work. In the case of testing a simple null H0 : θ = θ∗ against
a composite alternative H0 : θ ̸= θ∗, Wald (1945, Eq (10:10)) suggests forming the
likelihood ratio process

∏︁n
i=1 fθi−1

(Xi)/
∏︁n
i=1 fθ∗(Xi), where θi−1 is a mapping from

X1, . . . , Xi−1 to Θ; in other words, θi−1 is predictable. In the language of our paper,
this is a predictable plug-in, and the first appearance of betting-like ideas in the
statistical literature. However, beyond this passing equation in a parametric setup,
the idea appears to have lain dormant.

Robbins (along with students and colleagues Siegmund, Darling, and Lai) quickly
realized the power of Wald’s and Ville’s ideas as well as martingales more generally,
and pursued a rather broad agenda around sequential testing and estimation, including
the introduction and extensive study of confidence sequences and the method of
mixtures (Darling and Robbins, 1967c,a,b; Robbins and Siegmund, 1968, 1969, 1970,
1972, 1974; Lai, 1976). Robbins and Siegmund also analyzed Wald’s “betting” test,
and proved in some generality that its behavior is similar to a mixture likelihood ratio
test (Robbins and Siegmund, 1974, Section 6). Most of Wald’s and Robbins’ work
was parametric, but Robbins did explicitly study the sub-Gaussian setting in some
detail (Robbins, 1970). Building on a vast literature of Chernoff-style concentration
inequalities that exploded after Robbins’ time, Howard et al. (2020, 2021) recently
extended mixture methods of Robbins to derive confidence sequences under a large
class of nonparametric settings using exponential supermartingales. Howard et al.
(2020, 2021) recognized Wald’s betting idea, but did not develop it nonparametrically
beyond a brief mention in the paper as a direction for future work. The current work
takes this natural next step in some thorough detail.

Information and coding theory. Soon after the seminal work of Shannon (1948),
another researcher at AT&T Bell Labs, John Larry Kelly Jr. wrote a paper titled “A
New Interpretation of Information Rate” which explicitly connected betting with the
new field of information theory, complementing the work of Shannon (Kelly Jr, 1956).
In short, he proved that it is possible to bet on the symbols in a communication
channel at odds consistent with their probabilities in order to have a gambler’s
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wealth grow exponentially, with the exponent equaling the rate of transmission over
the channel. More explicitly, given a sequence of Bernoulli random variables with
probability p > 1/2, Kelly proved that betting a (2p − 1) fraction of your current
wealth on the next outcome being 1 is the unique strategy that maximizes the
expected log wealth of the gambler.

When the probability p changes at each step in an unknown manner, the “universal
coding” work of Krichevsky and Trofimov (1981) showed that a mixture method
involving the Jeffreys prior and maximum likelihood can achieve nearly the optimal
wealth in hindsight, with the expected log wealth of their strategy only being worse
than the optimal oracle log-wealth by a factor that is logarithmic in the number of
rounds; these observations work for any discrete alphabet, not just a binary. Cover’s
interest in these techniques spans several decades (Cover, 1974, 1984, 1987; Bell and
Cover, 1980, 1988), culminating in his famous universal portfolio algorithm (Cover,
1991), that today forms a standard textbook topic in information theory.

There are other parts of information/coding theory that could be seen as related
in some ways to betting through the use of (what are now called) e-variables: these
include the topics of prequential model selection and minimum description length;
see works by Rissanen (1984, 1998), Dawid (1984, 1997), Grünwald (2007); Grünwald
et al. (2019), Li (1999) and references therein.

Online learning and sequential prediction under log loss. In the 1990s, the problems
studied by Krichevsky, Trofimov, and Cover continued to be extended — often
dropping the information theoretic context — under the title of sequential prediction
under the logarithmic loss. In the active subfield of online learning, the previous
results were effectively “regret bounds” against potentially adversarial sequences
of observations, with a chapter devoted to the problem in the book on prediction,
learning and games by Cesa-Bianchi and Lugosi (2006). More recently, Orabona and
colleagues such as Pal and Jun have found powerful implications of these ideas in
deriving parameter-free algorithms for online convex optimization (Orabona and Pal,
2016; Orabona and Tommasi, 2017; Jun et al., 2017; Jun and Orabona, 2019).

Rakhlin and Sridharan (2017) found that deterministic regret inequalities can be
used to derive concentration inequalities for martingales, connecting the two rich
fields. Later, Jun and Orabona (2019) also derive concentration inequalities using
their betting-based regret bounds, with explicit bounds derived in the sub-Gaussian
and bounded settings. However, because regret bounds could be tight in rate but
are typically loose in constants, the resulting concentration inequalities are not
tight in practice. Thus, we view this line of work as important and complementary
to our explorations, which are different in their motivation, derivation and practicality.

Typically, none of these lines of literature have cited the others. For example, the
important paper of Rakhlin and Sridharan (2017) does not mention the work of Ville,
Wald or Robbins, or even of Vovk and Shafer. Similarly, despite the books of Shafer
and Vovk having a wonderful coverage of the history of probability and martingales
stemming back hundreds of years, even their recent 2019 book (Shafer and Vovk,
2019) does not cite the coding theory and online learning literature very much,
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including the works of Orabona and coauthors (Orabona and Pal, 2016; Orabona and
Tommasi, 2017; Jun et al., 2017; Cutkosky and Orabona, 2018; Jun and Orabona,
2019), Krichevsky and Trofimov (1981), or Rakhlin and Sridharan (2017). Recent
work of Orabona and colleagues also in turn has no mention of the books of Shafer
and Vovk (2001, 2019), or works of Ville, Wald, Robbins, Howard, their coauthors
and other recent authors. The work of Howard et al. (2020, 2021) does cite the Wald
and Robbins literatures, as well as the books of Shafer and Vovk and pioneering work
of Ville, but does not form connections to information/coding theory nor to online
learning. The excellent book of Cesa-Bianchi and Lugosi (2006) does not cite Ville,
the seminal martingale works of Robbins, or the 2001 book by Shafer and Vovk. ∥

The reason for the lack of intersection of these parallel threads is likely manifold,
and definitely far from malicious: (a) these works were and continue to be published
in different literatures, (b) these works had different goals in mind, meaning that
they were addressing different problems and often using different techniques, (c) our
understanding of these literatures and their relationships is constantly evolving and
far from complete; it is likely that no author has a command over all these parallel
literatures, and indeed this should not be expected.

In the preface of their 2006 book, Cesa-Bianchi and Lugosi write

Prediction of individual sequences, the main theme of this book, has been
studied in various fields, such as statistical decision theory, information
theory, game theory, machine learning, and mathematical finance. Early
appearances of the problem go back as far as the 1950s, with the pio-
neering work of Blackwell, Hannan, and others. Even though the focus
of investigation varied across these fields, some of the main principles
have been discovered independently. Evolution of ideas remained parallel
for quite some time. As each community developed its own vocabulary,
communication became difficult. By the mid-1990s, however, it became
clear that researchers of the different fields had a lot to teach each other.
When we decided to write this book, in 2001, one of our main purposes
was to investigate these connections and help ideas circulate more fluently.
In retrospect, we now realize that the interplay among these many fields
is far richer than we suspected. ... Today, several hundreds of pages later,
we still feel there remains a lot to discover. This book just shows the first
steps of some largely unexplored paths. We invite the reader to join us in
finding out where these paths lead and where they connect.

Thus it is clear that Cesa-Bianchi and Lugosi already foresaw that there were
many connections between the fields that have been unstated, underappreciated,
undiscovered and underutilized. The connections we briefly point out above between
these literatures, both historical and modern, are themselves new in their own right
(not existing in any of the aforementioned books or papers) and may be considered a
small contribution of this paper. A more thorough investigation of these connections
may be the topic of a future survey paper, or indeed, a book on these topics.
∥Authors like like Rissanen (1984, 1998) and Dawid (1984, 1997) are not cited in most of

these works, perhaps because the connections of their works to betting are indirect.
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