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Abstract—In this paper, we formulate sparse signal recovery
as a sequential decision making problem (modeled by Markov
Decision Processes). Based on the formulation, we propose
DeepPursuit, a novel sparse recovery algorithm that learns to
recover sparse signals via deep reinforcement learning (RL) and
Monte Carlo Tree Search (MCTS). To substantially enhance the
learning speed and performance, DeepPursuit (i) employs a novel
residual-type policy/value network architecture that organically
incorporates the classical wisdom from the Orthogonal Matching
Pursuit (OMP) algorithm, and (ii) exploits the available ground-
truth knowledge to guide the MCTS during the training process.
Experimental results for general random sparse signal recovery
demonstrate that, with very low computational complexity, the
DeepPursuit algorithm significantly outperforms the state-of-the-
art algorithms. Even higher performance gains are observed with
experiments on the MNIST dataset.

I. INTRODUCTION

We consider the compressed sensing (CS) problem [1]-[4],
where for a given measurement matrix A € R™*", m < n,
and a (noiseless) observation vector y = Axgy, we want to
recover a k-sparse vector/signal zo (k < m)'. Formally, it can
be formulated as:

minimize |z[[o subject to Az =y, (1)

where the £y-norm || - ||o of a vector is defined as its number of
non-zero values. Notably, solving (1) entails minimizing an ¢,
norm and is an NP-hard problem. The readers are referred to
the seminal papers [1], [2] for a comprehensive survey of the
compressed sensing problem. Compressed sensing and sparse
signal recovery have seen wide applications in many areas
including image processing [5], magnetic resonance imaging
(MRI) [4], and seismology [6] among others.

It has been well understood under what conditions solving
the NP-hard ¢y-minimization problem (1) guarantees to recover
the correct sparse signal xy [3]. On the other hand, there have
been many studies on analyzing conditions under which efficient
algorithms guarantee to solve (1) with high probabilities. In
particular, the restricted isometry property (RIP) of A allows
the solution of an ¢;-minimization problem to recover the
correct sparse signal x( [2]. There is however a significant gap
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'We say that a vector is k-sparse if it has k non-zero values.
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between the ¢y and ¢; minimization based conditions. Even
if the provable RIP conditions are not satisfied, empirical
evidence demonstrates that, efficient algorithms can still
sometimes achieve good performance in the recovery of zq
[7], [8]. As such, there is an enormous potential in developing
novel computationally efficient algorithms to approach ideally
solving the NP-hard ¢y minimization problem. Such algorithmic
improvement will lead to significant reduction in the number
of measurements needed for signal recovery.

Related Work Efficient algorithms for solving the sparse
recovery problem (1) have been extensively studied, including
convex relaxation [3], [9], matching and subspace pursuit [7],
[10]-[12], and iterative thresholding [13], among others. Recent
advancements in machine learning have opened a new frontier
for solving compressed sensing problems, in particular by
taking a deep learning approach. The works in [14]-[17] apply
DNNs and RNNs for encoding and/or decoding of signals
zo. Modern generative models have also been used to encode
signals with strong priors and design the measurement function
[18], [19]. The latter is also addressed in [20] using MCTS.
Different from the above works, our innovation with machine
learning is on signal recovery algorithms. Supervised learning
approaches for training sequential signal support recovery
policies have been developed [21]. While they are effective
for recovering signals with strong statistical priors, they are
shown to underperform classical algorithms such as OMP for
general sparse signals.

In this paper, we formulate sparse signal recovery as a
sequential decision making problem, modeled by Markov
Decision Processes (MDP), where the signal support of x, or
equivalently, the columns of A to represent y are sequentially
selected. Based on this formulation, we employ an RL-based
framework aided with Monte Carlo Tree Search (MCTS) for
training signal recovery policies [22]. We develop DeepPursuit,
a novel sparse recovery algorithm that (i) employs a novel
residual-type policy network architecture that organically in-
corporates the classical wisdom from the Orthogonal Matching
Pursuit (OMP) algorithm [10], and (ii) exploits the available
ground-truth knowledge to guide the MCTS during training. As
such, the classical wisdom from OMP is effectively integrated
with that from Deep RL in a unified learning framework. We
conduct experiments to evaluate our proposed DeepPursuit
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algorithm on general random sparse signals and compare it
to existing state-of-the-art methods. The experimental results
demonstrate that DeepPursuit significantly outperforms the
state-of-the-art methods in speed and/or performance. We note
that, in the testing stage, the DeepPursuit algorithm has a very
low computational complexity.

II. SPARSE SIGNAL RECOVERY AS A MARKOV DECISION
PROCESS

A. MDP Formulation of Sparse Recovery

We formulate the sparse signal recovery problem as a
sequential decision making problem. Note that the key to
the successful sparse recovery is to choose the correct subset
of the columns of A, or equivalently, the support of x, such
that the optimization problem (1) is solved. Equivalently, this
can be reformulated as the following problem. An agent is
employed to sequentially choose one column of A at a time
until it selects up to k columns: The agent succeeds if the
selected columns in the end meet the constraint in (1) and
minimize the ¢p-loss in (1). Next, we formally define such an
MDP problem.

State and Action Spaces A state s is defined to be a pair
(y,S), where y is the observed signal generated according
to xg (via y = Axg)). Let S C [n] denotes the set of the
already selected column indices of A, where [n] £ {1,...,n}.
Provided that the matrix A is given, the state does not depend on
this measurement matrix. We define the terminal states to be the
states s = (y, S) that satisfy either: (a) a maximum-considered
number of columns have been selected, or (b) ||Aszs —y||3 <
e for some given ¢, where Ag denotes the submatrix of A
constructed by the selected columns in S, and x is the solution
to the following least-square solution for the given signal
support S

z, £ argmin ||Asz — y||3. (2)
The feasible action space at a state s = (y,.5) is defined to be
Ag = [n]\ S; that is, a valid action at state s is any column
from the remaining unchosen ones.
Transition When an action a is taken (i.e., a new column a of
A is selected) at state s=(y, S), the next state s’ = (y, SU{a})
(and hence the MDP transition) is determined and known.
Reward We define the reward to be: R(s,a,s’) := —1—
B (|[Aszs —yll3—||Aszs—y|3), where s, s" are the current
and next states, and x, is the least-square solution given by
(2) (and similarly for x4). Such a reward design ensures that
the cummulative reward when reaching a terminal state s is

R™(s) = —[lasllo — BllAszs — yll3. 3)

As such, this cummulative reward consists of two parts: the first
part is the ¢y term that measures the sparsity of the solution,
and the second part is the optimal least-square-error given the
column choices in S. 8 > 0 is a hyperparameter that controls
the balance between sparsity and goodness of fit. We note that,
the purpose of such a “reward decomposition” is to avoid the
potential sparse-reward issue that occurrs when we only have
the terminal rewards (3) with no intermediate ones.
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Fig. 1. The OMP-Residual Policy/Value Network.

B. Learning-to-Recover via Reinforcement Learning

Given a measurement matrix A, we have a set of (sparse)
signals xg, and generate observations y according to y = Axg.
Based on these signal-observation pairs {(z¢,y)}, we use an
RL framework to learn a policy m(a|s)(modeled by a policy
network), which sequentially selects the columns of A and
reconstructs the sparse signal xy. The RL objective is to learn
the 7(als) that maximizes the cumulative reward, which leads
to recovering x to be the same as the ground truth x( with high
probability. In RL training, MCTS is employed to generate
high quality experience to update the policy. After the training,
at the testing stage, the learned policy network 7(a|s) can then
recover the sparse signal x efficiently for any unseen y.

We note that there are existing works using supervised
learning approaches (as opposed to RL) to train a sequential
decision policy for choosing the signal support, but fail to
outperform OMP for general signals without a strong prior
[21]. This motivates us to (i) develop the proposed RL approach,
(ii) design our method to incorporate the wisdom of OMP and
learn beyond the classical algorithms, while still (iii) leveraging
the available ground truth knowledge as the supervision and
guidance signals.

III. THE DeepPursuit ALGORITHM

The key innovations of the proposed DeepPursuit Algorithm
stem from two objectives. Firstly, we seek to incorporate a
classical sparse recovery algorithm, OMP, into the learning of
a policy network. As such, the wisdom from both classical
compressed sensing algorithm design and deep reinforcement
learning are organically integrated. Secondly, we seek to
leverage the fact that the ground truth signals x( are available at
the training stage, and use them to effectively guide the training
of a policy network. We achieve the first objective by designing
a novel OMP-Residual Policy Network (OMP-ResNet), and the
second objective by incorporating the ground-truth-knowledge
to guide the MCTS process at the training stage.

A. OMP-Residual Policy/Value Network

To learn a policy in the sequential decision making formu-
lation of sparse signal recovery (cf. Section II-A), we employ
a single neural network to jointly model the policy my(a|s)
and the state-value function Vj(s). The policy my(als) defines
a probability distribution over all actions for a given state s,
where the action set includes the possible next columns of A
to pick and a stopping action. The input of the policy/value
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Fig. 2. MCTS rollouts for sparse recovery.

network consists of two parts: (zs, As). The first part is the
least-square solution in (2) extended to an n-dimensional vector
with zeros padded in the positions not in .S. The second part
is given by

X = AT (y — Agz,) € R,

where y — Agxs is the least-square’s residue. As will be shown
next, having A; as an input feature allows us to include an
“OMP skip connection” in the policy network architecture.
In desigining the architecture of the policy network, we seek
to leverage OMP which a) is widely accepted as a very fast and
effective heuristic for sparse recovery, and b) shares the same
sequential decision making nature as our MDP formulation.
Notably, the OMP algorithm sequentially chooses the column
index whose corresponding component in |\;| is the largest,
where |\;| captures the correlation between the columns of A
and the least-square’s residue. Such a “hard-max” decision
policy can be approximated by Softmax(|\s|). On the other
hand, the policy network also employs a softmax layer, with
a log-probability vector as its input. Thus, a natural way of
combining the decision of OMP and that of a trained policy
network is to element-wise add the logits from both parts,
meaning that the respective probabilities are multiplied.
Based on the above, we design a policy network architecture
as in Figure 1. The upper branch is a general neural network,
whereas the lower branch is an “OMP skip connection” that
implements |A4| to mimic the “OMP-policy”. Adding the OMP
skip connection enables us to learn beyond what OMP can
do. In other words, we free the upper branch from learning
what OMP already does, and provide it a “head start” as it
only needs to focus on what OMP cannot do. Since it shares
a high-level intuition with the residual network [23], we call
our new architecture as an “OMP-Residual Policy Network”.

B. Knowledge-Guided Monte Carlo Tree Search

Since the MDP transition is deterministic and known, we are
able to use such model-based information to perform planning
with MCTS in RL training [24]. In particular, we employ
the general algorithmic framework of AlphaZero [24], and
introduce two novel components that incorporate supervision
signals into the MCTS and RL process (cf. Figure 4).

1) Guiding the MCTS with Ground-Truth Knowledge: The
key search decision during the MCTS rollouts is how to select
an action a; at each state s; experienced. On the one hand,
we incorporate the decision framework of PUCT (Polynomial
Upper Confidence bound for Trees) [24]. On the other hand,
we leverage the availability of the ground truths zg in the
generated training data as a supervision signal to guide the
search. Specifically, we introduce a perturbation vector 7eq,
in the PUCT framework as follows:

7o(alse) o< mo(alse) + neay, Zﬁ'9(a|5t) =1, )
N(s, b

at = arg maa‘x {Q(St,a) + Cpuct * 7~1—9(6l|5t)]\/%:Sl;al)(si’]-)} s

(5)

where, in (4), a) s; denotes the state at step ¢ during the MCTS
simulations; b) my(als;) is the output (action probabilities)
of the policy network; c) e,, is a 1-hot vector at a position
ap randomly selected within the ground truth signal support;
d) » > 0 is a hyperparameter that controls the influence
of this ground truth guidance; and e) 7y(als;) is the action
probabilities with such guidance. Q(s;, a) is the action value
function, and N (s, a) is the visiting count. (5) is PUCT with
Cpuct being a hyper-parameter that controls the tradeoff between
exploration and exploitation.

As such, during the MCTS process, the above guidance
makes it more likely to select a support among the ground
truth labels. By varying 7, we balance between exploring more
generally and learning primarily from the ground truth.

2) Training with a Diminishing OMP-bias: After the
(pseudo) empirical probability labels are computed from MCTS,
denoted by p™ € R™, we further introduce a bias in these
labels with the knowledge from OMP. Specifically, as OMP
produces a deterministic choice, we encode this choice in a
1-hot vector, p© € R™, whose value is one at the OMP’s choice
and zero elsewhere. We then bias the (pseudo) label p™ from
MCTS with p© in the cross entropy loss:

1=—[(1—p)p™ + up®log ma(s), (6)

where p is a hyperparameter that controls the contributions
from both labels, and 7y (s) € R™ is the vector of all the action
probabilities from the policy network. This step of biasing the
labels by OMP is in fact designed in conjunction with the
OMP skip connection. The rationale is that, at the initial stage
of training, the (pseudo) labels from MCTS have poor qualities,
and biasing them with the OMP’s choice improves the label
quality. Next, as training progresses and the policy network
becomes better, we anneal this bias by gradually reducing .

IV. SIMULATION

In this section, we present experimental results for evaluating
the proposed DeepPursuit algorithm with (i) general random
sparse signals, and (ii) the MNIST dataset [25]. In all the
experiments, the upper branch of the OMP-ResNet in Figure
1 uses a neural network with two hidden layers and ReLU
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TABLE 1
VECTOR RECOVERY ACCURACY (HIGHER IS BETTER) OF DEEPPURSUIT VS. EXISTING ALGORITHMS.

Matrix Size | Sparse Recovery Alg. Accuracy (%) for various sparsity k Testing time
k=2 (20) k=3 k=4 k=5 (millisecond)
BP (¢1-min) 77.6 32.5 6.0 0.8 20.0
10 x 100 OMP 79.6 41.3 11.0 2.0 0.49
CoSaMP [11] 4.7 28.9 3.5 0.1 1.89
Subspace Pursuit [12] 774 36.9 8.8 1.7 0.76
DeepPursuit (ours) 839+12 475+0.7 136+1.1 22400 0.67
BP (¢;-min) 97.2 61.0 26.5 7.3 90.0
15 x 150 OMP 94.3 75.6 46.3 22.0 0.52
CoSaMP [11] 93.4 71.1 31.2 7.8 2.01
Subspace Pursuit [12] 96.8 73.8 40.5 19.5 0.90
DeepPursuit (ours) 943+06 798+13 551+16 256+1.1 0.86
BP (¢;-min) 99 87 52 26.9 170.0
20 x 250 OMP 96.5 86.1 67.5 40.8 0.89
CoSaMP [11] 98.6 85.5 60.8 31.1 2.79
Subspace Pursuit [12] 99.5 87.2 68.7 39.8 1.35
DeepPursuit (ours) 96.3+05 869+1.1 71.2+12 436=+1 0.96
activations followed by two separate output heads that models 1.0 =
mo(als) and Vp(s), respectively. —«— DospPursuit
—— Cosamp

A. General Random Sparse Signal Recovery

Training Data Generation We conduct experiments on four
measurement matrices of sizes 10 x 100, 15 x 150, 20 x 250 and
200 x 600, respectively. Each matrix A is generated with entries
sampled from an independent and identically distributed (i.i.d)
standard Gaussian A/(0,1) distribution. In each iteration (i.e.,
between consecutive updates of the policy/value network) in the
training process, 1600 i.i.d. random samples of x are generated:
a) xo’s sparsity k is randomly generated, b) the locations of
the k& nonzero elements in x( are chosen uniformly at random,
and c) the values of the nonzero elements are generated i.i.d.
from U[0, 1]. yo = Axg is computed for each x, resulting in
a (y,xzo) pair. MCTS is then performed on each of these 1600
(y, o) pairs.

Testing Data Generation and Evaluation Metric The test
data contain (y,x) pairs generated i.i.d. in the same way
as in training. For each sparsity level k that we evaluate for,
we generate 1000 k-sparse test signals xp and compute the
corresponding y. With & as the predicted sparse vector, we
define a successful recovery of xq as exactly satisfying & = xq.
Experiment Results We evaluate the testing performance of
DeepPursuit and several baseline algorithms. We summarize
the main results (along with their per-sample testing times?)
in Table I and Figure 3. We note that all the performance of
DeepPursuit are achieved without any use of MCTS during
testing, i.e., only by querying the OMP-ResNet. We observe a
significant improvement in the recovery success rates of Deep-
Pursuit over the existing algorithms. Moreover, DeepPursuit is
only slightly slower than OMP, and orders of magnitude faster
than Basis Pursuit (BP, i.e., £1-minimization).

>The testing time is measured on a computer with 5 CPU cores and 1
Nvidia 1080TI GPU.

=
]
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Sparsity of the signal to recover

Fig. 3. Vector recovery accuracy for the 200 x 600 matrix.

Ablation Study We then perform ablation study of DeepPursuit
to examine the contribution of the individual components
(Table II), which shows that all the components developed
in Section III are essential. Note that the results in Tables I
and II are performed with 400 MCTS rollouts in training, and
none in testing. To understand the importance of MCTS, the
performance of DeepPursuit under different numbers of MCTS
rollouts in training is depicted in Figures 4. We can see the
performance improves significantly as the number of rollouts
increase. The gain of employing more rollouts beyond 400
would however be very small, and is hence not quite worth
the corresponding extra training time. Generally, it is clear that
MCTS plays a key role in improving the training efficiency.

B. Image Recovery with Compressed Measurements

Each image in the MNIST dataset is of size 24 x 24. We
limit the number of nonzero values in each image to 80. We
divide each image into four 12 x 12 blocks (cf. [26]), resulting
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TABLE II
ABLATION STUDY OF DEEPPURSUIT ON 15 x 150 MATRIX A (IN VECTOR RECOVERY ACCURACY (%)).

Method | k=2 k=3 k=4 k=5
DeepPursuit 943+06 798+13 551+16 256+1.1
DeepPursuit w/o OMP skip connection 92.7+0.6 78.6+08 4794+1.0 209+1.2
DeepPursuit w/o OMP-biased labels 85.0£6.5 64.1+£51 23.0£2.0 5.6 0.8
DeepPursuit w/o ground-truth guidance 83.2+6.0 63.1£36 26.2+3.6 48+1.6
DeepPursuit w/ MCTS within ground-truth only | 62.0£6.0 37.0£3.0 18.0%£4.2 3.6£1.3

100 T T
Z 80} +
()
o
\a 60
)
E 40 B
-
O D
<<EJ 20
0 -&—— ' '
0 100 200 300 400

# MCTS rollouts in training

Fig. 4. Testing performance vs. number of MCTS rollouts in training.

in a signal dimension of 144. A measurement matrix of size
50 x 144 is generated with i.i.d. standard Gaussian N(0,1)
distribution. 43, 000 original images are used in the training
process, and 1,000 for testing. We evaluate the following
performance metric for image recovery: |\S N So|/|So|, where
|So| is the number of nonzero pixels in the original image,
and |S' N S| is the number of pixels where both the original
and the recovered images are non-zero (i.e., the size of the
overlap). We also plot the recovered images.

We summarize the testing performance in Table III, which
shows that DeepPursuit significantly outperforms BP and OMP.
Next, we plot examples of the recovered images from all the
tested algorithms, as well as the original images, in Figure 5.
We observe that the recoveries by DeepPursuit are perceptually
very close to the original images, whereas those of BP and
OMP suffer from major perceptual distortions.

V. CONCLUSION

We have developed DeepPursuit, a new sparse signal
recovery algorithm trained under a reinforcement learning (RL)
framework. We design a novel residual network architecture
that organically integrates the Orthogonal Matching Pursuit
algorithm into the learning of a policy/value network. We
further employ MCTS in the RL training process, and leverage
the supervision signals from the ground-truth knowledge avail-
able in the training data to guide the MCTS. We demonstrate
that DeepPursuit significantly outperforms the state-of-the-

{ 1121314151 617151910
NEPECEENEEE
1 I 5 I 0 6 O
1 6 I I A I A )

Fig. 5. MNIST image recovery. From top to bottom: original,
DeepPursuit, OMP, BP.

Method | DeepPursuit  DeepPursuit U OMP BP OMP
1ol \ 89.0 + 2.0 89.0 +2.1 57.5  53.0
TABLE III

TESTING PERFORMANCE (%) ON THE MNIST DATASET

art algorithms for recovering general random sparse signals.
Furthermore, we show that DeepPursuit achieves even larger
performance gain over OMP and BP on image recovery tasks.
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