
DeepPursuit: Uniting Classical Wisdom and Deep
RL for Sparse Recovery

Ziheng Chen∗, Sichen Zhong†, Jianshu Chen‡ and Yue Zhao§∗
∗Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY

†Splunk Inc., San Francisco, CA
‡Tencent AI Lab, Bellevue, WA

§Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY

Abstract—In this paper, we formulate sparse signal recovery
as a sequential decision making problem (modeled by Markov
Decision Processes). Based on the formulation, we propose
DeepPursuit, a novel sparse recovery algorithm that learns to
recover sparse signals via deep reinforcement learning (RL) and
Monte Carlo Tree Search (MCTS). To substantially enhance the
learning speed and performance, DeepPursuit (i) employs a novel
residual-type policy/value network architecture that organically
incorporates the classical wisdom from the Orthogonal Matching
Pursuit (OMP) algorithm, and (ii) exploits the available ground-
truth knowledge to guide the MCTS during the training process.
Experimental results for general random sparse signal recovery
demonstrate that, with very low computational complexity, the
DeepPursuit algorithm significantly outperforms the state-of-the-
art algorithms. Even higher performance gains are observed with
experiments on the MNIST dataset.

I. INTRODUCTION

We consider the compressed sensing (CS) problem [1]–[4],

where for a given measurement matrix A ∈ R
m×n, m � n,

and a (noiseless) observation vector y = Ax0, we want to

recover a k-sparse vector/signal x0 (k < m)1. Formally, it can

be formulated as:

minimize
x

‖x‖0 subject to Ax = y, (1)

where the �0-norm ‖ ·‖0 of a vector is defined as its number of

non-zero values. Notably, solving (1) entails minimizing an �0
norm and is an NP-hard problem. The readers are referred to

the seminal papers [1], [2] for a comprehensive survey of the

compressed sensing problem. Compressed sensing and sparse

signal recovery have seen wide applications in many areas

including image processing [5], magnetic resonance imaging

(MRI) [4], and seismology [6] among others.

It has been well understood under what conditions solving

the NP-hard �0-minimization problem (1) guarantees to recover

the correct sparse signal x0 [3]. On the other hand, there have

been many studies on analyzing conditions under which efficient
algorithms guarantee to solve (1) with high probabilities. In

particular, the restricted isometry property (RIP) of A allows

the solution of an �1-minimization problem to recover the

correct sparse signal x0 [2]. There is however a significant gap

This work is supported by the National Science Foundation under Grant
ECCS-2025152.

1We say that a vector is k-sparse if it has k non-zero values.

between the �0 and �1 minimization based conditions. Even

if the provable RIP conditions are not satisfied, empirical

evidence demonstrates that, efficient algorithms can still

sometimes achieve good performance in the recovery of x0

[7], [8]. As such, there is an enormous potential in developing

novel computationally efficient algorithms to approach ideally

solving the NP-hard �0 minimization problem. Such algorithmic

improvement will lead to significant reduction in the number

of measurements needed for signal recovery.

Related Work Efficient algorithms for solving the sparse

recovery problem (1) have been extensively studied, including

convex relaxation [3], [9], matching and subspace pursuit [7],

[10]–[12], and iterative thresholding [13], among others. Recent

advancements in machine learning have opened a new frontier

for solving compressed sensing problems, in particular by

taking a deep learning approach. The works in [14]–[17] apply

DNNs and RNNs for encoding and/or decoding of signals

x0. Modern generative models have also been used to encode

signals with strong priors and design the measurement function

[18], [19]. The latter is also addressed in [20] using MCTS.

Different from the above works, our innovation with machine

learning is on signal recovery algorithms. Supervised learning

approaches for training sequential signal support recovery

policies have been developed [21]. While they are effective

for recovering signals with strong statistical priors, they are

shown to underperform classical algorithms such as OMP for

general sparse signals.

In this paper, we formulate sparse signal recovery as a

sequential decision making problem, modeled by Markov

Decision Processes (MDP), where the signal support of x, or

equivalently, the columns of A to represent y are sequentially

selected. Based on this formulation, we employ an RL-based

framework aided with Monte Carlo Tree Search (MCTS) for

training signal recovery policies [22]. We develop DeepPursuit,
a novel sparse recovery algorithm that (i) employs a novel

residual-type policy network architecture that organically in-

corporates the classical wisdom from the Orthogonal Matching

Pursuit (OMP) algorithm [10], and (ii) exploits the available

ground-truth knowledge to guide the MCTS during training. As

such, the classical wisdom from OMP is effectively integrated

with that from Deep RL in a unified learning framework. We

conduct experiments to evaluate our proposed DeepPursuit

20
21

 5
5t

h
A

sil
om

ar
 C

on
fe

re
nc

e
on

 S
ig

na
ls,

 S
ys

te
m

s,
an

d
Co

m
pu

te
rs

 |
97

8-
1-

66
54

-5
82

8-
3/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IE
EE

CO
N

F5
33

45
.2

02
1.

97
23

11
0

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 08,2022 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

algorithm on general random sparse signals and compare it

to existing state-of-the-art methods. The experimental results

demonstrate that DeepPursuit significantly outperforms the

state-of-the-art methods in speed and/or performance. We note

that, in the testing stage, the DeepPursuit algorithm has a very

low computational complexity.

II. SPARSE SIGNAL RECOVERY AS A MARKOV DECISION

PROCESS

A. MDP Formulation of Sparse Recovery

We formulate the sparse signal recovery problem as a

sequential decision making problem. Note that the key to

the successful sparse recovery is to choose the correct subset

of the columns of A, or equivalently, the support of x, such

that the optimization problem (1) is solved. Equivalently, this

can be reformulated as the following problem. An agent is

employed to sequentially choose one column of A at a time

until it selects up to k columns: The agent succeeds if the

selected columns in the end meet the constraint in (1) and

minimize the �0-loss in (1). Next, we formally define such an

MDP problem.

State and Action Spaces A state s is defined to be a pair

(y, S), where y is the observed signal generated according

to x0 (via y = Ax0)). Let S ⊆ [n] denotes the set of the

already selected column indices of A, where [n] � {1, . . . , n}.

Provided that the matrix A is given, the state does not depend on

this measurement matrix. We define the terminal states to be the

states s = (y, S) that satisfy either: (a) a maximum-considered

number of columns have been selected, or (b) ||ASxs− y||22 <
ε for some given ε, where AS denotes the submatrix of A
constructed by the selected columns in S, and xs is the solution

to the following least-square solution for the given signal

support S:

xs � argmin
z

||ASz − y||22. (2)

The feasible action space at a state s = (y, S) is defined to be

As = [n] \ S; that is, a valid action at state s is any column

from the remaining unchosen ones.

Transition When an action a is taken (i.e., a new column a of

A is selected) at state s=(y, S), the next state s′=(y, S∪{a})
(and hence the MDP transition) is determined and known.

Reward We define the reward to be: R(s, a, s′) := −1−
β
(||AS′xs′−y||22−||ASxs−y||22

)
, where s, s′ are the current

and next states, and xs is the least-square solution given by

(2) (and similarly for xs′). Such a reward design ensures that

the cummulative reward when reaching a terminal state s is

Rcum(s) = −||xs||0 − β||ASxs − y||22. (3)

As such, this cummulative reward consists of two parts: the first

part is the �0 term that measures the sparsity of the solution,

and the second part is the optimal least-square-error given the

column choices in S. β > 0 is a hyperparameter that controls

the balance between sparsity and goodness of fit. We note that,

the purpose of such a “reward decomposition” is to avoid the

potential sparse-reward issue that occurrs when we only have

the terminal rewards (3) with no intermediate ones.

softm
axλS

Fig. 1. The OMP-Residual Policy/Value Network.

B. Learning-to-Recover via Reinforcement Learning

Given a measurement matrix A, we have a set of (sparse)

signals x0, and generate observations y according to y = Ax0.

Based on these signal-observation pairs {(x0, y)}, we use an

RL framework to learn a policy π(a|s)(modeled by a policy

network), which sequentially selects the columns of A and

reconstructs the sparse signal x0. The RL objective is to learn

the π(a|s) that maximizes the cumulative reward, which leads

to recovering x to be the same as the ground truth x0 with high

probability. In RL training, MCTS is employed to generate

high quality experience to update the policy. After the training,

at the testing stage, the learned policy network π(a|s) can then

recover the sparse signal x0 efficiently for any unseen y.

We note that there are existing works using supervised

learning approaches (as opposed to RL) to train a sequential

decision policy for choosing the signal support, but fail to

outperform OMP for general signals without a strong prior

[21]. This motivates us to (i) develop the proposed RL approach,

(ii) design our method to incorporate the wisdom of OMP and

learn beyond the classical algorithms, while still (iii) leveraging

the available ground truth knowledge as the supervision and

guidance signals.

III. THE DeepPursuit ALGORITHM

The key innovations of the proposed DeepPursuit Algorithm

stem from two objectives. Firstly, we seek to incorporate a

classical sparse recovery algorithm, OMP, into the learning of

a policy network. As such, the wisdom from both classical

compressed sensing algorithm design and deep reinforcement

learning are organically integrated. Secondly, we seek to

leverage the fact that the ground truth signals x0 are available at

the training stage, and use them to effectively guide the training

of a policy network. We achieve the first objective by designing

a novel OMP-Residual Policy Network (OMP-ResNet), and the

second objective by incorporating the ground-truth-knowledge

to guide the MCTS process at the training stage.

A. OMP-Residual Policy/Value Network

To learn a policy in the sequential decision making formu-

lation of sparse signal recovery (cf. Section II-A), we employ

a single neural network to jointly model the policy πθ(a|s)
and the state-value function Vθ(s). The policy πθ(a|s) defines

a probability distribution over all actions for a given state s,

where the action set includes the possible next columns of A
to pick and a stopping action. The input of the policy/value

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 08,2022 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

Vθ/R

Fig. 2. MCTS rollouts for sparse recovery.

network consists of two parts: (xs, λs). The first part is the

least-square solution in (2) extended to an n-dimensional vector

with zeros padded in the positions not in S. The second part

is given by

λs := AT (y −ASxs) ∈ R
n,

where y−ASxs is the least-square’s residue. As will be shown

next, having λs as an input feature allows us to include an

“OMP skip connection” in the policy network architecture.

In desigining the architecture of the policy network, we seek

to leverage OMP which a) is widely accepted as a very fast and

effective heuristic for sparse recovery, and b) shares the same

sequential decision making nature as our MDP formulation.

Notably, the OMP algorithm sequentially chooses the column

index whose corresponding component in |λs| is the largest,

where |λs| captures the correlation between the columns of A
and the least-square’s residue. Such a “hard-max” decision

policy can be approximated by Softmax(|λs|). On the other

hand, the policy network also employs a softmax layer, with

a log-probability vector as its input. Thus, a natural way of

combining the decision of OMP and that of a trained policy

network is to element-wise add the logits from both parts,

meaning that the respective probabilities are multiplied.

Based on the above, we design a policy network architecture

as in Figure 1. The upper branch is a general neural network,

whereas the lower branch is an “OMP skip connection” that

implements |λs| to mimic the “OMP-policy”. Adding the OMP

skip connection enables us to learn beyond what OMP can

do. In other words, we free the upper branch from learning

what OMP already does, and provide it a “head start” as it

only needs to focus on what OMP cannot do. Since it shares

a high-level intuition with the residual network [23], we call

our new architecture as an “OMP-Residual Policy Network”.

B. Knowledge-Guided Monte Carlo Tree Search

Since the MDP transition is deterministic and known, we are

able to use such model-based information to perform planning

with MCTS in RL training [24]. In particular, we employ

the general algorithmic framework of AlphaZero [24], and

introduce two novel components that incorporate supervision

signals into the MCTS and RL process (cf. Figure 4).

1) Guiding the MCTS with Ground-Truth Knowledge: The

key search decision during the MCTS rollouts is how to select

an action at at each state st experienced. On the one hand,

we incorporate the decision framework of PUCT (Polynomial

Upper Confidence bound for Trees) [24]. On the other hand,

we leverage the availability of the ground truths x0 in the

generated training data as a supervision signal to guide the

search. Specifically, we introduce a perturbation vector ηea0

in the PUCT framework as follows:

π̃θ(a|st) ∝ πθ(a|st) + ηea0 ,
∑
a

π̃θ(a|st) = 1, (4)

at = argmax
a

{
Q(st, a) + cpuct · π̃θ(a|st)

√∑
b N(st, b)

N(st, a) + 1

}
,

(5)

where, in (4), a) st denotes the state at step t during the MCTS

simulations; b) πθ(a|st) is the output (action probabilities)

of the policy network; c) ea0
is a 1-hot vector at a position

a0 randomly selected within the ground truth signal support;

d) η > 0 is a hyperparameter that controls the influence

of this ground truth guidance; and e) π̃θ(a|st) is the action

probabilities with such guidance. Q(st, a) is the action value

function, and N(st, a) is the visiting count. (5) is PUCT with

cpuct being a hyper-parameter that controls the tradeoff between

exploration and exploitation.

As such, during the MCTS process, the above guidance

makes it more likely to select a support among the ground

truth labels. By varying η, we balance between exploring more

generally and learning primarily from the ground truth.

2) Training with a Diminishing OMP-bias: After the

(pseudo) empirical probability labels are computed from MCTS,

denoted by pM ∈ R
n, we further introduce a bias in these

labels with the knowledge from OMP. Specifically, as OMP

produces a deterministic choice, we encode this choice in a

1-hot vector, pO ∈ R
n, whose value is one at the OMP’s choice

and zero elsewhere. We then bias the (pseudo) label pM from

MCTS with pO in the cross entropy loss:

l = −[(1− μ)pM + μpO] log πθ(s), (6)

where μ is a hyperparameter that controls the contributions

from both labels, and πθ(s) ∈ R
n is the vector of all the action

probabilities from the policy network. This step of biasing the

labels by OMP is in fact designed in conjunction with the

OMP skip connection. The rationale is that, at the initial stage

of training, the (pseudo) labels from MCTS have poor qualities,

and biasing them with the OMP’s choice improves the label

quality. Next, as training progresses and the policy network

becomes better, we anneal this bias by gradually reducing μ.

IV. SIMULATION

In this section, we present experimental results for evaluating

the proposed DeepPursuit algorithm with (i) general random

sparse signals, and (ii) the MNIST dataset [25]. In all the

experiments, the upper branch of the OMP-ResNet in Figure

1 uses a neural network with two hidden layers and ReLU

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 08,2022 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I
VECTOR RECOVERY ACCURACY (HIGHER IS BETTER) OF DEEPPURSUIT VS. EXISTING ALGORITHMS.

Matrix Size Sparse Recovery Alg. Accuracy (%) for various sparsity k Testing time
k = 2 (20) k = 3 k = 4 k = 5 (millisecond)

BP (�1-min) 77.6 32.5 6.0 0.8 20.0
10× 100 OMP 79.6 41.3 11.0 2.0 0.49

CoSaMP [11] 74.7 28.9 3.5 0.1 1.89
Subspace Pursuit [12] 77.4 36.9 8.8 1.7 0.76

DeepPursuit (ours) 83.9± 1.2 47.5± 0.7 13.6± 1.1 2.2± 0.0 0.67

BP (�1-min) 97.2 61.0 26.5 7.3 90.0
15× 150 OMP 94.3 75.6 46.3 22.0 0.52

CoSaMP [11] 93.4 71.1 31.2 7.8 2.01
Subspace Pursuit [12] 96.8 73.8 40.5 19.5 0.90

DeepPursuit (ours) 94.3± 0.6 79.8± 1.3 55.1± 1.6 25.6± 1.1 0.86

BP (�1-min) 99 87 52 26.9 170.0
20× 250 OMP 96.5 86.1 67.5 40.8 0.89

CoSaMP [11] 98.6 85.5 60.8 31.1 2.79
Subspace Pursuit [12] 99.5 87.2 68.7 39.8 1.35

DeepPursuit (ours) 96.3± 0.5 86.9± 1.1 71.2± 1.2 43.6± 1 0.96

activations followed by two separate output heads that models

πθ(a|s) and Vθ(s), respectively.

A. General Random Sparse Signal Recovery

Training Data Generation We conduct experiments on four

measurement matrices of sizes 10×100, 15×150, 20×250 and

200×600, respectively. Each matrix A is generated with entries

sampled from an independent and identically distributed (i.i.d)

standard Gaussian N (0, 1) distribution. In each iteration (i.e.,

between consecutive updates of the policy/value network) in the

training process, 1600 i.i.d. random samples of x0 are generated:

a) x0’s sparsity k is randomly generated, b) the locations of

the k nonzero elements in x0 are chosen uniformly at random,

and c) the values of the nonzero elements are generated i.i.d.

from U [0, 1]. y0 = Ax0 is computed for each x0, resulting in

a (y, x0) pair. MCTS is then performed on each of these 1600
(y, x0) pairs.

Testing Data Generation and Evaluation Metric The test

data contain (y, x0) pairs generated i.i.d. in the same way

as in training. For each sparsity level k that we evaluate for,

we generate 1000 k-sparse test signals x0 and compute the

corresponding y. With x̂ as the predicted sparse vector, we

define a successful recovery of x0 as exactly satisfying x̂ = x0.

Experiment Results We evaluate the testing performance of

DeepPursuit and several baseline algorithms. We summarize

the main results (along with their per-sample testing times2)

in Table I and Figure 3. We note that all the performance of

DeepPursuit are achieved without any use of MCTS during
testing, i.e., only by querying the OMP-ResNet. We observe a

significant improvement in the recovery success rates of Deep-

Pursuit over the existing algorithms. Moreover, DeepPursuit is

only slightly slower than OMP, and orders of magnitude faster

than Basis Pursuit (BP, i.e., �1-minimization).

2The testing time is measured on a computer with 5 CPU cores and 1
Nvidia 1080TI GPU.

Fig. 3. Vector recovery accuracy for the 200× 600 matrix.

Ablation Study We then perform ablation study of DeepPursuit

to examine the contribution of the individual components

(Table II), which shows that all the components developed

in Section III are essential. Note that the results in Tables I

and II are performed with 400 MCTS rollouts in training, and

none in testing. To understand the importance of MCTS, the

performance of DeepPursuit under different numbers of MCTS

rollouts in training is depicted in Figures 4. We can see the

performance improves significantly as the number of rollouts

increase. The gain of employing more rollouts beyond 400
would however be very small, and is hence not quite worth

the corresponding extra training time. Generally, it is clear that

MCTS plays a key role in improving the training efficiency.

B. Image Recovery with Compressed Measurements

Each image in the MNIST dataset is of size 24 × 24. We

limit the number of nonzero values in each image to 80. We

divide each image into four 12× 12 blocks (cf. [26]), resulting

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 08,2022 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ABLATION STUDY OF DEEPPURSUIT ON 15× 150 MATRIX A (IN VECTOR RECOVERY ACCURACY (%)).

Method k = 2 k = 3 k = 4 k = 5

DeepPursuit 94.3± 0.6 79.8± 1.3 55.1± 1.6 25.6± 1.1
DeepPursuit w/o OMP skip connection 92.7± 0.6 78.6± 0.8 47.9± 1.0 20.9± 1.2
DeepPursuit w/o OMP-biased labels 85.0± 6.5 64.1± 5.1 23.0± 2.0 5.6± 0.8
DeepPursuit w/o ground-truth guidance 83.2± 6.0 63.1± 3.6 26.2± 3.6 4.8± 1.6
DeepPursuit w/ MCTS within ground-truth only 62.0± 6.0 37.0± 3.0 18.0± 4.2 3.6± 1.3

0 100 200 300 400

MCTS rollouts in training

0

20

40

60

80

100

A
cc

ur
ac

y
(p

er
ce

nt
)

k = 2
k = 3
k = 4
k = 5

Fig. 4. Testing performance vs. number of MCTS rollouts in training.

in a signal dimension of 144. A measurement matrix of size

50 × 144 is generated with i.i.d. standard Gaussian N(0, 1)
distribution. 43, 000 original images are used in the training

process, and 1, 000 for testing. We evaluate the following

performance metric for image recovery: |S ∩ S0|/|S0|, where

|S0| is the number of nonzero pixels in the original image,

and |S ∩ S0| is the number of pixels where both the original

and the recovered images are non-zero (i.e., the size of the

overlap). We also plot the recovered images.

We summarize the testing performance in Table III, which

shows that DeepPursuit significantly outperforms BP and OMP.

Next, we plot examples of the recovered images from all the

tested algorithms, as well as the original images, in Figure 5.

We observe that the recoveries by DeepPursuit are perceptually

very close to the original images, whereas those of BP and

OMP suffer from major perceptual distortions.

V. CONCLUSION

We have developed DeepPursuit, a new sparse signal

recovery algorithm trained under a reinforcement learning (RL)

framework. We design a novel residual network architecture

that organically integrates the Orthogonal Matching Pursuit

algorithm into the learning of a policy/value network. We

further employ MCTS in the RL training process, and leverage

the supervision signals from the ground-truth knowledge avail-

able in the training data to guide the MCTS. We demonstrate

that DeepPursuit significantly outperforms the state-of-the-

Fig. 5. MNIST image recovery. From top to bottom: original,
DeepPursuit, OMP, BP.

Method DeepPursuit DeepPursuit ∪ OMP BP OMP

|S∩S0|
|S0| 89.0 ± 2.0 89.0 ± 2.1 57.5 53.0

TABLE III
TESTING PERFORMANCE (%) ON THE MNIST DATASET

art algorithms for recovering general random sparse signals.

Furthermore, we show that DeepPursuit achieves even larger

performance gain over OMP and BP on image recovery tasks.

REFERENCES

[1] David L Donoho, “Compressed sensing,” IEEE Trans. on Inf. Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[2] Emmanuel J Candes, “The restricted isometry property and its
implications for compressed sensing,” Comptes rendus mathematique,
vol. 346, no. 9-10, pp. 589–592, 2008.

[3] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
Dec 2005.

[4] Michael Lustig, David Donoho, and John M Pauly, “Sparse MRI: The
application of compressed sensing for rapid mr imaging,” Magnetic
Resonance in Medicine: An Official Journal of the International Society
for Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195,
2007.

[5] Yuejie Chi, Louis L Scharf, Ali Pezeshki, and A Robert Calderbank,
“Sensitivity to basis mismatch in compressed sensing,” IEEE Transactions
on Signal Processing, vol. 59, no. 5, pp. 2182–2195, 2011.

[6] Felix J Herrmann, Michael P Friedlander, and Ozgur Yilmaz, “Fighting
the curse of dimensionality: Compressive sensing in exploration seis-
mology,” IEEE Signal Processing Magazine, vol. 29, no. 3, pp. 88–100,
2012.

[7] David Donoho and Jared Tanner, “Observed universality of phase
transitions in high-dimensional geometry, with implications for modern
data analysis and signal processing,” Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 367, no. 1906, pp. 4273–4293, 2009.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 08,2022 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

[8] Guillaume Lecué and Shahar Mendelson, “Sparse recovery under weak
moment assumptions,” J. Eur. Math. Soc.(JEMS), vol. 19, no. 3, pp.
881–904, 2017.

[9] Scott Shaobing Chen, David L Donoho, and Michael A Saunders,
“Atomic decomposition by basis pursuit,” SIAM review, vol. 43, no.
1, pp. 129–159, 2001.

[10] Stéphane G Mallat and Zhifeng Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on signal processing, vol.
41, no. 12, pp. 3397–3415, 1993.

[11] Deanna Needell and Joel A Tropp, “Cosamp: Iterative signal recovery
from incomplete and inaccurate samples,” Applied and computational
harmonic analysis, vol. 26, no. 3, pp. 301–321, 2009.

[12] Wei Dai and Olgica Milenkovic, “Subspace pursuit for compressive
sensing signal reconstruction,” IEEE Trans. on Inf. Theory, vol. 55, no.
5, pp. 2230–2249, 2009.

[13] Ingrid Daubechies, Michel Defrise, and Christine De Mol, “An iterative
thresholding algorithm for linear inverse problems with a sparsity
constraint,” Comm. on Pure and Applied Math: A Journal Issued by
the Courant Institute of Mathematical Sciences, vol. 57, no. 11, pp.
1413–1457, 2004.

[14] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk, “A deep learning
approach to structured signal recovery,” in 53rd Annual Allerton
Conference on Communication, Control, and Computing. IEEE, 2015,
pp. 1336–1343.

[15] Ali Mousavi and Richard G Baraniuk, “Learning to invert: Signal
recovery via deep convolutional networks,” in Acoustics, Speech and
Signal Processing, IEEE International Conference on. IEEE, 2017, pp.
2272–2276.

[16] Amir Adler, David Boublil, Michael Elad, and Michael Zibulevsky, “A
deep learning approach to block-based compressed sensing of images,”
arXiv preprint arXiv:1606.01519, 2016.

[17] Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J Gross, David
Burshtein, and Yair Beery, “Deep learning methods for improved
decoding of linear codes,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 119–131, 2018.

[18] Shanshan Wu, Alexandros G Dimakis, Sujay Sanghavi, Felix X Yu,
Daniel Holtmann-Rice, Dmitry Storcheus, Afshin Rostamizadeh, and
Sanjiv Kumar, “Learning a compressed sensing measurement matrix via
gradient unrolling,” arXiv preprint arXiv:1806.10175, 2018.

[19] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis, “Com-
pressed sensing using generative models,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 537–546.

[20] Kyong Hwan Jin, Michael Unser, and Kwang Moo Yi, “Self-supervised
deep active accelerated MRI,” arXiv:1901.04547, 2019.

[21] Dany Merhej, Chaouki Diab, Mohamad Khalil, and Rémy Prost,
“Embedding prior knowledge within compressed sensing by neural
networks,” IEEE transactions on neural networks, vol. 22, no. 10,
pp. 1638–1649, 2011.

[22] Sichen Zhong, Yue Zhao, and Jianshu Chen, “Learning to recover
sparse signals,” in 57th Annual Allerton Conf. on Comm., Control, and
Computing. IEEE, 2019, pp. 995–1000.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–
778.

[24] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al., “A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play,” Science,
vol. 362, no. 6419, pp. 1140–1144, 2018.

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
“Gradient-based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[26] Hamid Palangi, Rabab Ward, and Li Deng, “Distributed compressive
sensing: A deep learning approach,” IEEE Transactions on Signal
Processing, vol. 64, no. 17, pp. 4504–4518, 2016.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 08,2022 at 02:19:59 UTC from IEEE Xplore. Restrictions apply.

