CertRevoke: A Certificate Revocation Framework for Named
Data Networking

Tianyuan Yu
UCLA
Los Angeles, USA
tianyuan@cs.ucla.edu

Hongcheng Xie
City University of Hong Kong
Hong Kong, China
hongcheng.xie@my.cityu.edu.hk

Siqi Liu
UCLA
Los Angeles, USA
siqiliu@ucla.edu

Xinyu Ma Xiaohua Jia Lixia Zhang
UCLA City University of Hong Kong UCLA
Los Angeles, USA Hong Kong, China Los Angeles, USA

xinyu.ma@cs.ucla.edu

ABSTRACT

Named Data Networking (NDN) secures network communications
by requiring all data packets to be signed upon production. This
requirement makes usable and efficient NDN certificate issuance
and revocation essential for NDN operations. In this paper, we first
investigate and clarify core concepts related to NDN certificate
revocation, then proceed with the design of CertRevoke, an NDN
certificate revocation framework. CertRevoke utilizes naming con-
ventions and trust schema to ensure certificate owners and issuers
legitimately produce in-network cacheable records for revoked cer-
tificates. We evaluate the security properties and performance of
CertRevoke through case studies. Our results show that deploying
CertRevoke in an operational NDN network is feasible.

CCS CONCEPTS

» Networks — Security protocols; - Security and privacy —
Authentication.

KEYWORDS

Named data networking, Information-centric networking, Trust
management, Certificate revocations

ACM Reference Format:

Tianyuan Yu, Hongcheng Xie, Siqgi Liu, Xinyu Ma, Xiaohua Jia, and Lixia
Zhang. 2022. CertRevoke: A Certificate Revocation Framework for Named
Data Networking. In 9th ACM Conference on Information-Centric Networking
(ICN °22), September 19-21, 2022, Osaka, Japan. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3517212.3558079

1 INTRODUCTION

Securing data communications requires usable solutions for data
integrity, authenticity, and confidentiality. Named Data Network-
ing (NDN) [45] offers essential building blocks for data security
by signing data during production and encrypting data whenever
needed [49]. These security supports require effective and efficient

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICN °22, September 19-21, 2022, Osaka, Japan

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9257-0/22/09.

https://doi.org/10.1145/3517212.3558079

csjia@cityu.edu.hk

80

lixia@cs.ucla.edu

mechanisms to handle certificate issuance and revocation. A num-
ber of existing works [20, 26, 46, 48] have explored the design space
of NDN certificate issuance. However, a systematic understanding
of certificate revocation design approaches is still missing. Although
NDNCERT [46] proposed a simple procedure to let the certificate
owner notify its issuer that the certificate should be revoked, this
procedure does not provide a general solution for certificate revo-
cation.

A certificate revocation designs need to answer the following
three research questions:
RQ1: Which entity can legitimately revoke a certificate? Each
certificate has its issuer and verification chain, which terminates at
the trust anchor. If the certificate issuer (e.g., a site CA on the NDN
Testbed [39]) is not the trust anchor, one also needs to consider the
role that the trust anchor may play in the revocation process.
RQ2: What procedures are needed to revoke a certificate? Cer-
tificate revocation needs protocol designs to ensure the legitimacy
of each step in the process. For example, one needs to define data
structures to record certificate revocation events regarding who
revokes which certificate at when, and the corresponding procedures
to legitimately produce and secure the recordings.
RQ3: How do data consumers learn certificates’ revocation
status? To enable data consumers to learn the validity status of
the revoked certificate, the revocation design must consider data
authenticity and timeliness without incurring high communication
costs in the data validation process.

In this work, we propose a framework for NDN certificate revo-
cation and make the following contributions:

e We clarify the concepts between certificate revocation and
key revocation.

e We investigate the design space of certificate revocation by
articulating the system model and design requirements.

e We design and implement CertRevoke as a certificate revo-
cation framework for NDN.

In the rest of this paper, §2 provides an overview of NDN security
design. §3 describes the necessity of certificate revocation and clar-
ifies the concept of certificate versus key revocation. §4 presents
our certificate revocation framework CertRevoke, and §5 discusses
our prototype implementation and evaluations. We describe related
works in §6 and discuss some of our design decisions and lessons
learned in §7. Finally, we conclude our work in §8.

ICN °22, September 19-21, 2022, Osaka, Japan

2 BACKGROUND

NDN views a network as a collection of named entities with trust
relations with each other. NDN entities are applications or any
communicating parties in the network, each belonging to a trust
zone [24]. In order to join a trust zone, an entity needs to go through
the security bootstrapping step to obtain three basic pieces of NDN
security information from the trust zone controller [43]: trust anchor,
certificate, and trust schema.

o Trust anchor: The trust anchor is a self-signed certificate for
the trust zone, which the trust zone controller owns. It is the
termination point of cryptographical authentication inside
the trust zone, thereby establishing an entity’s initial trust
relation to its trust zone controller.

o Certificate: The trust zone controller endorses an entity by
signing the binding between a name and public key; the re-
sult of this endorsement is an NDN certificate. A certificate is
a piece of named data, and its name follows the naming con-
vention “/<prefix>/KEY/<keyid>/<issuer>/<version>”. A
certificate named “/ndn/siteA/depart/cs/KEY/223/alice
/001” conveys that the entity “/ndn/siteA/depart/cs” is
the certificate owner, and its key ID (e.g. app-1) uniquely
identifies a public-private key pair belonging to this entity.
Furthermore, the certificate name also indicates it is issued
by “alice” with version number “001”.

e Trust Schema: NDN defines trust schema [44] to restrict the
signing power of keys. In authenticating received data pack-
ets, applications use trust schema to verify whether the data
is produced by the right party by checking whether its name
and signer’s key follow defined name patterns.

After security bootstrapping, an NDN entity can produce and con-
sume data authentically.

3 WHEN WE NEED CERTIFICATE
REVOCATION

3.1 Invalidating Bad Certificates

A certificate represents the trust zone controller’s endorsement of
a name-key binding within a validity period. However, there can
be times when this endorsement may need to be terminated before
the validity period expires. For example, when the entity renews
its certificate before the expiration time, when the entity’s private
key gets compromised, or when the trust zone controller finds that
it issued a certificate to a wrong entity by mistake. All the above
cases require the issued certificates to be invalidated.

There exist several possible approaches to invalidate an NDN
certificate.
Trust Schema Renewal: A revised trust schema can inform data
consumers to reject the certificates that have been invalidated. This
approach requires the trust zone controller to promptly distribute
the renewed trust schema to all affected entities within its trust
zone. Data consumers that do not receive the trust schema renewal
in time will still consider the invalidated certificates legitimate.
Therefore, although revoking certificates by renewing the trust
schema can be a viable solution for small trust zones with intra-
zone data communications, it is not an effective solution in general.

81

Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

Short-lived Certificates: If a certificate is issued with a short va-
lidity period, it automatically becomes invalidated upon expiration,
reducing the chance of getting compromised or causing big dam-
ages even in case it gets compromised. A certificate’s validity period
may be a few days [41] or even a few hours [12]. The drawback
of this approach is the increased workload of certificate issuers,
which goes up reversely proportional to the certificates’ validity
period lengths. However, the recent success of Let’s Encrypt [1]
in the existing Certificate Authorities (CA) market suggests that
one can effectively manage certificate renewal tasks through au-
tomation, such as by using the Automatic Certificate Management
Environment (ACME) protocol [4] or CertBot [7]. NDN-based se-
curity solutions can further facilitate automated key management
by leveraging naming conventions.

Using short-lived certificates can make an effective engineering
alternative to certificate revocations for leaf or edge (e.g., user)
certificates. However, renewing higher-level certificates may still
incur substantial cost, as a change to a high-level certificate leads to
re-issuing the certificates for all the entities beneath it. Therefore,
upstream certificates in a trust chain of non-trivial length may
need a relatively long validity period (e.g., at the scale of multiple
months). The flip side of a lengthened validity period is an increased
chance of needing to revoke a certificate before it expires.
Certificate Revocation: Certificate revocation becomes necessary
in cases where both of the above two approaches are deemed infea-
sible. This infeasibility can be illustrated by using the NDN Testbed
as an example. The Testbed trust anchor certifies each participating
organization, which may further delegate its sub-namespaces to in-
dividual departments and issue corresponding certificates. Because
certificates for user applications may be further downstream along
this multihop trust chain, short-lived organization-level certificates
burden user applications with reissuing their downstream certifi-
cates frequently!. The above operational feasibility concerns lead
to the need for issuing organizational certificates with a relatively
long lifetime. This lengthened lifetime must be combined with a
certificate revocation tool to handle the cases where a long-lived
certificate must be revoked before its expiration. The revocation
tool needs to record revocation events and provide means to inform
data consumers of the revocation status of the certificates.

3.2 An Example Scenario

We introduce an example scenario below, which will be used through-
out the paper to facilitate the explanation and discussion.

As shown in Figure 1, an organization site owner delegates her
signing power to a few site administrators to manage each depart-
ment, and each department owner delegates the signing power
to a few department administrators to manage individual users.
The routers of each department register department-level prefixes
to the site router, while the site router aggregates and registers
site prefix with the external network. Figure 1 shows two routers
from “ee” and “cs” department register name prefixes “/ndn/siteA
/depart/cs” and “/ndn/siteA/depart/ee” on the site A router, re-
spectively. The two routers use their monthly renewed certificate
to sign prefix announcements [40] and propagate them to the site

!In practice, we observe that the current NDN Testbed issues year-long certificates to
participating organizations.

CertRevoke: A Certificate Revocation Framework for Named Data Networking

Site Owner Site Admin Depart. Owner Depart. Admin User

" o " . "
certifies certifies .) certifies certifies (@)
Q ________ >OMMp- S22 > O __crhes > % ______ >
ﬁm’

/ndn/5|teA/depart/cs]
! Rejects [Q‘ ,:" CS Router
: - Revokes
. i i [CEE—)
Outside | /ndn/siteA -] |l|
Network i E Alice
E siteA Router EE Router

oo)
/ndn/siteA/depart/ee CxE
]

Figure 1: A Prefix Registration Scenario

router. The site router validates the certificate and registers routes
for the two departments, then further uses site certificate to sign
prefix announcement for “/ndn/siteA” and propagates them to the
outside network.

Consider a site administrator Alice discovers that the certificate
of “/ndn/siteA/depart/cs” was mis-issued and revokes it. Then,
the site A router should know about this revocation event and reject
the next prefix announcement signed by this certificate.

3.3 Revoking Name-Key Endorsements

Revoking a certificate indicates the removal of a name-key endorse-
ment from a specific certificate issuer, which breaks the correspond-
ing edge in the authentication graph. Note that revoking one’s cer-
tificate does not necessarily revoke one’s authenticity completely,
when multi-path authentications exist [44]. For the example shown
in Figure 2, the trust schema allows the site owner “/ndn/siteA”
to certify administrators Alice and Bob for the name prefix “/ndn
/siteA/admin”, and both administrators can further certify depart-
ment owners for the name prefix “/ndn/siteA/depart”. Thus the
entity “/ndn/siteA/depart/cs” has two authentication chains, and
entities who trust “/ndn/siteA” can validate “/ndn/siteA/depart
/cs” through either Alice or Bob. In this case, when Alice revokes
her issued certificate for “/ndn/siteA/depart/cs”, it does not dis-
able the downstream authenticity but only removes one of the
authentication chains. If the CS router receives certificates from
both Alice and Bob, it can use the other certificate from Bob to sign
prefix announcements. The site A router will consider the routing
announcement as legitimately produced data.

Revoking a certificate means removing an edge that connects
two entities in the authentication graph. In this paper, we allow
either end node of an edge to remove the edge. In order words,
the name-key binding endorser (i.e., the certificate issuer) and the
endorsee (i.e., certificate owner) can legitimately invalidate the
certificate. Although the certificate owner is not the “producer” of
the certificate, it can use its private key to sign a revocation record.

4 THE CERTREVOKE FRAMEWORK

In this section, we show how the CertRevoke design answers the
three research questions and fulfills the design goals.

82

ICN °22, September 19-21, 2022, Osaka, Japan

site Qwner Site Admin Depart. Owner Depart. Admin

@ certifies %
_____________ >

/ndn/siteA/admin/alice Depart. Adm
Certificate __»
/ndn/siteA < Revocation >@n/ste/k/de@<
/ndn/siteA/admin/bob key /1 Depart. Admin

Revocation

Figure 2: An Example of Multi-Path Authentication

2. Revocation record interest
+—

> 3. Revocation record

>
>

Checker

1. Revocation record to revoke

Revoker Ledger

Figure 3: CertRevoke System Model

4.1 Problem Statements

In this section, we analyze the certificate revocation problem in
NDN and propose a model to investigate the design spaces.

System Model: We consider a certificate revocation framework, as
shown in Fig. 3. There are three categories of entities in this protocol,
i.e., the ledger, revokers, and checkers. Their roles are discussed as
follows:

o Ledger: The ledger is a set of entities that as a whole provides
immutable data storage. It receives the revocation records
from revokers and responds to checkers’ Interests to re-
trieve revocation records. In a practical deployment, the
ledger’s immutable data storage may be implemented by a
distributed-style scheme, such as Merkle Tree [17, 18] or
DAG replicas [21, 47]. Thus, the single-point failure can be
avoided.

o Revoker: Revokers are the entities that revoke certificates.
They send a revocation record to the ledger when they revoke
a specific certificate.

o Checker: Checkers are the entities that want to know whether
a given certificate is revoked. They send an Interest to re-
trieve the revocation record from Ledger when they check
the revocation status of a certificate.

Assumptions: Since the checker is the party interested in the actual
revocation status, it has no incentive to be malicious. We assume
that some malicious revokers may try to revoke the certificates
illegitimately, i.e., to revoke the certificates they are not permitted to
revoke. Ledger is honest but not trustworthy. Similar to Certificate
Transparency [19], the ledger’s honesty needs to be checked by
external auditors, and we leave the specific design of CertRevoke
auditing for future research. Ledger’s data immutability can be
realized in several ways, e.g., immutable database and distributed
ledger technologies (DLT). For example, following the designs of
DLedger [47] or Mnemosyne [21], revocation records can be linked
together with their names and hash value; when multiple parties are
involved, records generated from different parties can interlock each
other for better security. We also assume that the ledger, revokers
and checkers are in same trust zone. The trust zone controller
bootstraps the aforementioned entities with the zone’s trust anchor,

ICN °22, September 19-21, 2022, Osaka, Japan

issues them certificates and defines their trust schema. Thus their
operations will follow the security policies defined by the controller.
Moreover, the ledger has a well-known prefix inside the trust zone
(e.g.,“/ndn/siteA/LEDGER”).

In this preliminary work, we consider providing revocation sup-
port for intra-zone data communications only and KeyLocators
are certificate names. Generally speaking, practical deployments
will utilize inter-zone communication, thus certificate checkers
may query the revocation records from ledgers operated by en-
tities external to the local trust zones. Securing inter-zone data
communications is a research topic which is being explored at the
moment [42]. Once the inter-zone trust design matures, we plan
to add inter-zone revocation check to CertRevoke as part of our
future work.

Design Goals: Based on the above system model and assumptions,
the design goals of our proposed framework are defined as follows:

e Validating Revocation Legitimacy: The framework can deter-
mine the legitimacy of a revoker in a certificate revocation
attempt.

e Maintaining Revocation Recording: Revocation attempts are
recorded by the ledger with the revoker information to prove
its legitimacy.

e Providing Record Accessibility: Checkers can access legitimate
revocation records to determine the revocation status of a
certificate.

4.2 Revocation Records

Each revocation record is a semantically named, signed Applica-
tion Data Unit (ADU) [3]. A revoker generates a revocation record
to revoke a certificate. Let R€ denote the revocation record of a
certificate C. R¢ is defined as Eq. 1.

R® = {name, {timestamp, rCode, cKeyH?}, sig} (1)

where name is the name of RC, timestamp indicates the time of
data signing, rCode is the code that indicates the reason why C is
revoked, cKeyH is the hash value of the public key in C, and sig is
the corresponding data signature produced by revoker.

RE binds itself to the corresponding certificate C by naming
conventions. R€ name is defined as “/<prefix>/REVOKE/<keyid>
/<issuer>/<version>/<revoker>”, where the name components
“<prefix>”, “<keyid>”, “<issuer>” and “<version>” are the same
as the corresponding parts of the name of C, while “<revoker>”
carries the revoker information. The naming convention enables
checkers to automate the revocation status checking by converting
the C’s name into the corresponding R® name and expressing the
Interest to retrieve it (see §4.4) .

Revocation Legitimacy: Since revokers sign revocation records
with their certificates and the RC names reveal the corresponding
Cs, the trust zone controller manages the revoker’s legitimacy by
controlling the signing restrictions in the trust schema. CertRevoke
considers the certificate issuer and certificate owner are legitimate
revokers (see §3.3).

We illustrate how we leverage the trust schema to ensure revo-
cation legitimacy in Figure 4, where Alice as the certificate issuer
revokes the certificate of “/ndn/siteA/depart/cs” by producing
the revocation record “/ndn/siteA/depart/cs/REVOKE/223/alice

83

Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

Trust Schema Allowing “admin”

revokes “depart””

Enforcing revoker info
equals to the issuer info

Name: /ndn/siteA/depart/cs/KEY/223/alice/001

+ +
Name: /ndn/siteA/depart/cs/REVOKE/223/alice/001/alice Metalnfo: Content Type: KEY; Freshness Period: 720h

Signature:

NotBefore: 2022-05-01 11:59:59

Metalnfo: Content Type: KEY; Freshness Period: 720h Content:

Content:
RevocationTimestamp: 2022-05-22 11:59:59
RevocationReason: SUPERSEDED
PublicKeyHash: 4ed3...

NotAfter: 2022-05-30 11:59:59
t KeyLocator: /ndn/siteA/admin/alice/KEY/222/owner/002
SignatureValue: d33b... (signed by @)

Signature: g
KeyLocator: /ndn/siteA/admin/alice/KEY/222/owner/002 ~eZ4==""Enforcing same
SignatureValue: d33b... (signed by Q) signing key

Figure 4: Site administrator Alice revokes the certificate of
CS department

Revoker

Revocation

D2: /<revoker-prefi
er- preflx>/msg/<ledger»prefix>/submit/<n0ncg> Jid
Legitimacy Validation

Content: Submitted Revocation Record @‘1

Trust
Schema

notify/<paramvdigest> 1

D1: /<ledgervprefix>/submit/

Content: Su

Trust
Schema

Figure 5: Interest-Data exchanges between Revoker and
Ledger

/001/alice”. Trust schema enforces the revoker component in R®
name must be equal to the issuer component; (ii) the records under
the name prefix “/ndn/siteA/depart” must be signed by revok-
ers under the name prefix “/ndn/siteA/admin”; (iii) “/ndn/siteA
/admin/alice” uses the same signing certificate to produce the
corresponding revocation record.

If the certificate owner revokes the certificate, CertRevoke uti-
lizes trust schema to enforce (i) the revoker component must be
“self”; (ii) the signing key must be the same as the key name prefix
in this certificate.

4.3 Revocation Submission Protocol

In this section, we show the protocol that revokers submit the revo-
cation records to the ledger, and the ledger utilizes the trust schema
and key matching policy to ensure the revocation legitimacy.

As shown in Figure 5, a revoker attempts to revoke a certifi-
cate C by generating a revocation record RC and submitting RC
to Ledger. It initiates the submission process by expressing In-
terest “/<ledger-prefix>/submit/notify/<param-digest>” to no-
tify the ledger on the submission event. The notification Interest
I1 carries the revoker’s prefix and a nonce to reach this revoker?,
while “<param-digest>” is the digest of three parameters. I1 in-
dicates the submission is under name “/<revoker-prefix>/msg
/<ledger-prefix>/submit/<nonce>” and retrievable.

211 can also carry an optional forwarding hint if this revoker is not directly reachable

CertRevoke: A Certificate Revocation Framework for Named Data Networking

After receiving I1, the ledger further expresses the Interest I2:
“/<revoker-prefix>/msg/<ledger-prefix>/submit/<nonce>” tore-
trieve the submission Data D2. Then the revoker encapsulates the
revocation record into D2 with the same name, signs it, and replies.

Because signed D2 contains the RC, the ledger executes trust
schema and key matching policy on D2 to validate (i) whether
D2 itself is legitimately produced; (ii) whether RC is legitimately
produced; (iii) whether R®’s signer and the C’s signer satisfy certain
name constraints. Upon successful validation, the ledger inserts the
record into its storage backend. Note that CertRevoke decouples the
submitter legitimacy from the revoker legitimacy via validating D2
and its content separately, which enables other parties voluntarily
submit collected revocation records to the ledger.

After the submission validation, the ledger replies I1 with signed
D1, which has the same name and encapsulates the submission
status. Like the ledger, the revoker also executes the trust schema
to validate DI’s legitimacy and learns the submission status from
the validated data content.

Batch Submission: The record submission protocol allows the
submitter to batch revocation records in D2. Accordingly, the ledger
encodes the submission status for each record in D1. When the batch
size is large, the submitter needs to segment D1 into “/<D1-name>
/<segment-number>”, and use the FinalBlockld field of the Data
packet to specify the highest segment number.

4.4 Certificate Revocation Checking

CertRevoke designs each RC as a piece of semantically named and
secured data. Thus checking a certificate’s revocation status is a
data accessibility problem: How can the checker access the revocation
record in the ledger? CertRevoke addresses this problem by using
Application Layer NACK and dynamically controlling Freshness
Period.

Since we consider the certificate issuer and owner are legit-
imate revokers, checkers can start from C’s name to automati-
cally construct the R®’s name, if it exists, by following the de-
fined naming convention below. In order to access the records,
it expresses two Interests “/<prefix>/REVOKE/<keyid>/<issuer>
/<version>/<issuer>” and “/<prefix>/REVOKE/<keyid>/<issuer>
/<version>/self” together with the forwarding hint to the ledger.
If the ledger finds RC corresponding to the data name carried in
the Interest in its backend storage, it replies to the Interest with the
RC. Receiving either record indicates the checked certificate was
revoked. If the corresponding RC does not exist, the ledger replies
with a Data packet that carries an application layer NACK. This
Data packet has the name “/<record-prefix>/nack/<timestamp>”
with empty content and is signed by the ledger. After checkers
validate the received NACK with trust schema, it learns that the
certificate has not been revoked at this time.

In-network Caching: Because an R© NACK is a named Data
packet, the ledger can dynamically adjust its Freshness Period to
balance the NACK timeliness and traffic load. A long freshness
period indicates the chance that future checkers’ Interest packets
may hit the RC NACK from the in-network cache, and reduces the
workload at the ledger. On the flip side, it increases the chance that
the certificate in question may be revoked, making the R€ NACK
in the cache no longer valid. In short, the Freshness Period of each

84

ICN °22, September 19-21, 2022, Osaka, Japan

RE NACK must be carefully selected to minimize the chance of
obsolete data in the cache while keeping ledger and network traffic
at a reasonable level.

4.5 Putting Together a Case Study

The previous sections explained the individual procedures of CertRe-
voke. This section shows how everything works together to build
a certificate revocation framework that answers the three design
questions (see Section 1).

When starting the site network, Site A specifies the trust schema
only administrators can legitimately revoke a department’s certifi-
cate. The revoker component in R® must be the same as the issuer
component in C’s name. Site A’s owner also runs a ledger instance
“/ndn/siteA/LEDGER” on Site A’s router. During security bootstrap-
ping, Site A’s owner installs the trust schema into all site routers.
Alice, as the site administrator, revokes its previously issued certifi-
cate “/ndn/sitel/depart/cs/KEY/223/alice/001” by producing a
revocation record (see Figure 4), then submits RC to “/ndn/siteA
/LEDGER” following the protocol we mentioned in Section 4.3. An
hour later, the CS router signs the prefix announcement and sends it
to the site router. The routing application on Site A’s router checks
the revocation status of the signing certificate using the mechanism
in §4.4 and learns the signing certificate was revoked for the reason
“SUPERSEDED” thereby rejecting the announcement.

Meanwhile, the routing application on the site router also re-
ceives the prefix announcement from the EE department router. It
checks the revocation status and receives an R© NACK from the
ledger. Upon successful R© NACK validation, the routing applica-
tion proceeds to validate the prefix announcement and renews the
route of “/ndn/siteA/depart/ee”.

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

We have implemented CertRevoke in C++ and provide the library
for developers to integrate the CertRevoke protocols into their
specific applications®. Our implementation supports the ledger for
serving revocation records using memory and persistent storage
(e.g., SQL database). It can also seamlessly work with other ledger
implementations (i.e., DLedger [47]) to provide distributed and
immutable data storage.

5.2 Evaluation Scenario

Figure 6 depicts the evaluation scenario. We assume an environment
with three forwarders. The hosts of each forwarder are connected
through IP overlay links. Checkers and the revoker are virtually
connected to the forwarder running on the same host through a
Unix socket. The ledger can be connected to Forwarder 1 via IP
overlay or virtual links. We assume there is no packet loss on each
link, but the latency of each IP overlay link between the forwarders
varies from 0.5 ms to 6 ms. Forwarders know the route to each
entity. Thereby no route configuration is needed. Additionally, all
caches on the forwarder are empty when the evaluation started.
We emulated the hosts by running three containers on a Ubuntu
20.04 server. This server features an AMD EPYC 7702P processor

3Code has been published at https://github.com/UCLA-IRL/ndnrevoke

ICN °22, September 19-21, 2022, Osaka, Japan

Host 1 Host 2 Host 3

Forwarder 1 Forwarder 2 Forwarder 3

Remote Ledger ! 4 Revoker

Local Ledger

Checker 1 Checker 2

Figure 6: Evaluation scenario where checker and ledger, re-
voker and ledger are multiple hops away.

60

—6— Size 1
40 H —<— Size 10
—>— Size 20

0 1 2 3 4 5 6
Delay Per Link (ms)

Figure 7: The latency of Revoker submitting revocation
records to the Local Ledger

% 20 | |—©— Checker 1
3 —<— Checker 2
>

e

S 10+

T

-1

0
0 1 2 3 4 5 6

Delay Per Link (ms)

Figure 8: The latency of checking revocation records from
the Local Ledger

with 64 physical cores (128 threads) and 256 GB of RAM. We first
evaluate the record submission and check performance with a lo-
cal ledger connected to Forwarder 1 (see §5.3 and §5.4). We also
deployed the ledger at a remote host that is connected to Host 1
with 100 ms propagation delay and investigated the effect of cache
against data freshness period and certificate popularity in §5.5.

5.3 Revocation Submission

In this section, we evaluate the record submission performance
with different link delays and different batch sizes, as illustrated
in Fig. 7. We let the revoker revoke 100 certificates and submit the
revocation records to the ledger. The results show that the time
cost grows linearly with the increasing link delay but is stable
at 2RTT. With the increasing batch size, the latency also grows
slightly. Specifically, it just takes 54.4 ms when the RTT is set as 24
ms, and the batch size is 20. The results show that our submission
protocol is usable in a practical network.

85

Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

5.4 Revocation Record Checking

In this section, we assume Checker 1 and 2 learn a certificate out-
of-band and check its revocation status by expressing Interests for
corresponding revocation records. We assumed that both Checker 1
and Checker 2 were interested in 100 potential certificate revocation
records, in which two percent of them existed. We disabled the cache
so that every Interest packet reaches the ledger. As we can see from
Fig. 8, the time costs of both Checker 1 and Checker 2 increase
linearly along with the per-link delay. With the same per-link delay,
the latency of Checker 1 is smaller because it is closer to the ledger.
For instance, when the per-link delay is 6 ms, the latency of Checker
2 is 24.21 ms, while the latency of Checker 1 is 12.41 ms.

5.5 Benefit from In-network Caching

CertRevoke relies on in-network caching for efficiently distributing
revocation records and record NACK packets. If the local network
does not have enough resources to run a ledger, the trust zone
administrator may bootstrap an entity remotely as ledger deploy-
ment. The performance improvement from cache depends on the
network topology, data freshness period, and average RTT of record
checking. In this experiment, we particularly focused on the record
NACK distribution due to two reasons. First, revocation records are
supposed to be long-lived data. Therefore the cache benefit largely
depends on the network topology and cache capacity. Second, re-
voked certificates only account for a small portion of all issued
certificates. In most cases, when an application checks a revocation
record, it will receive a record NACK.

In this experiment, we deployed the ledger on the NDN Testbed [39]
and investigated the record-checking latency. We assumed Checker
1 and 2 were interested in the same 100 potential revocation records
in §5.4, and randomly requested one of them every second. Each ex-
amination event was scheduled with a 1 to 250 ms random backoff.
In order to have a better comparison, we also normalized the latency
with the average RTT latency from the checker to the ledger.

As we can see from Figure 9a, the normalized latency follows a
similar downward trend as the data freshness period increases. That
is because the caches in intermediate forwarders can respond some
requests. The longer the freshness period, the greater proportion of
requests that hit the cache. When the caching benefit converged, the
record checking latency was improved by 45%. We also investigate
the number of requests that Remote Ledger exactly received in
Figure. 9b. For the same reason, the number of received requests
also decreases along with the data freshness period. For example,
among the first 200 requests that the two Checkers sent, the ledger
only received 87 requests when the freshness period was 100 s. In
other words, in-network caching decreases the ledger’s load by
56.5%.

However, if the average RTT takes 200 ms (approximately from
Southern Europe to North America on NDN Testbed), 45% improve-
ment still requires the checker application to wait >100 ms while
checking a record. Fortunately, in real applications, not every cer-
tificate has the same possibility of being checked. We know that
content popularity on today’s Internet closely follows a Zipf distri-
bution [5, 8, 37]. We can assume NDN certificates, as data content
signers, follow the same popularity distribution. Higher ranked

CertRevoke: A Certificate Revocation Framework for Named Data Networking

> T T
(&)
FCE 1 —&— Checker 1
S —<— Checker 2
908
N
©
€06
o
Z 1 1 1 1
0 20 40 60 80 100

Freshness Period (s)

(a) Normalized latency of revocation record checking

@ 200 : :
g
o 150
©
[0)
=
§ 100 |
o | | | |
0 20 40 60 80 100

Freshness Period (s)

(b) Requests received by Local Ledger

Figure 9: Evaluation when checked records follow Uniform
distribution

> T T
[}
Ff, 0.8 —o— Checker 1
8- —<— Checker 2
- 0.6
(0]
N
= 0.4
e
5 0.2
Z 1 1 1 1
0 20 40 60 80 100

Freshness Period (s)

(a) Normalized latency of revocation record checking

T

o0
% 150 11
% —o— Zipf
& 100 |
©
(0]
=
Q 507
(0] o) o
o I ;)
0 20 40 60 80 100

Freshness Period (s)

(b) Requests received by Remote Ledger
Figure 10: Evaluation when checked records follow Zipf dis-

tribution

certificates are checked more often and thus benefit more from
in-network caching.

86

ICN °22, September 19-21, 2022, Osaka, Japan

3 T T T T

S 2f——10s]
E 100s

o 12h

(0]

N1

©

£

(@)

Z0

100

o

20 40 60

Popularity Rank

80

Figure 11: Normalized latency with popularity rank

Therefore in the third setting, to illustrate the real performance,
we use the same ledger deployment on the NDN Testbed but as-
sume the certificate popularity follows Zipf distribution with s = 2.
As illustrated in Fig. 10a and Fig. 10b, both average normalized
latency and the received requests decrease exponentially. More-
over, they are also significantly lower than those when certificates
share the same popularity. For example, the latency of Checker 2 in
Zipf distribution is only 15.5% of original RTT when the freshness
period is 100 s, which is significantly smaller than the converged
performance 45% in Figure 9a. The number of received requests
among the first 200 requests was only 23 when the freshness period
was 100 s.

In order to have a closer look at how certificate popularity af-
fects the record checking latency, we also measured the average
record checking performance for each certificate. Similar to previ-
ous experiments, we normalized the latency with the average RTT
from the checker to the ledger. When data expires more often (e.g.,
10 s), checking a popular certificate benefits less from in-network
caching. As we can see from Fig. 11, the normalized latency quickly
converges to 1 as the popularity rank goes down. Only the top 20%
certificates take a shorter time to examine. This number becomes
the top 40% when the data freshness period is set to 100 s, and the
top 10% takes 0.5 RTT for Checkers to examine their revocation
statuses. According to the above evaluations, we show that even
when the ledger is deployed remotely, the record checking latency
is acceptable with the appropriate configuration of caches.

Cache Utilization in Practical Deployments: There are two
major factors that affect the cache utilization in practical CertRe-
voke deployments: network topology and revocation record NACK
freshness period.

We are aware that the network topology used in our experiments
enables every record Interest hitting the cache. In order to improve
the cache utilization in a practical deployment, one may bootstrap
distributed ledger [21, 47] instances in different locations in the
network.

A practical revocation record NACK’s freshness period can be
multiple hours or even a few days. Our evaluation shows the per-
formance of record checking promptly converges as the NACK
freshness period increases, even the freshness period in this experi-
ment is significantly smaller than the practical network uses (e.g.,
one day or more).

ICN °22, September 19-21, 2022, Osaka, Japan

6 RELATED WORKS

Today’s Internet has a history of addressing the need for certificate
revocations. In fact, about 2% of all TLS certificates in today’s Inter-
net are revoked, according to a study in 2021 [15]. The Certificate
Revocation List (CRL) [34] and the Online Certificate Status Check-
ing (OCSP) [35] have become the two pillars of today’s revocation
system.

CRL: CRLs are files containing lists of unexpired revoked certifi-
cates. They are signed by the corresponding CA or a party it dele-
gates to. A certificate can only be revoked by the CA, and the CA
revokes certificates by appending the identification of the certifi-
cate and the revocation reason to the CRL. CRLs are usually hosted
at stable URLs, and the CA informs the consumer about the URL
in the certificate. Data consumers check the certificate status by
fetching the CRL and confirming that the certificate in question is
not on the list.

However, CRL suffers from performance issues. The consumer
needs to make another request for the CRL, which creates another
RTT. In particular, as the service of the CA expands, the size of the
CRL may grow. Although a number of solutions [9, 14, 16, 25, 27, 38]
are proposed to enable fast CRL checkings, the fundamental issue of
CRL is that the revocation list is merely a file or data structure rather
than a piece of named data at the network layer. As a result, one
has to find the server address and retrieve the file at the application
layer. A lesson we learned from CRL is that revocation records
should be named data and only contain the revocation information
of one certificate, so the revocation status of each certificate can be
fetched separately.

OCSP: OCSP is another approach for providing revocation updates.
Like CRL, CA configures OCSP responders at stable URLs, and
informs the responder URL in the issued certificate. Data consumers
follow the OCSP protocol to query the certificate status from the
URL, and the OCSP responders provide signed revocation status
for each query. OCSP avoids the CRL problem on the size of the
data responses, but it still contains the same problem as the CRL
on the additional RTT. It also requires the responder to be always
online for OCSP queries, which creates a large burden for OCSP
responders for responding all queries. OCSP Stapling [6] and the
later OCSP Must-Staple [10] solve the problems by allowing the
server to include the cached OCSP responses from the issuer during
a TLS handshake with the data consumer.

Compared to CRL, OCSP makes revocation records as named
data at the application layer. From OCSP, we learned that record
accessibility is an important factor that affects adoption. Therefore,
CertRevoke takes one step further by directly making revocation
record as named data at the network layer, thereby enabling in-
network caching and providing better data accessibility.

Ledger-based Revocation System: There are also works to design
the revocation system by leveraging ledger technologies such as
Certificate Transparency [17]. Enhanced Certificate Transparency [33]
proposes the use of a Merkle tree to store revoked certificates in
the Certificate Transparency log. Revocation Transparency [18] by
Google uses append-only log to store and verify certificate revoca-
tions. There are also proposals to use blockchain to build revoca-
tion logs [2, 28]. CertRevoke shares a similar approach of utilizing
immutable logs, but also enjoys its unique advantage of efficient

87

Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

Time to ty
[/ndn/siteA/depart/cs (R EEEEEEEEEEEEEEE \\\\\\\\\\\\\\\l'
Revoked
/ndn/siteA/depart/cs/author IFEEEEEEEETE NN

Also invalid

Figure 12: Example of Revocation Impact

distribution of all revocation records via NDN’s built-in multicast
delivery and in-network caching.

DNSSEC and DANE: In today’s Internet infrastructure, DNSSEC [30—
32] is another solution to endorse name-key bindings between do-
main names and cryptographic keys. Leveraging DNSSEC, DANE [11]
can further specify a TLS certificate for a domain name in TLSA
Resouce Records (RR) published under the certificate owner’s do-
main name. In a recent presentation [13], Huston pointed out that,
as DNS uses relatively short TTLs to control the TLSA RR live-
ness, after cached results time out quickly, future requests for TLSA
records will be forwarded to the DNS server to handle, eliminat-
ing the needs of certificate revocation. Huston argued taht using
DANE to manage TLS certificates can achieve the same, or better
and simpler, effect in TLS key management, as compared to today’s
practices of either deploying revocation solutions, or otherwise
letting CAs issue short-lived X.509 certificates.

7 DISCUSSION

After presenting the lessons learned from related works in exist-
ing X.509 certificate revocation solutions, this section discusses
potential optimizations and remaining questions.

7.1 Revocation Impact

When an upstream, long-lived certificate is revoked, it invalidates
all downstream Data in the authentication chain, including the po-
tentially innocent packets. For example, as shown in Figure 12, Alice
discovers the certificate of “/ndn/siteA/depart/cs” is misused at
T1and decides to revoke it. The downstream certificate “/ndn/siteA
/depart/cs/author” issued at T0, which is earlier than T1, might
be innocent. In order to reduce the revocation impact, one can add
an optional field “notBefore” in the revocation record to indicate
the start timestamp of invalidation. When the checker receives a
revocation record containing “notBefore”, it compares the certifi-
cate validity period with “notBefore” to determine whether it can
be exempted. Note that “notBefore” is based on the revoker’s best
estimate. Thereby the usage of “notBefore” objectively increases
the security risk and is not recommended.

7.2 Record Checking Latency

Checking revocation status for each certificate along the certificate
chain requires data consumers to take at least one RTT per certifi-
cate to retrieve revocation records. Although in-network caching
mitigates this issue, one can take the following approaches to fur-
ther reduce the record checking latency: (i) Sending the record
fetching Interests together with the Interest to fetch the upstream
certificate. (ii) Similar to OCSP Stapling, providing fresh Record
NACK packets in the certificate bundle [22]. (iii) Only performing

CertRevoke: A Certificate Revocation Framework for Named Data Networking

revocation record checking for long-lived certificates (e.g., validity
period longer than a threshold).

Also note that, unlike OCSP, a CertRevoke revocation record
is not a certificate status, and the record name can be directly
converted from the corresponding certificate name. Therefore a
CertRevoke ledger does not need to manage the revocation status
for each certificate, but rather a key-value storage. This advantage
enables fast record look up and at the ledger side.

7.3 Certificate Revocation versus Key
Revocation

In Section 3.3, we mentioned that certificate revocation is to re-
move the relation between two entities. It is worth mentioning that
certificate revocation does not revoke the corresponding key pair.

Key revocation is a separate concept that directly invalidates the
key, i.e., removing the corresponding node in the authentication
graph. We show the difference between the certificate revocation
and key revocation in Figure 2. If each entity node in the authentica-
tion graph has only one key, revoking the key of entity “/ndn/siteA
/depart/cs” breaks all authentication chains from “/ndn/siteA” to
this entity by distrusting the revoked key itself. Of course an entity
may possess multiple keys to mitigate the impact of losing one key.
Nevertheless, we believe that key revocation is a separable research
problem in the trust management, and leave it for our future work.

7.4 Privacy Implications

The privacy of a certificate checker is an important concern in
certificate revocation designs. For example, The OCSP design lets
each client check with an OCSP server about whether a given
certificate has been revoked, and this OCSP request allows the OCSP
server to learn that a specific client is visiting the domain being
checked [16]. In contrast, because NDN Interest packets do not
carry identity information of consumers, the Interests for checking
revocation records do not disclose any checker information. If a
checking request does not hit a cache along the way before reaching
a ledger, the ledger can only learn the domain being checked, but
not the consumer who sent the record checking Interest.

7.5 Certificate Revocation versus Short
Certificate Lifetime

Under the assumption that there is a general need for NDN certifi-
cate revocation, this paper presented the design of CertRevoke and
some preliminary evaluation of its effectiveness and efficiency. The
need for certificate revocations becomes evident when the imple-
mentation of an NDN-based application directly puts the certificate
name into the KeyLocator field in its Data packets. Assuming that
the authentication chains of Data packets are defined by the applica-
tion’s trust scheme, using KeyLocator to carry the certificate name
is a simple, straightforward way to enforcing the authentication
chain starting from the trust anchor down to the Data packet’s
producer. At the same time, this implementation approach also ties
together the entire authentication chain, resulting in any change to
the trust anchor or other keys at higher level triggering a rippling
changes to all the certificates downstream from it. Reducing the
frequency of such undesired ripple effects requires using longer

88

ICN °22, September 19-21, 2022, Osaka, Japan

certificates lifetime (see Section 3), which in turn increases the
chance that a certificate may need to be revoked before it expires.

As we described in Section 6, Huston suggested to do away
with certificate revocation entirely by assigning all certificates
with relatively short lifetime [13]. To avoid the ripple effect due
to higher level key changes, one can decouple each step in the
authentication chain by putting the signing key name, instead of
the certificate name, in Data’s KeyLocator field. To retrieve the
corresponding certificate, the consumer can construct a certificate
name of the signing key from the information provided by trust
schema, but without knowing the certificate’s version number. Thus
the consumer needs a means to retrieve the certificate of the latest
version quickly.

We note that the strict authentication chain should be explicitly
defined by the trust schema. and that carrying certificate name in
KeyLocator and the proposed solution in [13] represent different
design tradeoffs in authentication chain enforcement. The former
is a simple way to strictly enforce the chain, by paying the cost of
deploying certificate revocation solutions (such as the one designed
in this paper). The latter does away from certificate revocation but
requires an effective means to quickly retrieve the latest certificate
without knowing its version number.

7.6 Remaining Work

We have identified two pieces of remaining work to be done in
order to operate CertRevoke effectively and securely.

Realization of a Distributed Immutable Ledger. CertRevoke re-
quires a ledger design to provide immutable data storage. The de-
sign of this ledger can be tailored specifically to meet the needs
for certificate management requirements. The questions of how to
design a simple certificate management ledger and bootstrap it into
a given trust zone remain to be answered. We consider this as one
of our future works.

Effective Cache Poisoning Mitigation. Malicious attackers can
poison in-network caches by requesting a prepared fake revocation
record or revocation NACK from a colluding server. Such fake data
packets do not conform to the trust schema, therefore checkers
can easily detect and discard them. However the cache poisoning
essentially becomes a Denial-of-Service (DOS) attack, we need
effective means to either remove fake data packets from in-network
caches, and/or route checkers requests around poisoned caches.
Since cache poisoning is a well-recognized problem in NDN, many
efforts have been devoted to identifying effective solutions [23, 29,
36]. We hope to identify, and implement, an effective solution from
the existing literature.

8 CONCLUSION AND FUTURE WORK

NDN architecture secures communication by semantically named
and signed data packets, which requires an easy-to-use mechanism
to issue and revoke certificates. Certificate revocation is an essential
part of NDN certificate management, which has not attracted ade-
quate attention. This work articulated the necessity of certificate
revocation, and presented a usable certificate revocation framework
CertRevoke. CertRevoke leverages NDN’s naming convention, trust

ICN

’22, September 19-21, 2022, Osaka, Japan

schema, and in-network caching to systematically validate revo-
cations and enable efficient distribution of certificate revocation
records. Our evaluation shows CertRevoke significantly benefits
from in-network caching and provides acceptable latency for revo-
cation checking. We also identified the remaining work to be done,
and plan to deploy a fully operational certificate revocation system
in the NDN Testbed in a near future.

ACKNOWLEDGEMENT

We want to thank all the anonymous reviewers and the shepherd
Nikos Fotiou for their valuable comments. This work was supported
in part by National Science Foundation under awards 2019085 and
2126148, and Research Grants Council of Hong Kong under CityU
11202419.

REFERENCES

(1]

[2

—

[10

[11]

[12

[13]

[14

[15

[17]
[18]

[19

Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan
Flores-Lopez,] Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric
Rescorla, et al. 2019. Let’s Encrypt: an automated certificate authority to encrypt
the entire web. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2473-2487.

Yves Christian Elloh Adja, Badis Hammi, Ahmed Serhrouchni, and Sherali
Zeadally. 2021. A blockchain-based certificate revocation management and
status verification system. Computers & Security 104 (2021), 102209.

Alex Afanasyev, Jeff Burke, Tamer Refaei, Lan Wang, Beichuan Zhang, and Lixia
Zhang. 2018. A brief introduction to Named Data Networking. In MILCOM
2018-2018 IEEE Military Communications Conference (MILCOM). IEEE, 1-6.
Richard Barnes, Jacob Hoffman-Andrews, Daniel McCarney, and James Kasten.
2019. Automatic certificate management environment (acme). Technical Report.
Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. 1999. Web
caching and Zipf-like distributions: Evidence and implications. In IEEE INFO-
COM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. The Future
is Now (Cat. No. 99CH36320), Vol. 1. IEEE, 126-134.

D. Eastlake. 2011. Transport Layer Security (TLS) Extensions: Extension Definitions.
Technical Report. IETF Network Working Group, Fremont, CA, USA, 2021.
EFF. 2022. Certbot. Online at https://certbot.eff.org/.

Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu
Koponen, Bruce Maggs, KC Ng, Vyas Sekar, and Scott Shenker. 2013. Less pain,
most of the gain: Incrementally deployable icn. ACM SIGCOMM Computer
Communication Review 43, 4 (2013), 147-158.

Mark Goodwin. 2015. Revoking Intermediate Certificates: Introducing OneCRL.
Online at https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-
certificates-introducing-onecrl/.

P. Hallam-Baker. 2015. X.509v3 Transport Layer Security (TLS) Feature Extension.
Technical Report. IETF Network Working Group, Fremont, CA, USA, 2021.
Paul E. Hoffman and Jakob Schlyter. 2012. The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698. https://doi.org/10.17487/RFC6698

Yung-Kao Hsu and Stephen Seymour. 1997. Intranet security framework based
on short-lived certificates. In Proceedings of IEEE 6th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises. IEEE, 228-234.

Geoff Huston. 2022. Revocation. Presentation at RIPE 84. https://www.potaroo.
net/presentations/2022-05-20-revocation-ripe84.pdf

Paul C Kocher. 1998. On certificate revocation and validation. In International
conference on financial cryptography. Springer, 172-177.

Nikita Korzhitskii and Niklas Carlsson. 2021. Revocation Statuses on the Internet.
In International Conference on Passive and Active Network Measurement. Springer,
175-191.

James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. 2017. CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers. In 2017 IEEE Symposium on Security and Privacy (SP). 539-556.
https://doi.org/10.1109/SP.2017.17

Ben Laurie. 2014. Certificate transparency: Public, verifiable, append-only logs.
Queue 12, 8 (2014), 10-19.

Ben Laurie and Emilia Kasper. 2012. Revocation transparency. Google Research,
September 33 (2012).

B. Laurie, E. Messeri, and R. Stradling. 2021. RFC 9162-Certificate Transparency
Version 2.0. Technical Report. IETF Network Working Group, Fremont, CA, USA,
2021.

89

[20

[21

[22

[23

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

(37

[38

[40
[41

[42

[43

[44

[46

[47

]

]

]

]

Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

Yanbiao Li, Zhiyi Zhang, Xin Wang, Edward Lu, Dafang Zhang, and Lixia Zhang.
2019. A secure sign-on protocol for smart homes over named data networking.
IEEE Communications Magazine 57, 7 (2019), 62-68.

Siqi Liu, Philipp Moll, and Lixia Zhang. 2021. Mnemosyne: an immutable dis-
tributed logging framework over named data networking. In Proceedings of the
8th ACM Conference on Information-Centric Networking. 130-132.

Manika Mittal, Alex Afanasyev, and Lixia Zhang. 2017. NDN Certificate Bundle
(Version 0.1). University of California, Los Angeles, Tech. Rep. NDN-0054 (2017).
Tan Nguyen, Xavier Marchal, Guillaume Doyen, Thibault Cholez, and Rémi
Cogranne. 2017. Content poisoning in named data networking: Comprehensive
characterization of real deployment. In 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE, 72-80.

Kathleen Nichols. 2021. Trust Schemas and ICN: Key to Secure Home IoT (ICN
"21). Association for Computing Machinery, New York, NY, USA, 12 pages.
Kobbi Nissim and Moni Naor. 1998. Certificate Revocation and Certificate Update..
In USENIX Security Symposium. Citeseer.

Davide Pesavento, Junxiao Shi, Kerry McKay, and Lotfi Benmohamed. 2022. PION:
Password-based IoT Onboarding Over Named Data Networking. In 2022 IEEE
International Conference on Communications. IEEE.

The Chromium Projects. 2022. CRLSets.
https://www.chromium.org/Home/chromium-security/crlsets/.
Bo Qin, Jikun Huang, Qin Wang, Xizhao Luo, Bin Liang, and Wenchang Shi.
2020. Cecoin: A decentralized PKI mitigating MitM attacks. Future Generation
Computer Systems 107 (2020), 805-815.

Zeinab Rezaeifar, Jian Wang, and Heekuck Oh. 2018. A trust-based method for
mitigating cache poisoning in name data networking. Journal of Network and
Computer Applications 104 (2018), 117-132.

Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. DNS
Security Introduction and Requirements. RFC 4033. https://doi.org/10.17487/
RFC4033

Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. Protocol
Modifications for the DNS Security Extensions. RFC 4035. https://doi.org/10.
17487/RFC4035

Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. Re-
source Records for the DNS Security Extensions. RFC 4034. https://doi.org/10.
17487/RFC4034

Mark D. Ryan. 2014. Enhanced Certificate Transparency and End-to-End En-
crypted Mail. In NDSS Symposium 2014.

S Santesson, S Farrell, S Boeyen, R Housley, W Polk, and D Cooper. 2008. RFC
5280-Internet X. 509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. Technical Report. IETF Network Working Group, Fremont, CA,
USA, 2008.

S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. 2013.
X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP.
Technical Report. IETF Network Working Group, Fremont, CA, USA, 2021.
Divya Saxena, Vaskar Raychoudhury, Neeraj Suri, Christian Becker, and Jiannong
Cao. 2016. Named data networking: a survey. Computer Science Review 19 (2016),
15-55.

Thomas C Schmidt, Sebastian Wolke, Nora Berg, and Matthias Wahlisch. 2016.
Let’s collect names: How PANINI limits FIB tables in name based routing. In 2016
IFIP Networking Conference (IFIP Networking) and Workshops. IEEE, 458-466.
Trevor Smith, Luke Dickinson, and Kent Seamons. 2020. Let’s revoke: Scalable
global certificate revocation. In Network and Distributed Systems Security (NDSS)
Symposium 2020.

The NDN Team. 2022. NDN Testbed. Online at https://named-data.net/ndn-
testbed/.

The NDN Team. 2022. Prefix Announcement Protocol. Online at
https://redmine named-data.net/projects/nfd/wiki/PrefixAnnouncement.

Emin Topalovic, Brennan Saeta, Lin-Shung Huang, Collin Jackson, and Dan
Boneh. 2012. Towards short-lived certificates. Web.

Tianyuan Yu, Xinyu Ma, Hongcheng Xie, Yekta Kocaogullar, and Lixia Zhang.
[n.d.]. Intertrust: Establishing Inter-Zone Trust Relationships. In 9th ACM Con-
ference on Information-Centric Networking (ICN 2022). ACM.

Tianyuan Yu, Philipp Moll, Zhiyi Zhang, Alexander Afanasyev, and Lixia Zhang.
[n.d.]. Enabling Plug-n-Play in Named Data Networking. In MILCOM 2021-2021
IEEE Military Communications Conference (MILCOM). IEEE, 562-569.

Yingdi Yu, Alexander Afanasyev, David Clark, KC Claffy, Van Jacobson, and Lixia
Zhang. 2015. Schematizing trust in named data networking. In proceedings of the
2nd ACM Conference on Information-Centric Networking. 177-186.

Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KC Claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
data networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),
66-73.

Zhiyi Zhang, Alexander Afanasyev, and Lixia Zhang. 2017. Ndncert: universal
usable trust management for ndn. In Proceedings of the 4th ACM Conference on
Information-Centric Networking. 178-179.

Zhiyi Zhang, Vishrant Vasavada, Xinyu Ma, and Lixia Zhang. 2019. Dledger:
An jot-friendly private distributed ledger system based on dag. arXiv preprint

Online at

CertRevoke: A Certificate Revocation Framework for Named Data Networking ICN °22, September 19-21, 2022, Osaka, Japan

[49] Zhiyi Zhang, Yingdi Yu, Alexander Afanasyev, Jeff Burke, and Lixia Zhang. 2017.
NAC: Name-based access control in named data networking. In Proceedings of
the 4th ACM Conference on Information-Centric Networking. 186—187.

arXiv:1902.09031 (2019).
[48] Zhiyi Zhang, Su Yong Wong, Junxiao Shi, Davide Pesavento, Alexander Afanasyev,
and Lixia Zhang. 2020. On Certificate Management in Named Data Networking.

arXiv preprint arXiv:2009.09339 (2020).

90

