
SoK: The Evolution of Distributed Dataset Synchronization
Solutions in NDN

Philipp Moll, Varun Patil
{phmoll,varunpatil}@cs.ucla.edu

UCLA
Los Angeles, USA

Lan Wang
lanwang@memphis.edu
University of Memphis

Memphis, USA

Lixia Zhang
lixia@cs.ucla.edu

UCLA
Los Angeles, USA

ABSTRACT
Distributed dataset synchronization, or Sync in short, plays the
role of a transport service in the Named Data Networking (NDN)
architecture. A number of NDN Sync protocols have been devel-
oped over the last decade. In this paper, we conduct a systematic
examination of NDN Sync protocol designs, identify common de-
sign patterns, reveal insights behind different design approaches,
and collect lessons learned over the years. We show that (i) each
Sync protocol can be characterized by its design decisions on three
basic components – dataset namespace representation, namespace
encoding for sharing, and change notification mechanism, and (ii)
two or three types of choices have been observed for each design
component. Through analysis and experimental evaluation, we re-
veal how different design choices influence the latency, reliability,
overhead, and security of dataset synchronization. We also discuss
the relationship between transport and application naming, the
implications of namespace encoding for Sync group scalability, and
the fundamental reason behind the need for Sync Interest multicast.

CCS CONCEPTS
•Networks→Network protocol design;Transport protocols;
Network design principles.

KEYWORDS
Named Data Networking, Distributed Dataset Synchronization,
Sync Protocols, NDN Transport

ACM Reference Format:
Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang. 2022. SoK: The
Evolution of Distributed Dataset Synchronization Solutions in NDN. In 9th
ACM Conference on Information-Centric Networking (ICN ’22), September
19–21, 2022, Osaka, Japan. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3517212.3558092

1 INTRODUCTION
Most people in the ICN community are familiar with Named Data
Networking (NDN)’s basic network communicationmodel of Interest-
Data exchanges, which has been documented in numerous publica-
tions [4, 56]. However, a comprehensive overview of NDN transport
service is missing. This paper aims to fill that void.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’22, September 19–21, 2022, Osaka, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9257-0/22/09.
https://doi.org/10.1145/3517212.3558092

The transport services in the NDN architecture differ from that
in the TCP/IP architecture in fundamental ways due to two reasons.
First, as we explain in §2, NDN moves the three basic functions
provided by the transport layer in today’s IP network, namely
demultiplexing, reliable data delivery, and congestion control, out
of transport and into proper places in the NDN protocol stack.
Second, different from today’s common practice where distributed
applications rendezvous at centralized servers through point-to-
point transport service, NDN enables entities running distributed
applications to communicate directly by enabling them to fetch
desired data using applications layer names at the network layer.
That is, NDN needs a new type of multiparty transport service
that can enable a group of distributed entities to communicate in a
secure, resilient, and reliable way.

The new NDN transport service that emerged from the last ten
plus years of NDN experimental research is the namespace synchro-
nization of shared datasets among a group of distributed entities.
A variety of NDN Sync protocols, as summarized in a survey [31],
have been developed, and the design approaches have evolved over
the years. This SoK paper aims to provide a systematic examination
of all the existing NDN Sync protocol designs, collect the lessons
learned from different design choices, and identify remaining is-
sues and future research directions. We start with a clarification
on the role of Sync in the NDN protocol stack (§2), then proceed
with identifying the major components in a Sync protocol (§3). We
illustrate the impact of different design choices through case studies
of five representative Sync protocol designs (§4), then step up a
level to compare and contrast the different design decisions made
by different protocols, and validate our analysis with comparative
evaluation results (§5).

From the above exercise we learn that every Sync protocol faces
three basic design decisions: how to represent the dataset names-
pace containing data produced by all participants, how to encode
the dataset namespace in communication, and how to disseminate
dataset state changes effectively and efficiently1. We discover that
a few design patterns are shared among all the Sync protocols (§4),
and reveal the necessity of multicasting Sync Interests and the con-
straint in its use. Using both analysis and experimental evaluation,
we show how different design choices influence the latency, reliabil-
ity, overhead, and security in dataset synchronization. We wrap up
the paper with discussions on the relationship between transport
and application naming, the implications of namespace encoding
for Sync protocol scalability (§6), and a few related research areas
(§7), followed by the conclusion and future work (§8).

1Throughout this paper we treat dataset namespace, dataset namespace state, and
dataset state as exchangeable terms.

https://doi.org/10.1145/3517212.3558092
https://doi.org/10.1145/3517212.3558092
https://doi.org/10.1145/3517212.3558092


ICN ’22, September 19–21, 2022, Osaka, Japan Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang

2 THE ROLE OF SYNC IN NDN
Generally speaking, transport services bridge the gap between
the services that the network layer provides and the services that
applications desire. Today’s transport protocols, as exemplified
by TCP, convert IP’s point-to-point datagram service to reliable
byte stream delivery between two application processes, which are
identified by a pair of IP addresses and transport port numbers.
TCP provides three basic functions:
(1) demultiplexing incoming IP packets to different application pro-

cesses;
(2) performing network congestion control2; and
(3) providing reliable byte stream delivery.
However, to support distributed applications, using TCP’s point-to-
point connections for multiparty communication requires setting
up𝑛×𝑛 TCP connectionswhich is complex and inefficient. Although
a few UDP-based reliable multicast protocols, such as NORM [3],
have been developed, we note that IP multicast pushes all packets
sent to a multicast address to all group members simultaneously,
which can be problematic in scenarios where different members
may have different resource constraints, consequently some may
prefer to get specific subsets of the data first. A more commonly
adopted approach is to build a middleware overlay to connect all
participants in a distributed applications [27, 43], avoiding the cost
of 𝑛 × 𝑛 TCP connections by paying the complexity of setting up
and maintaining the overlay, together with increased vulnerability
due to the overlay failure.

In an NDN network, the network layer fetches named data
chunks. These data chunks carry semantic names that uniquely
identify their content, together with cryptographic signatures that
bind the names to the content. From NDN’s perspective,
(1) NDN uses names for demultiplexing across all protocol layers,

thus it does not need additional information from transport
header for demultiplexing;

(2)NDN moves network congestion control to the network layer
where it belongs [47, 49, 55]; and

(3) as a data-fetching protocol, NDN enables individual data con-
sumers to pick and choose which data piece to fetch and when.

Although NDN’s data-centric model facilitates multiparty commu-
nication by letting individual participants request desired data, the
participants still need to learn the names of all newly produced data
by others as soon as possible, so that they can retrieve it promptly
if needed by applications.

We identified distributed dataset namespace synchronization, or
Sync, as a basic service to provide reliable synchronization of the
names of the shared dataset in an application group, dubbed Sync
group. Sync has been used as transport service for a number of NDN
applications such as a chatroom app [6], a network routing proto-
col [53], a network management framework [37], and a pub/sub
implementation [30].

As a transport layer service running on top of NDN’s Interest-
Data exchange, Sync offers unique advantages in supporting het-
erogeneous receivers and diverse data reliability requirements. An
important lesson learned from TCP is that all applications desire

2Congestion control was not part of the TCP’s original functions [45], but was added
later to mitigate the Internet congestion meltdown through utilizing TCP’s end-to-end
feedback loop [21].

communication reliability to certain degree, but their definitions of
reliability can vary. Based on this lesson, the role of NDN Sync is
to synchronize the dataset namespace (the collection of data item
names in the dataset) among all members in a Sync group. Having
learned the published data names, each member can then decide on
its own whether and when to retrieve all or some of the data items
based on the application’s need as well as local resource constraints.

3 THE DESIGN OF NDN SYNC PROTOCOL
This section first presents our view on the Sync protocol design
goals and non-goals, and then identifies the major components that
make up a Sync protocol.

3.1 Sync Protocol Design Goals
One common need for distributed applications is group member-
ship management, which we believe is best handled by applications,
as only applications have the necessary knowledge to determine
whether a specific user should/not be accepted into a group. Assum-
ing all group members possess proper identities and certificates,
Sync provides the means for them to participate in group commu-
nication effectively and efficiently. The design goals below reflect
general observations on applications needs.
Reliable dataset namespace Sync: This requirement denotes the
protocol’s ability to deliver all updates of dataset namespace to all
the Sync participants. In the absence of permanent network parti-
tion, all participants should eventually learn all the data names in
the shared dataset.

Low synchronization latency: To make distributed applications
perform well, Sync must inform all participants promptly of the
shared dataset state changes to meet the low-latency requirement
of applications such as online games or conference calls.

Resilient performance: Network environments can range from
stable infrastructure networks with a low loss rate at one end of
spectrum to ad-hoc wireless networks with intermittent connec-
tivity at the other end. To provide a general transport service, a
Sync protocol should work well across the whole spectrum.

3.2 Components in Sync Protocol Design
The Sync protocol development efforts identified three basic design
components early on. First, one needs to define a representation of
the shared dataset’s namespace (dataset namespace representation).
Second, one needs an efficient way to encode the dataset namespace
in a defined data structure to transmit over the network (namespace
encoding). Third, one needs to promptly propagate the changes
of the shared dataset namespace (state change notification). We
illustrate each design component below.
Namespace Representation: The design of the namespace rep-
resentation starts with considering the namespace for application-
produced data items. We observe two approaches to the dataset
namespace representation. The first one uses the application data
names directly. Thus the Sync namespace representation is simply
a collection of the names of all the data items that have been pro-
duced in the shared dataset. The second approach assumes that
data items generated by each producer 𝑃 is named sequentially,
which can be represented by a pair of [producer name, seq#], thus
the namespace of the entire shared dataset consists of a list of



SoK: The Evolution of Distributed Dataset Synchronization Solutions in NDN ICN ’22, September 19–21, 2022, Osaka, Japan

[producer name, seq#]-pairs, one for each participant. We discuss
the implications of each of the two approaches in §6.1.

Dataset State Encoding: The goal of state encoding is to convert
the shared dataset namespace representation into a compact form
for transmission over potentially lossy networks. As we discuss
in §6.1, the efficiency of state encoding solutions is directly tied
to the dataset namespace representation, and different solutions
lead to different design tradeoffs.

Dataset State Change Notification: Since participants fetchData
by names, it is Sync’s responsibility to inform all the participants
in a Sync group of data production updates as soon as possible.
For Sync to work, however, participants in a group must be able to
learn the namespace updates without having to name individual
participants. Therefore, information about new dataset state needs
to be carried using multicast Sync Interest packets to the Sync
group.
Up to now, we have observed two uses of Sync Interest multicast.
The first one lets every participant pull new data productions
from the group by multicasting a Sync Interest to the group and
receiving new changes in reply Data packets (Sync Replies). The
second approach lets data producers notify all the others in the
group by directly including state update information in each Sync
Interest, which one does not need to send a data reply.

The need for using Sync Interest multicast deserves further elab-
oration. NDN is designed with built-in multicast delivery of Data
packets by forwarding Interest packets, guided by router FIBs, to-
wards the desired Data direction and merging Interests carrying the
same request. Interest multicast differs from Data multicast. While
multicast data delivery is inherently supported by NDN’s network
layer, Sync Interest multicast requires multicast routing support to
forward Interests to all the participant in a Sync group. We discuss
the necessity of Interest multicast in §6.3.

4 SYNC PROTOCOL DESIGN: CASE STUDIES
More than ten different NDN Sync protocol designs have been de-
veloped over the years [31], with later ones improving upon the
lessons learned from previous designs. In this section, we examine
various design choices made during the evolution of Sync, as ob-
served in five representative Sync protocols (ChronoSync, iSync,
PSync, syncps, and SVS), and validate our analysis with evaluation
results. We make the comparison in the context of a general use
case, looking at metrics such as the synchronization latency and
network traffic overhead.

Below we first describe our evaluation setting for all the ex-
periments. Although some of the experiment parameters will be
introduced later in the paper, the following summary of evaluation
parameter settings aims to offer the reader a convenient place to
find all the relevant information in interpreting the evaluation re-
sults. We choose Mini-NDN [28] as our evaluation environment
and emulate the topology of the GÉANT research network [18]
with 45 nodes; each link has unlimited bandwidth and a 10msec
propagation delay. In each experiment run, we randomly select 20
nodes to be participants in a Sync group. Our evaluation uses this
relatively small group size to illustrate the differences between dif-
ferent Sync protocol design choices; we discuss the impact of Sync
group sizes in §6.2. To observe each Sync protocol’s performance

under different conditions, we vary the loss rate of each link from
zero to 20%, and the publishing rate of each Sync group members
from 1 data item every 15 seconds to 2 data items per second (in
the evaluation plots, the X-axis indicates the data publication rate
of the entire group).

We experimentedwith setting the Sync Interest lifetime of Chrono-
Sync, PSync, and syncps, the Sync protocols that deploy long-lived
Sync Interests, to 1sec, 4sec and 10sec; the results reported in this
paper use 1sec as Sync Interest Lifetime. For other configurable
parameters such as various timer values, data freshness periods, IBF
size etc., we use the suggested default configuration values in indi-
vidual protocols’ implementations. The evaluation results include
i) Sync latency: the time period between a data item’s generation
time and the time its notification reaches another member; per-
centiles for individual values are calculated and reported; ii) Sync
protocol overhead: for each published data item, the summation
of the number of Sync Interest and reply Data packets received
at every NDN forwarder including all end nodes; and iii) reliabil-
ity: the percentage of participants which received new publication
notifications. Error bars in the figures denote the 95% confidence
interval from 10 runs of every emulation setting.

4.1 Encoding Dataset Namespace by Digest
The first Sync protocol, CCNx Sync [46], assumes that the dataset
namespace forms a hierarchical name-tree. It computes a digest
at each node on the tree from the bottom layer up, and uses the
root digest to represent the entire dataset state. ChronoSync [58],
the second Sync protocol design and the first one being used by
actual applications, takes the same approach of using a digest to
to represent the dataset state. ChronoSync is the first one to use
sequential naming convention described in §3.2, thus its dataset
namespace is a list of [producer name, seq#] instead of a name-
tree. ChronoSync encodes the state by computing a cryptographic
hash over the list to create the state digest. Each participant 𝑃 then
multicasts a Sync Interest 𝐼 which carries its state digest, which
informs others in the same Sync group of 𝑃 ’s dataset state, and
serves as a request for new data produced by other group members.
With a goal of fetching next data item as soon as possible while
its production time is unpredictable, each group member keeps a
pending Sync Interest at each of all other members. We call such
Sync Interests long-lived Interest, which keep persistent PIT entry at
every router between every pair of the group members, waiting for
next new data item. Under stable conditions where all participants
have a synchronized dataset state, they send identical Sync interests
which are aggregated at routers. The example in Fig.1 shows that
the Sync interests from participants P3 and P5 are aggregated at
router R2, and only one is forwarded to P1. In the absence of replies,
each 𝑃 sends Sync Interests periodically (ie., Sync period), with a
random delay jitter between 100-500msec,

In Fig. 1a, participant 𝑃1 multicasts a Sync Interest 𝐼𝑃1 carrying
its state digest. Each receiver of 𝐼𝑃1 compares the state digest in
𝐼𝑃1 with its local value. If the two are identical, the receiver and 𝑃1
have the same dataset state, and the receiver will keep 𝐼𝑃1 pending
locally. When 𝑃3 produces a new data item, it puts the data in
an NDN Data packet and sends it as a reply to the pending 𝐼𝑃1.
𝑃3 also recomputes its state digest, and immediately sends a new



ICN ’22, September 19–21, 2022, Osaka, Japan Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang

① Sync Interest

② Sync Reply

② Sync Reply

Unsolic
ite

d Data

P1 R2 P3

P5R4

① Sync Interest

P1 R2 P3

P5R4

① Sync Interest

Update of Node 3

Update of Node 5

Query for Update
Update of Node 3

Update of Node 5

(a) Long-Lived Sync Interest (b) Notification Sync Interest

Figure 1: Simultaneous publication issues.

0 5 10 15 20 25 30 35 40
Data items published per second

50
100
200
500

1000
2000
5000

12000
30000
80000

Sy
nc

 L
at

en
cy

 [m
s] 50%tile; No Loss

50%tile; 20% Loss
90%tile; No Loss
90%tile; 20% Loss

Figure 2: Sync latency of ChronoSync.

Sync interest 𝐼𝑃3 containing its new state digest. In the absence of
packet losses, 𝑃3’s reply reaches all others in the Sync group. If 𝑃5
publishes new data after both P3’s reply to 𝐼𝑃1 and its new Sync
interest have been received by everyone in the group, 𝑃5’s new
data will also be successfully received by the whole group.

When an incoming state digest differs from the local value, the
receiver is informed of being out of sync with someone, but the
digest does not tell the exact namespace differences. ChronoSync
lets each participant 𝑃 maintain a log of recent digests, when a
received state digest 𝐷𝑟𝑒𝑐 differs, 𝑃 checks 𝐷𝑟𝑒𝑐 against it digest
log. If 𝑃 finds 𝐷𝑟𝑒𝑐 in the log, an indication that 𝐷𝑟𝑒𝑐 ’s sender lags
behind, 𝑃 will send a reply with its current dataset state; if not, 𝑃
waits for a random time period for potential incoming Sync replies
with a newly produced data item and resolve its puzzle. If no reply
is received in time, 𝑃 multicasts a recovery Interest carrying 𝐷𝑟𝑒𝑐 ,
hoping the sender of 𝐷𝑟𝑒𝑐 , or whoever has 𝐷𝑟𝑒𝑐 , can reply with its
full dataset state.

One cause for unrecognized state digests is packet losses, e.g.
𝑃1 fails to receive 𝑃3’s new data item but receives 𝑃3’s new Sync
Interest, which informs 𝑃1 of a state change but cannot tell 𝑃1what
update it misses. Another cause is simultaneous data publishing.
NDN’s flow balance principle states that one Interest retrieves one
Data packet. Fig. 1a shows that, if P3 and P5 in the same Sync group
produce new data and respond to the same pending Sync Interest
simultaneously, R2 forwards one reply and drops the other. Again
𝑃1 will be unaware of the missing publication until it receives a
Sync Interest with an unrecognized state digest. In all cases, it will
take time for all participants to reach synchronized dataset state
again.

Fig. 2 shows ChronoSync’s performance measured by the group
synchronization delay. In the absence of packet losses, ChronoSync
performs well at low publication rate; as publishing rate increases,
simultaneous publications become more likely, which lead to un-
recognizable state digests, hence additional latency in resolution.
Compounding simultaneous publications with packet losses further
deteriorates performance.

Sync IBF Digest

Sync IBF

...Collection IBF

Data Items ... ... ...

Data Collection

Collection IBF
Data Item

Name

Collection IBF

Digest

...

Collection IBFDigest

Figure 3: iSync’s Multi-Level IBF Structure

4.2 Encoding Dataset Namespace by IBF
The lessons learned from ChronoSync suggest that, to quickly rec-
oncile dataset namespace change, each Sync Interest should carry
information to help infer the exact differences. A few followup
protocols explored the use of Invertible Bloom Filter (IBF) [13] for
this purpose. IBF is a probabilistic and space-efficient encoding for
datasets that allows membership queries and set difference calcu-
lation. Encoding a dataset namespace in IBF and carrying it in a
Sync Interest 𝐼 enables each recipient 𝑅 of 𝐼 to calculate the state
difference between itself and 𝐼 ’s sender. More specifically, when 𝑅

receives an IBF (𝑓1) that differs from its local IBF (𝑓2), 𝑅 can extract
the elements corresponding to 𝑓2 -𝑓1, i.e., elements encoded in 𝑓2
but not in 𝑓1. Note that a data name needs to first be hashed into a
number and inserted into the IBF. Since this hashing is one-way, 𝑅
can infer the names it has that 𝐼 ’s sender does not, but cannot infer
what name(s) are missing in 𝑅’s local dataset namespace. Below we
examine three IBF-based Sync protocols: iSync, syncps, and PSync.

4.2.1 Supporting Application Names by Hierarchical IBF. The iSync
protocol [15] was first to use IBF. Its dataset namespace is a collec-
tion of all application data names. To accommodate large datasets,
iSync uses a 2-level structure to encode the dataset namespace as
shown in Fig. 3. iSync first divides the whole dataset’s publications
into multiple collections, with each collection encoding its publica-
tion names in a Collection IBF. The individual collection IBFs are
then grouped together to be encoded in a top level Sync IBF. iSync
then computes the digest of the Sync IBF to be carried in multicast
Sync Interests.

Similar to ChronoSync, iSync multicasts Sync Interests carrying
the digest of the dataset state. However, a fundamental difference
between the two is that iSync’s Sync Interests do not solicit reply;
they serve the purpose of dataset state notification only; i.e. iSync
does not use long-lived Interests. Assuming a Sync group of three
members, Alice, Bob, and Cathy. When Alice multicasts a Sync
Interests 𝐼𝐴 ,
(1) If Bob detects a difference between the received digest in 𝐼𝐴 and

its local digest, Bob fetches the IBF from Alice. 3
(2)When Bob receives the returned data packet𝐷 containingAlice’s

Sync IBF, from which Bob can identify the Collection IBF(s) that
differs from its own, and retrieves the corresponding Collection
IBF 𝐶𝑟 from 𝐷’s sender to compute the set differences between
𝐶𝑟 and its local one.4

(3) Bob then sends an Interest carrying the set difference from the
last step to retrieve the missing data names.

3This statement is copied from [15], which did not specify whether Bob unicasts,
or multicasts, an Interest to fetch the IBF. Retrieving the IBF from Alice requires 𝐼𝐴
including its sender information.
4This requires Data packet 𝐷 contains its sender information.



SoK: The Evolution of Distributed Dataset Synchronization Solutions in NDN ICN ’22, September 19–21, 2022, Osaka, Japan

Note that in the above steps, Bob retrieves information from a
specific node. Therefore if Cathy sends a Sync interest around the
same time as Alice with a different digest, Bob can carry out the
dataset reconciliation with Cathy in parallel, enabling iSync to
support simultaneous publications.

iSync’s original implementation in CCNx no longer works, thus
we are unable to run evaluation as we do with other Sync protocols.
We note that iSync’s design choice of support synchronization of
arbitrary application data names implies that a growing dataset
requires an increasing IBF size. iSync’s 2-level IBF hierarchy could
be extended to more levels to handle larger dataset namespace,
which would also add additional complexity and round trip delays
to the dataset reconciliation process. Two other protocols based on
IBF, syncps and PSync, address the dataset namespace scalability
in different ways as we explain below.

4.2.2 Limiting Synchronization Time. syncps [37] supports appli-
cation data names and encodes the dataset namespace in an IBF
similar to iSync. Different from iSync, whose Sync Interests carry
the digest of dataset IBF and retrieves the IBF by sending Interests
for data packets, syncps directly appends the dataset IBF to the
end of each Sync Interest’s name, and multicasts the Interest to the
group. However, the size of an Interest packet is limited by network
MTU size because NDN Interest packets cannot be fragmented [5],
syncps keeps the IBF size under control by removing data names
from the dataset after a predefined lifetime.

A participant 𝑃 receiving a Sync Interest computes the dataset
difference between the local and received IBFs. If the two are identi-
cal, 𝑃 does nothing. That is, syncps also deploys long-lived Interest
as ChronoSync: in the absence of new data generation, every group
member refreshes its Sync Interest periodically. If 𝑃 detects that
the Interest sender misses some data items that 𝑃 has, 𝑃 sends a
Sync reply, a data packet, that contains all the missing data items, if
the resulting packet size is within the limitation of network MTU;
otherwise some data items need to wait for next Sync Interest to be
transmitted. Different from other Sync protocols which synchro-
nize dataset namespace, syncps synchronizes the dataset directly
– this approach can work well in scenarios where all participants
desire all produced data, and all new data items can fit in a single
data packet.5

Thanks to its use of IBF in namespace encoding, syncps signifi-
cantly improves the Sync latency as compared to ChronoSync: with
7 data items per sec and without losses, syncps’ 90-percentile Sync
latency is around 0.1sec while the same measure for ChronoSync
is almost 1sec. 6 However, since syncps multicasts Sync Interests
to solicit dataset changes as ChronoSync does, it suffers from simi-
lar issues in handling simultaneous publications and packet losses
(§4.1). Worse yet, if the recovery from simultaneous publications or
packet losses takes longer than the predefined data item lifetime,
some data items may have been removed from the dataset before

5There is a discrepancy in Sync delay definition between syncps and other Sync
protocols: the former synchronizes the dataset while the latter dataset namespace. To
minimize the impact of this discrepancy, our evaluations assume that data item sizes
are small enough to fit all newly produced data items into a single Sync reply.
6Unlike syncps, ChronoSync’s design includes a random delay jitter to prevent ex-
cessive Sync Interests; to allow for a direct comparison of the protocols, we disabled
ChronoSync’s delay jitter in Fig. 4.

50
100
200
500

1000
2000
5000

Sy
nc

 L
at

en
cy

 [m
s]

50%tile; No Loss
50%tile; 20% Loss

90%tile; No Loss
90%tile; 20% Loss

0 5 10 15 20 25 30 35 40
Data items published per second

0
20
40
60
80

100

Da
ta

 it
em

s r
ec

ei
ve

d
 b

y 
al

l p
ar

tic
ip

an
ts

 [%
]

No Loss 20% Loss

ChronoSync; 90%tile
No Loss; No Jitter

Figure 4: Sync latency and reliability using syncps.

being propagated. As a result, syncps does not guarantee reliable
dataset synchronization.

Our evaluation results shown in Fig. 4 confirm that the per-
centage of data items received by all participants decreases with
increasing publication rate. While increasing the data lifetime from
the default of 2sec might mitigate some losses, this requires an
increase in the size of the IBF, or otherwise risks an increasing rate
of false positive IBF lookups.

4.2.3 Encoding Sequential Names in IBF. The PSync [57] protocol
supports two modes of operation: partial sync and full sync. Here
we focus on the latter which supports the same dataset namespace
synchronization in a group as the other Sync protocols do.

To address the dataset namespace scalability issue, PSync adopts
the sequential naming convention. It encodes the list of data names,
i.e., /producer-name/latest-seq, in an IBF and carries the IBF in a
Sync Interest name as syncps does. Encoding dataset state in IBF
allows a PSync participant 𝑃 to identify the data names it has but
the sender of a received Sync Interest 𝐼 does not. In this case, 𝑃
sends a Sync Reply to 𝐼 containing those data names, instead of
directly putting the data in the Sync Reply as syncps does.

The high level operations in PSync are similar to those in Chrono-
Sync as shown in Fig. 1a. The adoption of IBF enables PSync to
identify state changes more quickly than ChronoSync. The adop-
tion of the sequential naming convention enables it to scale well
with the number of total data items, enabling it to encode the entire
dataset namespace in an IBF and avoid the namespace scaling issues
faced by iSync and syncps, ensuring reliable dataset state synchro-
nization under all the evaluated conditions. However, PSync also
multicasts Sync Interests to solicit state changes from anyone in
the group using long-lived Interests, which bring costs to network
routers and impair the performance when simultaneous publica-
tions and packet losses increase, as shown in Fig. 5. Furthermore,
PSync’s use of IBF also introduces an upper bound with regard to
the number of data producers, which we discuss in §6.2.

4.3 Using Dataset State Representation Directly
Carrying an IBF in a Sync Interest 𝐼𝐼𝐵𝐹 allow senders and receivers
of 𝐼𝐼𝐵𝐹 to identify and reconcile differences between them as long



ICN ’22, September 19–21, 2022, Osaka, Japan Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang

0 5 10 15 20 25 30 35 40
Data items published per second

50
100
200

500
1000
2000

Sy
nc

 L
at

en
cy

 [m
s]

50%tile; No Loss
50%tile; 20% Loss

90%tile; No Loss
90%tile; 20% Loss

Figure 5: Sync latency of PSync.

as the differences are within the IBF’s encoding limit; otherwise
multiple exchanges are needed to resolve the difference. In dynamic
mobile environments, the dataset among participants may diverge
significantly, multiple exchanges may also be infeasible with ad-hoc
encounters.

State Vector Sync (SVS) [29] takes a rather different state en-
coding approach. Its design adopts the sequential data naming
convention, and directly carries the dataset namespace represen-
tation, encoded as [producer name, seq#]-pairs, in each multicast
Sync Interest. This state encoding approach was first proposed by
DSSN [54] to support asynchronous communications among IoT
devices. However different from DSSN, SVS treats Sync Interests as
notifications only as iSync does, without soliciting Sync reply. Each
participant sends Sync Interests under two conditions: i) event-
driven, to notify others about a recent change, and ii) periodic, to
mitigate potential losses of event-driven Sync Interests.

Fig. 1b shows two SVS participants P3 and P5 using event-driven
Sync Interests, 𝐼𝑃3 and 𝐼𝑃5 respectively, to notify the group of their
dataset updates due to a new data item by each. Since 𝐼𝑃3 and 𝐼𝑃5
carry different dataset state in their names, they are not merged
by R2, thus both will reach P1. Processing the state vectors carried
in both 𝐼𝑃3 and 𝐼𝑃5 will update P1’s local dataset namespace to the
latest state, demonstrating a solution to simultaneous publication.
The evaluation results in Fig. 6 show that data publishing rate has
no impact on SVS Sync latency, and adding packet losses only has
a small impact. Increasing publishing rate leads to more frequent
event-driven Sync Interests, compensating packet losses, making
the Sync latency drop. Our evaluations also confirm that all exam-
ined Sync protocols can reliably synchronize the dataset namespace
in all tested settings, with syncps as the only exception.

SVS’s design decision to carry the raw dataset namespace state
in each Sync Interest brings the advantage that each receiver 𝑅 of
a Sync Interest fully understands the carried dataset namespace,
independent from 𝑅’s own state or the number of previously missed
messages. However, allowing a received Interest to change one’s
state opens the door for abuses. SVS prevents such abuse by signing
all Sync Interests, as we discuss in §5.3.7. In addition, given Interest
packet size is limited by network MTU, Sync groups with a large
number of producers make it infeasible to carry the entire raw
dataset namespace in Sync Interests. We discuss SVS scalability
solutions in §6.2.

Two other Sync protocols, PLI-Sync [20] and ICT-Sync [2] were
developed in parallel with SVS. Both of them adopt the sequential

7Sync protocols using pulling do not need to secure their Sync Interests, because it is
the Sync replies (NDN Data packets), not Sync Interests, that change receivers state

0 5 10 15 20 25 30 35 40
Data items published per second

50

100

200

500

Sy
nc

 L
at

en
cy

 [m
s] 50%tile; No Loss

50%tile; 20% Loss
90%tile; No Loss
90%tile; 20% Loss

Figure 6: Sync latency of State Vector Sync (SVS).

data naming convention and use Sync Interests to carry state-vector
as notifications only, with each differs in its unique ways. PLI-
Sync’s unique feature is in taking advantage of sequential naming
to optimistically prefetch the next data item using long-lived Data
Interests, before being notified of the data item’s production.When a
participant successfully fetches a new data item, it informs the Sync
protocol of the new name, which triggers an event-driven Sync
Interest. This allows PLI-Sync to set a longer period for periodic
Sync Interests. ICT-Sync utilizes intermediate nodes deployed in
the network to aggregate Sync Interests from different participants
and carrying different state vectors, which can help reduce both
Sync latency and overhead. To minimize the state vector size, ICT-
Sync uses numeric producer IDs instead of semantic names, which
requires Sync entities to maintain a mapping between the numeric
IDs and actual producer names.

5 SYNC PROTOCOL DESIGN SPACE
The previous section described various Sync protocol designs. In
this section, we reflect on their design choices to gain a better
understanding of the design space. In §5.1 and §5.2, we summarize
the existing Sync protocols’ design choices with respect to the
basic design components identified in §3.2 and evaluate their pros
and cons. We review the security implications from certain design
choices in §5.3, and provide a summary of Sync protocol design
comparison in §5.4.

5.1 State Representation and Encoding
Because a major goal of Sync protocols is to reliably synchronize
the shared dataset namespace among participants in distributed
applications, the first design decision is how to represent the shared
dataset namespace. We have identified two design choices: (i) using
application data names and (ii) using sequential naming. For the
time being, we assume protocols may use either approach and defer
a discussion on the implications of sequential naming to §6.1.

The next design decision is how to encode shared namespace
state. Our examination shows four design choices for state encoding:
(i) digest-based, as used by ChronoSync; (ii) IBFs, as used by syncps
and PSync; (iii) combination of IBF and digest, as used by iSync;
and (iv) directly using the namespace representation, as used by
SVS.

With digest-based encoding, ChronoSync chooses sequential
data naming and computes a digest of all [producer, seq#] pairs,
and CCNx computes a digest over an application name-tree [46].
However, as we show in §4, a digest alone cannot directly identify



SoK: The Evolution of Distributed Dataset Synchronization Solutions in NDN ICN ’22, September 19–21, 2022, Osaka, Japan

P1

R3

P2

P6P5

R4

Sync Interest

Node 5 Data

Node 6 Data

Figure 7: Participants 𝑃5 and 𝑃6 satisfy the same Sync Inter-
est, leading to a state divergence.

namespace differences. iSync is the first to use IBFs for state encod-
ing. It computes the digest of IBF to be carried in Sync Interests, and
then uses the digest to retrieve the IBF. This addresses a digest’s in-
ability to identify changes in dataset state. However, because iSync
chooses application data names as the namespace representation,
iSync runs into IBF scalability issue as the total number of data
items grows over time. It mitigates this issue by using an IBF hier-
archy, which adds protocol complexity, synchronization overhead,
and Sync latency.

syncps also uses application data names. It circumvents the above
scalability problem by setting a time limit on how long data items
can be synchronized. Unfortunately doing so leads to unreliable
synchronization under adverse conditions (cf. Fig. 4). PSync elimi-
nates the scalability problem caused by the number of data items
by adopting sequential data naming, which reduces the number of
items encoded in IBFs from the total number of data items to the
number of producers in a Sync group.

One less-recognized issue with using IBF in Sync is that, when a
group member 𝑃 compares the IBF in a received Sync Interest 𝐼𝐼𝐵𝐹
with its local IBF to identify the state differences, since IBF encodes
numbers (not names directly), 𝑃 cannot directly infer what names
𝐼𝐼𝐵𝐹 ’s sender has but itself is missing. This information can only
be retrieved by 𝑃 ’s own Sync Interest, which requires more packet
exchanges. In contrast, by directly carrying the dataset namespace
in Sync Interests, SVS enables any receiver 𝑅 of Sync Interest 𝐼𝑆𝑉𝑆

to interpret the dataset state carried in 𝐼𝑆𝑉𝑆 , independent from
𝑅’s local state. The cost is 𝐼𝑆𝑉𝑆 ’s larger size compared to 𝐼𝐼𝐵𝐹 . We
discuss how to mitigate SVS scalability in §6.2.

5.2 State Change Notification
All the NDN Sync protocols, including those not described in this
paper, share two design features. First, their Sync Interests carry
an encoding of the dataset namespace. Second, every participant in
a Sync group multicasts its Sync Interests to the group. However, a
multicast Sync Interest has one of two semantics: (i) it pulls updates
from the group; or (ii) it notifies others about the sender’s dataset
state.

As an example, Fig. 7 illustrates how the pull semantic is handled
in a network. Let us assume that 4 nodes, namely 𝑃1, 𝑃2, 𝑃5, and
𝑃6, are participants of the same Sync group. When the group is in
a steady state, i.e. all participants have identical dataset state, the
multicast Sync Interests from different participants are aggregated
at routers, form 4 overlapping multicast Data delivery trees, with
each tree rooted at one Sync participant and stretching its branches
to all the others. The tree is maintained by persistent pending

0 10 20 30 40
No Loss

50
100
200
500

1000
2000
5000

Sy
nc

 L
at

en
cy

 [m
s]

(9
0%

til
e)

ChronoSync PSync syncps SVS

0 10 20 30 40
20% Loss

Data items published per second

Figure 8: Sync latency across different protocols.

Sync Interests in the PIT of each router on the tree. We make the
following observations:
(1) Given the next data production time is unpredictable, to fetch

new data quickly, Sync Interests must stay in the PIT of each
router along the multicast tree, with the PIT entries being re-
freshed by periodic Sync Interests before they expire.

(2)When a participant 𝑃 produces new data 𝐷𝑃 , 𝑃 immediately
sends a Sync Reply as a response to the pending Sync Interest,
which is multicast-delivered to the group. However, if a Sync
Interest from any participant 𝑃1 is lost, 𝑃1 will not receive the
update about𝐷𝑃 ; if another member 𝑃2 receives the update, 𝑃2’s
next Sync Interest can inform 𝑃1 of the dataset state change but
not the information of 𝐷𝑃 if IBF encoding is used.

(3) A multicast Sync Interest 𝐼𝑚 pulls potential replies from all the
members in the group. When multiple recipients reply around
the same time, at most one reply can reach 𝐼𝑚 ’s sender. Different
participants likely receive different updates based on their dis-
tances to data sources, leading to dataset state divergence. The
example in Fig. 7 shows that 𝑃5 and 𝑃6 each send a reply to the
pending multicast Sync Interest. Routers 𝑅3 and 𝑅4 receive both
replies and drop the second one, thus 𝑃1 and 𝑃2 receive different
replies. Recovering from this divergence takes additional Sync
Interest-Reply exchanges.

On the other hand, using multicast Sync Interests for notify se-
mantics, as done by iSync and SVS, removes the above identified
issues. As one-way notifications, SVS Sync Interests can have short
lifetime since they do not pull replies, thus do not need to stay
pending at routers. If a Sync Interest 𝐼 with the latest dataset state
is delivered to all participants, the group is synchronized immedi-
ately; if 𝐼 fails to reach some participants, a future Sync Interest
can compensate for all the previous losses. We also note that Sync
protocols using IBF encoding cannot use Sync Interests for dataset
state notification: a participant 𝑃 can tell what data items the sender
of a Sync Interest has missed, but cannot tell what data items itself
is missing. Therefore, Sync protocols using IBF encoding must rely
on the pull semantic of Sync Interests, which leads to the above
identified issues.

Fig. 8 shows the Sync latency results of the evaluated proto-
cols. In the absence of packet losses, protocols using pull semantics
(ChronoSync, syncps, PSync) exhibit a low latency at low pub-
lishing rates (ChronoSync and PSync’s Sync latency include delay
jitter, lowering delay jitter lowers Sync latency proportionally).
With increased publishing rates, simultaneous publishing becomes
more frequent. For protocols with pull semantics, simultaneous
publications from multiple participants result in multiple replies



ICN ’22, September 19–21, 2022, Osaka, Japan Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang

0 10 20 30 40
No Loss

2
3
5

10
20
40
70

Re
ce

iv
ed

 p
ac

ke
ts

pe
r D

at
a 

ite
m

ChronoSync PSync syncps SVS

0 10 20 30 40
20% Loss

Data items published per second

Figure 9: Avg. number of packets received by NDN for-
warders including end nodes per published data item.

to the same Sync Interest, all these replies but one get dropped,
requiring follow-up Sync Interests to retrieve all the updates (cf.
Fig. 1a). Hence, the Sync latency increases with the publication rate
for those protocols, while it stays constant for SVS with the notify
semantics.

5.3 Securing Sync Interests
In NDN, when an Interest is used to retrieve a named piece of Data,
it does not cause a state change of the data producer. Sync Interests
in SVS notify the group members about latest dataset state, thus
they can change receivers’ dataset state. To prevent state changes
caused by malicious Sync Interests, SVS must authenticate its Sync
Interests.

SVS can sign Sync Interests using either the sender’s key or a se-
cret group key. While using symmetric group keys ensures identical
Sync Interests can be aggregated, this approach requires additional
mechanisms to maintain the shared group key. The current SVS
design uses senders’ keys to sign Sync Interests, preventing Inter-
est aggregation and thereby potentially increasing network traffic.
However, Fig. 9 compares network overhead across different Sync
protocols, and suggests that the SVS’s overhead stays on the lower
side. The low overhead of SVS can be attributed to its effective Sync
Interest suppression, as described in §4.38.

5.4 Sync Protocol Design Summary
Table-1 provides a concise summary of the Sync protocol design
choices and consequent impacts on the protocols’ reliability, scala-
bility, overhead, latency, and scalability we discussed in this section.
There are two additional impacts that are not shown here. First, the
sequential naming offers a Sync protocol the scalability in terms
of the number of data items and resiliency against packet losses,
but it may need to pay the cost of providing a means to map the
sequence number to actual data names. Second, all the Sync proto-
cols require network multicast routing support, and supporting a
very large number of multicast groups at a large scale has been a
well recognized open issue for decades. As mentioned in §8, both
issues are part of our future work.

8ChronoSync’s overhead drops below that of SVS at high publication rate, because
its delay jittering between 100-500msec damps Sync interest generation, while SVS
multicast an event-driven Sync interest for every new data publication.

6 DISCUSSIONS
In this section we briefly discuss a few remaining issues related to
Sync protocol design.

6.1 Data Naming
To achieve reliable namespace synchronization, the dataset state
encoded in Sync Interests must be able to reliably convey the dataset
state of their senders to the receivers over unreliable networks. This
requires a Sync protocol design to convert a collection of general
application data names into transport identifiers that are resilient
to losses. Among the three state encoding approaches, digest, IBF,
and direct use of the dataset namespace with sequential naming,
digest alone lacks adequate information to assist the namespace
synchronization, and using IBF to encode application data names
does not scale well. This leaves dataset namespace using sequential
naming as the most viable choice. However, applications in general
assign semantic, instead of sequential, names to data.

The above conflict reflects the different requirements in data
naming between applications and transport service. Unless/until
new solutions are discovered, our observation so far suggests that
it is essential for transport service to use sequential data naming to
meet the goals defined in §3.1. However, this design choice leads
to two new issues. First, a Sync protocol using sequential naming
must map its sequential naming to application data names. Second
and related, when a producer application passes down to Sync a
signed NDN data packet 𝐷 with its original name, Sync informs
a remote consumer of the new data item by its sequence number,
which it uses to request the data. This requires Sync to encapsulate
𝐷 with its sequential name and securely bind that name to the
content (𝐷). As an example, syncps performs this encapsulation,
albeit using IBF as the transport identifier, in the following way:
when a participant P1 receives a Sync interest 𝐼𝑃2 sent by P2, P1
encapsulate all the application data items that P2 misses in a single
reply 𝐷 . On receiving 𝐷 , P2 extracts the encapsulated application
Data items and passes them to the application process for standard
NDN Data verification. This works well under the assumption that
all group member want all the data at the same time, and all P2’s
missing data can fit into one Data packet; otherwise multiple rounds
of Interest-Data exchange will be needed to synchronize.

A newly developedmobile health data sharing application, mGuard,
provides the application data to transport mapping by a different
solution [12]. Mobile health data are typically a collection of large
amount of small data items. Instead of signing each data item,
mGuard supports data authenticity through the use of manifest:
collecting the names and hashes of multiple data items into a mani-
fest (also a Data packet) which can be transported through Sync
and then fetching/verifying the data items named in the manifest.

In summary, our analysis suggests that mapping application data
names to sequential naming for transport is a viable direction, and
more work is needed to address the name mapping and data encap-
sulation security designs. This problem was discussed in [42] and
an initial solution developed for a pub/sub overlay over SVS [30].

6.2 Scaling to Large Sync Groups
Assuming Sync protocols adopt the sequential naming convention,
we examine how well the dataset namespace encoding can scale



SoK: The Evolution of Distributed Dataset Synchronization Solutions in NDN ICN ’22, September 19–21, 2022, Osaka, Japan

Dataset
Namespace

Sync
Reliability

Dataset change
notification

Network
Overhead Sync Latency Protocol

Scalability

ChronoSync Sequential
naming

Guaranteed dataset
synchronization

Pulling by using
long-lived Interest

Periodic refresh to
maintain persistent
PIT entry per Sync
group

0.5 RTT in best
case, increase
with publication
& loss rate

No specific upper bound
with the number of data
items or producers

syncps Application
data naming

No guarantee on
dataset synchronization Same as above Same as above Same as above

Number of data items upper
bound by IBF size which
is limited by network MTU

PSync Sequential
naming

Guaranteed dataset
synchronization Same as ChronoSync Same as above Same as above

Number of producers upper
bound by IBF size which is
limited by network MTU

SVS Sequential
naming

Guaranteed dataset
synchronization

Using Sync Interest
as notification

No PIT entry cost;
Sync Interests with
low refresh period

0.5 RTT when no
packet loss, minimal
increase with losses

Number of producers upper
bound by network MTU,
mitigatable (see §6.2)

Table 1: Feature matrix of the evaluated Sync protocols.

with the group size since the encoded namespace is limited by
the size of Sync Interests. In general, an IBF with 𝑑 cells can store
𝑑/1.5 elements with a low decoding failure probability [13]. PSync
uses IBF encoding. It decodes the differences between two IBFs
instead of decoding each IBF directly, thus its IBF size is proportional
to the number of participants with new data items since the last
synchronization between a node pair. In case of high packet losses
or network partitions, the number of differences can be as large as
the number of producers. The size of Interest packet sets the upper
bound on the number of participants PSync can support in a highly
dynamic environment.

SVS carries the raw dataset namespace directly in Sync Interests,
thus for the same number of producers, its Sync Interest size can
be much bigger than that of PSync. However, communicating raw
dataset namespace offers SVS the freedom of putting as many, or
as few, [producer-name, seq#]-pairs in a Sync Interest. It can cover
the complete state vector by sending multiple Sync Interests, or
simply not sending the full list each time. This removes the upper
bound on the group size that SVS can support, turning the question
to how to choose the entries to put into next Sync Interest. Initial
exploration of this approach is reported in [41] with promising
results. To provide quick “bootstrapping” support for new members
with the complete dataset namespace, a latecomer may pick one
participant 𝑃 listed in the first Sync Interest it receives and fetch
the complete list from 𝑃 .

6.3 Sync Interest Multicast
Deering’s seminal paper on IP multicast [10] points out two pri-
mary usages of multicast: (i) When an application sends the same
information to multiple destinations, multicast is more efficient
than unicast; and (ii) when an application needs to locate/query, or
send information to multiple hosts whose addresses are unknown
or changeable, where multicast can serve as a simple, robust al-
ternative to configuration files, name servers, or other binding
mechanisms. NDN has usage (i) designed in natively. For (ii), NDN
can locate information via network routing/forwarding: network
routing announcements inform routers where to locate requested
data; in case of a small-scale NDN network without running a rout-
ing protocol, data can be located via self-learning [48]. For sending

information to multiple entities without identifying their locations,
that is the exact function Sync Interest multicast achieves, sending
the group state updates to all members in a simple, robust way.
That is why all Sync protocol designs multicast Sync Interests as
described in §5.2.

One perceived hurdle in rolling out IP multicast is the concern
regarding its scalability, a similar concern might arise for Sync
Interest multicast, hence challenging the viability of NDN Sync
protocols in general. We plan to address this issue in future work.

6.4 Use of the NDN Protocol
At first sight, SVS’s use of NDN may seem not following the basic
NDN protocol [22]. We discuss two SVS design choices that may
have led to this concern.
Sync Interests without soliciting replies: NDN’s communica-
tion model is retrieving named content chunks using Interest-Data
exchange. SVS uses the name of Sync Interest to carry information
for synchronization without soliciting Data replies. This design
decision is based on the lesson learned from those Sync protocols,
such as PSync, that solicit replies: when participants have differ-
ent dataset states, they send replies to the same multicast Interest
with different state updates, as visualized in Fig. 1a, and all but
one of these replies get dropped due to NDN’s one Interest for one
Data packet principle, resulting in prolonged synchronization delay.
Thus, we conclude that not soliciting Sync Interest reply is a better
design choice. One may be concerned about using Interest flooding
as DDoS attacks, which is a general threat to NDN, not specific to
SVS’s design.
Signed Sync Interests: In general, an Interest packet requests a
named content chunk and does not disclose its sender’s identity.
Some use-cases, e.g., the NFD forwarder configuration [34] requires
Interest sender authentication, and the Signed Interest format [35]
is introduced to meet this requirement, which is used in the SVS
design. We note that using Interest signatures does not necessarily
disclose the signer’s identity. For example, in [36], the signature’s
key locator field identifies the signing key by the key’s finger-
print [16], which enables signature verification for those entities
that already know the signers key and does not reveal the signer’s
identity.



ICN ’22, September 19–21, 2022, Osaka, Japan Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang

6.5 ALF, NDN Sync, and Message Queues
The concept of Application-Level Framing (ALF) [7] lets applica-
tions define semantically meaningful Application Data Units (ADU).
These self-contained ADUs may get fragmented for delivery over
the network by lower protocol layers, which need to be reassembled
back to be processed by applications. Both NDN Sync protocols and
TCP/IP-based message queuing frameworks operate based on the
concept of ADU, however the two differ in fundamental ways. NDN
Sync synchronizes a dataset’s state among distributed applications,
with the dataset state identifies individual ADUs. Thereby, NDN
Sync is taking the role of signaling the existence of ADUs, and NDN
network layer retrieves ADUs with the benefit of multicast delivery
and in-network caching.

In contrast, TCP/IP-based message queuing frameworks, such as
MQTT, ZeroMQ, RabbitMQ, or Kafka [19, 32, 33, 52], are built on
top of TCP/IP and work at application layer. Thus they suffer from
IP’s inefficient point-to-point packet delivery, lack a systematic
security solution, and need additional infrastructure deployment,
such as MQTT’s broker nodes, to support distributed applications.

7 RELATED WORK
File and Folder Synchronization: This area of research has a
long history. The rsync algorithm [51] synchronizes files and fold-
ers between two nodes. Setting up a central “cloud” server extends
file sharing to multiple participants [11, 17, 39, 50]. Peer-to-peer pro-
tocols [8, 23] move file sharing towards decentralization by creating
application layer overlays. All the above mentioned systems syn-
chronize files via pairwise host-to-host communication; multicast
dissemination, if used at all, is implemented at the application layer.
NDN Sync moves the synchronization process among multiple par-
ties down to the transport layer and increases efficiency by fully
utilizing NDN’s built-in multicast data delivery and in-network
caching, and simplifies security protection.
Distributed Consensus Protocols: One of the most well-known
consensus algorithms is Paxos [24] which performs a two-phase
commit process among participants. A centralized controller can
orchestrate all participants to allow everyone to propose, accept,
and learn accepted values. In the absence of a controller, Paxos
participants communicate with each other to reaching consensus.
This process requires reliable 𝑛 × 𝑛 TCP connections; a costly so-
lution. We note that many extensions of vanilla Paxos have been
implemented and deployed in the wild. However, the fundamental
issue is that the application layer’s focus on data cannot be effec-
tively mapped to the network layer service of connecting nodes.
Further, while implementations such as Multi-Ring Paxos [26] can
leverage IP multicast [9], achieving multicast in today’s Internet is
an inherently challenging exercise.
ReliableMulticast: The concept of IPmulticast [9] was introduced
around the same time as Stonebraker predicted the need for dis-
tributed DB systems [40]. Different from the latter, however, issues
such as congestion control and reliable delivery hampered wide de-
ployment of multicast [44]. Many reliable multicast solutions [38],
including SRM [14], are based on the concept of Application Level
Framing (ALF) [7], which suggests that network transport should
preserve self-contained Application Data Units (ADUs) that are suit-
able for cross-layer processing. However, there is a fundamental

mismatch between ADUs and multicast groups: the former focuses
on data items, while the latter on groups of nodes. As a result, data
is multicast to a predefined group of nodes, and this constraint
makes it difficult to achieve efficient data dissemination to a group
of nodes with different resource constraints. This mismatch also
makes efficient loss recovery difficult: reliable multicast desires
re-transmissions of specific ADUs by nearby members [25], while
routers have no concept of ADUs and deliver all packets to the
whole group.

The ALF concept and receiver-driven multicast ADU delivery
provide two basic ingredients in the NDN design: NDN data packets
represent ADUs identified by application-level names, and NDN
lets consumers fetch desired data items. Doing so removes the
aforementioned mismatch between network and upper layers. Sync
allows organizing data transport according to application needs,
which renders Sync as a framework for efficient data dissemination
solutions. Moreover, this leads to the potential of using Sync to
address other distributed system synchronization problems, such
as those faced by distributed databases and Paxos.

8 CONCLUSION AND FUTUREWORK
This paper identifies a number of shared design patterns in the NDN
Sync protocol designs and examines their impact on the latency,
reliability, overhead, and security in dataset namespace synchro-
nization. In particular, we notice the adoption of sequential data
naming convention and its impact on a Sync protocol’s scalability,
the use of IBF encoding and its impact on dataset state synchro-
nization, and the use of multicast Sync Interests to either pull or
notify the group about dataset state changes, and the associated
impact on protocol performance.

The Sync protocol development is still in its early stage. More
investments are needed, at least to address two identified issues that
we have mentioned earlier. One is Sync’s use of sequential naming
for application data, which results in data packet encapsulation,
which in turn requires its own authentication. An initial solution
in our recent work [30] needs further examination to see whether
better solutions can be found. The other issue is two scalability
concerns raised by Sync protocol designs, scaling with the number
of producers in a Sync group, and scaling with the number of Sync
groups. To scale better with the number of producers in a Sync
group, one can let each SVS Sync interest carry a partial state
vector, and a preliminary evaluation has shown promising results
in this direction [41]. Scaling with the number of Sync groups is the
same problem as scaling with the number of IP multicast groups
in global deployment. One potential approach is to build a global
overlay among regional Sync aggregators to propagate multicast
Sync Interests, an idea suggested in [58]. We plan to further explore
the solution space of the above problems.

Our examination of Sync protocol design underscores the impor-
tant role awell-designed Sync protocol can play in future distributed
applications over NDN. By summarizing the lessons learned and
identifying the remaining issues, we hope that this work provides
a cornerstone for future Sync protocol development efforts.

To foster reproducibility in research, source code used in this
work is available under open-source licensing at [1].



SoK: The Evolution of Distributed Dataset Synchronization Solutions in NDN ICN ’22, September 19–21, 2022, Osaka, Japan

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers and the shepherd
David Oran for their valuable comments which helped us improve
the paper’s quality. This work was supported in part by US National
Science Foundation under awards 1629769, 1719403, 2019085, and
2126148.

REFERENCES
[1] 2022. Repoducibility Set for "The Evolution of Distributed Dataset Synchroniza-

tion Solutions in NDN". https://github.com/pulsejet/ndn-sync-eval
[2] Hila Ben Abraham, Jyoti Parwatikar, John DeHart, Adam Drescher, and Patrick

Crowley. 2018. Decoupling information and connectivity via information-centric
transport. In ICN 2018 - Proceedings of the 5th ACM Conference on Information-
Centric Networking. 54–66. https://doi.org/10.1145/3267955.3267963

[3] B. Adamson, C. Bormann, M. Handley, and J. Macker. 2009. NACK-Oriented
Reliable Multicast (NORM) Transport Protocol. RFC 5740.

[4] Alexander Afanasyev, Tamer Refaei, Lan Wang, and Lixia Zhang. 2018. A Brief
Introduction to Named Data Networking. In Proc. of MILCOM.

[5] Alexander Afanasyev, Junxiao Shi, Lan Wang, Beichuan Zhang, and Lixia Zhang.
[n.d.]. Packet Fragmentation in NDN: Why NDN Uses Hop-By-Hop Fragmentation.
Technical Report NDN-0032. NDN.

[6] Alexander Afanasyev, Zhenkai Zhu, Yingdi Yu, Lijing Wang, and Lixia Zhang.
2015. The Story of ChronoShare, or How NDN Brought Distributed Secure File
Sharing Back. In Proc. of IEEE MASS Workshop on Content-Centric Networks.

[7] David D. Clark and David L. Tennenhouse. 1990. Architectural considerations
for a new generation of protocols. ACM SIGCOMM Computer Communication
Review (1990), 200–208. https://doi.org/10.1145/99508.99553

[8] Bram Cohen. 2008. The BitTorrent Protocol Specification. https://web.archive.
org/web/20140208002821/http://bittorrent.org/beps/bep_0003.html accessed:
2021-05-17.

[9] Steve Deering. 1989. RFC1112: Host extensions for IP multicasting. Technical
Report.

[10] S. E. Deering. 1988. Multicast Routing in Internetworks and Extended LANs.
SIGCOMM Comput. Commun. Rev. 18, 4 (aug 1988), 55–64. https://doi.org/10.
1145/52325.52331

[11] Dropbox, Inc. 2021. Dropbox Homepage. https://www.dropbox.com/ accessed:
2021-05-17.

[12] Saurab Dulal, Nasir Ali, Adam Thieme, Tianyuan Yu, Siqi Liu, Regmi Suravi,
Lixia Zhang, and La Wang. 2022. Building a Secure mHealth Data Sharing
Infrastructure over NDN. In Proceedings of the 9th ACMConference on Information-
Centric Networking.

[13] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. 2011.
What’s the difference?: efficient set reconciliation without prior context. In SIG-
COMM.

[14] Sally Floyd, Van Jacobson, Ching Gung Liu, Steven McCanne, and Lixia Zhang.
1997. A reliable multicast framework for light-weight sessions and application
level framing. IEEE/ACM Transactions on Networking 5, 6 (1997), 784–803. https:
//doi.org/10.1109/90.650139

[15] Wenliang Fu, Hila Ben Abraham, and Patrick Crowley. 2015. Synchronizing
namespaces with invertible bloom filters. In 2015 ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS). 123–134.

[16] J. Galbraith and R. Thayer. 2006. RFC4716: The Secure Shell (SSH) Public Key File
Format. Technical Report.

[17] Google LLC. 2021. Cloud Storage for Work and Home – Google Drive. https:
//drive.google.com/ accessed: 2021-05-17.

[18] GÉANT project. 2018. GÉANT topology map. https://www.geant.org/Networks/
Pan-European_network/Pages/GEANT_topology_map.aspx accessed: 2021-05-
10.

[19] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. O’Reilly Media,
Inc.

[20] Yi Hu, Constantin Serban, Lan Wan, Alex Afanasyev, and Lixia Zhang. 2020. PLI-
Sync: Prefetch Loss-Insensitive Sync for NDN Group Streaming. (2020). https:
//www.nist.gov/news-events/events/2020/09/ndn-community-meeting Named
Data Networking Community Meeting 2020 (NDNComm’20).

[21] V. Jacobson. 1988. Congestion Avoidance and Control. In Symposium Proceedings
on Communications Architectures and Protocols (SIGCOMM ’88). ACM, New York,
NY, USA. https://doi.org/10.1145/52324.52356

[22] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.
Briggs, and Rebecca L. Braynard. 2009. Networking Named Content. In CoNEXT
’09: Proceedings of the 5th International Conference on Emerging Networking Ex-
periments and Technologies. ACM, New York, NY, USA, 1–12. https://doi.org/10.
1145/1658939.1658941

[23] Patrick Kirk. 2003. Gnutella – A Protocol for a Revolution. http://rfc-gnutella.
sourceforge.net/

[24] Leslie Lamport. 1998. The Part-Time Parliament. ACM Transactions on Computer
Systems 16, 2 (May 1998), 133–169. https://doi.org/10.1145/279227.279229

[25] Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia Zhang. 1998. Local
Error Recovery in SRM: Comparison of Two Approaches. IEEE/ACM Trans. Netw.
6, 6 (Dec. 1998), 686–699. https://doi.org/10.1109/90.748082

[26] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2012. Multi-Ring Paxos.
In IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2012). 1–12. https://doi.org/10.1109/DSN.2012.6263916

[27] N. Mimura, K. Nakauchi, H. Morikawa, and T. Aoyama. 2003. RelayCast: a
middleware for application-level multicast services. InCCGrid 2003. 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2003. Proceedings.
434–441. https://doi.org/10.1109/CCGRID.2003.1199398

[28] Mini-NDN Authors. 2021. Mini-NDN: A Mininet-based NDN emulator. minindn.
memphis.edu/ accessed: 2021-05-10.

[29] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief
Introduction to State Vector Sync. Technical Report NDN-0073. NDN.

[30] Philipp Moll, Varun Patil, Lixia Zhang, and Davide Pesavento. 2021. Resilient Bro-
kerless Publish-Subscribe over NDN. In MILCOM 2021 - 2021 IEEE Military Com-
munications Conference (MILCOM) (San Diego, CA, USA). IEEE Press, 438–444.
https://doi.org/10.1109/MILCOM52596.2021.9652885

[31] Philipp Moll, Wentao Shang, Yingdi Yu, Alexander Afanasyev, and Lixia Zhang.
2021. A Survey of Distributed Dataset Synchronization in Named Data Networking.
Technical Report NDN-0053, Revision 2. Named Data Networking. 1–18 pages.

[32] mqtt.org. 2020. MQTT: The Standard for IoT Messaging. https://mqtt.org/
accessed: 2021-07-19.

[33] Neha Narkhede, Gwen Shapira, and Todd Palino. 2017. Kafka: The Definitive
Guide: Real-Time Data and Stream Processing at Scale (1 ed.). O’Reilly Media, Inc.

[34] NDN Project team. 2018. NFD Management protocol. (2018). https://redmine.
named-data.net/projects/nfd/wiki/Management accessed: 2021-07-29.

[35] NDN Project team. 2021. NDN Packet Format Specification version 0.3: Signed
Interest. (2021). https://named-data.net/doc/NDN-packet-spec/current/signed-
interest.html accessed: 2021-07-29.

[36] Kathleen Nichols. 20121. Trust Schemas and ICN: Key to Secure IoT. In Pro-
ceedings of the 8th ACM Conference on Information-Centric Networking (ICN ’21).
Association for Computing Machinery, New York, NY, USA.

[37] Kathleen Nichols. 2019. Lessons Learned Building a Secure Network Measure-
ment Framework Using Basic NDN. In Proceedings of the 6th ACM Conference on
Information-Centric Networking (ICN ’19). Association for Computing Machinery,
New York, NY, USA, 112–122. https://doi.org/10.1145/3357150.3357397

[38] Katia Obraczka. 1998. Multicast transport protocols: a survey and taxonomy.
IEEE Communications Magazine 36, January (1998), 94–102.

[39] ownCloud GmbH. 2021. ownCloud – share files and folders, easy and secure.
https://owncloud.com/ accessed: 2021-05-17.

[40] M. Tamer Ozsu and P. Valduriez. 1991. Distributed database systems: where are
we now? Computer 24, 8 (1991), 68–78. https://doi.org/10.1109/2.84879

[41] Varun Patil, Sichen Song, Guorui Xiao, and Lixia Zhang. 2022. Poster: Scaling
State Vector Sync. In Proceedings of the 9th ACMConference on Information-Centric
Networking.

[42] V. Patil and L. Zhang. 2021. Considerations for Higher Level Transports over Sync.
(2021). https://www.nist.gov/news-events/events/2021/10/ndn-community-
meeting-2021 NDNComm 2021.

[43] Peter R. Pietzuch and Jean Bacon. 2003. Peer-to-Peer Overlay Broker Networks in
an Event-Based Middleware. In Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (San Diego, California) (DEBS ’03). Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/
966618.966628

[44] Adrian Popescu, Doru Constantinescu, David Erman, and Dragos Ilie. 2007. A
survey of reliable multicast communication. NGI 2007: 2007 Next Generation
Internet Networks - 3rd EuroNGI Conference on Next Generation Internet Networks:
Design and Engineering for Heterogeneity (2007), 111–118. https://doi.org/10.
1109/NGI.2007.371205

[45] Jon Postel. 1981. RFC793: Transmission Control Protocol. Technical Report.
[46] ProjectCCNx. 2012. CCNx Synchronization Protocol. CCNx 0.8.2 docu-

mentation. https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/
SynchronizationProtocol.txt

[47] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. 2016. A Practical
Congestion Control Scheme for Named Data Networking. In Proc. of ACM ICN.

[48] Junxiao Shi, Eric Newberry, and Beichuan Zhang. 2017. On Broadcast-based
Self-Learning in Named Data Networking. In Proceedings of IFIP Networking.

[49] Sichen Song and Lixia Zhang. 2022. Effective NDN Congestion Control Based on
Queue Size Feedback. In Proceedings of the 9th ACM Conference on Information-
Centric Networking.

[50] Synology Inc. 2021. Synology Drive | Your private cloud for file access and sharing
anywhere. https://www.synology.com/en-us/dsm/feature/drive accessed: 2021-
05-17.

[51] Andrew Tridgell and Paul Mackerras. 1998. The rsync algorithm. https:
//rsync.samba.org/tech_report/

https://github.com/pulsejet/ndn-sync-eval
https://doi.org/10.1145/3267955.3267963
https://doi.org/10.1145/99508.99553
https://web.archive.org/web/20140208002821/http://bittorrent.org/beps/bep_0003.html
https://web.archive.org/web/20140208002821/http://bittorrent.org/beps/bep_0003.html
https://doi.org/10.1145/52325.52331
https://doi.org/10.1145/52325.52331
https://www.dropbox.com/
https://doi.org/10.1109/90.650139
https://doi.org/10.1109/90.650139
https://drive.google.com/
https://drive.google.com/
https://www.geant.org/Networks/Pan-European_network/Pages/GEANT_topology_map.aspx
https://www.geant.org/Networks/Pan-European_network/Pages/GEANT_topology_map.aspx
https://www.nist.gov/news-events/events/2020/09/ndn-community-meeting
https://www.nist.gov/news-events/events/2020/09/ndn-community-meeting
https://doi.org/10.1145/52324.52356
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
http://rfc-gnutella.sourceforge.net/
http://rfc-gnutella.sourceforge.net/
https://doi.org/10.1145/279227.279229
https://doi.org/10.1109/90.748082
https://doi.org/10.1109/DSN.2012.6263916
https://doi.org/10.1109/CCGRID.2003.1199398
minindn.memphis.edu/
minindn.memphis.edu/
https://doi.org/10.1109/MILCOM52596.2021.9652885
https://mqtt.org/
https://redmine.named-data.net/projects/nfd/wiki/Management
https://redmine.named-data.net/projects/nfd/wiki/Management
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://doi.org/10.1145/3357150.3357397
https://owncloud.com/
https://doi.org/10.1109/2.84879
https://www.nist.gov/news-events/events/2021/10/ndn-community-meeting-2021
https://www.nist.gov/news-events/events/2021/10/ndn-community-meeting-2021
https://doi.org/10.1145/966618.966628
https://doi.org/10.1145/966618.966628
https://doi.org/10.1109/NGI.2007.371205
https://doi.org/10.1109/NGI.2007.371205
https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt
https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt
https://www.synology.com/en-us/dsm/feature/drive
https://rsync.samba.org/tech_report/
https://rsync.samba.org/tech_report/


ICN ’22, September 19–21, 2022, Osaka, Japan Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang

[52] VMware Inc. 2021. Messaging that just works – RabbitMQ. https://www.
rabbitmq.com/ accessed: 2021-07-19.

[53] L. Wang, V. Lehman, A. K. M. Mahmudul Hoque, B. Zhang, Y. Yu, and L. Zhang.
2018. A Secure Link State Routing Protocol for NDN. IEEE Access 6 (jan 2018),
10470–10482.

[54] X. Xu, H. Zhang, T. Li, and L. Zhang. 2018. Achieving Resilient Data Avail-
ability in Wireless Sensor Networks. In 2018 IEEE International Conference on
Communications Workshops (ICC Workshops).

[55] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang,
and Lixia Zhang. 2013. A Case for Stateful Forwarding Plane. Computer Commu-
nications: ICN Special Issue 36, 7 (April 2013), 779–791.

[56] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patric
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM Computer Communication Reviews (June 2014). http:
//dx.doi.org/10.1145/2656877.2656887

[57] Minsheng Zhang, Vince Lehman, and Lan Wang. 2017. Scalable Name-based
Data Synchronization for Named Data Networking. In Proceedings of the IEEE
Conference on Computer Communications (INFOCOM).

[58] Zhenkai Zhu and Alexander Afanasyev. 2013. Let’s ChronoSync: Decentralized
Dataset State Synchronization in Named Data Networking. In Proceedings of the
21st IEEE International Conference on Network Protocols (ICNP 2013). Goettingen,
Germany. http://icnp13.informatik.uni-goettingen.de/index.html

https://www.rabbitmq.com/
https://www.rabbitmq.com/
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656887
http://icnp13.informatik.uni-goettingen.de/index.html

	Abstract
	1 Introduction
	2 The Role of Sync in NDN
	3 The Design of NDN Sync Protocol
	3.1 Sync Protocol Design Goals
	3.2 Components in Sync Protocol Design

	4 Sync Protocol Design: Case Studies
	4.1 Encoding Dataset Namespace by Digest
	4.2 Encoding Dataset Namespace by IBF
	4.3 Using Dataset State Representation Directly

	5 Sync Protocol Design Space
	5.1 State Representation and Encoding
	5.2 State Change Notification
	5.3 Securing Sync Interests
	5.4 Sync Protocol Design Summary

	6 Discussions
	6.1 Data Naming
	6.2 Scaling to Large Sync Groups
	6.3 Sync Interest Multicast
	6.4 Use of the NDN Protocol
	6.5 ALF, NDN Sync, and Message Queues

	7 Related Work
	8 Conclusion and Future Work
	References

