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In this paper we study a discrete time consensus model on a connected graph with monotonically
increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that
each agent maintains a constant hidden state and a presents a dynamic output that is perturbed
by random noise drawn from a mean-zero distribution. We show consensus is ensured in the limit
as time goes to infinity under certain assumptions on the increasing peer-pressure term and also
show that the hidden state cannot be exactly recovered even when model dynamics and outputs are
known. The exact nature of the distribution is computed for a simple two vertex graph and results
found are shown to generalize (empirically) to more complex graph structures.

I. INTRODUCTION

Many physical, biological and social systems exhibit consensus in which an internal variable is driven through
interactions to a common value (see [I] for a survey). Social consensus has been studied in [2H4]. Swarming and
flocking has been studied in [BHI0]. Other collective motion is studied in [Il 1T, [12]. Particularly large area of research
are in opinion dynamics [2, [3] M3H26] and self-organized behavior or flocking [Il [6, 11l 27H32]. Social consensus
within networks has been considered in [33H45], while similar work for natural systems evolving with network-based
communication is studied in [46-H49]. Voter models [20, 50H52] have also been considered extensively in the statistical
physics literature as models of opinion dynamics. These models have the benefit that they are solvable in restricted
cases. There has also been substantial work on control and stability in these systems [8, 12, 19, 53], 54]. We also
note the references given in this section are only a small snapshot of a larger literature on consensus, flocking and
swarming.

In this paper, we consider a model in which peer-pressure is a monotonic function of time [55] [56] and agent outputs
are subject to noise. Each agent has an internal hidden state that remains constant and a time-varying exposed state
that is subject to noise as it is exchanged with its peers within a network. We assume agents prefer to release a
perturbed rather than their true (hidden) state z} for (i) agents do not know their true state and their preferred
output is drawn from a distribution centered around their true (hidden) state or (ii) agents have a privacy preference
and prefer not to reveal their true state [57,[58]. In the latter case, the computer science literature has studied privacy
extensively with some attempts to reconcile differential privacy with consensus [59] ultimately leading to a proof that
any differentially private algorithm cannot achieve network consensus [60].

We contrast these prior results by showing that as long as underlying communications network is connected and the
peer-pressure is monotonic but does not increase too quickly (as given in [56]), then even with added noise consensus
to an average of all hidden states is guaranteed. We also show that it is impossible to precisely recover the initial
hidden states of the system, formally proving this in the case of a two vertex network and illustrating similar results
empirically on a larger scale-free network.

The remainder of this paper is organized as follows: In Section [[I] we present the model and prove that consensus
to a common value is guaranteed. We analyze the problem of recovering the hidden states in Section [T} Empirical
results are provided in Section [[V] Results and conclusions are given in Section [V]

II. MODEL

Let G = (V, E) be a connected simple graph (no multi-edges or self-loops) with vertex set V' = {1,...,n} and edge
set E. We assume each vertex represents an agent with a constant hidden state z; € R and a dynamic shared state
y; that changes in time. Assume a symmetric edge weight function w : E — R with edge {7, j} having weight w;;.
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At time ¢, a random value & ~ D is chosen from a distribution D!. For simplicity we assume E (f’) = 7. Has

time-varying Hamiltonian:

H = i §t_yt Z ptwu (yt 1 y)27 (1)
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which encodes the social energy of the agent experiences caused by (i) a preference to expose the random data ¢¢ and
(ii) social pressure to agree with neighbors’ previously exposed states. Here p; is the time varying weight placed on
the term in the Hamiltonian corresponding to the social pressure. The value s’ is the constant weight placed on the
term in the Hamiltonian corresponding to preference for releasing random information.

When each agent simultaneously minimizes Eq. , the resulting update rule is given by:
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which is similar to the update rules in [55] 56 [6TH63] using a deterministic model.
Define:
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and let €; = £/ — xo. By assumption, E(e!) = 0. Then we have
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Eq. can be re-written as:
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From this we conclude that
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since E(e}) = 0. Following [55) [56], let A be the symmetric weighted adjacency matrix with A;; = w;; and let D be
the diagonal matrix with

D” = Z Wi -
J
Finally, let S be the diagonal matrix with entries S;; = s*. If y = (y',...,y™), then define

fily) = (S+pD) ™" (Sxo + p1AY).
In Lemma 3 of [55] it is shown that, when we fix p;, f; is a contraction with fixed point:
yi =[S +p(D —A) " Sxo. (5)
To see this we solve:
y = fily) = (S+ p:D) " (Sx0 + pAy).
Then we have



Expanding both sides and subtracting p; Ay gives
Sy + ptDy — ptAy = Sxqo.

Solving for y gives Eq. . The proof that f; is a contraction uses a stochastic matrix argument that is outside the
scope of the paper and can be found in [55].

From Theorem IV.1 of [55], we know that if p, — 0o as t — oo and there are contraction constants «; (functions
of p;) such that:
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and so that the resulting contraction constants oy for f; satisfy:
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That is all agents come to consensus as a result of the monotonically increasing peer-pressure.
Now assume p; grows slowly enough to ensure that f; satisfies the conditions given above. The function p; = t is
generally slow enough to ensure convergence. Then by Eq. 7 we know that:
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for all i. Moreover, since:
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we can conclude that that y; converges not only in expectation but in value so that:
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We illustrate this behavior using a 100 vertex randomly generated scale free graph shown in Fig.[[} We assume that
pt = t. The initial condition xo was chosen at random with values in [0, 1]. The vector s was chosen at random with
values in [0.5,1]. A Mathematica notebook to perform this experiment is provided in the SI. The resulting behavior
is shown in Fig. [2| In this figure, we provide only the maximum and minimum public state values at any time. This
simplifies the presentation and shows how the state converges over time without presenting 100 trajectories. We
contrast this with the non-convergence when p; = Qﬁ, which grows too quickly to ensure convergence. We use the
same initial condition and randomly chosen vector s. This is illustrated in Fig. [3| Notice that failure to converge is
accompanied by system oscillation, which is illustrated by showing that the state in vertex 1 oscillates between the
maximum and minimum values of all states.

lim =0.
t—o0

III. RECOVERY OF THE HIDDEN STATES

We analyze the problem of inferring the hidden information in x( from a sequence of outputs. For simplicity, we
restrict our attention to the graph Ko with wis = wo; = 1 and s!' = s2 = 1. We then show empirically that the
theoretical results obtained for this graph hold on larger graphs. The theoretical analysis on the graph with only two
vertices is (in some sense) a worse case scenario since it presents the simplest conditions under which to estimate the
hidden state.

Let (z},22) be the hidden state of the two players and let (y},y?) the current shared state. From Eq. , the
time-varying state values can be obtained in closed form as

yl _ iE(l) + y2pt+1 + 6% (7)
o L+ pey1 L+ pey1’
2 .1 2
Ty T Y P €
y152+1 = =2 ; (8)

1+ ptta L4+ pe1



FIG. 1: The scale free graph used to illustrate the convergence of the dynamics with noise.
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FIG. 2: (Left) The initial time convergence of the system showing the maximum and minimum state values. (Right)

Large-time convergence of the system showing maximum and minimum state values.
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FIG. 3: When p; increases too quickly, in this case exponentially fast, convergence is not guaranteed and the system

begins to oscillate.



For simplicity, assume €; ~ N(0,1) (i.e., follows a standard normal distribution) and p; = ¢, which ensures conver-
gence [56]. Assume a stopping time T'. If T is even, then
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Here wp and v are accumulated error at 7. Under our normality assumptions, when 7T is even:
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When T is odd:
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As T — oo, wr,vr — 0 as expected zero while:
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for T even or odd.

We now treat this as a linear regression problem with design matrix Q composed of the coefficients identified for
the unknown z} and x3. That is we construct a vector y of output values with y = (yi,v3,...,y%,y%) and a the
design matrix Q with rows given by the appropriate coefficients in Eqgs. (]ED to . The resulting linear regression is:

y = [1'(1) x%}Q—l—e.

We note that the error terms in € are heteroskedastic by Egs. and . However, we can use a homoskedastic

assumption to construct a best case error model for the estimate of xog = (2, #3). In the homoskedastic case we know

that the distribution on the hidden state xq is given by:
Xo ~ N(x0, %),
where:
»=6(QQ") . (15)

Here Q" is the matrix transpose of the design matrix Q. The term ¢ is always a non-zero because we assume
€, ~ N(0,1) (¢ =1,2). This would be true for any choice €; ~ N(0,0¢), with og > 0. It now suffices to show we can

compute (QQT)fl. Under our assumption on p; and using Egs. to at time T we compute:
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We can compute the asymptotic result
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Thus as T — oo we have:
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This non-zero covariance matrix combined with the fact that & > 0 ensures that the distribution on xy does not
collapse to a point mass. Thus the initial data cannot be perfectly recovered. Moreover, the fact that 3 # 0 is true
even if we choose samples starting a time ¢ > 0. Moreover, as the design matrix rows converge to the common value

(%, 3), (see Egs. @ to ), numerical instability will make estimation of x¢ more difficult.

IV. EMPIRICAL RESULTS

In the analysis of the dynamical system on K5 we noted that asymptotic result for X in Eq. was developed using
a homoskedastic assumption. We tested the fitting process on data generated from K, assuming that € ~ N (0, 1)
(i = 1,2). We used 100 time steps and 100 replications. Fig. [i] shows the 100 estimates for (z,z2) along with a
density plot of a normal distribution with mean g = (1,2) (which was the initial condition used in the experiment)
and ¥ constructed from Eq. . We note that the 3 matrix is singular, which explains why the data are co-linear.
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FIG. 4: A density plot of the asymptotic covariance matrix and the observed estimates for the two dimensional
hidden state after 100 time steps.

We ran a similar experiment using a 100 vertex random graph generated according to a Barabdsi-Albert distribution
[64]. For each estimate %Xq of the hidden state, we constructed a residual vector r; = X, — Xo,, (here i =1,...,100
replications). Smoothed histograms of all residual vectors (one for each vertex) are shown in Fig. [[left). A histogram
of the mean residual vector (r) along with a normal distribution fit of the mean residual vector is shown in Fig. [F[right).

Let o2 be the variance of the noise. That is € ~ N(0,00). We tested the impact of both graph size and o2 on the
variance of the residual distribution, which we denote o2. This distribution is illustrated in Fig. [5] (right). Graphs
were generated with vertex size ranging from 20 to 90 by tens using a Barabdasi-Albert (BA) distribution [64] with 2
edges added in each round (rather than the usual one edge per round). The vertex range was chosen for expedience
because the time to generate the fitting problem (the generalization of Eqs. @I) to ) is a function of graph size.
We chose o from the range [5.5,10] with a sample interval of 0.5. For each pair (|V|,09) we ran 20 replications with
different starting condition and measured the mean residual variance (02). A second class of experiments is discussed
in Appendix A on graphs generated using the standard BA distribution with 1 edge added per round.

When fitting the linear model

(02) ~ Bo + B1|V| + B20d + €,
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FIG. 5: (Left) Distributions of residuals of estimate of the hidden state from 100 agents. (Right) Mean residual
distribution with normal distribution fit.

we obtain the parameter table:

‘Estimate Standard Error t¢-Statistic p-Value

1 [—080 0.15 —550  4.84x 1077
v||o 0 —041 068
02 0.22 0.02 12.9 6.71 x 1021,

This suggests that the size of the graph has no impact on the residual variance, as expected. However, the mean
residual variance (0?) grows linearly with noise variance o3 as shown in Fig. @ This is expected from Eq. . We
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FIG. 6: (Left) Box-whiskers plot of the residual variances (distribution of 02) over 20 replications for varying noise
o2 shows a linear relationship between 62 and o2 as expected. (Right) Box-whiskers plot of the residual variances
for varying graph sizes shows no effect from graph size.

also show the effect on mean residual distribution shape as a function of graph size |V| and noise variance o2 in Fig. Iﬂ
Notice the structures of the distributions are largely similar to each other (unimodal and tending toward normality)
with some small-sample effects on the distributions when |V'| = 20. This is predicted in our theoretical analysis.

Finally, we illustrate that the rate of convergence is affected (slightly) by o2 as expected from Eq. . This is
shown in Fig. [8) where we see dynamics generated by larger o2 converge more slowly. This figure was made using a
graph with 100 vertices and generated using the Barabdsi-Albert distribution [64] with 2 edges added in each round.
Code for regenerating all results in this section is available in the SI.

These experiments suggest that the hidden state cannot be estimated using data from a single output of the
dynamical system but that time series would need to be repeatedly sampled from this system. From a privacy
perspective, this implies that if this is used as a consensus mechanism, the hidden state of the agents will be protected
statistically. From a scientific perspective, this implies that as users in a social network converge to expressing a
common ethos (e.g., on a polarizing topic like climate change or abortion rights) it may be impossible to infer hidden
(true) positions among the users.
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FIG. 7: (Left) Mean residual distributions for varying 02 when |V| = 20. (Middle) Mean residual distributions for
varying o when |V| = 50. (Right) Mean residual distributions for varying o8 when |V| = 80.
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FIG. 8: Convergence of the system under differing levels of input noise. Larger input noise slows the convergence.
As before, only the maximum and minimum state values are shown.

V. CONCLUSIONS AND FUTURE WORK

In this paper we showed how time-varying peer-pressure can be used to produce consensus in an information
exchange system with hidden true states. The consensus value is a weighted average of those hidden states. We also
showed that even when the system outputs can be observed and the underlying model is known, the initial state
cannot be exactly recovered. This was formally proved in the two agent case and empirically illustrated in a more
complex graph. We also showed how the variance of the noise affected the variance of the estimated hidden states,
showing it was consistent with the theoretical ansatz.

In future work it would be interesting to consider a two time-scale dynamic in which the internal (hidden) state
is allowed to update at a slower rate as a result of consensus on the public state. Studying cases where the network
structure evolve would also be of interest, since the connectivity of the network is a necessary condition for convergence
of the system to the consensus value. Additionally, the discrete time dynamic could be replaced with a continuous
stochastic differential equation (SDE):

dy =[S+ p(t)D] ' [S (xo — y) — p(t)Ly] dt + [S + p(t)D] " d¢,
where £ is a vector Wiener process and L = D — A is the matrix Laplacian. This SDE is linear and has a well-defined
Fokker-Plank equation that could have interesting properties.
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Appendix A: Results on Additional Graphs

We ran additional experiments using graphs generated with the Barabdsi-Albert distribution [64] with 1 edge added
in each round. Results in this appendix can be compared to those in Section [[V] The experimental design with this
collection of graphs was identical to the experimental design used in Section [[V] except in the density of the graphs
investigated. These graphs were half as dense as those studied in Section [[V]

We fitted the same linear model

<U’2> ~ Bo + 51|V +ﬁ203+67 (A1)
with the new data to obtain the parameter table

‘Estimate Standard Error t¢-Statistic p-Value

1 [-092 019 —477 856 x 1076
V] ]0.00 0.00 0.37 0.71
02 0.24 0.02 10.95 2.31 x 10717,

We can compare this table to the parameter table in Section [[V|by computing the confidence intervals (CI) on each
parameter in the two types of experiment. This is shown in Table[]]

| Est. CI | Est. CI
1 [-08 (—1.1,-0.51) 1 |—0.91 (—1.30,-0.53)
[V|]0.00 (—0.003,0.0017) V | 0.000 (—0.002,0.003)
ot | 0.22 (0.19,0.25) ol | 0.24 (0.2,0.29)
Parameter CI's BA2 Data Parameter CI BA1 Data

TABLE I: (Left) Parameter confidence intervals for fit of Eq. (| on graphs generated with Barabasi-Albert
distribution with 2 edges added per round (BA2). (Right) Parameter confidence intervals for fit of Eq. (A1) on
graphs generated with Barabdsi-Albert distribution with 1 edge added per round (BA1).

Table [ shows that the parameters in the two graph classes are statistically identical. The data again suggests that
the size of the graph has no impact on the residual variance. Again, the mean residual variance (0?) grows linearly
with noise variance of as shown in Fig. @ This is expected from Eq. . We also show the effect on mean residual
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55 6. 65 7. 75 8 85 9. 95 10. 20 30 40 50 60 70 80 90
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Error Variance

FIG. 9: (Left) Box-whiskers plot of the residual variances (distribution of ¢2) over 20 replications for varying noise
o2 shows a linear relationship between &% and o2 as expected. (Right) Box-whiskers plot of the residual variances
for varying graph sizes shows no effect from graph size.

distribution shape as a function of graph size |V| and noise variance o2 in Fig. [10] for this set of experiments. Notice
the structures of the distributions are largely similar to each other (unimodal and tending toward normality) with
some small-sample effects on the distributions when |V| = 20. More importantly, they have the same structure as
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FIG. 10: (Left) Mean residual distributions for varying 02 when |V| = 20. (Middle) Mean residual distributions for
varying 02 when |V| = 50. (Right) Mean residual distributions for varying o2 when |V'| = 80.

those presented in Fig. suggesting that edge density plays a minor roll in the residual error distribution at this
scale.
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