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In this paper we study a discrete time consensus model on a connected graph with monotonically
increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that
each agent maintains a constant hidden state and a presents a dynamic output that is perturbed
by random noise drawn from a mean-zero distribution. We show consensus is ensured in the limit
as time goes to infinity under certain assumptions on the increasing peer-pressure term and also
show that the hidden state cannot be exactly recovered even when model dynamics and outputs are
known. The exact nature of the distribution is computed for a simple two vertex graph and results
found are shown to generalize (empirically) to more complex graph structures.

I. INTRODUCTION

Many physical, biological and social systems exhibit consensus in which an internal variable is driven through
interactions to a common value (see [1] for a survey). Social consensus has been studied in [2–4]. Swarming and
flocking has been studied in [5–10]. Other collective motion is studied in [1, 11, 12]. Particularly large area of research
are in opinion dynamics [2, 3, 13–26] and self-organized behavior or flocking [1, 6, 11, 27–32]. Social consensus
within networks has been considered in [33–45], while similar work for natural systems evolving with network-based
communication is studied in [46–49]. Voter models [20, 50–52] have also been considered extensively in the statistical
physics literature as models of opinion dynamics. These models have the benefit that they are solvable in restricted
cases. There has also been substantial work on control and stability in these systems [8, 12, 19, 53, 54]. We also
note the references given in this section are only a small snapshot of a larger literature on consensus, flocking and
swarming.

In this paper, we consider a model in which peer-pressure is a monotonic function of time [55, 56] and agent outputs
are subject to noise. Each agent has an internal hidden state that remains constant and a time-varying exposed state
that is subject to noise as it is exchanged with its peers within a network. We assume agents prefer to release a
perturbed rather than their true (hidden) state xi

0 for (i) agents do not know their true state and their preferred
output is drawn from a distribution centered around their true (hidden) state or (ii) agents have a privacy preference
and prefer not to reveal their true state [57, 58]. In the latter case, the computer science literature has studied privacy
extensively with some attempts to reconcile differential privacy with consensus [59] ultimately leading to a proof that
any differentially private algorithm cannot achieve network consensus [60].

We contrast these prior results by showing that as long as underlying communications network is connected and the
peer-pressure is monotonic but does not increase too quickly (as given in [56]), then even with added noise consensus
to an average of all hidden states is guaranteed. We also show that it is impossible to precisely recover the initial
hidden states of the system, formally proving this in the case of a two vertex network and illustrating similar results
empirically on a larger scale-free network.

The remainder of this paper is organized as follows: In Section II we present the model and prove that consensus
to a common value is guaranteed. We analyze the problem of recovering the hidden states in Section III. Empirical
results are provided in Section IV. Results and conclusions are given in Section V

II. MODEL

Let G = (V,E) be a connected simple graph (no multi-edges or self-loops) with vertex set V = {1, . . . , n} and edge
set E. We assume each vertex represents an agent with a constant hidden state xi

0 ∈ R and a dynamic shared state
yit that changes in time. Assume a symmetric edge weight function w : E → R with edge {i, j} having weight wij .
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At time t, a random value ξit ∼ D is chosen from a distribution Di. For simplicity we assume E
(︁
ξi
)︁
= xi

0. Has
time-varying Hamiltonian:

Hi =
si

2

(︁
ξit − yit

)︁2
+
∑︂

j∈N(i)

ρt
2
wij

(︂
yjt−1 − yit

)︂2
, (1)

which encodes the social energy of the agent experiences caused by (i) a preference to expose the random data ξi and
(ii) social pressure to agree with neighbors’ previously exposed states. Here ρt is the time varying weight placed on
the term in the Hamiltonian corresponding to the social pressure. The value si is the constant weight placed on the
term in the Hamiltonian corresponding to preference for releasing random information.

When each agent simultaneously minimizes Eq. (1), the resulting update rule is given by:

yit =
siξit + ρt

∑︁
j∈N(i) wijy

j
t−1

si + ρt
∑︁

j∈N(i) wij
, (2)

which is similar to the update rules in [55, 56, 61–63] using a deterministic model.
Define:

ui
t =

siξit + ρt
∑︁

j∈N(i) wijy
j
t−1

si + ρt
∑︁

j∈N(i) wij
− xi

0.

and let ϵit = ξit − x0. By assumption, E(ϵit) = 0. Then we have

uik
t =

si
(︁
xi
0 + ϵit

)︁
+ ρt

∑︁
j∈N(i) wijy

j
t−1

si + ρt
∑︁

j∈N(i) wij
− xi

0 =
siϵit + ρt

∑︁
j∈N(i) wij

(︂
yjt−1 − xi

0

)︂
si + ρt

∑︁
j∈N(i) wij

.

Eq. (2) can be re-written as:

yit =
sixi

0 + ρt
∑︁

j∈N(i) wijy
j
t−1

si + ρt
∑︁

j∈N(i) wij
+

si

si + ρt
∑︁

j∈N(i) wij
ϵit. (3)

From this we conclude that

E
(︁
yit
)︁
=

sixi
0 + ρt

∑︁
j∈N(i) wijy

j
t−1

si + ρt
∑︁

j∈N(i) wij
, (4)

since E(ϵit) = 0. Following [55, 56], let A be the symmetric weighted adjacency matrix with Aij = wij and let D be
the diagonal matrix with

Dii =
∑︂
j

wij .

Finally, let S be the diagonal matrix with entries Sii = si. If y =
⟨︁
y1, . . . , yn

⟩︁
, then define

ft(y) = (S+ ρtD)
−1

(Sx0 + ρtAy) .

In Lemma 3 of [55] it is shown that, when we fix ρt, ft is a contraction with fixed point:

y∗
t = [S+ ρt(D−A)]

−1
Sx0. (5)

To see this we solve:

y = ft(y) = (S+ ρtD)
−1

(Sx0 + ρtAy) .

Then we have

(S+ ρtD)y = (Sx0 + ρtAy) .
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Expanding both sides and subtracting ρtAy gives

Sy + ρtDy − ρtAy = Sx0.

Solving for y gives Eq. (5). The proof that ft is a contraction uses a stochastic matrix argument that is outside the
scope of the paper and can be found in [55].

From Theorem IV.1 of [55], we know that if ρt → ∞ as t → ∞ and there are contraction constants αt (functions
of ρt) such that:

∥ft(y)− y∗
t ∥ ≤ αt ∥y − y∗

t ∥ ∀y,

and so that the resulting contraction constants αt for ft satisfy:

∞∏︂
t=1

αt = 0,

then for all i

lim
t→∞

yit =

∑︁
i six

i
0∑︁

i si
.

That is all agents come to consensus as a result of the monotonically increasing peer-pressure.
Now assume ρt grows slowly enough to ensure that ft satisfies the conditions given above. The function ρt = t is

generally slow enough to ensure convergence. Then by Eq. (4), we know that:

lim
t→∞

E(yit) =
sixik

0 + ρt
∑︁

j∈N(i) wijy
jk
t−1

si + ρt
∑︁

j∈N(i) wij
=

∑︁
i s

ixi
0∑︁

i s
i
, (6)

for all i. Moreover, since:

lim
t→∞

si

si + ρt
∑︁

j∈N(i) wij
ϵit = 0,

we can conclude that that yt converges not only in expectation but in value so that:

lim
t→∞

⃓⃓⃓⃓
yit −

∑︁
i s

ixi
0∑︁

i s
i

⃓⃓⃓⃓
= 0.

We illustrate this behavior using a 100 vertex randomly generated scale free graph shown in Fig. 1. We assume that
ρt = t. The initial condition x0 was chosen at random with values in [0, 1]. The vector s was chosen at random with
values in [0.5, 1]. A Mathematica notebook to perform this experiment is provided in the SI. The resulting behavior
is shown in Fig. 2. In this figure, we provide only the maximum and minimum public state values at any time. This
simplifies the presentation and shows how the state converges over time without presenting 100 trajectories. We

contrast this with the non-convergence when ρt = 2
√
t, which grows too quickly to ensure convergence. We use the

same initial condition and randomly chosen vector s. This is illustrated in Fig. 3. Notice that failure to converge is
accompanied by system oscillation, which is illustrated by showing that the state in vertex 1 oscillates between the
maximum and minimum values of all states.

III. RECOVERY OF THE HIDDEN STATES

We analyze the problem of inferring the hidden information in x0 from a sequence of outputs. For simplicity, we
restrict our attention to the graph K2 with w12 = w21 = 1 and s1 = s2 = 1. We then show empirically that the
theoretical results obtained for this graph hold on larger graphs. The theoretical analysis on the graph with only two
vertices is (in some sense) a worse case scenario since it presents the simplest conditions under which to estimate the
hidden state.

Let (x1
0, x

2
0) be the hidden state of the two players and let (y1t , y

2
t ) the current shared state. From Eq. (3), the

time-varying state values can be obtained in closed form as

y1t+1 =
x1
0 + y2ρt+1

1 + ρt+1
+

ϵ1t
1 + ρt+1

, (7)

y2t+1 =
x2
0 + y1ρt+1

1 + ρt+1
+

ϵ2t
1 + ρt+1

. (8)
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FIG. 1: The scale free graph used to illustrate the convergence of the dynamics with noise.

FIG. 2: (Left) The initial time convergence of the system showing the maximum and minimum state values. (Right)
Large-time convergence of the system showing maximum and minimum state values.

FIG. 3: When ρt increases too quickly, in this case exponentially fast, convergence is not guaranteed and the system
begins to oscillate.
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For simplicity, assume ϵit ∼ N(0, 1) (i.e., follows a standard normal distribution) and ρt = t, which ensures conver-
gence [56]. Assume a stopping time T . If T is even, then

y1T =
T
2 + 1

T + 1
x1
0 +

T
2

T + 1
x2
0 + wT , (9)

y2T =
T
2

T + 1
x1
0 +

T
2 + 1

T + 1
x2
0 + vT . (10)

If T is odd, then:

y1T =
x1
0 + x2

0

2
+ wT , (11)

y2T =
x1
0 + x2

0

2
+ vT . (12)

Here wT and vT are accumulated error at T . Under our normality assumptions, when T is even:

wT , vT ∼ N

(︄
0,

√︄
T

2(T + 1)2

)︄
. (13)

When T is odd:

wT ∼ N

(︄
0,

√︄
⌈T/2⌉

(T + 1)2

)︄
wT ∼ N

(︄
0,

√︄
⌊T/2⌋

(T + 1)2

)︄
. (14)

As T → ∞, wT , vT → 0 as expected zero while:

y1T , y
2
T → x1

0 + x2
0

2
,

for T even or odd.
We now treat this as a linear regression problem with design matrix Q composed of the coefficients identified for

the unknown x1
0 and x2

0. That is we construct a vector y of output values with y = (y11 , y
2
1 , . . . , y

1
T , y

2
T ) and a the

design matrix Q with rows given by the appropriate coefficients in Eqs. (9) to (12). The resulting linear regression is:

y =
[︁
x1
0 x2

0

]︁
Q+ ϵ.

We note that the error terms in ϵ are heteroskedastic by Eqs. (13) and (14). However, we can use a homoskedastic
assumption to construct a best case error model for the estimate of x0 = (x1

0, x
2
0). In the homoskedastic case we know

that the distribution on the hidden state x0 is given by:

x̂0 ∼ N(x0,Σ),

where:

Σ = σ̂
(︁
QQ⊤)︁−1

. (15)

Here Q⊤ is the matrix transpose of the design matrix Q. The term σ̂ is always a non-zero because we assume
ϵit ∼ N(0, 1) (i = 1, 2). This would be true for any choice ϵit ∼ N(0, σ0), with σ0 > 0. It now suffices to show we can

compute
(︁
QQ⊤)︁−1

. Under our assumption on ρt and using Eqs. (9) to (12) at time T we compute:

QQ⊤ =

[︄
T
2 +

∑︁T
t=1

2
(2+4t)2

T
2 −

∑︁T
t=1

2
(2+4t)2

T
2 −

∑︁T
t=1

2
(2+4t)2

T
2 +

∑︁T
t=1

2
(2+4t)2

]︄
.

We can compute the asymptotic result

∞∑︂
t=1

2

(2 + 4t)2
=

π2 − 8

16
.
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Thus as T → ∞ we have:

Σ =
(︁
QQ⊤)︁−1

∞ =

[︃ 4
π2−8

4
8−π2

4
8−π2

4
π2−8

]︃
. (16)

This non-zero covariance matrix combined with the fact that σ̂ > 0 ensures that the distribution on x0 does not
collapse to a point mass. Thus the initial data cannot be perfectly recovered. Moreover, the fact that Σ ̸= 0 is true
even if we choose samples starting a time t > 0. Moreover, as the design matrix rows converge to the common value
⟨ 12 ,

1
2 ⟩, (see Eqs. (9) to (12)), numerical instability will make estimation of x0 more difficult.

IV. EMPIRICAL RESULTS

In the analysis of the dynamical system on K2 we noted that asymptotic result for Σ in Eq. (16) was developed using
a homoskedastic assumption. We tested the fitting process on data generated from K2 assuming that ϵit ∼ N(0, 1)
(i = 1, 2). We used 100 time steps and 100 replications. Fig. 4 shows the 100 estimates for (x1

0, x
2
0) along with a

density plot of a normal distribution with mean µ = ⟨1, 2⟩ (which was the initial condition used in the experiment)
and Σ constructed from Eq. (16). We note that the Σ matrix is singular, which explains why the data are co-linear.

FIG. 4: A density plot of the asymptotic covariance matrix and the observed estimates for the two dimensional
hidden state after 100 time steps.

We ran a similar experiment using a 100 vertex random graph generated according to a Barabási-Albert distribution
[64]. For each estimate x̂0 of the hidden state, we constructed a residual vector ri = x̂0i − x0i , (here i = 1, . . . , 100
replications). Smoothed histograms of all residual vectors (one for each vertex) are shown in Fig. 5(left). A histogram
of the mean residual vector ⟨r⟩ along with a normal distribution fit of the mean residual vector is shown in Fig. 5(right).

Let σ2
0 be the variance of the noise. That is ϵit ∼ N(0, σ0). We tested the impact of both graph size and σ2

0 on the
variance of the residual distribution, which we denote σ2. This distribution is illustrated in Fig. 5 (right). Graphs
were generated with vertex size ranging from 20 to 90 by tens using a Barabási-Albert (BA) distribution [64] with 2
edges added in each round (rather than the usual one edge per round). The vertex range was chosen for expedience
because the time to generate the fitting problem (the generalization of Eqs. (9) to (12)) is a function of graph size.
We chose σ0 from the range [5.5, 10] with a sample interval of 0.5. For each pair (|V |, σ0) we ran 20 replications with
different starting condition and measured the mean residual variance ⟨σ2⟩. A second class of experiments is discussed
in Appendix A on graphs generated using the standard BA distribution with 1 edge added per round.

When fitting the linear model

⟨σ2⟩ ∼ β0 + β1|V |+ β2σ
2
0 + ϵ,
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FIG. 5: (Left) Distributions of residuals of estimate of the hidden state from 100 agents. (Right) Mean residual
distribution with normal distribution fit.

we obtain the parameter table:

Estimate Standard Error t-Statistic p-Value

1 −0.80 0.15 −5.50 4.84× 10−7

|V | 0 0 −0.41 0.68

σ2
0 0.22 0.02 12.9 6.71× 10−21.

This suggests that the size of the graph has no impact on the residual variance, as expected. However, the mean
residual variance ⟨σ2⟩ grows linearly with noise variance σ2

0 as shown in Fig. 6. This is expected from Eq. (15). We

FIG. 6: (Left) Box-whiskers plot of the residual variances (distribution of σ2) over 20 replications for varying noise
σ2
0 shows a linear relationship between σ̂2 and σ2

0 as expected. (Right) Box-whiskers plot of the residual variances
for varying graph sizes shows no effect from graph size.

also show the effect on mean residual distribution shape as a function of graph size |V | and noise variance σ2
0 in Fig. 7.

Notice the structures of the distributions are largely similar to each other (unimodal and tending toward normality)
with some small-sample effects on the distributions when |V | = 20. This is predicted in our theoretical analysis.

Finally, we illustrate that the rate of convergence is affected (slightly) by σ2
0 as expected from Eq. (3). This is

shown in Fig. 8, where we see dynamics generated by larger σ2
0 converge more slowly. This figure was made using a

graph with 100 vertices and generated using the Barabási-Albert distribution [64] with 2 edges added in each round.
Code for regenerating all results in this section is available in the SI.

These experiments suggest that the hidden state cannot be estimated using data from a single output of the
dynamical system but that time series would need to be repeatedly sampled from this system. From a privacy
perspective, this implies that if this is used as a consensus mechanism, the hidden state of the agents will be protected
statistically. From a scientific perspective, this implies that as users in a social network converge to expressing a
common ethos (e.g., on a polarizing topic like climate change or abortion rights) it may be impossible to infer hidden
(true) positions among the users.
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FIG. 7: (Left) Mean residual distributions for varying σ2
0 when |V | = 20. (Middle) Mean residual distributions for

varying σ2
0 when |V | = 50. (Right) Mean residual distributions for varying σ2

0 when |V | = 80.

FIG. 8: Convergence of the system under differing levels of input noise. Larger input noise slows the convergence.
As before, only the maximum and minimum state values are shown.

V. CONCLUSIONS AND FUTURE WORK

In this paper we showed how time-varying peer-pressure can be used to produce consensus in an information
exchange system with hidden true states. The consensus value is a weighted average of those hidden states. We also
showed that even when the system outputs can be observed and the underlying model is known, the initial state
cannot be exactly recovered. This was formally proved in the two agent case and empirically illustrated in a more
complex graph. We also showed how the variance of the noise affected the variance of the estimated hidden states,
showing it was consistent with the theoretical ansatz.

In future work it would be interesting to consider a two time-scale dynamic in which the internal (hidden) state
is allowed to update at a slower rate as a result of consensus on the public state. Studying cases where the network
structure evolve would also be of interest, since the connectivity of the network is a necessary condition for convergence
of the system to the consensus value. Additionally, the discrete time dynamic could be replaced with a continuous
stochastic differential equation (SDE):

dy = [S+ ρ(t)D]
−1

[S (x0 − y)− ρ(t)Ly] dt+ [S+ ρ(t)D]
−1

dξ,

where ξ is a vector Wiener process and L = D−A is the matrix Laplacian. This SDE is linear and has a well-defined
Fokker-Plank equation that could have interesting properties.
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Appendix A: Results on Additional Graphs

We ran additional experiments using graphs generated with the Barabási-Albert distribution [64] with 1 edge added
in each round. Results in this appendix can be compared to those in Section IV. The experimental design with this
collection of graphs was identical to the experimental design used in Section IV except in the density of the graphs
investigated. These graphs were half as dense as those studied in Section IV.

We fitted the same linear model

⟨σ2⟩ ∼ β0 + β1|V |+ β2σ
2
0 + ϵ, (A1)

with the new data to obtain the parameter table

Estimate Standard Error t-Statistic p-Value

1 −0.92 0.19 −4.77 8.56× 10−6

|V | 0.00 0.00 0.37 0.71

σ2
0 0.24 0.02 10.95 2.31× 10−17.

We can compare this table to the parameter table in Section IV by computing the confidence intervals (CI) on each
parameter in the two types of experiment. This is shown in Table I.

Est. CI

1 −0.8 (−1.1,−0.51)

|V | 0.00 (−0.003, 0.0017)

σ2
0 0.22 (0.19, 0.25)

Est. CI

1 −0.91 (−1.30,−0.53)

V 0.000 (−0.002, 0.003)

σ2
0 0.24 (0.2, 0.29)

Parameter CI’s BA2 Data Parameter CI BA1 Data

TABLE I: (Left) Parameter confidence intervals for fit of Eq. (A1) on graphs generated with Barabási-Albert
distribution with 2 edges added per round (BA2). (Right) Parameter confidence intervals for fit of Eq. (A1) on

graphs generated with Barabási-Albert distribution with 1 edge added per round (BA1).

Table I shows that the parameters in the two graph classes are statistically identical. The data again suggests that
the size of the graph has no impact on the residual variance. Again, the mean residual variance ⟨σ2⟩ grows linearly
with noise variance σ2

0 as shown in Fig. 9. This is expected from Eq. (15). We also show the effect on mean residual

FIG. 9: (Left) Box-whiskers plot of the residual variances (distribution of σ2) over 20 replications for varying noise
σ2
0 shows a linear relationship between σ̂2 and σ2

0 as expected. (Right) Box-whiskers plot of the residual variances
for varying graph sizes shows no effect from graph size.

distribution shape as a function of graph size |V | and noise variance σ2
0 in Fig. 10 for this set of experiments. Notice

the structures of the distributions are largely similar to each other (unimodal and tending toward normality) with
some small-sample effects on the distributions when |V | = 20. More importantly, they have the same structure as
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FIG. 10: (Left) Mean residual distributions for varying σ2
0 when |V | = 20. (Middle) Mean residual distributions for

varying σ2
0 when |V | = 50. (Right) Mean residual distributions for varying σ2

0 when |V | = 80.

those presented in Fig. 10, suggesting that edge density plays a minor roll in the residual error distribution at this
scale.
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