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Abstract

In this paper we use the notion of field-of-values (FOV) equivalence of matrices
to study a class of block-triangular preconditioners for the fixed-point lineariza-
tion of the Rayleigh-Bénard convection problem discretized with inf-sup stable
finite element spaces. First, sufficient conditions on the nondimensional param-
eters of the problem are determined in order to establish the FOV-equivalence
between the system matrix and the preconditioners. Four upper triangular block
preconditioners belonging to the general proposed class are then considered.
Numerical experiments show that the Generalized Minimal Residual (GMRES)
convergence is robust with respect to the mesh size for these preconditioned
systems. We also compare the performance of the different preconditioners in
terms of computational time.

Keywords: Rayleigh-Bénard convection, block preconditioning,
incompressible flows, FOV-equivalence

1. Introduction

In this paper we analyze block preconditioners for the numerical solution of
the Rayleigh-Bénard convection problem. Our analysis is driven by the notion of
Field-Of-Values(FOV)-equivalence of matrices [15, 5, 23, 19, 2, 1]. For the sake
of completeness, we first present the problem in its dimensional form and we
obtain a nondimensional version (clearly, other nondimensionalizations are also
possible). Under the Oberbeck-Boussinesq approximation, the Rayleigh-Bénard
convection equations read

p(u-V)u — pAu+ Vp = pp(T — Ty)g + f,
~V-u=0, (1)
pep(u - V)T — kAT = g,
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posed on some subset Q C R? for d = 2,3. Here, g is the gravity vector, p, u,
B, cp, k denote fluid density, dynamic viscosity, thermal expansion coefficient,
specific heat at constant pressure, and thermal conductivity, respectively. Also,
Ty is a reference temperature. The unknowns are the velocity u, the temperature
T and the piezometric head p = p—pg-x, where p is the thermodynamic pressure
and x is the position. The terms f and g are nonhomogeneous terms that can
be physically interpreted as momentum and energy sources or that can take
into account nonhomogeneous boundary conditions. We refer to a typical set of
boundary conditions for heated enclosed flow problems given by

T=Tp onT'p, VI -n=0onTy, u=0onTl, (2)

where I' = I'p UT'y and I'p has positive measure. A nondimensional form is
obtained as follows. Denote with L, a reference value for length. Then, we
choose reference values for velocity and piezometric head as

U, = a y pr:prv

where © is a reference temperature difference. We also define the Rayleigh and

Prandtl numbers ) —

_rolglfeL” o, p

= r=-—.
uk pk
If the momentum and energy balances are scaled with respect to the correspond-
ing reference diffusion terms, the equations in nondimensional form which will
be considered from now on read (with abuse of notation, we drop the tilde sign
for the nondimensional quantities)

Ra

Ra
(u~V)u—Au—&-Vp:P—igT—i—f7

~V-u=0, (3)
1

Here, the vector g = g/||g|| is the unit vector along the gravity direction. Among
the applications of Rayleigh-Bénard convection, we recall boiling water nuclear
reactors (BWR), multiphase flows and atmospheric flows [24, 22, 21]. For more
details, see [16, 18, 10, 14].

After linearizing the system and discretizing it using a finite element approx-
imation, we obtain a system matrix of the type

F BT M
J=|B 0 o0]. (4)
0 0 K



As n — oo, the system of J € R™ ™ becomes a large and sparse matrix, so
a preconditioner needs to be applied to the linearized system. Moreover, one
wishes to design a preconditioner that has a number of iterations independent
of the matrix size n. To this end, in this work we intend to construct such
preconditioners for the Rayleigh-Bénard convection problem, and we do so by
starting from a result from [20] according to which the speed of convergence of
GMRES is independent of the mesh size if the preconditioner is FOV-equivalent
to the system matrix J. The results in [20] concern a block system arising from
discretizations of the Navier-Stokes equations. Here, we intend to extend their
analysis to the case of the Rayleigh-Bénard problem.

The FOV analysis has been addressed in various works as a tool for the
convergence study of preconditioned Krylov subspace methods. In [23] bounds
on the rate of convergence for such methods are presented, based on the smallest
real part of the field-of-values of the coefficient matrix and its inverse. Here,
finite element discretizations of nonsymmetric elliptic BVPs are considered and
convergence bounds are given as a function of the mesh size for preconditioners
of hierarchical basis or multilevel type. Block triangular preconditioners for the
GMRES method applied to nonsymmetric saddle point problems are analyzed
in [19]. Here, a result on the rate of convergence for GMRES is provided in
terms of certain quantities that depend on the choice of an appropriate matrix
norm. Previous versions of such convergence results were obtained by [9] and [6].
In [2] field-of-values estimates are provided for the analysis of preconditioners of
augmented Lagrangian type for the Oseen equations. Indefinite preconditioners
for the coupled Stokes-Darcy system are studied using field-of-values analysis in
[4].

The paper is organized as follows. In Section 2 we provide some preliminary
definitions and results needed for the subsequent analysis. Block preconditioners
for the Picard linearization of the Rayleigh-Bénard convection problem are de-
scribed in Section 6. and their norm- and FOV-equivalence to the linearization
matrix are proved in Section 6.3. Numerical results showing mesh-independent
convergence are reported in Section 7.

2. Finite element approximation of the fixed-point linearized Rayleigh-
Bénard problem

Let Q be a subset of R¢ with Lipschitz-continuous boundary I'. We denote
as L%() the space of square integrable functions with respect to the Lebesgue
measure in R? and we define H'(Q) = {v € L?(Q) : Vv € L?(Q)}. Boldface
notations L?(Q) and H' () are used for vector-valued functions. The notations
(-,+) and || - || denote the standard inner product and induced norm either in
L?(Q) or L*(Q2) depending on the context. The space of zero-mean L? functions
is

L3(Q) = {p e L3(9) - / pdz = 0} (5)



and, given any subset I'; C T', we denote the space H}\ () as

Hp (Q) = {u € H'(Q) [ yr,u =0}, (6)

where r, is the trace operator on I';. When I's = T', we write Hg (Q) = HE(Q).
Some properties that are used in the following analysis are reported here.
We have the antisymmetry properties [13]

(a-V)u,u) =0 VYaec H'(Q),V-a=0weakly,a -nlr =0, Yuec H (Q),

(7)

(a-V)T, T) =0 VYac H(Q),V-a=0weakly,a|lr =0, VI c HY(Q).
(8)

Coercivity properties also hold. If I'y C 0f) has nonzero measure, then there
exists Cp, > 0 such that

lullze < CpllVullz Yu € Hy (), ©)
T2 < GplIVT 2 VT € Hp ().

For the divergence operator, we may use Holder’s inequality to get
IV - ullz2 < V3|Vl g2 - (10)
A weak form of the Rayleigh-Bénard problem for the unknowns (u,p,T) €
H{(Q) x LE(Q) x HE (Q) reads
Ra 1
(Vu, Vo) + ((u - V)u,v) — (p, V- v) — ﬁ(gT,'u) —(f,v)=0 Yve HyQ),
(¢,V-u)=0 VYqgeL3(Q),

A (VT,97) 4+ (- V)T, 1)~ (g,7) =0 V€ Hb, (9).

Let us consider conforming finite element approximations on a quasi-uniform
triangulation of 2 for the variables u, p, T, respectively:

®, C H)(Q), U,CL}Q), ©,cCH. (9. (11)
The spaces ®;, and ¥}, are required to satisfy the inf-sup condition

(p,V-u)
inf sup
PEVL veD), HV'UHHPH

> 8. (12)

A classical choice that satisfies (12) is given by the Taylor-Hood pair of
continuous piecewise-biquadratic (or triquadratic) polynomials for @, and con-
tinuous piecewise-linear polynomials for ¥y, i.e.

@, =N HQ), with ®,={pcC’O0}) : é|lx € Qa(r) VreE O},
U, =0, NLAQ), with Uy, = {y €C%(Oy) : ¢|x € Pi(k) YVreO,}.



Also, we choose ©;, = &, N H%D (©2). For compactness, we denote V7 :=
(}h X \I/h X @h-

Thanks to the Poincaré inequalities (9), we may define an inner product
(-,)a on V', x Vi, with induced norm || - ||, on V', as

1
((wn,pnsTh), (Vh, qhsTh))a = (Vup, Vop) + E(VTh; Vry) + (pryan),  (13)

||(uhaph7Th)||a = \/((uhapthh); (uhvph’Th))a (14)

Let ay, € ®,, V- ap = 0 weakly, be the velocity at the previous iteration in
the Picard method. If we define a bilinear form on V', x V}, given by

a((wn, pn, Th), (Vn, qn,mn)) = (Vup, Vo) + ((an - V)up,vy) — (pn, V - vp)
Ra

N 1
— Fr(gTh, ’Uh) + (Qh, V- Uh) + FT(VTh, V’I"h) + ((ah . V)Th, Th) , (15)

then the finite element problem consists in finding (wp, pr, Th) € Vi such that
a((wn, pns Th), (Vns qns i) = (F,vn) +(9,70)  V(Vh,qn,rn) € Vi (16)

2.1. Sup-sup and inf-sup properties

The following lemma identifies a sufficient condition involving Ra and Pr
for the bilinear form a(-,-) to satisfy certain sup-sup and inf-sup properties. In
turn, these properties are sufficient conditions for a convergence result on the
preconditioned GMRES algorithm that will be considered later.

Lemma 1. Let the product space V', be such that (11) and (12) hold. Then,
there exists a positive constant Co independent of the mesh size such that

T
sup sup a((wn,pry Th), (Vn, qr, 1)) <C,. (1)

(wnons )V nanrm)eVa 1(@hs Pry Tr)llall (Vns qrs i) lla —

Moreover, if Pr and Ra satisfy

Ra
v Pr

where Cy, is the constant in Poincaré’s inequalities (9), there exists a positive
constant Cy independent of the mesh size such that

<2C” (18)

inf sup a((Uh,ph, Th)7 (Ufu dh, Th)) > Cl ) (19)

(n:2nTEVE (wp,qn.rm) eV | (@ Phs Th)llall (Vns any Th)lla —

Proof. We begin with condition (17). Using the Poincaré inequalities, the con-
tinuity of the divergence operator (10), the Cauchy-Schwarz inequality in R?



and R3, and Young’s inequality, we have

a((wh,pn, Th), (Vn, qn, 1))
< |IVupl[[Vorll + [lan || e [Vur[[[[Von | + pallllV - vl

+ lgnllllV - unl + %HTh”H"’h” + %HVThHHVTh” + llanllL[[VTh|[lIrall

< [Vunll[Vonll + lan o= [ Vun | Vol + V3]pall[IVonl + V3llan [ Ve
+ T CIVTMITonl + S IV TNl + Cyllanllo IV TV

< (14 llan =) Vun [ Vou| + V3[lpall [ Von]|

+ V3|l gn | V]| + %C,%IIVThIIIIVthI + (Pir + Cpllan]| L) IVTh [ Vral]
< (1 + [lan =) V| [ Vonl + V3lpall [ Vo

Ra 1
+ V3|l | V| + EC;%HVThH”VUhH + (ﬁ + Cpllan|| L) IV V7|

Ra
< 9] ((1-+ a9l + VBl + (V| + FeCIVEL ) (9o

1
+ (5 + Collanlm) 9Tl ) 1]

Ra 2 1 2
< \/ 9l + (VBlonl + e CRIVT )+ (5 + Collanlom) V1)

2
\/ (4 a1Vl + Vallanll )+ [F0nl2 + [ V741

Ra 1
< \/lv’uhll2 +2 <3||ph||2 + (MCE)QIIVTMIQ) + (5, + Cpllan] =)V,

V2((1+ lanllL=)2[Voul? + 3llanll?) + [Vorl? + [ Vra]?
Ra 1

< 2 29 2)2(|VT, ||12

< 19wl + 12 + 2222w + (o

V2(1+ [lan ][ =) [Vonl? + 6llgn]* + [[Von]? + [ Vra]?

+ CpllanllLe)?[[VTh|*

Ra 1
< \/ 92 + 6l 2+ (2EECDR + (o + Colanll=? ) IV

VA + flanlz=)? +1) [Voul? + 6llgn]> + [ Vra|?

where the last two factors are equivalent to the norm || - ||4.
Inf-sup condition. We move along the lines of [12]. Let (up, pp, Tr) € ®p, ¥
Uy, x Op,. We first need to construct some (vp, qn,7p) such that

a((wn, prs Tn), (Vh, qns 1)) = Bl (Wn, g ) |1 - (20)

We construct (vp, qn, 1) by first looking at a((wp, pr, Th), (wn, pr, Th)). Us-



ing the skew symmetry properties (7) and Young’s inequality, we have

Ra . 1
a((wn,pn, Th), (wn, P, Th)) = (Vup, Vuy) — ﬁ(gThauh) + Fr(vTh7VTh)

Ra

1 .
> [[Vunl® + 5o IVTWI® = 5 (9T, wn)

Ra 1 1 Ral 1
> 2(1- == T = - =———1.
2 Vel ( Prcge>+|v bl (Pr Prcg4e)

Choose € > 0 such that
Ra 1 1 Ra 1 1
2=1-———== Vi=—— ——— . 21
( PTCZ%E)>O7 <Pr PTCZQ,ZLE) >0 (1)

This is possible due to the hypothesis (18). Next, due to the inf-sup condition
(12), there exists a function zj such that

(ph7 A Zh) (22)
IV znlllpnll —
This function can be chosen without loss of generality such that ||Vz,| = ||px]|-

Then,
a((wn, pr, Th), (—2r,0,0)) =
— (Vup,Vzp) — ((ap - V)up, zp) + (pn, V - zp) + ﬁ—i(gTh, zp)
= (pn, V- zp) + %(QTM zn) — (Vun, Vz) + ((an - V)zp, up) .

Define the quantity
Ra

T = —Fr(gTh, zh) + (Vuh, VZh) — ((ah . V)zh,uh) .
Then
Ra
T < [Vuplllpnll + Cpllan |l L[ Vun||lpn | + ﬁHTh””Zh“
Ra
< [IVunllllpnll + Cpllan | = [Vunllipnll + 5 -Coll Tu[[V 2zl
Ra
< [IVunlllipnll + Cpllan | [Vunllipnll + 5 Col Thlllpn
Ra
= [ IVunll(X + Cyllanllz=) + Cp 5 lITnll ) llpall
5 Ra
< (IVunll + Cyllanllz=) + Co oIVl ) llpnll -
If we set

Ra
Ca — max {1 + Cpllah|L°°’C,§Pr}



we obtain
T < G ([Vur| + VTR ol

so that

a((wn, pn, Th), (=21,0,0)) = (pn, V- 21) = T = Bllpall* = Ca (V]| + [VT3) [[pall -
Define G = ||Vuy|| + [[VTL|, B = ||lpn]|- Then Young’s inequality gives

GGB

1¢2G?
73 .

1
VB < §BB2+§ 3

Hence,

1 G
a((wn; pn, Th), (=2r,0,0)) = 5 Bllpal* - 3 (IVanl® + VT3 ]1?) -
Now, we can construct

(Vh, qns7h) = (Wh, Dhy Th) + pa(—21,0,0)

with p, to be determined. Clearly,

a((wn, pry Th), (Vhs Gny 7))
R Y T
> (min{Z, ¥} — po22) (|[Vur|® + [VTH)?) + pa > aallpnll

B 2
> . . - \I/ g lﬁ 2 T 2 2
> min g min{Z, W} = puspay = ¢ (19l + [ VT + oullpnl)

. e : 1p
— min {mln{:, U} — paga ,pa2o} ||(Uh7ph,Th)||§a
. . G 1
> min {mm{:, U} — paﬁa ,pa§; CPTH(Uh,ph,Th)Hi

where Cp, is a constant that depends on Pr, and for o, > 0 we defined the
norm

| (wh, pis To)llow = v/ (Vun, Vur) + (VTh, VTh) + 00 (ph, on) -

which is equivalent to || - ||,. We may choose the constants p, > 0 and o, > 0
such that
0q = 2Bpq
2
pag‘l < min{E, U}.

Moreover,

1(=21,0,0)12 = [V2all* = llpnll* < [I(wn, pr, Th) 13



Therefore, using the arithmetic-geometric mean inequality,

1(ons ans i)z < 2 ([ (wns pas Ti) Iz + P21 (=2, 0,0)]17)
< 201+ o) (s pr, T |12

Hence
sup a’((uhaphaTh)v(vthha'rh)) > a((uhvpthh)a(vhaqhvrh)) > C.
@nanmn) (@0 Phs Ti)llall (@ns anri)lla ™ || (why prs Th) ol (WA @hy 7h) o
Taking the infimum over (wp, pp, T) completes the proof. O

3. Matrix description of the FE problem

If we denote

&), =span{¢,};2,, W, =span{i;};2,, O =span{b;};2,,

we define the matrices

(F)ij = (Vé;,Ve,) + ((an - V)@, ¢;) . (B)ij = (V- ¢;,¢i),  (23)
Ra

(Mi)ij = =5 (905, 8:),  Kij = %(V%V@i) + ((an-V)0;,0;).  (24)

Notice that F' and K are not symmetric. We also define the vectors ,Af and g as

(FHi=(f:00), (9)i=(9,0:). (25)

Then, the Picard-linearized finite element Rayleigh-Bénard problem (16) is
equivalent to the matrix problem of finding [uT,pT, TT]T € R™T72+"s guch that

F BT M] [u f
B 0 0] |p|=]|0 (26)
0 0 KI||T g

We denote the matrix in (26) as J. In view of the following definition of pre-
conditioners for the system (26), we denote the Schur complement of F' with
respect to the Navier-Stokes block as S = —BF ! BT, and we set

(Ap)ij = (V3 Vi), (Fp)ij = ((an - V)5, Vb)) + (Vb Vb)) . (27)

The blocks A, and F), are the Laplace operator and the convection-diffusion
operator in the space for p. With the symmetric positive-definite matrices

F+ FT K+ KT

(Aw)ij = (V;,V,) = 7 (Mp)ij = (5, i), (Ar)ij = (VO;,V0;) = 5




we may define the matrix H € R™"*" as

H 0 0 A, 0 0
H=|0 Hy, 0|=|0 M, 0], (28)
0 0 Hs 0 0 Ar

as well as the weighted scalar product and norm
<u,v >p=v"Hu,||ul|; =V/<u,u>pg. (29)

We remind that the square root matrices Hil/ % are well-defined since H; are
symmetric positive-definite. Notice that, if (wp,pp,Tr) and (vp,gp, ) have
column vectors of finite element degrees of freedom denoted by [uT,pT,TT|T
and [vT,¢T,rT]T respectively, then by definition

[(wn, phs Th)lla = [I[w”, p", TT] || &, (30)
a((uhvpha Th)7 (Uh7(Jh, Th)) = [UT7 qTa TT]J[UT7pTaTT]T . (31)

We also provide a definition of matrix norm. Given two symmetric and
positive-definite matrices H, € R"*™ and Hj, € R™*™, we define for any @ €
R™*™ the matrix norm

1Qul 4,

werm\ {0} [lwlly

||Q||Hme = (32)

When m = n and H, = H, = H, we denote ||Q|7 5 = ||Q|lz- No confusion
should arise from the context with respect to the similar notation of the vector
norm (29). We recall some results about this matrix norm from [20] that are
used several times in this work.

Lemma 2. Let Hi, Hy and Hs be symmetric positive definite matrices. Given
R e R™*"2 Q) € R"2*"3  the following hold:

IBQN by, 11, < QU gy 1 1B b1y 1, 5 (33)

|2 Qu | = 1@, e = NQHT s i = 15 @l i, - (3

Lemma 3. Let QQ € R™*™ have full rank and let H, € R"*" and H, € R™*™
be two symmetric and positive definite matrices. Then

wTQu
Q _1 = max max ———————, 35
I ”Habe verRm\{0} wer™\ {0} [[v]| 5 [lw] 5, (35)
Q|| T

min — " = min max win (36)

vker(Q) HvHHa véker(Q) weR™\{0} ||v||Ha ||w\|Hb

If n =m,
_1y—1 . wTQu

Q1 - = min max ———————. 37
H HHI) "Ha T yeRn\ {0} weR™\{0} ol 5, lwll g, (37)

10



4. A GMRES convergence result using FOV-equivalence

Here, we discuss certain notions of equivalence between matrices as intro-
duced in [20]. These definitions lead to a fundamental sufficient condition for
GMRES convergence. We begin with the concept of H-norm equivalence.

Definition 1 (H-norm equivalence). Nonsingular matrices R,Q € R™ "™ are
said to be H-norm equivalent if there exist constants ~v,I" > 0 independent of n
such that for all x € R™\{0}

Rx
Bl
Q|| 5

We write

R~ Q.
We now prove the following result.

Lemma 4. R ~g Q if and only if HRQ‘ <T and ||QR_ <~7L

e i

Proof. Let R ~g @, then by Definition 1, we have v < Hgi””
H
R —1
then % < I". Using equation (32), inequality HRQ*HH < T follows.
H
|QR”'=||

Similarly, we have 19%la < v=1 et v = Ra, then llor” =], < ~~L Using

Rzl [l o
equation (32) again, inequality HQR_lH g < ~v~! follows. The reverse of the
proof is straightforward. O

<T. Let v = Qux,

We now provide the definition of Field-of-values equivalence.

Definition 2 (FOV equivalence). Nonsingular matrices R,Q € R™*™ are said
to be FOV-equivalent if there exist constants v,I' > 0 independent of n such that
for all x € R™"\{0},

_ <z, RQ'z>p |RQ™
- <=zx>H |

We write

~g Q.

Notice that the FOV-equivalence definition is given for a certain SPD matrix
H and is a stronger statement than H-norm equivalence: if R ~py @, then
R ~p @. Also, while H-norm equivalence is an equivalence relation on the set
of nonsingular matrices, the term “FOV equivalence” is somewhat misleading
since this relation is not symmetric.

11



4.1. General convergence result for GMRES

Here we state the main convergence result that is used in this work, see
[20]. For the sake of clarity, we state it for the case of right preconditioning
which is addressed in this work, although a left preconditioning version also
holds. Notice that the theorem relies on a notion of FOV-equivalence between
the system matrix and its preconditioner.

Theorem 1 (Generalized Minimum Residual (GMRES)). If
R -1 Q, (38)

then the GMRES algorithm applied to R with right preconditioner ) converges
with respect to < -, - > -1 in a number of iterations independent of n. Moreover,

the residuals satisfy
k o\ k/2
r
Ml ()"
1701 g I
where v and I' are the constants in Definition 2.

5. Linear algebra results implied by FE results

Here we briefly state how the properties in the finite element spaces transfer
to the matrix blocks. We notice that some properties depend on the assumption
(18), while other results on single matrix blocks have general validity. From
the strong coercivity properties 9, we have the corresponding strong and weak
coercivity results for F' and K.

Theorem 2. There exists constants n,& > 0 such that
2 2
vTFv =l vTKv = vy, (39)

Hence, there exist constants C5 > 0, Cq > 0 such that

. wTFv
min max 00— > Cj,
weRm1\{0} veR™1\{0} [|w]| 7, [[0]| ,
(40)
. wTKv
min max ———— >(C}y.
weR3\{0} verR3\{0} [|w||z, [|v] 1,
Theorem 3. Condition (17) is equivalent to
T
max max _wlv <C. (41)
weR\{0} vek™\ {0} [|wl| [|v]
Moreover, if (18) holds, condition (19) is equivalent to
TJ
WIS 0, (42)

min max —————— >
wekm\{0} veR"\{0} [|w]| ; [[v]| 4

12



Proof. Tt is an immediate consequence of Theorem 1 with the given definitions
of the norms and of the bilinear forms, see (30). O

Using the notion of H-norm equivalence, we have the following results in-
volving the linearization matrix J in (26) and the matrix H defining the vector
norm (29).

Lemma 5. Let H as in (28) and let (18) hold. Then

H~pgaJ, H'~pg gt (43)
In particular,
|y = 7y < O, (14)
[T H ||y = ([T < G5 (45)
Moreover, if P € R"*™ satisfies P ~y—1 H, then
P~y d, P lepgt (46)

Proof. Since (41) and (42) hold with the given assumptions due to Theorem
(3), the proof of (44) and (45) is the same as in Lemma 2.7 in [20]. Then, (46)
is a result of the transitivity of norm equivalence and (43). O

From the results on the global matrix .J, we may also determine the following
results which characterize its blocks.

Lemma 6. Let H as in (28). Then
1N i < Crs 1Bl szt < C BTl mor < s
||M1HH37H;1 < (h, ||K||H37H:;1 <Ci.

Proof. Condition (17) holds true and it implies (41) which in turn implies (44).
Equation (34) with H, = H, = H and Q = J yields

12 TH 2y = |H || < Cr,

from which it follows that the l5-norm of each block of

H71/2JH71/2
Iz ) 0 F BT M| [HY* 0 0
=l 0o H'* o B 0 0 0o H,"* o0
0 o H7'Y*|llo 0 K 0 0 Hy'?

'Hfl/zFH;1/2 Hf1/2BTH;1/2 H;1/2M1H§1/2
= |H,?BH? 0 0
0 0 Hy PR HY?

is bounded by C;. Finally the bounds for ||F||H1,Hf1’ ||BHH1,H2‘17 ||BT||H27H1_1,
||M||H37H;1 and ||K||H37H;1 follow using again equation (34).

13



Norm-equivalence properties for matrix blocks are here given.

Lemma 7. Let H as in (28) and let (18) hold. Then

Fooyo Hi, Folep HUY (47)
—S ~po Hyy o — S~y Hy Y (48)
K ~po1 Hy, K1~y Hy' (49)
Also
_1p-1
HF 1HH1_17H1 > Cs, (50)
_1p-1
HK 1HH;1,H3 > Cy. (51)
Furthermore, let F satisfy F ~u Hy, then S =_BF-1BT satisfies
—S vy Hyy =S oo, Hy ' (52)

Proof. Eq. (41) holds for our problem, and (18) implies (42). Conditions (41)-
(42), together with the weak coercivity conditions (40), allow us to fit within
Lemma 3.2 in [20], by which the norm equivalences (47), (48) and (49) follow.
The properties (50), (51) and (52) are also proven using Lemma 3.2 in [20]. O

FOV-equivalence properties between various matrix blocks are also needed.

Lemma 8. Let H as in (28) and let (18) hold. Then

Fry- Hy, H '~y F71, (53)
—8 ~yo1 Ha, Hy'~pg, —S71, (54)
K~y Hs, Hi''~py, K71, (55)

Furthermore, let F Nt Hy. Then S =_BF-1BT satisfies
—§ %Hz—l Hs, H;l ~H, _§—1' (56)
Proof. Again, Eq. (41) holds and (18) implies (42). Using conditions (41)-(42)

together with the strong coercivity conditions (39), we may apply Lemma 3.4
in [20] and prove the above properties. O

6. A class of upper triangular block preconditioners

We assume right preconditioning, so that the preconditioned system reads

JP 'z =f, Py==x. (57)

14



All the preconditioners we consider in this work fall within the structure

P(p)=|0 p'P 0|, (58)
0 0 Py
where P, Py, P3 and p # 0. Notice that the preconditioned system matrix
becomes
FP' p(I-FPYBTP;' (I-FP7Y)M Pyt
JP(p)~' = |BP[! pSP; -BP'MPyY |, (59)
0 0 KPp;t

where we define the approximate Schur complement block S as
S=—BP'BT. (60)

Sufficient conditions on the blocks of P will be determined so that the matrix
J in (4) is FOV-equivalent to P(p) with respect to H~! and Theorem 1 can be
used. First, we begin with norm equivalence results.

6.1. A norm-equivalence result
In this section, we establish the norm equivalence of the preconditioner to
the system matrix.

Theorem 4. Let (18) hold and let P(p) be as in (58). Assume
Py Hi, Pyryo Hy, Pyropos Hs, (61)
then for any p # 0 we have P(p) ~g—1 J and P(p)~! ~g J~1.

Proof. We only prove P(p) ~p-1 J, as the second equivalence follows similarly.
By Lemma 5, H ~y-1 J. Hence, by the transitivity of ~z-1 we only need to
show P(p) ~z-1 H. We want to show that

|P(0)H i <Tp and [HP(p) -1 < vp.

for some constants I'p and yp.
Since P; ~p-1 H;, then by Lemma 4

|2 'P|,, <Ti and ||P7'H;|,, <", fori=1,2,3. (62)
Since
H—1/2P(p)H—1/2
Iz ) 0 P BT M| [HY? 0 0
= o m o0 0 p'P 0 o  Hy? o0
0 o H;'?| o 0o P 0 0o Hy'?

—Hfl/Qlefl/Q Hfl/QBTH;UQ H;1/2M1H;1/2
= 0 p H, PPy HY? 0 ,
0 0 Hy ' PyHy 2
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the following inequalities are obtained using Lemma 6 and inequalities (62):

IPOH a1 = | 2Py /2

l2

< HH1—1/2P1H1—1/2

l +HH1_1/ZBTH2_1/2 l +HH1_1/2M1H3_1/2
2 2

l2
—&—HH;l/Zp_ngHgl/z l —&-“H;l/ngH;l/Q l
2 2
= ||H171Pl||H1 + HBTHHQ,Hl—l + HM1||H3,H1—1
[ H ™ oy, + | Hs Pl
§F1+Ol+01+|p71|F2+F3
:I‘1+|p_1|F2+F3+201
=Ip.
Similarly,
HI/QP(p)—lHl/Q
(1?0 o [Pt —pP'BTRY —P7'My Py [HY? 00 0
=l 0 HY o 0 pP; ! 0 0 HY* o0
0 o0 H”||o 0 Pyt 0 0 m?

(H?P'HY? —pH!?P7'BTP HY?  —HPP7 M Py HY?
= 0 pHY? Py HY? 0 :
0 0 HY?Py HY?

VHP() s = || 2P (o) 12

l2

R [

< || m o |E R Py

l2

e

o+ HHg/nglHé/z
2

l2
< |||y, + [lpPr BTR

+|pPy  Hal|y, + || P57 Hs
<+l ’|P{1’|H;1,H2 HBT”Hz,Hl‘1 "Pfl}’Hfl,Hl

1P 1 gy WMty s 1P 0, + o2 4057

T le_lMlPS_lHH;HHl

I,

<t e O s O+ e st

=p-
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6.2. FOV-equivalence results

We now address two theorems that identify different conditions that lead to
the FOV-equivalence between the linearization matrix J and the preconditioners
of type (58).

Theorem 5. Let (18) hold. Let P(p) be defined as in (58) with
P1=F, P3:K, S%Hglpg. (63)
There exists pg > 0 such that if p > py then
J -1 P(p)

Proof. Since (18) holds, we may use Lemma 7 and S = uyt P2 to get the norm
equivalences for any p # 0

-1
FNHfl Hl, P P2 NHz—l SNH;1 HQ, KNHgl Hg.

Using these in Theorem 4 leads to the equivalence P(p) ~p-1 J, which implies
HJP(p)’1||H_l < I'. Hence, by Definition 2 we only need to find a constant
v > 0 such that for all v € R™ \ {0},

wTH TP(p) v = 7 [[v]l - -

Let vT = [T, yT, 27]. Due to the hypothesis (63), (59) reduces to

I 0 0
JP(p)™' = |BF~' pSP;' —-BF 'MK™'|,
0 0 I
we need to show that
x] " H! 0 0 T
y| |Hy'BF~' pHy;'SPy' —Hy'BF'MK™'| |y
z 0 0 Hy' z
T o1 (64)
T H, 0 0 T
> |y 0 Hy' 0 ||y
z 0 0 H:,)_1 z

We start with lower bounds on the terms coming from the diagonal blocks in
(64). Since S Ry Py, there exists a constant §; > 0 such that

<z, SPy 'z >yt

< . 65
s <ZT, x> (65)
2

Using (65), we obtain

_ 2 - _ 2 - 2
xTH, e = ||w||H;1 , Py H, 1sz 'y > pB HyHH;l ; and  zTHj 2= ||z||H;1 :

17



Concerning the off-diagonal blocks, we first get upper bounds in appropriate
matrix norms. Lemma 6 and Lemma 7 give

1Hs BE s, < 17 o, 127 By,
= |‘F71HH1’1,H1 ||BHH1,H2_1

S 010517

then by using Eq. (35) and Young’s inequality

_ _ _ L2 '
yTH, 'BF lw‘ < 105 ' ||(L'HH;1 ||y||H;1 < 5 ||:E||H1—1 + 9 ||yHH—1 .
Lemma 6 and Lemma 7 also give

||lt[2_1BF71]\41K71HH;l,H2

<&~ M g 1 F 12 Bl 7, 1,

1HH*1 H 1HH’1 H
3 113 1 41
= HK_IHH:;I,H3 ||M1||H3,H1_1 HF_lHHfl,H1 HB”H1,H2_1
<oyt crtoy

=CiCy ey,
and again using Eq. (35) and Young’s inequality
lyTHy 'BF MK 2| < CRC5 O Iyl N2l

(c2o5'c)’

<
o 2

2 2
212+ Iyl -

N =

Hence, we have

vTH ' JP(p) '
> [llF - + pBu lylf + |2l13 2 — [yTHy 'BF'a| — |yTHy ' BF ' My K '
= H; H, H; 2 2 1

_1\2 —1,~—1 2
L, 2 (€1051) (ctes'ert) 2 L2
> 2 el + (m R Iyl + 5 s
1 2 2 2
> i(HwHHfl + ||y||H;1 + ||z||H;1) =7 ||'U||H*1 )

with v = 1/2, provided that

1+ (G105 ')+ (CiCs ' ert)?
26 '

p=po=

By a relaxation of the hypotheses in (63), we obtain the following result.
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Theorem 6. Let (18) hold. Let P(p) as in (58), chosen such that
F %Hfl Pl, K %Hgl Pg, S NHgl PQ. (67)
Then there exists pg > 0 such that if p > py and

1= PP | <

D=

then
J%I-I*1 P(p)a

Proof. Since we assume (67), there exist constants ay, as, f1, B2, (1 and (o
such that for all z € R"\{0}, y € R"2\{0} and z € R"3\{0},

<w,FP1_1m>H1_1

s —gosn PP < e
<y,§P{1y> B
o' | Gpet (69)
fr= <Yy >y ’HSPQ HH;SBQ’
<z,KP71z> 1
G < KRy <

<z,z> Hy!
On the other hand, the hypotheses and Lemma 7 imply

Py~yo F ooy Hi, (70)
Py~pyor K~ Hy. (71)

Using again Lemma 7 with (70) and the hypotheses we also have Py ~ Hyt

S~y Hy. Then Theorem 4 yields P(p) ~y-1 J. Hence ||JP(p)!|| < T for
some ' > 0. By Definition 2 we then only need to find a constant + such that
for all nonzero v € R,

(v, JP(p)"'v) -
<v,V >pg-1

We need to establish the lower bound

T [H{'FP! pH "I - FP Y)B™Py! H'(I - FPTYM Py Y| [«
y| |Hy'BP! pHy 'SPyt —H;'BP7M, Pyt y
z 0 0 Hy'KP;! z
)T [H' 0 0] [
>q |y 0 Hy' o0 ||y
z 0 0 Hy'l |z
= (@2 + lyliZ o + 213 ) - (72)
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Concerning the diagonal blocks of JP(p)~! in (72), we get, using (69),
@ H FP '@ > o ||}, py"Hy 'SPy y > pbi [yl
and
ZTHT K Py 2> G 2] -

For the off-diagonal terms, we first get upper bounds on the corresponding
blocks in appropriate matrix norms. By an intermediate result in the proof of
Theorem 3.8 in [20] we have

HP{IHH;%P& < ByCy 2070y

Then from Lemma 6 and (33) we get

| Hy (1 - FPfl)BTPQ_1||H2_1’H1
= ||P2_1||H;1,H2 HBT||H2,H;1 HHfl(I— FPr

< BoCy 20 C1Cy || T - FP—IHHl,l

1)||H;1,H1

1 _o _
< ;5202 2041 10127

where we used the hypothesis (68). Thus using the norm characterization (35)
we get

peTHi (I — FPT)BTP; y| < 5205707 ' CF [l g [yl o -
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Similarly using Lemma 6, Lemma 7 and Eq. (69) we find
| H (- FP;l)MlP;lHH;l,Hl
= [[H7 (I = FPOO)MUKT K Py
BP9 sy WV BT = PP

I l)HHfl,Hl

< QO I=FPY|

< GO Gy
— p ?
|Hy ' BPT

—1
7H1

1HH;l,H2
- ||H2_13F*1FP1_1||H1_1’H2
i
< @203 || Blly,
< axCy 0y,
]|HngPf1M1P§1]|H§17H2

= ||Hy'BF'FP{ MK K Py

<|[Fpr 1" Bl 4,

1||H;1,H; 1HH;l,H1

lHH_;l,HQ
< ||KP3—1||H3_1,H3_1 ||K71||H3_1,H3 ”jleHs,H*1 ||FP1—1HH1_1

1
1E= o, 1H3 Bl gy,
< GO0 Cy ! HB||H1,H;1
< GO CianCyt,

-1
7H1

and using again Eq. (35)

oyt
leTH (I — FP7Y)M Py 2| < @G G

”wHH;l ||ZHH;17
T H;  BP ] < asC3 gl lal

|yTHy ' BPT M Py 2| < GO CFanCs [yl g 12l -
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Therefore, we have
vTH 1 JP(p)~*
2 2 2
> aq leld + o8yl + Gullzl?

cone
p

— 520520 CF |y [l — el g 112

— a3 O ] g [Yll g — O3 CRasCy Nyl |12
= an |25 + pB1 [yl + G ll2l
~ (820507 CF 4 aaC ' O) [y [y gy
B C2C4_1C'1
P

Let a = BoCy2a; CE + axCy'Ch, b = (C 0L, ¢ = (O ' CRasCyt. Then
we use the following Young’s inequalities

2l - 2l g = O3 OG5 Iyl o N2l gy -

2
£1001 a 2
ez Tyl < 200 o+ 5
b €9001 2 b? 2
et Wl < 55 el o g el

I /\

630
clyllgy 12l Iy 72, +2 217

Thus we obtain

vTHTIP(0) 0 2 an (1= 5 = ) [l + (08 o -9 llyl;
1 B H! pP1 — 2eq0n Ylla;t
b2 & 2
+ (G — 2epanp? E) Hz”H;l :
Let - s
—a (1-2 - 7) . 73
y=ar(1-5 -3 (73)

We need to find further conditions on €1, €2, €3, p > 0 such that

v >0, (Pﬁl o —€;C>>07 (C1—b2 C>>0 (74)

251041 2620&1;) 263

The first condition in (74) is satisfied with 1 4+ €2 < 2. The other two imply

Py + 2510[1 + % C & b2
S L N B -

B
The second inequality yields ¢; — v > é The positivity of €3 requires (1 > 7.
Since v depends on e1,e2 by (73), we have to choose these two constants such
that they also satisfy

p> (75)

P — > -
2e3 ~ 290 p?

2(1—£)§€1+52<2. (76)

aq
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This choice is always possible since 1 — 5711 < 1. Hence, we can choose

2
1 tT e T b
e3> § , P> po = max L E T ,
G —7 B \/252a1[§1 P
(77)
so that inequality (72) follows. O

6.3. Particular choices of preconditioners

We now propose four block triangular preconditioners having the structure
of (58) given by

[P BT M,y F BT M,y
Pri(p) = |0 _p_lApr_lMp 0], Prap)=|0 *pilMp 01,
10 0 K 0 0 K
Ay, BT M,y Ay BT M,y
Prs(p)= |0 —p 'AyF,'M, 0 |, and Pra(p)= |0 —p'M, 0
| 0 0 Ar 0 0 Ar.

We refer to [17, 8, 7, 18] for more details on similar choices. The following two
theorems show under what conditions these preconditioners are either norm-
equivalent or FOV-equivalent to J.

Theorem 7. Let (18) hold. Then for any p # 0
J~g-1 Prs(p), J~pg-1 Pri(p).
Proof. We fit Prs(p) in the general preconditioner structure (58) by letting
Pi=A,, Py=-AF;'M,, P3=Ar. (78)

We have Py ~p-1 S (see [20], page 2046). Moreover, by Lemma 7 we have
S ~ Hs, so that Ps ~pgt H,. Since P, = H; and P3 = H3, we may use
Theorem 4 to get J ~g-1 Pr3(p).

We fit Pr1(p) in the general preconditioner structure (58) by letting

PL=F, Py=-AF,'M,, P3=K. (79)

By Lemma 7 we obtain P; ~E Hi and P3 s Hs. Together with P» N
H, from above, we may use again Theorem 4 and have J ~g-1 Pgri(p). O

Theorem 8. Let (18) hold. Then there exists pg > 0 such that if p > po then
J -1 PRg(p).

Also, there exists p1 > 0, such that if p > p1 and ||I — FA;1HH_1 < % we have
1

J ~pg-1 PR4(,O) .
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Proof. Concerning Pra(p), let P, = F, Po = —M, = —Hs and P; = K in (58).
By Lemma 8 we have P; Ry H; and Pj Ry Hs, and —S R Hs, so
S R P,. Using Theorem 5 we obtain J ~-1 Pra(p).

Concerning Pr4(p), let Py = Ay, Po = —M,, P; = Ap. Setting S =
—~BAZ'BT in Lemma 8, we have -3 Ryt H, so that S Ryt P,. Using

Theorem 6 we obtain J ~g-1 Pr4(p).
O

Remark 6.1. The GMRES convergence theorem 1 is based on the condition
(38) of FOV-equivalence between the linearization matriz and the preconditioner.
For the discretization framework and the class of block preconditioners consid-
ered here, this FOV equivalence condition as proved in Theorem & or 6 depends
first of all on the fulfillment of inequality (18), which bounds a function of the
nondimensional parameters Ra and Pr in terms of the Poincaré constant C,,
of the domain. The numerical determination of Cp is not a trivial task for
general domains. Furthermore, these FOV equivalence conditions are valid with
lower bounds pg on the parameter p, where pg cannot be in general computed
nor estimated, see (66) or (77).

7. Numerical results

7.1. Description of the solvers

First, we describe the solvers and subsolvers used for the preconditioned
systems. As pointed out earlier, the determination of a value of p that guaran-
tees FOV-equivalence is not possible in general. We observed that the choice
p = 1 for all preconditioners guarantees convergence of the following numeri-
cal tests. See also [3] for some numerical investigations on the value of p for
a mixed Stokes-Darcy problem. The preconditioner Pgr; requires solving four
linear systems: one for the F' block, two for the approximation of the inverse
Schur complement Py ' = —M;'F,A;" | and one for the K block. We use
FGMRES right-preconditioned with an algebraic multigrid method (AMG) [11]
for the F' and K blocks and CG preconditioned with AMG for A, and M,.
The A, and M, blocks do not depend on the solution and their inversion can
be done only once outside the nonlinear loop. The preconditioner Pro requires
solving three linear systems: one for the F' block, one for the M, block, and
one for the K block. We use the same subsolvers as in Pry to solve for the F,
M, and K blocks. Again the M, block does not depend on the solution and it
inversion can be done only once outside the nonlinear loop.

In contrast to preconditioner Prq, preconditioner Pgrs requires to solve A,
and At blocks instead of F' and K blocks. Since both A, and Ar blocks
are symmetric matrices, CG preconditioned with AMG can be applied to solve
them. In this case all the blocks, A, A,, M, and Ar, do not depend on the
solution and their inversion can be done only once outside the nonlinear loop.
The last preconditioner Pr4 requires to solve A,,, M, and A7 blocks, which can
all be solved by CG preconditioned with AMG. Also in this case all the blocks,

24



Ay, M, and Ar, do not depend on solution and their inversion can be done
only once outside the nonlinear loop.

We set the threshold value for the scaled residual of each subsolver involved
to be 107%. In the outer linear FGMRES solver for the preconditioned linearized
systems, the convergence threshold of the scaled residual is set to be 1078, The
stopping tolerance for the nonlinear iterations for the L.,-norm of the absolute
error between two successive solutions is set to 1076, We set a maximum number
of 50 iterations.

Note that in preconditioners Pr; and Pro the F' and K blocks are inverted at
any nonlinear iteration, while in the preconditioners Prs and Pgr4 no inversion
for any subblock is done inside the nonlinear loop. This yields an overhead in
the computational time for Pr; and Pgs. On the other hand, we expect Pgry
and Pgs to perform better in terms of number of GMRES iterations, since the
F and K blocks are the same as in the linearization matrix J. All of these
aspects will be taken into account in the following numerical examples.

7.2. Numerical experiments

A two-dimensional example is considered in the numerical study. The fluid
domain is the unit square with no-slip boundary conditions, temperature 7' =1
on the right side, temperature 7" = 0 on the left side, and zero heat flux on the
remaining boundaries. At large Rayleigh numbers, this creates an instability
leading to overturning cells. The unit square is partitioned into N x N squares,
and each square is cut into two right triangles, so the total number of elements
is 2N x N. We set Pr =1 in the following numerical studies.

We observe numerically that the eigenvalues of the preconditioned system
cluster around 1 with any choice of the preconditioners Pgry, Pro, Prs and
Pry. Figure 1 shows the eigenvalues for the systems with N = 16 and Ra =
2 x 103, respectively. Figure 1 (a), (b), (c), (d) and (e) show the eigenvalues with
preconditioners Pgri, Pro, Prs, Prs and without preconditioner, respectively.
The real part of the majority of the eigenvalues with preconditioners Pr; and
Ppgo is between 0 and 1, see Figure 1 (a) and (b). On the other hand, since A,,
and Ar are just an approximation of F' and K, the real part of more eigenvalues
for both systems with preconditioners Prs and Pgry is greater than 1, see Figure 1
(c) and (d). Then, we the expect preconditioners Pg; and Pga to perform better
than Pr3 and Pgr4 in terms of total number of GMRES iterations.

In Tables 1 - 4 we report the number of nonlinear iterations, the average
number of GMRES iterations per nonlinear iteration and the overall compu-
tational time for the four preconditioners, respectively. The number of total
GMRES iterations is independent of the mesh size in all cases. We expected
such results for Prs and Pgy, since in Theorem 8 we proved FOV equivalence
of these system with the matrix J. Nevertheless we get mesh independence also
for preconditioners Pr; and Prs which are just norm-equivalent to the matrix
J. This suggests that the FOV-equivalence condition in Theorem 1 may be too
strong, and there may be still room for improvement.

We consider two pairs of preconditioners Pgry versus Pgro, and Pgrz versus
Pgr4. The difference in each pair is that the approximate Schur complement is
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Figure 1: Eigenvalues for the Picard system for N = 16 with (a) preconditioner Pgr1,
(b) preconditioner Pgs, (¢) preconditioner Prs, (d) preconditioner Pryq, (€) no preconditioner.
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changed from —A,F, ' M, to —M,,. For each analyzed case and for each pair
both the computational time and the number of linear iterations are comparable.
At low Rayleigh number Pgy is slightly better than Pgr; while at high Rayleigh
number Pg; is the better one. In general Pr4 performs slightly better that Pgs.

Ra 2 x 102 2 x 103
N Picard | FGMRES (Timing) | Picard | FGMRES (Timing)
32 3 27.7 (51.35) 12 30.7 (225.25)
64 3 29.3 (202.1s) 11 31.8 (837s)
128 2 31 (534.7s) 9 33.6 (2825s)
Table 1: Picard method with preconditioner Pg;
Ra 2 x 102 2 x 103
N | Picard | FGMRES (Timing) | Picard | FGMRES (Timing)
32 3 28 (49.6s) 12 33.6 (235.3s)
64 3 29.3 (196.3s) 11 35.4 (898.5s)
128 2 29.5 (499.4s) 9 36.4 (2971s)
Table 2: Picard method with preconditioner Pgro
Ra 2 x 10? 2 x 10°
N | Picard | FGMRES (Timing) | Picard | FGMRES (Timing)
32 3 31.7 (31.69) 12 51 (189.7s)
64 3 33.7 (114s) 11 53.1 (635.5s)
128 2 34 (309.8s) 9 53.8 (2118s)

Table 3: Picard method with preconditioner Prg

Ra 2 x 107 2 x10°

N Picard | FGMRES (Timing) | Picard | FGMRES (Timing)
32 3 31.7 (28.25) 12 19.2 (165.95)

64 3 33.3 (108.2s) 11 51.2 (572.4s)
128 2 33.5 (283.2s) 9 51.9 (1918s)

Table 4: Picard method with preconditioner Pry
Next we consider other two pairs of preconditioners Pry versus Pg3, and Pro

versus Pgry4. In each pair P; changes from F' to A, and P3 changes from K to
Ar. The number of linear iterations increases from Pgr; to Pr3 and from Pgrs to
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Pr4. This is more evident at Rayleigh number 2 x 103, and it can be explained
by looking at the eigenvalue distribution in the figures. For example, the eigen-
values in Figure 1(a) are closer to 1 than the ones in Figure 1(c). Consequently
GMRES with preconditioner Pgr; need fewer iterations to converge than the one
with preconditioner Pr3. On the other hand, the preconditioners Pr3 and Ppry
perform much better than Pr; and Pgs in terms of computational time, and
especially at high Rayleigh number. As already pointed out this substantial
gain in the timing arises from the fact that both the A, and Ar blocks are
solution-independent and can be solved only once outside the nonlinear loop.
Moreover since they are also SPD we can use a CG subsolver instead of GMRES
which is used to invert the F' and K in Pgr; and Pgs.

Finally, in each simulation we observed that Pr4 is the best preconditioner
in terms of computational time.

8. Conclusions

We presented an analysis of block preconditioners for fixed-point lineariza-
tions of the Rayleigh-Bénard convection problem, discretized with inf-sup stable
finite element spaces. In our analysis we considered either norm-equivalence or
FOV-equivalence between the linearized systems and right preconditioners. Us-
ing these equivalences we proved that the total number of GMRES iterations is
independent of the mesh size. Four different preconditioners were investigated.
We showed that the eigenvalues of all preconditioned systems cluster around
one. Preconditioner Pg; is the one whose clustering is the most effective, fol-
lowed by preconditioners Pro, Pr3 and Pgr4. In the numerical result session we
confirmed our theoretical findings, showing that using each considered precon-
ditioner the total number of GMRES iterations is independent of the mesh size.
In accordance with the eigenvalue clustering we observed that Pgr; requires the
least number of iterations, followed by Pro, Prs and Pr,. However in terms of
computational time preconditioners Prz and Prs work much better than Pgr;
and Pg2, since the computational time for each iteration of Pr3z and Pgr4 is con-
siderably less expensive than each iteration of Pgr; and Pgrs. Moreover among
Prs and Pgry4, we found that preconditioner Pgy4 is the better one in terms of
computational time.
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