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Abstract

In this paper we use the notion of field-of-values (FOV) equivalence of matrices
to study a class of block-triangular preconditioners for the fixed-point lineariza-
tion of the Rayleigh-Bénard convection problem discretized with inf-sup stable
finite element spaces. First, sufficient conditions on the nondimensional param-
eters of the problem are determined in order to establish the FOV-equivalence
between the system matrix and the preconditioners. Four upper triangular block
preconditioners belonging to the general proposed class are then considered.
Numerical experiments show that the Generalized Minimal Residual (GMRES)
convergence is robust with respect to the mesh size for these preconditioned
systems. We also compare the performance of the different preconditioners in
terms of computational time.

Keywords: Rayleigh-Bénard convection, block preconditioning,
incompressible flows, FOV-equivalence

1. Introduction

In this paper we analyze block preconditioners for the numerical solution of
the Rayleigh-Bénard convection problem. Our analysis is driven by the notion of
Field-Of-Values(FOV)-equivalence of matrices [15, 5, 23, 19, 2, 1]. For the sake
of completeness, we first present the problem in its dimensional form and we
obtain a nondimensional version (clearly, other nondimensionalizations are also
possible). Under the Oberbeck-Boussinesq approximation, the Rayleigh-Bénard
convection equations read

ρ(u · ∇)u− µ∆u+∇p = ρβ(T − Tb)g + f ,

−∇ · u = 0,

ρcp(u · ∇)T − k∆T = g,

(1)
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posed on some subset Ω ⊂ Rd for d = 2, 3. Here, g is the gravity vector, ρ, µ,
β, cp, k denote fluid density, dynamic viscosity, thermal expansion coefficient,
specific heat at constant pressure, and thermal conductivity, respectively. Also,
Tb is a reference temperature. The unknowns are the velocity u, the temperature
T and the piezometric head p = p̄−ρg·x, where p̄ is the thermodynamic pressure
and x is the position. The terms f and g are nonhomogeneous terms that can
be physically interpreted as momentum and energy sources or that can take
into account nonhomogeneous boundary conditions. We refer to a typical set of
boundary conditions for heated enclosed flow problems given by

T = TD on ΓD , ∇T · n = 0 on ΓN , u = 0 on Γ , (2)

where Γ = ΓD ∪ ΓN and ΓD has positive measure. A nondimensional form is
obtained as follows. Denote with Lr a reference value for length. Then, we
choose reference values for velocity and piezometric head as

Ur =
µ

ρLr
, pr = ρU2

r ,

and we define the nondimensional unknowns

ũ =
u

Ur
, p̃ =

p

pr
, T̃ =

T − Tb
Θ̄

,

where Θ̄ is a reference temperature difference. We also define the Rayleigh and
Prandtl numbers

Ra =
ρ2cp‖g‖βΘ̄L3

µk
, Pr =

µ

ρk
.

If the momentum and energy balances are scaled with respect to the correspond-
ing reference diffusion terms, the equations in nondimensional form which will
be considered from now on read (with abuse of notation, we drop the tilde sign
for the nondimensional quantities)

(u · ∇)u−∆u+∇p =
Ra

Pr
ĝT + f ,

−∇ · u = 0,

(u · ∇)T − 1

Pr
∆T = g.

(3)

Here, the vector ĝ = g/‖g‖ is the unit vector along the gravity direction. Among
the applications of Rayleigh-Bénard convection, we recall boiling water nuclear
reactors (BWR), multiphase flows and atmospheric flows [24, 22, 21]. For more
details, see [16, 18, 10, 14].

After linearizing the system and discretizing it using a finite element approx-
imation, we obtain a system matrix of the type

J =

F Bᵀ M1

B 0 0
0 0 K

 . (4)
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As n → ∞, the system of J ∈ Rn×n becomes a large and sparse matrix, so
a preconditioner needs to be applied to the linearized system. Moreover, one
wishes to design a preconditioner that has a number of iterations independent
of the matrix size n. To this end, in this work we intend to construct such
preconditioners for the Rayleigh-Bénard convection problem, and we do so by
starting from a result from [20] according to which the speed of convergence of
GMRES is independent of the mesh size if the preconditioner is FOV-equivalent
to the system matrix J . The results in [20] concern a block system arising from
discretizations of the Navier-Stokes equations. Here, we intend to extend their
analysis to the case of the Rayleigh-Bénard problem.

The FOV analysis has been addressed in various works as a tool for the
convergence study of preconditioned Krylov subspace methods. In [23] bounds
on the rate of convergence for such methods are presented, based on the smallest
real part of the field-of-values of the coefficient matrix and its inverse. Here,
finite element discretizations of nonsymmetric elliptic BVPs are considered and
convergence bounds are given as a function of the mesh size for preconditioners
of hierarchical basis or multilevel type. Block triangular preconditioners for the
GMRES method applied to nonsymmetric saddle point problems are analyzed
in [19]. Here, a result on the rate of convergence for GMRES is provided in
terms of certain quantities that depend on the choice of an appropriate matrix
norm. Previous versions of such convergence results were obtained by [9] and [6].
In [2] field-of-values estimates are provided for the analysis of preconditioners of
augmented Lagrangian type for the Oseen equations. Indefinite preconditioners
for the coupled Stokes-Darcy system are studied using field-of-values analysis in
[4].

The paper is organized as follows. In Section 2 we provide some preliminary
definitions and results needed for the subsequent analysis. Block preconditioners
for the Picard linearization of the Rayleigh-Bénard convection problem are de-
scribed in Section 6. and their norm- and FOV-equivalence to the linearization
matrix are proved in Section 6.3. Numerical results showing mesh-independent
convergence are reported in Section 7.

2. Finite element approximation of the fixed-point linearized Rayleigh-
Bénard problem

Let Ω be a subset of Rd with Lipschitz-continuous boundary Γ. We denote
as L2(Ω) the space of square integrable functions with respect to the Lebesgue
measure in Rd and we define H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ L2(Ω)}. Boldface
notations L2(Ω) and H1(Ω) are used for vector-valued functions. The notations
(·, ·) and ‖ · ‖ denote the standard inner product and induced norm either in
L2(Ω) or L2(Ω) depending on the context. The space of zero-mean L2 functions
is

L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

p dx = 0} (5)
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and, given any subset Γs ⊂ Γ, we denote the space H1
Γs

(Ω) as

H1
Γs

(Ω) = {u ∈ H1(Ω) | γΓsu = 0} , (6)

where γΓs
is the trace operator on Γs. When Γs ≡ Γ, we write H1

0 (Ω) = H1
Γ(Ω).

Some properties that are used in the following analysis are reported here.
We have the antisymmetry properties [13]

((a · ∇)u,u) = 0 ∀a ∈H1(Ω),∇ · a = 0 weakly,a · n|Γ = 0, ∀u ∈H1(Ω) ,
(7)

((a · ∇)T, T ) = 0 ∀a ∈H1(Ω),∇ · a = 0 weakly,a|Γ = 0, ∀T ∈ H1(Ω) .
(8)

Coercivity properties also hold. If Γs ⊆ ∂Ω has nonzero measure, then there
exists Cp > 0 such that

‖u‖L2 ≤ Cp‖∇u‖L2 ∀u ∈H1
Γs

(Ω) ,

‖T‖L2 ≤ Cp‖∇T‖L2 ∀T ∈ H1
Γs

(Ω) .
(9)

For the divergence operator, we may use Hölder’s inequality to get

‖∇ · u‖L2 ≤
√

3‖∇u‖L2 . (10)

A weak form of the Rayleigh-Bénard problem for the unknowns (u, p, T ) ∈
H1

0(Ω)× L2
0(Ω)×H1

ΓD
(Ω) reads

(∇u,∇v) + ((u · ∇)u,v)− (p,∇ · v)− Ra

Pr
(ĝT,v)− (f ,v) = 0 ∀v ∈H1

0(Ω) ,

(q,∇ · u) = 0 ∀q ∈ L2
0(Ω) ,

1

Pr
(∇T,∇r) + ((u · ∇)T, r)− (g, r) = 0 ∀r ∈ H1

ΓD
(Ω) .

Let us consider conforming finite element approximations on a quasi-uniform
triangulation of Ω for the variables u, p, T , respectively:

Φh ⊂H1
0(Ω) , Ψh ⊂ L2

0(Ω) , Θh ⊂ H1
ΓD

(Ω) . (11)

The spaces Φh and Ψh are required to satisfy the inf-sup condition

inf
p∈Ψh

sup
v∈Φh

(p,∇ · u)

‖∇v‖‖p‖
≥ β . (12)

A classical choice that satisfies (12) is given by the Taylor-Hood pair of
continuous piecewise-biquadratic (or triquadratic) polynomials for Φh and con-
tinuous piecewise-linear polynomials for Ψh, i.e.

Φh = Φnh ∩H
1
0(Ω) , with Φh = {φ ∈ C0(Oh) : φ|κ ∈ Q2(κ) ∀κ ∈ Oh} ,

Ψh = Ψ̃h ∩ L2
0(Ω) , with Ψ̃h = {ψ ∈ C0(Oh) : ψ|κ ∈ P1(κ) ∀κ ∈ Oh} .
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Also, we choose Θh = Φh ∩ H1
ΓD

(Ω). For compactness, we denote V h :=
Φh ×Ψh ×Θh.

Thanks to the Poincaré inequalities (9), we may define an inner product
(·, ·)a on V h × V h with induced norm ‖ · ‖a on V h as

((uh, ph, Th), (vh, qh, rh))a := (∇uh,∇vh) +
1

Pr
(∇Th,∇rh) + (ph, qh) , (13)

‖(uh, ph, Th)‖a :=
√

((uh, ph, Th), (uh, ph, Th))a (14)

Let ah ∈ Φh, ∇ · ah = 0 weakly, be the velocity at the previous iteration in
the Picard method. If we define a bilinear form on V h × V h given by

a((uh, ph, Th), (vh, qh, rh)) = (∇uh,∇vh) + ((ah · ∇)uh,vh)− (ph,∇ · vh)

− Ra

Pr
(ĝTh,vh) + (qh,∇ · uh) +

1

Pr
(∇Th,∇rh) + ((ah · ∇)Th, rh) , (15)

then the finite element problem consists in finding (uh, ph, Th) ∈ V h such that

a((uh, ph, Th), (vh, qh, rh)) = (f ,vh) + (g, rh) ∀(vh, qh, rh) ∈ V h . (16)

2.1. Sup-sup and inf-sup properties

The following lemma identifies a sufficient condition involving Ra and Pr
for the bilinear form a(·, ·) to satisfy certain sup-sup and inf-sup properties. In
turn, these properties are sufficient conditions for a convergence result on the
preconditioned GMRES algorithm that will be considered later.

Lemma 1. Let the product space V h be such that (11) and (12) hold. Then,
there exists a positive constant C2 independent of the mesh size such that

sup
(uh,ph,Th)∈V h

sup
(vh,qh,rh)∈V h

a((uh, ph, Th), (vh, qh, rh))

‖(uh, ph, Th)‖a‖(vh, qh, rh)‖a
≤ C2 . (17)

Moreover, if Pr and Ra satisfy

Ra√
Pr

< 2C2
p (18)

where Cp is the constant in Poincaré’s inequalities (9), there exists a positive
constant C1 independent of the mesh size such that

inf
(uh,ph,Th)∈V h

sup
(vh,qh,rh)∈V h

a((uh, ph, Th), (vh, qh, rh))

‖(uh, ph, Th)‖a‖(vh, qh, rh)‖a
≥ C1 . (19)

Proof. We begin with condition (17). Using the Poincaré inequalities, the con-
tinuity of the divergence operator (10), the Cauchy-Schwarz inequality in R2
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and R3, and Young’s inequality, we have

a((uh, ph, Th), (vh, qh, rh))

≤ ‖∇uh‖‖∇vh‖+ ‖ah‖L∞‖∇uh‖‖∇vh‖+ ‖ph‖‖∇ · vh‖

+ ‖qh‖‖∇ · uh‖+
Ra

Pr
‖Th‖‖vh‖+

1

Pr
‖∇Th‖‖∇rh‖+ ‖ah‖L∞‖∇Th‖‖rh‖

≤ ‖∇uh‖‖∇vh‖+ ‖ah‖L∞‖∇uh‖‖∇vh‖+
√

3‖ph‖‖∇vh‖+
√

3‖qh‖‖∇uh‖

+
Ra

Pr
C2
p‖∇Th‖‖∇vh‖+

1

Pr
‖∇Th‖‖∇rh‖+ Cp‖ah‖L∞‖∇Th‖‖∇rh‖

≤ (1 + ‖ah‖L∞)‖∇uh‖‖∇vh‖+
√

3‖ph‖‖∇vh‖

+
√

3‖qh‖‖∇uh‖+
Ra

Pr
C2
p‖∇Th‖‖∇vh‖+ (

1

Pr
+ Cp‖ah‖L∞)‖∇Th‖‖∇rh‖

≤ (1 + ‖ah‖L∞)‖∇uh‖‖∇vh‖+
√

3‖ph‖‖∇vh‖

+
√

3‖qh‖‖∇uh‖+
Ra

Pr
C2
p‖∇Th‖‖∇vh‖+ (

1

Pr
+ Cp‖ah‖L∞)‖∇Th‖‖∇rh‖

≤ ‖∇uh‖
(

(1 + ‖ah‖L∞)‖∇vh‖+
√

3‖qh‖
)

+

(√
3‖ph‖+

Ra

Pr
C2
p‖∇Th‖

)
‖∇vh‖

+

(
(

1

Pr
+ Cp‖ah‖L∞)‖∇Th‖

)
‖∇rh‖

≤

√
‖∇uh‖2 +

(√
3‖ph‖+

Ra

Pr
C2
p‖∇Th‖

)2

+

(
(

1

Pr
+ Cp‖ah‖L∞)‖∇Th‖

)2

√(
(1 + ‖ah‖L∞)‖∇vh‖+

√
3‖qh‖

)2

+ ‖∇vh‖2 + ‖∇rh‖2

≤

√
‖∇uh‖2 + 2

(
3‖ph‖2 + (

Ra

Pr
C2
p)2‖∇Th‖2

)
+ (

1

Pr
+ Cp‖ah‖L∞)2‖∇Th‖2√

2 ((1 + ‖ah‖L∞)2‖∇vh‖2 + 3‖qh‖2) + ‖∇vh‖2 + ‖∇rh‖2

≤
√
‖∇uh‖2 + 6‖ph‖2 + 2(

Ra

Pr
C2
p)2‖∇Th‖2 + (

1

Pr
+ Cp‖ah‖L∞)2‖∇Th‖2√

2(1 + ‖ah‖L∞)2‖∇vh‖2 + 6‖qh‖2 + ‖∇vh‖2 + ‖∇rh‖2

≤

√
‖∇uh‖2 + 6‖ph‖2 +

(
2(
Ra

Pr
C2
p)2 + (

1

Pr
+ Cp‖ah‖L∞)2

)
‖∇Th‖2√

(2(1 + ‖ah‖L∞)2 + 1) ‖∇vh‖2 + 6‖qh‖2 + ‖∇rh‖2

where the last two factors are equivalent to the norm ‖ · ‖a.
Inf-sup condition. We move along the lines of [12]. Let (uh, ph, Th) ∈ Φh ×

Ψh ×Θh. We first need to construct some (vh, qh, rh) such that

a((uh, ph, Th), (vh, qh, rh)) ≥ β‖(vh, qh, rh)‖2 . (20)

We construct (vh, qh, rh) by first looking at a((uh, ph, Th), (uh, ph, Th)). Us-
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ing the skew symmetry properties (7) and Young’s inequality, we have

a((uh, ph, Th), (uh, ph, Th)) = (∇uh,∇uh)− Ra

Pr
(ĝTh,uh) +

1

Pr
(∇Th,∇Th)

≥ ‖∇uh‖2 +
1

Pr
‖∇Th‖2 −

Ra

Pr
(ĝTh,uh)

≥ ‖∇uh‖2
(

1− Ra

Pr

1

C2
p

ε

)
+ ‖∇Th‖2

(
1

Pr
− Ra

Pr

1

C2
p

1

4ε

)
.

Choose ε > 0 such that

Ξ :=

(
1− Ra

Pr

1

C2
p

ε

)
> 0 , Ψ :=

(
1

Pr
− Ra

Pr

1

C2
p

1

4ε

)
> 0 . (21)

This is possible due to the hypothesis (18). Next, due to the inf-sup condition
(12), there exists a function zh such that

(ph,∇ · zh)

‖∇zh‖‖ph‖
≥ β . (22)

This function can be chosen without loss of generality such that ‖∇zh‖ = ‖ph‖.
Then,

a((uh, ph, Th), (−zh, 0, 0)) =

− (∇uh,∇zh)− ((ah · ∇)uh, zh) + (ph,∇ · zh) +
Ra

Pr
(ĝTh, zh)

= (ph,∇ · zh) +
Ra

Pr
(ĝTh, zh)− (∇uh,∇zh) + ((ah · ∇)zh,uh) .

Define the quantity

Υ = −Ra
Pr

(ĝTh, zh) + (∇uh,∇zh)− ((ah · ∇)zh,uh) .

Then

Υ ≤ ‖∇uh‖‖ph‖+ Cp‖ah‖L∞‖∇uh‖‖ph‖+
Ra

Pr
‖Th‖‖zh‖

≤ ‖∇uh‖‖ph‖+ Cp‖ah‖L∞‖∇uh‖‖ph‖+
Ra

Pr
Cp‖Th‖‖∇zh‖

≤ ‖∇uh‖‖ph‖+ Cp‖ah‖L∞‖∇uh‖‖ph‖+
Ra

Pr
Cp‖Th‖‖ph‖

=

(
‖∇uh‖(1 + Cp‖ah‖L∞) + Cp

Ra

Pr
‖Th‖

)
‖ph‖

≤
(
‖∇uh‖(1 + Cp‖ah‖L∞) + C2

p

Ra

Pr
‖∇Th‖

)
‖ph‖ .

If we set

ζa = max

{
1 + Cp‖ah‖L∞ , C2

p

Ra

Pr

}

7



we obtain

Υ ≤ ζa (‖∇uh‖+ ‖∇Th‖) ‖ph‖ ,

so that

a((uh, ph, Th), (−zh, 0, 0)) ≥ (ph,∇ · zh)−Υ ≥ β‖ph‖2 − ζa (‖∇uh‖+ ‖∇Th‖) ‖ph‖ .

Define G = ‖∇uh‖+ ‖∇Th‖, B = ‖ph‖. Then Young’s inequality gives

ζaGB√
β

√
β ≤ 1

2
βB2 +

1

2

ζ2
aG

2

β
.

Hence,

a((uh, ph, Th), (−zh, 0, 0)) ≥ 1

2
β‖ph‖2 −

ζ2
a

β

(
‖∇uh‖2 + ‖∇Th‖2

)
.

Now, we can construct

(vh, qh, rh) = (uh, ph, Th) + ρa(−zh, 0, 0)

with ρa to be determined. Clearly,

a((uh, ph, Th), (vh, qh, rh))

≥ (min{Ξ,Ψ} − ρa
ζ2
a

β
)
(
‖∇uh‖2 + ‖∇Th‖2

)
+ ρa

1

2

β

σa
σa‖ph‖2

≥ min

{
min{Ξ,Ψ} − ρa

ζ2
a

β
, ρa

1

2

β

σa

}(
‖∇uh‖2 + ‖∇Th‖2 + σa‖ph‖2

)
= min

{
min{Ξ,Ψ} − ρa

ζ2
a

β
, ρa

1

2

β

σa

}
‖(uh, ph, Th)‖2σa

≥ min

{
min{Ξ,Ψ} − ρa

ζ2
a

β
, ρa

1

2

β

σa

}
CPr‖(uh, ph, Th)‖2a

where CPr is a constant that depends on Pr, and for σa > 0 we defined the
norm

‖(uh, ph, Th)‖σa
:=
√

(∇uh,∇uh) + (∇Th,∇Th) + σa(ph, ph) .

which is equivalent to ‖ · ‖a. We may choose the constants ρa > 0 and σa > 0
such that

σa = 2βρa

ρa
ζ2
a

β
< min{Ξ,Ψ} .

Moreover,

‖(−zh, 0, 0)‖2a = ‖∇zh‖2 = ‖ph‖2 ≤ ‖(uh, ph, Th)‖2a

8



Therefore, using the arithmetic-geometric mean inequality,

‖(vh, qh, rh)‖2a ≤ 2
(
‖(uh, ph, Th)‖2a + ρ2

a‖(−zh, 0, 0)‖2a
)

≤ 2(1 + ρ2
a)‖(uh, ph, Th)‖2a

Hence

sup
(vh,qh,rh)

a((uh, ph, Th), (vh, qh, rh))

‖(uh, ph, Th)‖a‖(vh, qh, rh)‖a
≥ a((uh, ph, Th), (vh, qh, rh))

‖(uh, ph, Th)‖a‖(vh, qh, rh)‖a
≥ C .

Taking the infimum over (uh, ph, Th) completes the proof.

3. Matrix description of the FE problem

If we denote

Φh = span{φi}
n1
i=1, Ψh = span{ψi}n2

i=1, Θh = span{θi}n3
i=1,

we define the matrices

(F )ij = (∇φj ,∇φi) + ((ah · ∇)φj ,φi) , (B)ij = (∇ · φj , ψi) , (23)

(M1)ij = −Ra
Pr

(ĝθj ,φi) , Kij =
1

Pr
(∇θj ,∇θi) + ((ah · ∇)θj , θi) . (24)

Notice that F and K are not symmetric. We also define the vectors f̃ and g̃ as

(f̃)i = (f ,φi) , (g̃)i = (g, θi) . (25)

Then, the Picard-linearized finite element Rayleigh-Bénard problem (16) is
equivalent to the matrix problem of finding [uᵀ, pᵀ, T ᵀ]ᵀ ∈ Rn1+n2+n3 such thatF Bᵀ M1

B 0 0
0 0 K

up
T

 =

f̃0
g̃

 . (26)

We denote the matrix in (26) as J . In view of the following definition of pre-
conditioners for the system (26), we denote the Schur complement of F with
respect to the Navier-Stokes block as S = −BF−1Bᵀ, and we set

(Ap)ij = (∇ψj ,∇ψi) , (Fp)ij = ((ah · ∇)ψj ,∇ψi) + (∇ψj ,∇ψi) . (27)

The blocks Ap and Fp are the Laplace operator and the convection-diffusion
operator in the space for p. With the symmetric positive-definite matrices

(Au)ij = (∇φj ,∇φi) =
F + F ᵀ

2
, (Mp)ij = (ψj , ψi), (AT )ij = (∇θj ,∇θi) =

K +Kᵀ

2
,
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we may define the matrix H ∈ Rn×n as

H =

H1 0 0
0 H2 0
0 0 H3

 =

Au 0 0
0 Mp 0
0 0 AT

 , (28)

as well as the weighted scalar product and norm

< u,v >H= vᵀHu , ‖u‖H =
√
< u,u >H . (29)

We remind that the square root matrices H
1/2
i are well-defined since Hi are

symmetric positive-definite. Notice that, if (uh, ph, Th) and (vh, qh, rh) have
column vectors of finite element degrees of freedom denoted by [uᵀ, pᵀ, T ᵀ]ᵀ

and [vᵀ, qᵀ, rᵀ]ᵀ respectively, then by definition

‖(uh, ph, Th)‖a = ‖[uᵀ, pᵀ, T ᵀ]ᵀ‖H , (30)

a((uh, ph, Th), (vh, qh, rh)) = [vᵀ, qᵀ, rᵀ]J [uᵀ, pᵀ, T ᵀ]ᵀ . (31)

We also provide a definition of matrix norm. Given two symmetric and
positive-definite matrices Ha ∈ Rn×n and Hb ∈ Rm×m, we define for any Q ∈
Rm×n the matrix norm

‖Q‖Ha,Hb
= max

w∈Rn\{0}

‖Qw‖Hb

‖w‖Ha

. (32)

When m = n and Ha = Hb = H, we denote ‖Q‖H,H = ‖Q‖H . No confusion
should arise from the context with respect to the similar notation of the vector
norm (29). We recall some results about this matrix norm from [20] that are
used several times in this work.

Lemma 2. Let H1, H2 and H3 be symmetric positive definite matrices. Given
R ∈ Rn1×n2 , Q ∈ Rn2×n3 , the following hold:

‖RQ‖H3,H1
≤ ‖Q‖H3,H2

‖R‖H2,H1
, (33)∥∥∥H−1/2

2 QH
−1/2
1

∥∥∥
l2

= ‖Q‖H1,H
−1
2

=
∥∥QH−1

1

∥∥
H−1

1 ,H−1
2

=
∥∥H−1

2 Q
∥∥
H1,H2

. (34)

Lemma 3. Let Q ∈ Rm×n have full rank and let Ha ∈ Rn×n and Hb ∈ Rm×m
be two symmetric and positive definite matrices. Then

‖Q‖Ha,H
−1
b

= max
v∈Rn\{0}

max
w∈Rm\{0}

wᵀQv

‖v‖Ha
‖w‖Hb

, (35)

min
v/∈ker(Q)

‖Qv‖H−1
b

‖v‖Ha

= min
v/∈ker(Q)

max
w∈Rm\{0}

wᵀQv

‖v‖Ha
‖w‖Hb

. (36)

If n = m, ∥∥Q−1
∥∥−1

H−1
b ,Ha

= min
v∈Rn\{0}

max
w∈Rn\{0}

wᵀQv

‖v‖Ha
‖w‖Hb

. (37)
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4. A GMRES convergence result using FOV-equivalence

Here, we discuss certain notions of equivalence between matrices as intro-
duced in [20]. These definitions lead to a fundamental sufficient condition for
GMRES convergence. We begin with the concept of H-norm equivalence.

Definition 1 (H-norm equivalence). Nonsingular matrices R,Q ∈ Rn×n are
said to be H-norm equivalent if there exist constants γ,Γ > 0 independent of n
such that for all x ∈ Rn\{0}

γ ≤
‖Rx‖H
‖Qx‖H

≤ Γ.

We write
R ∼H Q.

We now prove the following result.

Lemma 4. R ∼H Q if and only if
∥∥RQ−1

∥∥
H
≤ Γ and

∥∥QR−1
∥∥
H
≤ γ−1.

Proof. Let R ∼H Q, then by Definition 1, we have γ ≤ ‖Rx‖H
‖Qx‖H

≤ Γ. Let v = Qx,

then
‖RQ−1v‖

H

‖v‖H
≤ Γ. Using equation (32), inequality

∥∥RQ−1
∥∥
H
≤ Γ follows.

Similarly, we have
‖Qx‖H
‖Rx‖H

≤ γ−1. Let v = Rx, then
‖QR−1x‖

H

‖x‖H
≤ γ−1. Using

equation (32) again, inequality
∥∥QR−1

∥∥
H
≤ γ−1 follows. The reverse of the

proof is straightforward.

We now provide the definition of Field-of-values equivalence.

Definition 2 (FOV equivalence). Nonsingular matrices R,Q ∈ Rn×n are said
to be FOV-equivalent if there exist constants γ,Γ > 0 independent of n such that
for all x ∈ Rn\{0},

γ ≤ < x, RQ−1x >H
< x,x >H

,

∥∥RQ−1x
∥∥
H

‖x‖H
≤ Γ.

We write
R ≈H Q.

Notice that the FOV-equivalence definition is given for a certain SPD matrix
H and is a stronger statement than H-norm equivalence: if R ≈H Q, then
R ∼H Q. Also, while H-norm equivalence is an equivalence relation on the set
of nonsingular matrices, the term “FOV equivalence” is somewhat misleading
since this relation is not symmetric.
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4.1. General convergence result for GMRES

Here we state the main convergence result that is used in this work, see
[20]. For the sake of clarity, we state it for the case of right preconditioning
which is addressed in this work, although a left preconditioning version also
holds. Notice that the theorem relies on a notion of FOV-equivalence between
the system matrix and its preconditioner.

Theorem 1 (Generalized Minimum Residual (GMRES)). If

R ≈H−1 Q, (38)

then the GMRES algorithm applied to R with right preconditioner Q converges
with respect to < ·, · >H−1 in a number of iterations independent of n. Moreover,
the residuals satisfy ∥∥rk∥∥

H−1

‖r0‖H−1

≤
(

1− γ2

Γ2

)k/2
,

where γ and Γ are the constants in Definition 2.

5. Linear algebra results implied by FE results

Here we briefly state how the properties in the finite element spaces transfer
to the matrix blocks. We notice that some properties depend on the assumption
(18), while other results on single matrix blocks have general validity. From
the strong coercivity properties 9, we have the corresponding strong and weak
coercivity results for F and K.

Theorem 2. There exists constants η, ξ > 0 such that

vᵀFv ≥ η ‖v‖2H1
, vᵀKv ≥ ξ ‖v‖2H3

. (39)

Hence, there exist constants C3 > 0, C4 > 0 such that

min
w∈Rn1\{0}

max
v∈Rn1\{0}

wᵀFv

‖w‖H1
‖v‖H1

≥ C3,

min
w∈Rn3\{0}

max
v∈Rn3\{0}

wᵀKv

‖w‖H3
‖v‖H3

≥ C4 .

(40)

Theorem 3. Condition (17) is equivalent to

max
w∈Rn\{0}

max
v∈Rn\{0}

wᵀJv

‖w‖H ‖v‖H
≤ C1 . (41)

Moreover, if (18) holds, condition (19) is equivalent to

min
w∈Rn\{0}

max
v∈Rn\{0}

wᵀJv

‖w‖H ‖v‖H
≥ C2 . (42)

12



Proof. It is an immediate consequence of Theorem 1 with the given definitions
of the norms and of the bilinear forms, see (30).

Using the notion of H-norm equivalence, we have the following results in-
volving the linearization matrix J in (26) and the matrix H defining the vector
norm (29).

Lemma 5. Let H as in (28) and let (18) hold. Then

H ∼H−1 J, H−1 ∼H J−1. (43)

In particular, ∥∥H−1J
∥∥
H

=
∥∥JH−1

∥∥
H−1 ≤ C1, (44)∥∥J−1H

∥∥
H

=
∥∥HJ−1

∥∥
H−1 ≤ C−1

2 . (45)

Moreover, if P ∈ Rn×n satisfies P ∼H−1 H, then

P ∼H−1 J, P−1 ∼H J−1. (46)

Proof. Since (41) and (42) hold with the given assumptions due to Theorem
(3), the proof of (44) and (45) is the same as in Lemma 2.7 in [20]. Then, (46)
is a result of the transitivity of norm equivalence and (43).

From the results on the global matrix J , we may also determine the following
results which characterize its blocks.

Lemma 6. Let H as in (28). Then

‖F‖H1H
−1
1
≤ C1, ‖B‖H1,H

−1
2
≤ C1, ‖Bᵀ‖H2,H

−1
1
≤ C1,

‖M1‖H3,H
−1
1
≤ C1, ‖K‖H3,H

−1
3
≤ C1 .

Proof. Condition (17) holds true and it implies (41) which in turn implies (44).
Equation (34) with Ha = Hb = H and Q = J yields

‖H−1/2JH−1/2‖l2 = ‖H−1J‖H ≤ C1,

from which it follows that the l2-norm of each block of

H−1/2JH−1/2

=

H
−1/2
1 0 0

0 H
−1/2
2 0

0 0 H
−1/2
3


F Bᵀ M1

B 0 0

0 0 K


H
−1/2
1 0 0

0 H
−1/2
2 0

0 0 H
−1/2
3



=

H
−1/2
1 FH

−1/2
1 H

−1/2
1 BᵀH

−1/2
2 H

−1/2
1 M1H

−1/2
3

H
−1/2
2 BH

−1/2
1 0 0

0 0 H
−1/2
3 KH

−1/2
3


is bounded by C1. Finally the bounds for ‖F‖H1,H

−1
1

, ‖B‖H1,H
−1
2

, ‖Bᵀ‖H2,H
−1
1

,

‖M‖H3,H
−1
1

and ‖K‖H3,H
−1
3

follow using again equation (34).
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Norm-equivalence properties for matrix blocks are here given.

Lemma 7. Let H as in (28) and let (18) hold. Then

F ∼H−1
1

H1, F−1 ∼H1 H
−1
1 , (47)

−S ∼H−1
2

H2, − S−1 ∼H2
H−1

2 , (48)

K ∼H−1
3

H3, K−1 ∼H3
H−1

3 . (49)

Also ∥∥F−1
∥∥−1

H−1
1 ,H1

≥ C3, (50)∥∥K−1
∥∥−1

H−1
3 ,H3

≥ C4. (51)

Furthermore, let F̃ satisfy F̃ ∼H−1
1

H1, then S̃ = −BF̃−1Bᵀ satisfies

−S̃ ∼H−1
2

H2, −S̃−1 ∼H2 H
−1
2 . (52)

Proof. Eq. (41) holds for our problem, and (18) implies (42). Conditions (41)-
(42), together with the weak coercivity conditions (40), allow us to fit within
Lemma 3.2 in [20], by which the norm equivalences (47), (48) and (49) follow.
The properties (50), (51) and (52) are also proven using Lemma 3.2 in [20].

FOV-equivalence properties between various matrix blocks are also needed.

Lemma 8. Let H as in (28) and let (18) hold. Then

F ≈H−1
1

H1, H
−1
1 ≈H1

F−1 , (53)

−S ≈H−1
2

H2, H
−1
2 ≈H2 −S−1 , (54)

K ≈H−1
3

H3, H
−1
3 ≈H3

K−1 , (55)

Furthermore, let F̃ ≈H−1
1

H1. Then S̃ = −BF̃−1Bᵀ satisfies

−S̃ ≈H−1
2

H2, H
−1
2 ≈H2

−S̃−1. (56)

Proof. Again, Eq. (41) holds and (18) implies (42). Using conditions (41)-(42)
together with the strong coercivity conditions (39), we may apply Lemma 3.4
in [20] and prove the above properties.

6. A class of upper triangular block preconditioners

We assume right preconditioning, so that the preconditioned system reads

JP−1x = f , Py = x . (57)
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All the preconditioners we consider in this work fall within the structure

P (ρ) =

P1 Bᵀ M1

0 ρ−1P2 0
0 0 P3

 , (58)

where P1, P2, P3 and ρ 6= 0. Notice that the preconditioned system matrix
becomes

JP (ρ)−1 =

FP−1
1 ρ(I − FP−1

1 )BᵀP−1
2 (I − FP−1

1 )M1P
−1
3

BP−1
1 ρŜP−1

2 −BP−1
1 M1P

−1
3

0 0 KP−1
3

 , (59)

where we define the approximate Schur complement block Ŝ as

Ŝ = −BP−1
1 Bᵀ. (60)

Sufficient conditions on the blocks of P will be determined so that the matrix
J in (4) is FOV-equivalent to P (ρ) with respect to H−1 and Theorem 1 can be
used. First, we begin with norm equivalence results.

6.1. A norm-equivalence result
In this section, we establish the norm equivalence of the preconditioner to

the system matrix.

Theorem 4. Let (18) hold and let P (ρ) be as in (58). Assume

P1 ∼H−1
1

H1 , P2 ∼H−1
2

H2 , P3 ∼H−1
3

H3, (61)

then for any ρ 6= 0 we have P (ρ) ∼H−1 J and P (ρ)−1 ∼H J−1.

Proof. We only prove P (ρ) ∼H−1 J , as the second equivalence follows similarly.
By Lemma 5, H ∼H−1 J . Hence, by the transitivity of ∼H−1 we only need to
show P (ρ) ∼H−1 H. We want to show that

‖P (ρ)H−1‖H−1 ≤ ΓP and ‖HP (ρ)−1‖H−1 ≤ γP ,

for some constants ΓP and γP .
Since Pi ∼H−1

i
Hi, then by Lemma 4∥∥H−1

i Pi
∥∥
Hi
≤ Γi and

∥∥P−1
i Hi

∥∥
Hi
≤ γ−1

i , for i = 1, 2, 3. (62)

Since

H−1/2P (ρ)H−1/2

=

H
−1/2
1 0 0

0 H
−1/2
2 0

0 0 H
−1/2
3


P1 Bᵀ M1

0 ρ−1P2 0

0 0 P3


H
−1/2
1 0 0

0 H
−1/2
2 0

0 0 H
−1/2
3



=

H
−1/2
1 P1H

−1/2
1 H

−1/2
1 BᵀH

−1/2
2 H

−1/2
1 M1H

−1/2
3

0 ρ−1H
−1/2
2 P2H

−1/2
2 0

0 0 H
−1/2
3 P3H

−1/2
3

 ,
15



the following inequalities are obtained using Lemma 6 and inequalities (62):

‖P (ρ)H−1‖H−1 =
∥∥∥H−1/2P (ρ)H−1/2

∥∥∥
l2

≤
∥∥∥H−1/2

1 P1H
−1/2
1

∥∥∥
l2

+
∥∥∥H−1/2

1 BᵀH
−1/2
2

∥∥∥
l2

+
∥∥∥H−1/2

1 M1H
−1/2
3

∥∥∥
l2

+
∥∥∥H−1/2

2 ρ−1P2H
−1/2
2

∥∥∥
l2

+
∥∥∥H−1/2

3 P3H
−1/2
3

∥∥∥
l2

=
∥∥H−1

1 P1

∥∥
H1

+ ‖Bᵀ‖H2,H
−1
1

+ ‖M1‖H3,H
−1
1

+
∥∥H−1

2 ρ−1P2

∥∥
H2

+
∥∥H−1

3 P3

∥∥
H3

≤ Γ1 + C1 + C1 + |ρ−1|Γ2 + Γ3

= Γ1 + |ρ−1|Γ2 + Γ3 + 2C1

= ΓP .

Similarly,

H1/2P (ρ)−1H1/2

=

H
1/2
1 0 0

0 H
1/2
2 0

0 0 H
1/2
3


P
−1
1 −ρP−1

1 BᵀP−1
2 −P−1

1 M1P
−1
3

0 ρP−1
2 0

0 0 P−1
3


H

1/2
1 0 0

0 H
1/2
2 0

0 0 H
1/2
3



=

H
1/2
1 P−1

1 H
1/2
1 −ρH1/2

1 P−1
1 BᵀP−1

2 H
1/2
2 −H1/2

1 P−1
1 M1P

−1
3 H

1/2
3

0 ρH
1/2
2 P−1

2 H
1/2
2 0

0 0 H
1/2
3 P−1

3 H
1/2
3

 ,

‖HP (ρ)−1‖H−1 =
∥∥∥H1/2P (ρ)−1H1/2

∥∥∥
l2

≤
∥∥∥H1/2

1 P−1
1 H

1/2
1

∥∥∥
l2

+
∥∥∥ρH1/2

1 P−1
1 BᵀP−1

2 H
1/2
2

∥∥∥
l2

+
∥∥∥H1/2

1 P−1
1 M1P

−1
3 H

1/2
3

∥∥∥
l2

+
∥∥∥ρH1/2

2 P−1
2 H

1/2
2

∥∥∥
l2

+
∥∥∥H1/2

3 P−1
3 H

1/2
3

∥∥∥
l2

≤
∥∥P−1

1 H1

∥∥
H1

+
∥∥ρP−1

1 BᵀP−1
2

∥∥
H−1

2 ,H1
+
∥∥P−1

1 M1P
−1
3

∥∥
H−1

3 ,H1

+
∥∥ρP−1

2 H2

∥∥
H2

+
∥∥P−1

3 H3

∥∥
H3

≤ γ−1
1 + |ρ|

∥∥P−1
2

∥∥
H−1

2 ,H2
‖Bᵀ‖H2,H

−1
1

∥∥P−1
1

∥∥
H−1

1
,H1

+
∥∥P−1

3

∥∥
H−1

3 ,H3
‖M1‖H3,H

−1
1

∥∥P−1
1

∥∥
H−1

1 ,H1
+ |ρ|γ−1

2 + γ−1
3

≤ γ−1
1 + |ρ|γ−1

2 C1γ
−1
1 + γ−1

3 C1γ
−1
1 + |ρ|γ−1

2 + γ−1
3

= γP .
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6.2. FOV-equivalence results

We now address two theorems that identify different conditions that lead to
the FOV-equivalence between the linearization matrix J and the preconditioners
of type (58).

Theorem 5. Let (18) hold. Let P (ρ) be defined as in (58) with

P1 = F , P3 = K , S ≈H−1
2

P2 . (63)

There exists ρ0 > 0 such that if ρ ≥ ρ0 then

J ≈H−1 P (ρ).

Proof. Since (18) holds, we may use Lemma 7 and S ≈H−1
2

P2 to get the norm

equivalences for any ρ 6= 0

F ∼H−1
1

H1, ρ−1P2 ∼H−1
2

S ∼H−1
2

H2, K ∼H−1
3

H3 .

Using these in Theorem 4 leads to the equivalence P (ρ) ∼H−1 J , which implies∥∥JP (ρ)−1
∥∥
H−1 ≤ Γ. Hence, by Definition 2 we only need to find a constant

γ > 0 such that for all v ∈ Rn \ {0},

vᵀH−1JP (ρ)−1v ≥ γ ‖v‖H−1 .

Let vᵀ = [xᵀ,yᵀ, zᵀ]. Due to the hypothesis (63), (59) reduces to

JP (ρ)−1 =

 I 0 0
BF−1 ρSP−1

2 −BF−1MK−1

0 0 I

 ,
we need to show thatxy

z

ᵀ  H−1
1 0 0

H−1
2 BF−1 ρH−1

2 SP−1
2 −H−1

2 BF−1MK−1

0 0 H−1
3

xy
z


≥ γ

xy
z

ᵀ H−1
1 0 0
0 H−1

2 0
0 0 H−1

3

xy
z

 .
(64)

We start with lower bounds on the terms coming from the diagonal blocks in
(64). Since S ≈H−1

2
P2, there exists a constant β1 > 0 such that

β1 ≤
< x, SP−1

2 x >H−1
2

< x,x >H−1
2

. (65)

Using (65), we obtain

xᵀH−1
1 x = ‖x‖2H−1

1
, ρyᵀH−1

2 SP−1
2 y ≥ ρβ1 ‖y‖2H−1

2
, and zᵀH−1

3 z = ‖z‖2H−1
3
.
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Concerning the off-diagonal blocks, we first get upper bounds in appropriate
matrix norms. Lemma 6 and Lemma 7 give∥∥H−1

2 BF−1
∥∥
H−1

1 ,H2
≤
∥∥F−1

∥∥
H−1

1 ,H1

∥∥H−1
2 B

∥∥
H1,H2

=
∥∥F−1

∥∥
H−1

1 ,H1
‖B‖H1,H

−1
2

≤ C1C
−1
3 ,

then by using Eq. (35) and Young’s inequality

∣∣yᵀH−1
2 BF−1x

∣∣ ≤ C1C
−1
3 ‖x‖H−1

1
‖y‖H−1

2
≤ 1

2
‖x‖2H−1

1
+

(
C1C

−1
3

)2
2

‖y‖2H−1
2
.

Lemma 6 and Lemma 7 also give∥∥H−1
2 BF−1M1K

−1
∥∥
H−1

3 ,H2

≤
∥∥K−1

∥∥
H−1

3 ,H3
‖M1‖H3,H

−1
1

∥∥F−1
∥∥
H−1

1 ,H1

∥∥H−1
2 B

∥∥
H1,H2

=
∥∥K−1

∥∥
H−1

3 ,H3
‖M1‖H3,H

−1
1

∥∥F−1
∥∥
H−1

1 ,H1
‖B‖H1,H

−1
2

≤ C−1
4 C1C

−1
3 C1

= C2
1C
−1
3 C−1

4 ,

and again using Eq. (35) and Young’s inequality∣∣yᵀH−1
2 BF−1M1K

−1z
∣∣ ≤ C2

1C
−1
3 C−1

4 ‖y‖H−1
2
‖z‖H−1

3

≤ 1

2
‖z‖2H−1

3
+

(
C2

1C
−1
3 C−1

4

)2
2

‖y‖2H−1
2
.

Hence, we have

vᵀH−1JP (ρ)−1v

≥ ‖x‖2H−1
1

+ ρβ1 ‖y‖2H−1
2

+ ‖z‖2H−1
3
−
∣∣yᵀH−1

2 BF−1x
∣∣− ∣∣yᵀH−1

2 BF−1M1K
−1z

∣∣
≥ 1

2
‖x‖2H−1

1
+

(
ρβ1 −

(
C1C

−1
3

)2
2

−
(
C2

1C
−1
3 C−1

4

)2
2

)
‖y‖2H−1

2
+

1

2
‖z‖2H−1

3

≥ 1

2
(‖x‖2H−1

1
+ ‖y‖2H−1

2
+ ‖z‖2H−1

3
) = γ ‖v‖H−1 ,

with γ = 1/2, provided that

ρ ≥ ρ0 =
1 + (C1C

−1
3 )2 + (C2

1C
−1
3 C−1

4 )2

2β1
. (66)

By a relaxation of the hypotheses in (63), we obtain the following result.
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Theorem 6. Let (18) hold. Let P (ρ) as in (58), chosen such that

F ≈H−1
1

P1, K ≈H−1
3

P3, Ŝ ≈H−1
2

P2. (67)

Then there exists ρ0 > 0 such that if ρ > ρ0 and∥∥I − FP−1
1

∥∥
H−1

1
≤ 1

ρ
(68)

then
J ≈H−1 P (ρ),

Proof. Since we assume (67), there exist constants α1, α2, β1, β2, ζ1 and ζ2
such that for all x ∈ Rn1\{0}, y ∈ Rn2\{0} and z ∈ Rn3\{0},

α1 ≤

〈
x, FP−1

1 x
〉
H−1

1

< x,x >H−1
1

,
∥∥FP−1

1

∥∥
H−1

1
≤ α2,

β1 ≤

〈
y, ŜP−1

2 y
〉
H−1

2

< y,y >H−1
2

,
∥∥∥ŜP−1

2

∥∥∥
H−1

2

≤ β2,

ζ1 ≤

〈
z,KP−1

3 z
〉
H−1

3

< z, z >H−1
3

,
∥∥KP−1

3

∥∥
H−1

3
≤ ζ2.

(69)

On the other hand, the hypotheses and Lemma 7 imply

P1 ∼H−1
1

F ∼H−1
1

H1 , (70)

P3 ∼H−1
3

K ∼H−1
3

H3 . (71)

Using again Lemma 7 with (70) and the hypotheses we also have P2 ∼H−1
2

Ŝ ∼H−1
2

H2. Then Theorem 4 yields P (ρ) ∼H−1 J . Hence
∥∥JP (ρ)−1

∥∥ ≤ Γ for

some Γ > 0. By Definition 2 we then only need to find a constant γ such that
for all nonzero v ∈ Rn, 〈

v, JP (ρ)−1v
〉
H−1

< v,v >H−1

≥ γ .

We need to establish the lower boundxy
z

ᵀ H−1
1 FP−1

1 ρH−1
1 (I − FP−1

1 )BᵀP−1
2 H−1

1 (I − FP−1
1 )M1P

−1
3

H−1
2 BP−1

1 ρH−1
2 ŜP−1

2 −H−1
2 BP−1

1 M1P
−1
3

0 0 H−1
3 KP−1

3

xy
z


≥ γ

xy
z

ᵀ H−1
1 0 0
0 H−1

2 0
0 0 H−1

3

xy
z


= γ

(
‖x‖2

H−1
1

+ ‖y‖2
H−1

2
+ ‖z‖2

H−1
3

)
. (72)
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Concerning the diagonal blocks of JP (ρ)−1 in (72), we get, using (69),

xᵀH−1
1 FP−1

1 x ≥ α1 ‖x‖2H−1
1
, ρyᵀH−1

2 ŜP−1
2 y ≥ ρβ1 ‖y‖2H−1

2
,

and
zᵀH−1

3 KP−1
3 z ≥ ζ1 ‖z‖2H−1

3
.

For the off-diagonal terms, we first get upper bounds on the corresponding
blocks in appropriate matrix norms. By an intermediate result in the proof of
Theorem 3.8 in [20] we have∥∥P−1

2

∥∥
H−1

2 ,H2
≤ β2C

−2
2 α−1

1 C1.

Then from Lemma 6 and (33) we get∥∥H−1
1 (I − FP−1

1 )BᵀP−1
2

∥∥
H−1

2 ,H1

≤
∥∥P−1

2

∥∥
H−1

2 ,H2
‖Bᵀ‖H2,H

−1
1

∥∥H−1
1 (I − FP−1

1 )
∥∥
H−1

1 ,H1

≤ β2C
−2
2 α−1

1 C1C1

∥∥I − FP−1
∥∥
H−1

1

≤ 1

ρ
β2C

−2
2 α−1

1 C2
1 ,

where we used the hypothesis (68). Thus using the norm characterization (35)
we get ∣∣ρxᵀH−1

1 (I − FP−1
1 )BᵀP−1

2 y
∣∣ ≤ β2C

−2
2 α−1

1 C2
1 ‖x‖H−1

1
‖y‖H−1

2
.
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Similarly using Lemma 6, Lemma 7 and Eq. (69) we find∥∥H−1
1 (I − FP−1

1 )M1P
−1
3

∥∥
H−1

3 ,H1

=
∥∥H−1

1 (I − FP−1
1 )M1K

−1KP−1
3

∥∥
H−1

3 ,H1

≤
∥∥KP−1

3

∥∥
H−1

3 ,H−1
3

∥∥K−1
∥∥
H−1

3 ,H3
‖M1‖H3,H

−1
1

∥∥H−1
1 (I − FP−1

1 )
∥∥
H−1

1 ,H1

≤ ζ2C−1
4 C1

∥∥I − FP−1
1

∥∥
H−1

1 ,H−1
1

≤ ζ2C
−1
4 C1

ρ
,∥∥H−1

2 BP−1
1

∥∥
H−1

1 ,H2

=
∥∥H−1

2 BF−1FP−1
1

∥∥
H−1

1 ,H2

≤
∥∥FP−1

1

∥∥
H−1

1 ,H−1
1

∥∥F−1
∥∥
H−1

1 ,H1

∥∥H−1
2 B

∥∥
H1,H2

≤ α2C
−1
3 ‖B‖H1,H

−1
2

≤ α2C
−1
3 C1,∥∥H−1

2 BP−1
1 M1P

−1
3

∥∥
H−1

3 ,H2

=
∥∥H−1

2 BF−1FP−1
1 M1K

−1KP−1
3

∥∥
H−1

3 ,H2

≤
∥∥KP−1

3

∥∥
H−1

3 ,H−1
3

∥∥K−1
∥∥
H−1

3 ,H3
‖M1‖H3,H

−1
1

∥∥FP−1
1

∥∥
H−1

1 ,H−1
1∥∥F−1

∥∥
H−1

1 ,H1

∥∥H−1
2 B

∥∥
H1,H2

≤ ζ2C−1
4 C1α2C

−1
3 ‖B‖H1,H

−1
2

≤ ζ2C−1
4 C2

1α2C
−1
3 ,

and using again Eq. (35)

∣∣xᵀH−1
1 (I − FP−1

1 )M1P
−1
3 z

∣∣ ≤ ζ2C
−1
4 C1

ρ
‖x‖H−1

1
‖z‖H−1

3
,∣∣yᵀH−1

2 BP−1
1 x

∣∣ ≤ α2C
−1
3 C1 ‖y‖H−1

2
‖x‖H−1

1
,∣∣yᵀH−1

2 BP−1
1 M1P

−1
3 z

∣∣ ≤ ζ2C−1
4 C2

1α2C
−1
3 ‖y‖H−1

2
‖z‖H−1

3
.
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Therefore, we have

vᵀH−1JP (ρ)−1v

≥ α1 ‖x‖2H−1
1

+ ρβ1 ‖y‖2H−1
2

+ ζ1 ‖z‖2H−1
3

− β2C
−2
2 α−1

1 C2
1 ‖x‖H−1

1
‖y‖H−1

2
− ζ2C

−1
4 C1

ρ
‖x‖H−1

1
‖z‖H−1

3

− α2C
−1
3 C1 ‖x‖H−1

1
‖y‖H−1

2
− ζ2C−1

4 C2
1α2C

−1
3 ‖y‖H−1

2
‖z‖H−1

3

= α1 ‖x‖2H−1
1

+ ρβ1 ‖y‖2H−1
2

+ ζ1 ‖z‖2H−1
3

− (β2C
−2
2 α−1

1 C2
1 + α2C

−1
3 C1) ‖x‖H−1

1
‖y‖H−1

2

− ζ2C
−1
4 C1

ρ
‖x‖H−1

1
‖z‖H−1

3
− ζ2C−1

4 C2
1α2C

−1
3 ‖y‖H−1

2
‖z‖H−1

3
.

Let a = β2C
−2
2 α−1

1 C2
1 + α2C

−1
3 C1, b = ζ2C

−1
4 C1, c = ζ2C

−1
4 C2

1α2C
−1
3 . Then

we use the following Young’s inequalities

a ‖x‖H−1
1
‖y‖H−1

2
≤ ε1α1

2
‖x‖2H−1

1
+

a2

2ε1α1
‖y‖2H−1

2
,

b

ρ
‖x‖H−1

1
‖z‖H−1

3
≤ ε2α1

2
‖x‖2H−1

1
+

b2

2ε2α1ρ2
‖z‖2H−1

3
,

c ‖y‖H−1
2
‖z‖H−1

3
≤ ε3c

2
‖y‖2H−1

2
+

c

2ε3
‖z‖2H−1

3
.

Thus we obtain

vᵀH−1JP (ρ)−1v ≥ α1(1− ε1

2
− ε2

2
) ‖x‖2H−1

1
+ (ρβ1 −

a2

2ε1α1
− ε3c

2
) ‖y‖2H−1

2

+ (ζ1 −
b2

2ε2α1ρ2
− c

2ε3
) ‖z‖2H−1

3
.

Let
γ = α1

(
1− ε1

2
− ε2

2

)
. (73)

We need to find further conditions on ε1, ε2, ε3, ρ > 0 such that

γ > 0,

(
ρβ1 −

a2

2ε1α1
− ε3c

2

)
> 0,

(
ζ1 −

b2

2ε2α1ρ2
− c

2ε3

)
> 0. (74)

The first condition in (74) is satisfied with ε1 + ε2 < 2. The other two imply

ρ >
γ + a2

2ε1α1
+ ε3c

2

β1
, ζ1 − γ −

c

2ε3
>

b2

2ε2α1ρ2
. (75)

The second inequality yields ζ1 − γ > c
2ε3

. The positivity of ε3 requires ζ1 ≥ γ.
Since γ depends on ε1, ε2 by (73), we have to choose these two constants such
that they also satisfy

2(1− ζ1
α1

) ≤ ε1 + ε2 < 2 . (76)
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This choice is always possible since 1− ζ1
α1

< 1. Hence, we can choose

ε3 ≥
c

2

1

ζ1 − γ
, ρ > ρ0 := max

γ + a2

2ε1α1
+ ε3c

2

β1
,

b√
2ε2α1[ζ1 − γ − c

2ε3
]

 ,

(77)

so that inequality (72) follows.

6.3. Particular choices of preconditioners

We now propose four block triangular preconditioners having the structure
of (58) given by

PR1(ρ) =

F Bᵀ M1

0 −ρ−1ApF
−1
p Mp 0

0 0 K

 , PR2(ρ) =

F Bᵀ M1

0 −ρ−1Mp 0
0 0 K

 ,

PR3(ρ) =

Au Bᵀ M1

0 −ρ−1ApF
−1
p Mp 0

0 0 AT

 , and PR4(ρ) =

Au Bᵀ M1

0 −ρ−1Mp 0
0 0 AT .

 .
We refer to [17, 8, 7, 18] for more details on similar choices. The following two
theorems show under what conditions these preconditioners are either norm-
equivalent or FOV-equivalent to J .

Theorem 7. Let (18) hold. Then for any ρ 6= 0

J ∼H−1 PR3(ρ) , J ∼H−1 PR1(ρ).

Proof. We fit PR3(ρ) in the general preconditioner structure (58) by letting

P1 = Au , P2 = −ApF−1
p Mp , P3 = AT . (78)

We have P2 ∼H−1
2

S (see [20], page 2046). Moreover, by Lemma 7 we have

S ∼H−1
2

H2, so that P2 ∼H−1
2

H2. Since P1 ≡ H1 and P3 ≡ H3, we may use

Theorem 4 to get J ∼H−1 PR3(ρ).
We fit PR1(ρ) in the general preconditioner structure (58) by letting

P1 = F , P2 = −ApF−1
p Mp , P3 = K. (79)

By Lemma 7 we obtain P1 ∼H−1
1

H1 and P3 ∼H−1
3

H3. Together with P2 ∼H−1
2

H2 from above, we may use again Theorem 4 and have J ∼H−1 PR1(ρ).

Theorem 8. Let (18) hold. Then there exists ρ0 > 0 such that if ρ ≥ ρ0 then

J ≈H−1 PR2(ρ) .

Also, there exists ρ1 > 0, such that if ρ > ρ1 and
∥∥I − FA−1

u

∥∥
H−1

1
≤ 1

ρ we have

J ≈H−1 PR4(ρ) .
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Proof. Concerning PR2(ρ), let P1 = F , P2 = −Mp = −H2 and P3 = K in (58).
By Lemma 8 we have P1 ≈H−1

1
H1 and P3 ≈H−1

3
H3, and −S ≈H−1

2
H2, so

S ≈H−1
2

P2. Using Theorem 5 we obtain J ≈H−1 PR2(ρ).

Concerning PR4(ρ), let P1 = Au, P2 = −Mp, P3 = AT . Setting S̃ =

−BA−1
u Bᵀ in Lemma 8, we have −S̃ ≈H−1

2
H2 so that S̃ ≈H−1

2
P2. Using

Theorem 6 we obtain J ≈H−1 PR4(ρ).

Remark 6.1. The GMRES convergence theorem 1 is based on the condition
(38) of FOV-equivalence between the linearization matrix and the preconditioner.
For the discretization framework and the class of block preconditioners consid-
ered here, this FOV equivalence condition as proved in Theorem 5 or 6 depends
first of all on the fulfillment of inequality (18), which bounds a function of the
nondimensional parameters Ra and Pr in terms of the Poincaré constant Cp
of the domain. The numerical determination of Cp is not a trivial task for
general domains. Furthermore, these FOV equivalence conditions are valid with
lower bounds ρ0 on the parameter ρ, where ρ0 cannot be in general computed
nor estimated, see (66) or (77).

7. Numerical results

7.1. Description of the solvers

First, we describe the solvers and subsolvers used for the preconditioned
systems. As pointed out earlier, the determination of a value of ρ that guaran-
tees FOV-equivalence is not possible in general. We observed that the choice
ρ = 1 for all preconditioners guarantees convergence of the following numeri-
cal tests. See also [3] for some numerical investigations on the value of ρ for
a mixed Stokes-Darcy problem. The preconditioner PR1 requires solving four
linear systems: one for the F block, two for the approximation of the inverse
Schur complement P−1

2 = −M−1
p FpA

−1
p , and one for the K block. We use

FGMRES right-preconditioned with an algebraic multigrid method (AMG) [11]
for the F and K blocks and CG preconditioned with AMG for Ap and Mp.
The Ap and Mp blocks do not depend on the solution and their inversion can
be done only once outside the nonlinear loop. The preconditioner PR2 requires
solving three linear systems: one for the F block, one for the Mp block, and
one for the K block. We use the same subsolvers as in PR1 to solve for the F ,
Mp and K blocks. Again the Mp block does not depend on the solution and it
inversion can be done only once outside the nonlinear loop.

In contrast to preconditioner PR1, preconditioner PR3 requires to solve Au

and AT blocks instead of F and K blocks. Since both Au and AT blocks
are symmetric matrices, CG preconditioned with AMG can be applied to solve
them. In this case all the blocks, Au, Ap, Mp and AT , do not depend on the
solution and their inversion can be done only once outside the nonlinear loop.
The last preconditioner PR4 requires to solve Au, Mp and AT blocks, which can
all be solved by CG preconditioned with AMG. Also in this case all the blocks,
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Au, Mp and AT , do not depend on solution and their inversion can be done
only once outside the nonlinear loop.

We set the threshold value for the scaled residual of each subsolver involved
to be 10−4. In the outer linear FGMRES solver for the preconditioned linearized
systems, the convergence threshold of the scaled residual is set to be 10−8. The
stopping tolerance for the nonlinear iterations for the L∞-norm of the absolute
error between two successive solutions is set to 10−6. We set a maximum number
of 50 iterations.

Note that in preconditioners PR1 and PR2 the F and K blocks are inverted at
any nonlinear iteration, while in the preconditioners PR3 and PR4 no inversion
for any subblock is done inside the nonlinear loop. This yields an overhead in
the computational time for PR1 and PR2. On the other hand, we expect PR1

and PR2 to perform better in terms of number of GMRES iterations, since the
F and K blocks are the same as in the linearization matrix J . All of these
aspects will be taken into account in the following numerical examples.

7.2. Numerical experiments

A two-dimensional example is considered in the numerical study. The fluid
domain is the unit square with no-slip boundary conditions, temperature T = 1
on the right side, temperature T = 0 on the left side, and zero heat flux on the
remaining boundaries. At large Rayleigh numbers, this creates an instability
leading to overturning cells. The unit square is partitioned into N ×N squares,
and each square is cut into two right triangles, so the total number of elements
is 2N ×N . We set Pr = 1 in the following numerical studies.

We observe numerically that the eigenvalues of the preconditioned system
cluster around 1 with any choice of the preconditioners PR1, PR2, PR3 and
PR4. Figure 1 shows the eigenvalues for the systems with N = 16 and Ra =
2×103, respectively. Figure 1 (a), (b), (c), (d) and (e) show the eigenvalues with
preconditioners PR1, PR2, PR3, PR4 and without preconditioner, respectively.
The real part of the majority of the eigenvalues with preconditioners PR1 and
PR2 is between 0 and 1, see Figure 1 (a) and (b). On the other hand, since Au

and AT are just an approximation of F and K, the real part of more eigenvalues
for both systems with preconditioners PR3 and PR4 is greater than 1, see Figure 1
(c) and (d). Then, we the expect preconditioners PR1 and PR2 to perform better
than PR3 and PR4 in terms of total number of GMRES iterations.

In Tables 1 - 4 we report the number of nonlinear iterations, the average
number of GMRES iterations per nonlinear iteration and the overall compu-
tational time for the four preconditioners, respectively. The number of total
GMRES iterations is independent of the mesh size in all cases. We expected
such results for PR2 and PR4, since in Theorem 8 we proved FOV equivalence
of these system with the matrix J . Nevertheless we get mesh independence also
for preconditioners PR1 and PR3 which are just norm-equivalent to the matrix
J . This suggests that the FOV-equivalence condition in Theorem 1 may be too
strong, and there may be still room for improvement.

We consider two pairs of preconditioners PR1 versus PR2, and PR3 versus
PR4. The difference in each pair is that the approximate Schur complement is
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(a) (b)

(c) (d)

(e)

Figure 1: Eigenvalues for the Picard system for N = 16 with (a) preconditioner PR1,
(b) preconditioner PR2, (c) preconditioner PR3, (d) preconditioner PR4, (e) no preconditioner.

26



changed from −ApF−1
p Mp to −Mp. For each analyzed case and for each pair

both the computational time and the number of linear iterations are comparable.
At low Rayleigh number PR2 is slightly better than PR1 while at high Rayleigh
number PR1 is the better one. In general PR4 performs slightly better that PR3.

Ra 2× 102 2× 103

N Picard FGMRES (Timing) Picard FGMRES (Timing)
32 3 27.7 (51.3s) 12 30.7 (225.2s)
64 3 29.3 (202.1s) 11 31.8 (837s)
128 2 31 (534.7s) 9 33.6 (2825s)

Table 1: Picard method with preconditioner PR1

Ra 2× 102 2× 103

N Picard FGMRES (Timing) Picard FGMRES (Timing)
32 3 28 (49.6s) 12 33.6 (235.3s)
64 3 29.3 (196.3s) 11 35.4 (898.5s)
128 2 29.5 (499.4s) 9 36.4 (2971s)

Table 2: Picard method with preconditioner PR2

Ra 2× 102 2× 103

N Picard FGMRES (Timing) Picard FGMRES (Timing)
32 3 31.7 (31.6s) 12 51 (189.7s)
64 3 33.7 (114s) 11 53.1 (635.5s)
128 2 34 (309.8s) 9 53.8 (2118s)

Table 3: Picard method with preconditioner PR3

Ra 2× 102 2× 103

N Picard FGMRES (Timing) Picard FGMRES (Timing)
32 3 31.7 (28.2s) 12 49.2 (165.9s)
64 3 33.3 (108.2s) 11 51.2 (572.4s)
128 2 33.5 (283.2s) 9 51.9 (1918s)

Table 4: Picard method with preconditioner PR4

Next we consider other two pairs of preconditioners PR1 versus PR3, and PR2

versus PR4. In each pair P1 changes from F to Au and P3 changes from K to
AT . The number of linear iterations increases from PR1 to PR3 and from PR2 to
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PR4. This is more evident at Rayleigh number 2× 103, and it can be explained
by looking at the eigenvalue distribution in the figures. For example, the eigen-
values in Figure 1(a) are closer to 1 than the ones in Figure 1(c). Consequently
GMRES with preconditioner PR1 need fewer iterations to converge than the one
with preconditioner PR3. On the other hand, the preconditioners PR3 and PR4

perform much better than PR1 and PR2 in terms of computational time, and
especially at high Rayleigh number. As already pointed out this substantial
gain in the timing arises from the fact that both the Au and AT blocks are
solution-independent and can be solved only once outside the nonlinear loop.
Moreover since they are also SPD we can use a CG subsolver instead of GMRES
which is used to invert the F and K in PR1 and PR2.

Finally, in each simulation we observed that PR4 is the best preconditioner
in terms of computational time.

8. Conclusions

We presented an analysis of block preconditioners for fixed-point lineariza-
tions of the Rayleigh-Bénard convection problem, discretized with inf-sup stable
finite element spaces. In our analysis we considered either norm-equivalence or
FOV-equivalence between the linearized systems and right preconditioners. Us-
ing these equivalences we proved that the total number of GMRES iterations is
independent of the mesh size. Four different preconditioners were investigated.
We showed that the eigenvalues of all preconditioned systems cluster around
one. Preconditioner PR1 is the one whose clustering is the most effective, fol-
lowed by preconditioners PR2, PR3 and PR4. In the numerical result session we
confirmed our theoretical findings, showing that using each considered precon-
ditioner the total number of GMRES iterations is independent of the mesh size.
In accordance with the eigenvalue clustering we observed that PR1 requires the
least number of iterations, followed by PR2, PR3 and PR4. However in terms of
computational time preconditioners PR3 and PR4 work much better than PR1

and PR2, since the computational time for each iteration of PR3 and PR4 is con-
siderably less expensive than each iteration of PR1 and PR2. Moreover among
PR3 and PR4, we found that preconditioner PR4 is the better one in terms of
computational time.
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