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The family of metallic kagome compounds AV3Sb5 (A = K, Rb, Cs) was recently discovered to exhibit both
superconductivity and charge order. The nature of the charge density wave (CDW) phase is presently unsettled,
which complicates the interpretation of the superconducting ground state. In this paper, we use group theory
and density functional theory (DFT) to derive and solve a phenomenological Landau model for this CDW
state. The DFT results reveal three unstable phonon modes with the same in-plane momentum but different
out-of-plane momenta, whose frequencies depend strongly on the electronic temperature. This is indicative of
an electronically driven CDW, stabilized by features of the in-plane electronic dispersion. Motivated by the DFT
analysis, we construct a Landau free-energy expansion for coupled CDW order parameters with wave vectors at
the M and L points of the hexagonal Brillouin zone. We find an unusual trilinear term coupling these different
order parameters, which can promote the simultaneous condensation of both CDWs even if the two modes are
not nearly degenerate. We classify the different types of coupled multi-Q CDW orders, focusing on those that
break the sixfold rotational symmetry and lead to a unit-cell doubling along all three crystallographic directions,
as suggested by experiments. We determine a region in parameter space, characterized by large nonlinear Landau
coefficients, where these phases—dubbed staggered trihexagonal and staggered Star of David—are the leading
instabilities of the system. Finally, we discuss the implications of our results for the kagome metals.
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I. INTRODUCTION

The kagome lattice offers a powerful framework to investi-
gate several intriguing physical phenomena, such as frustrated
magnetism and spin liquids [1], flat bands [2–4], and Dirac
points [5,6]. An exotic chiral d-wave superconducting phase
promoted by van Hove singularities has also been predicted
for certain carrier concentrations [7–10], providing a possible
route to realize an intrinsic topological superconductor. The
synthesis and subsequent discovery of superconductivity in
a family of metallic kagome compounds, AV3Sb5 (A = K,
Rb, Cs), provides the opportunity of potentially realizing this
prediction in a real material [11–14]. The superconducting
critical temperature varies between Tc ∼ 1–3 K depending
on the alkali metal and can be increased upon either hole
doping [15] or application of pressure [16–20]. In addition,
near TCDW ∼ 80–100 K, these materials exhibit a kink in the
specific heat [11] that has been widely interpreted as a sig-
nature of a charge density wave (CDW) [11,12,14,21–23].
This ordered state is also observed in scanning tunneling
microscopy (STM) measurements at low temperatures, which
report static charge modulations consistent with a doubling
of the unit cell along both the a and b directions [23–26].
It is also supported by x-ray diffraction which, in addition
to the doubling along the a and b directions, finds a unit
cell increase along the c direction [23,27,28]. While some
experiments report a simple doubling along the c direction
[25], corresponding to 2 × 2 × 2 order, a recent work reported
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a structure consistent with a 2 × 2 × 4 increase of the unit
cell [28]. Several spectroscopic probes have also reported evi-
dence for the three-dimensionality of the CDW order [25,29].
Finally, recent transport measurements under uniaxial strain
indicate that the CDW state competes strongly with supercon-
ductivity [30].

The nature of the CDW state is currently under intense
scrutiny. Since superconductivity sets in at much lower tem-
peratures than charge order, elucidating the symmetries and
properties of the CDW phase is essential to understanding,
e.g., the symmetry of the superconducting order parameter.
In this regard, while there is spectroscopic evidence for both
Star of David and trihexagonal (also known as inverse Star
of David) configurations in the plane [23,24,31] (see Fig. 1),
the character of the interlayer modulation responsible for the
unit-cell doubling along the c direction remains under debate.
The observation of threefold rotational symmetry breaking by
STM experiments [23,24,26,31] offers important clues about
the three-dimensional character of the CDW pattern. In par-
ticular, recent density functional theory (DFT) calculations
[32] and coherent phonon spectroscopy [33] suggest that the
system has unstable phonon modes at both the M and L points
of the hexagonal Brillouin zone [BZ, illustrated in Fig. 1(a)].
Under these conditions, the only way to obtain a charge-
ordered state that doubles the unit cell in every direction and

lowers the sixfold rotational symmetry to twofold is by a
combination of wave vectors from both the M and L points.
Indeed, DFT analyses find that the energy of the system is
minimized by a configuration that intertwines wave vectors
from both the M and L points [32,33]. We note that STM data
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FIG. 1. (a) Illustration of the three-dimensional hexagonal Bril-
louin zone (BZ) corresponding to the space group P6/mmm with the
M and L points highlighted, as well as the U line connecting them.
The other two wave vectors in the stars of M and L are obtained by
threefold rotations. (b), (c) The displacement pattern of the V ions
on a kagome layer according to the unstable M+

1 and L−
2 modes.

Both of these modes lead to similar distortions on a single kagome
layer. Different components (M1, M2, and M3) are shown with arrows
of different colors. Here (b) corresponds to the bond displacements
of the trihexagonal charge order, described by |M1| = |M2| = |M3|
and M1M2M3 > 0. In (c) the bond displacements that give rise to the
Star of David order are shown. In this case, |M1| = |M2| = |M3| but
M1M2M3 < 0.

have also been interpreted in terms of a chiral charge order
[23,34–37] whereas µSR experiments have been interpreted
in favor of time-reversal symmetry breaking associated with
orbital currents in the CDW state [38].

The condensation of CDW order parameters associated
with two different BZ momenta, M and L, which is nec-
essary to explain the 2 × 2 × 2 unit-cell expansion and the
breaking of sixfold rotational symmetry, raises several impor-
tant questions. Why would two different types of CDW order
condense? Do the two order parameters onset simultaneously

or at two different temperatures? What is the mechanism
responsible for the intertwining of these CDW orders? In this
paper, we employ a phenomenological approach, combined
with DFT calculations, to address these issues. Our DFT
analysis reveals a strong dependence of the unstable M and
L phonon frequencies on Fermi surface smearing—a proxy
of the electronic temperature—which is indicative of an elec-
tronic rather than a structural mechanism for the formation of
the charge order. We also find another unstable mode along
the U line connecting the M and L momenta of the BZ; see
Fig. 1(a). The fact that three charge-order configurations with
different c-axis periodicity but identical in-plane periodicity
are viable instabilities suggests that the electronic mechanism
is dominated by in-plane processes. Such a mechanism could
be connected, for example, to the van Hove singularities of the
in-plane electronic dispersion of the kagome lattice, as found
by a recent renormalization group calculation [39].

For the phenomenological analysis, we write down and
minimize the most general Landau free-energy expansion for
the CDW order parameters associated with the M and L wave
vectors. Generally, we find that a direct transition to a coupled
M − L state requires a trilinear coupling that compensates
the energy difference between the two “pure” states. This
opens the possibility of a coupled state appearing even if the
“pure” instabilities are not nearly degenerate. Over a wide
range of parameters, the leading coupled-state instability is
the superimposed trihexagonal Star of David charge order,
which corresponds to a triple-QM/triple-QL order that does
not break sixfold rotational symmetry. The latter is broken
by the single-QM/double-QL orders dubbed staggered tri-
hexagonal and staggered Star of David orders. These orders
are illustrated in Fig. 6. For most of the parameter space
analyzed here, these two states are not the leading insta-
bilities of the system, but onset at temperatures below the
superimposed trihexagonal Star of David order or below the
pure triple-QM planar Star of David (or planar trihexagonal;
see Fig. 4) order. Only when the nonlinear quartic terms are
large enough do we find a direct, single phase transition to
the single-QM/double-QL orders that break sixfold rotational
symmetry. Our results point to the key role played by the non-
linear couplings between the M and L CDWs in the AV3Sb5

kagome metals, and call for further experimental studies to de-
termine whether a single or multiple charge-order transitions
are realized in these compounds.

The paper is organized as follows: We present our DFT
analysis in Sec. II, and in Sec. III we introduce and moti-
vate the Landau free energy describing a system of coupled
CDW orders. The uncoupled free energies are minimized in
Secs. III A and III B. In Sec. IV we minimize the fully coupled
free energy and elucidate the various phases that emerge.
Section V is devoted to the conclusions.

II. PHONON INSTABILITIES IN AV3Sb5: DFT AND

SYMMETRY ANALYSIS

We start by identifying the unstable lattice modes associ-
ated with the CDW transition. We performed lattice response
calculations in CsV3Sb5 using DFT as implemented in the
Vienna Ab initio Simulation Package [40–42]. We employed
the Perdew-Burke-Ernzerhof exchange correlation functional
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for the solids (PBEsol) [43], and used unshifted k grids with
a density of a point per ∼0.012 × 2π Å−1. The plane wave
energy cutoff was set to 350 eV and a Gaussian smearing
scheme was used for the electronic occupations. The phonon
frequencies were calculated using the frozen phonons (direct)
approach, which involves displacing atoms one by one and
performing single-shot DFT calculations to obtain the forces
and build the dynamical matrix.

In agreement with earlier results in the literature [33], our
DFT calculations find two unstable phonon modes that trans-
form as the M+

1 and L−
2 irreducible representations (irreps) of

the space group P6/mmm (No. 191). Formally, M+
1 and L−

2 are
one-dimensional irreps of the little group of the wave vectors
M and L. However, there are three vectors in the stars of both
the M and L points, as shown in Fig. 1(a). The vectors in the
star of M are

Q
(1)
M =

(

1
2 0 0

)

, Q
(2)
M =

(

0 1
2 0

)

, Q
(3)
M =

(

− 1
2 − 1

2 0
)

,

(1)

and those in the star of L are

Q
(1)
L =

(

1
2 0 1

2

)

, Q
(2)
L =

(

0 1
2

1
2

)

, Q
(3)
L =

(

− 1
2 − 1

2
1
2

)

,

(2)

in the basis (G1, G2, G3) with

G1 =
2π

a







1
1√
3

0






, G2 =

2π

a







0
2√
3

0






, G3 =

2π

c







0

0

1






.

(3)
Hence, for the M+

1 irrep, we denote the components of the
CDW order parameter with different wave vectors in the star
by Mi, which corresponds to a displacement with wave vector
Q

(i)
M (i = 1, 2, 3). A similar notation is defined for Li and Q

(i)
L .

In real space, the in-plane displacements of the V atoms,
see Figs. 1(b) and 1(c), account for more than 90% of the
total displacements associated with the M and L modes. The
only significant difference between them is in the relative
phase of the displacements in neighboring V layers along the c

direction. For the M mode, the V atoms are displaced in-phase
between the layers, while for the L mode, the displacement is
out-of-phase between the layers.

Figures 1(b) and 1(c) show the in-plane displacement pat-
terns of the V atoms corresponding to the three wave vectors
of the star of either the M or the L point. The red, green,
and blue displacement patterns denote different periodicities
corresponding to each of the three distinct order parameters
Mi (or Li). Note that the predominant displacement is a short-
ening of certain nearest-neighbor V-V bonds. As a result, we
associate the CDW ordered states to a pattern of shorter V-V
bonds, i.e., a bond-order pattern.

For an isolated layer, the equal-weight superposition of the
three types of in-plane bond order can give rise to two distinct
sixfold-symmetric patterns. If all V-V bond displacements
have the same phase, or more generally for any ground state
with |M1| = |M2| = |M3| and M1M2M3 > 0, the resulting pat-
tern is the trihexagonal (or inverse Star of David) bond-order
configuration shown in Fig. 1(b). In this state, there are short
and long V-V bond loops forming triangles and hexagons.
On the other hand, if we shift the phase of one of the three

bond displacements by π , or more generally for any ground
state with |M1| = |M2| = |M3| and M1M2M3 < 0, the result-
ing configuration is the so-called Star of David bond-order
pattern of Fig. 1(c). In this state, twelve V atoms form a bond
loop in the shape of a six-pointed star. We note that even
though the Star of David and the inverse Star of David phases
have different bond-order patterns, these phases break the
same symmetries of the high-temperature structure. In other
words, their space groups and unit cells are identical.

Going beyond an isolated layer, the bond pattern in consec-
utive layers depends on whether the wave vector is in the star
of M or L. In the former case, the triple-QM bond patterns of
Figs. 1(b) and 1(c) are the same for all layers. We refer to these
two different states as planar trihexagonal and planar Star of
David, respectively. On the other hand, in the case of a triple-
QL bond order, consecutive layers will alternate between the
trihexagonal and Star of David patterns, regardless of the
relative phases between the Li order parameters. Therefore,
there is only one triple-QL state that we dub the alternating
trihexagonal Star of David state (see Fig. 4). We will further
discuss this type of bond order in Sec. III B. Note that any
combination of the order parameters Mi can be represented in
terms of a 2 × 2 × 1 supercell, which is shown in the lower
left corner of Fig. 1(b), whereas combinations of Li require a
2 × 2 × 2 supercell.

While no phonon instabilities have been reported at other
high symmetry points of the BZ, our DFT calculations also
found an instability on the U line that connects the M and L

points [see Fig. 1(a)]. A point on this line is parametrized by
Q

(3)
U = (− 1

2 − 1
2 qz ) (and its threefold-symmetric partners),

with qz = 0 corresponding to the M point and qz = 1
2 to the

L point. The corresponding bond-order patterns are generally
incommensurate along the c axis. For our DFT calculations,
we considered the commensurate case qz = 1

4 , resulting in
a CDW state with a 2 × 2 × 4 unit cell. It is interesting to
note that such a periodicity has been proposed in recent ex-
periments [28]. The fact that the three instabilities uncovered
here have the same in-plane wave vector suggests that the
driving force behind them is not the phonons themselves, but
their interaction with the electronic degrees of freedom, and
in particular, the in-plane electronic dispersion, which may
display van Hove singularities [28,44–46]. This is supported
by the fact that the displacements associated with the M and
L phonon modes occur primarily on the V atoms, which are
the dominant contributors to the density of states at the Fermi
level.

To further examine the effects of the electronic degrees
of freedom on the lattice instabilities, we repeat our DFT
calculations as a function of Fermi surface smearing. Fermi
surface induced lattice instabilities depend sensitively on the
electronic temperature of the system. While the DFT calcu-
lations are in principle performed at zero temperature, it is
possible to consider Fermi surface smearing when calculating
the occupations of the electronic energy levels. We employ a
Gaussian smearing scheme, where the occupation probability
of a state depends on a Gaussian function of its energy with
respect to the Fermi level. The width of this Gaussian, σ , is a
proxy for the electronic temperature. Consequently, electron-
ically driven instabilities are expected to weaken or disappear
as σ is increased.
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FIG. 2. Squared frequency of the unstable phonon modes of
CsV3Sb5 and SrRuO3 as a function of Fermi surface smearing
(in meV), which is a proxy for the electronic temperature. For
the kagome material CsV3Sb5, there is a significant change of the
frequency as the electronic temperature increases. In contrast, for
SrRuO3, which also shows a structural instability with a conden-
sation of the R−

5 phonon mode,the frequency depends very weakly
on electronic smearing. Taken together, we interpret these results as
indicating that the electronic degrees of freedom play an important
role in driving the structural transition in CsV3Sb5.

To assess the evolution of the strength of phonon instabil-
ities as the electronic temperature is changed, in Fig. 2 we
present the square of the M+

1 and L−
2 phonon frequencies as

function of the smearing width σ . Because unstable phonon
modes have imaginary-valued frequencies, the smaller the
absolute value of the squared frequency is, the weaker the
corresponding instability is expected to be. Consistent with
an instability for which the electrons play a substantial role,
the absolute value of the squared frequencies of the unsta-
ble phonon modes decrease significantly when the electronic
temperature is increased, particularly for the M+

1 mode. In the
same plot, the unstable U1 phonon mode, which was computed
for a single smearing value, is shown by the green symbol.
As a comparison, we also plot the squared frequency of the
unstable phonon mode (labeled R−

5 ) of the metallic compound
SrRuO3 as a function of Fermi surface smearing. In this case,
where the phonon instability is not related to a Fermi surface
effect, the frequencies barely change as the electronic temper-
ature increases. Note that the magnitudes of the changes in
the phonon frequencies depend on other details of the DFT
calculations, such as the degree of k-point convergence (not
shown). However, the presence of a sensitive dependence to
the electronic smearing in the kagome material (and the lack
of such a sensitivity in SrRuO3) is not dependent on such
details.

III. LANDAU FREE-ENERGY EXPANSION

FOR CDW ORDER

To elucidate the possible CDW instabilities of the sys-
tem with unstable M+

1 and L−
2 phonon modes, we derive

the Landau free-energy expansion for the coupled Mi and
Li order parameters, with i = 1, 2, 3. For our phenomeno-

FIG. 3. Bond-order configurations corresponding to the order
parameters Mi and Li. We use the notation M i ≡ −Mi and Li ≡ −Li

to refer to the configurations in which the strong and weak bonds are
interchanged.

logical treatment, it is unimportant whether Mi and Li are
lattice distortions or electronic CDWs, since all of these orders
transform as the same irreducible representations of the space
group. The important point is that each component of these
order parameters has a different wave vector, since they come
from different symmetry-equivalent points in the star of the
M and L points of the BZ. As stated above, the wave vector
of Mi is Q

(i)
M whereas Li has wave vector Q

(i)
L [see Eqs. (1)

and (2)]. In Fig. 3, we represent each of the three components
of these order parameters separately as bond-order patterns
in two consecutive layers. Clearly, each Mi or Li component
corresponds to a stripe pattern of bond order that doubles the
unit cell along the stripe direction. In the case of the Li order
parameter, the unit cell is also doubled along the c axis.

We use the INVARIANTS tool [47] to scan all combina-
tions of Mi and Li that transform trivially under the space
group, up to quartic order in the order parameters. We obtain
the Landau free energy:

Ftot = FM + FL + FML, (4)

FM =
αM

2
M2 +

γM

3
M1M2M3

+
uM

4
M4 +

λM

4

(

M2
1 M2

2 + M2
1 M2

3 + M2
2 M2

3

)

, (5)

FL =
αL

2
L2 +

uL

4
L4 +

λL

4

(

L2
1L2

2 + L2
1L2

3 + L2
2L2

3

)

, (6)
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TABLE I. Summary of the phases that minimize the uncoupled free energies FM or FL . The single-Q stripe phases are illustrated in Fig. 3
whereas the triple-Q phases are shown in Fig. 4. The order parameter (OP) column refers to the type of order parameters (M1M2M3) and
(L1L2L3) that are condensed in the corresponding phase. For instance, in the planar Star of David phase, all three Mi are finite and identical
in magnitude, but one has the opposite sign of the other two. In the fifth column we report the increase in the unit cell brought on by the
condensation of the respective phase. This is reported relative to the disordered phase. The sixth column denotes whether the associated phase
respects sixfold rotational symmetry (C6), and the seventh column displays the space group of the ordered CDW phase. Even though there
are multiple phases which have the same space group as the parent structure (P6/mmm), these phases have larger unit cells and hence lower
translational symmetry.

Phase Color Q-vector OP Unit cell C6 Space group

Planar stripe QM (M00) 2 × 1 × 1 No Pmmm (No. 47)
Planar trihexagonal 3QM (MMM ) 2 × 2 × 1 Yes P6/mmm (No. 191)
Planar Star of David 3QM (MMM ) 2 × 2 × 1 Yes P6/mmm (No. 191)
Alternating stripe QL (L00) 2 × 1 × 2 No Immm (No. 71)
Alternating trihexagonal Star of David 3QL (LLL) 2 × 2 × 2 Yes P6/mmm (No. 191)

FML =
γML

3
(M1L2L3 + L1M2L3 + L1L2M3)

+
λ

(1)
ML

4
(M1M2L1L2 + M1M3L1L3 + M2M3L2L3)

+
λ

(2)
ML

4

(

M2
1 L2

1 + M2
2 L2

2 + M2
3 L2

3

)

+
λ

(3)
ML

4
M2L2, (7)

where, e.g., M2 = M2
1 + M2

2 + M2
3 and M4 = (M2)2. As Mi

and Li belong to different irreducible representations, αM and
αL will in general be different, which in turn is manifested
in different transition temperatures, at least in the absence of a
coupling between the two. Thus, we will assume αM = α(T −
TM ) and αL = α(T − TL ) and, in the numerical calculations
presented in Sec. IV, we will set α = 1.

Note the asymmetry between FM and FL: while FM has
a trilinear term, FL does not. This is a direct consequence
of the different wave vectors of the order parameters Mi

and Li described above, since
∑

i Q
(i)
M = 0 but

∑

i Q
(i)
L �= 0.

An uncommon feature of the free-energy expansion in the
equations above is the presence of a trilinear coupling γML

between components of two order parameters that transform
as different irreps. While cubic terms involving the compo-
nents of a single order parameter are rather common [48],
for example in isostructural transitions or in a transition de-
scribed by the four-state clock model, trilinear terms involving
different order parameters are rare. The closest example to
the free-energy expansion discussed in this study is possibly
observed in the layered perovskite ferroelectrics where there
are trilinear couplings between two octahedral rotation modes
and the electrostatic polarization [49,50]. In that case, these
couplings were shown to give rise to different types of phase
transitions; for instance, a large enough trilinear coupling by
itself could induce a first-order transition where multiple order
parameters condense simultaneously [51]. We will argue in
Sec. IV that a similar phenomenon may occur in the CDW
kagome metals. In particular, the trilinear term with coeffi-
cient γML promotes phases in which both Mi and Li are finite,
playing a leading role in shaping the phase diagram.

In the remainder of this section, we restrict our analysis to
the two terms FM and FL, which are considered separately.
In Sec. IV we tackle the full free energy for the coupled

CDW order parameters. The possible minima of FM and FL

that will be derived below are summarized in Table I, and
schematically illustrated in Figs. 3 and 4.

A. CDW order at the M point

We start by analyzing the case where only the Mi CDW
order parameters are allowed to condense. The trilinear term
in FM in Eq. (5) plays a primary role in selecting the leading
instability. Since the individual Mi can always be chosen in
a configuration for which the contribution from the trilinear
term to the free energy is negative, regardless of the sign
of γM , this term will always lower the energy of the triple-
QM configuration, in which all |Mi| = M. For γM < 0, the
bond-order configuration corresponds to the planar trihexago-
nal of Fig. 4, with sgn(M1M2M3) > 0, whereas for γM > 0,

FIG. 4. Triple-Q bond-order configurations obtained from min-
imizing the uncoupled free energies FM or FL . The upper panels
correspond to the two types of triple-QM order, whereas the lower
panel illustrates the triple-QL order. They correspond to linear com-
binations of the three Mi or three Li shown in Fig. 3, as explained in
Table I.
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it corresponds to the planar Star of David of Fig. 4, with
sgn(M1M2M3) < 0. Importantly, the trilinear term contribu-
tion vanishes for the single-QM stripe configurations of Fig. 3,
where only one Mi is nonzero in the CDW phase. Hence, a
triple-QM phase will always be favored, no matter the sign
of λM .

To derive these results, we start by calculating the value of
the free energy in the triple-QM phase:

F
3Q
M =

K2

2592u3
M∗

[54α(T − TM )uM∗ − |γM |K], (8)

where

uM∗ = 3uM + λM, (9)

K = |γM | +
√

γ 2
M − 36α(T − TM )uM∗. (10)

Note that, for the free energy to remain bounded, we must
require uM∗ > 0. For the single-QM phase, the free energy is
given by

F
1Q
M = −

α2(T − TM )2

4uM

. (11)

Therefore, in addition to uM∗ > 0, we must also require that
uM > 0 for the free energy to remain bounded. While F

1Q
M

crosses zero at T = TM , F3Q
M does so at

T
3Q

M =
2γ 2

M

81αuM∗
+ TM , (12)

which is always larger than TM if the free energy is bounded
and the trilinear coefficient γM is not zero. Hence, the trilinear
term induces a transition to a triple-QM phase. The order
parameters are given by

Mi = ±
K

6uM∗
, (13)

with the relative signs chosen such that sgn(γMM1M2M3) < 0.
Thus, at the transition to the triple-QM phase, the order param-
eter exhibits a jump proportional to γM :

|�Mi| =
2|γM |
9uM∗

. (14)

The triple-QM phase in which sgn(M1M2M3) > 0 takes place
for γM < 0 and corresponds to the planar trihexagonal phase
(see Table I and Fig. 4). There are four equivalent ground
states corresponding to four different ways of arranging
the enhanced 2 × 2 × 1 unit cell, given by the combina-
tions of order parameters (M1M2M3) = (MMM ), (MMM ),
(MMM ), and (MMM ). Here, we denote M i ≡ −Mi. Analo-
gously, for γM > 0, the resulting configuration is the planar
Star of David phase shown in Fig. 4. It is characterized
by sgn(M1M2M3) < 0 and consists of four equivalent states
(M1M2M3) = (MMM ), (MMM ), (MMM ), and (MMM ). The
space group of both planar trihexagonal and planar Star of
David phases is P6/mmm, which is the same as the space
group of the compound without charge order.

These considerations are valid for the leading instability of
FM in Eq. (5). When the quartic coefficient λM > 0, however,
the corresponding quartic term penalizes the triple-QM phase
and vanishes for the single-QM phase. As a result, because the
quartic term is subleading with respect to the cubic term, the
single-QM phase corresponding to the in-plane stripes shown

FIG. 5. (a) Phase diagram for CDW order at the M point only,
obtained from minimizing the free energy FM . Here, λM = 0.6 and
uM = 1.0. These values only affect the precise shape of the single-
QM region [see Eq. (15)]. Colors correspond to the phases listed in
Table I and illustrated in Figs. 3 and 4. As explained in the text,
the leading instability is always to one of the two triple-QM phases.
The sign of γM decides between the planar trihexagonal (γM < 0,
light purple) and the planar Star of David (γM > 0, dark purple)
phases. For positive λM , a secondary transition to a single-QM phase
occurs at lower temperatures (red), although for γM = 0 this can
occur at T = TM . For negative λM , the triple-QM phase is always
favored. The upward curvature of the transition temperature is a
consequence of the cubic term as discussed in the text [see Eq. (12)].
(b) Phase diagram for CDW order at the L point only, obtained
from minimizing FL . Here, for concreteness, we chose uL = 1.0,
although it has no impact on the shape of the phase diagram. The sign
of λL selects between the single-QL (λL > 0, green) and triple-QL

(λL < 0, petroleum) phases. No secondary transitions occur at lower
temperatures.

in Fig. 3 can occur for λM > 0 as a subleading instability that
onsets at a temperature T

Q
M < T

3Q
M given by

T
Q

M = −
γ 2

M

9αλ2
MuM∗

[
√

uM (4uM + λM )3

+ uM (8uM + 3λM )] + TM, (15)

which, like the other quantities above, is independent of the
sign of γM . This state has a threefold degeneracy and is
parametrized by (M00), (0M0), and (00M ). It lowers the
sixfold rotational symmetry to twofold, and has space group
Pmmm. Note that if λM < 0, the triple-QM phase is always
favored over the single-QM stripe phase. The phase diagram
for CDW order at the M point is shown in Fig. 5(a) (for
λM > 0). The colors correspond to those shown in Table I.
As expected, a double-QM phase is never favored.

B. CDW order at the L point

We now proceed to analyze the free energy FL, which
contains only the Li order parameters. The absence of a cubic
(trilinear) term makes the analysis simpler than the case of Mi.
Specifically, the sign of the quartic coefficient λL completely
determines whether the instability is toward the single-QL or
the triple-QL phase. The former gives rise to the alternating
pattern of stripes with opposite phases in consecutive layers
shown in Fig. 3. As displayed in Table I, the space group of
this alternating stripe CDW phase is Immm, which does not
have C6 rotational symmetry and is different from the space
group of the single-QM planar stripe phase.
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TABLE II. Summary of the phases that minimize the coupled free energy Ftot in Eq. (4). All of these phases can occur as leading
instabilities of the system. They emerge as a consequence of the coupling terms in FML and intertwine the ordered phases with wave vector
QM with those with wave vector QL .

Phase Color Q-vector OP Unit cell C6 Space group

Superimposed trihexagonal Star of David I 3QM + 3QL (MMM ) + (LLL) 2 × 2 × 2 Yes P6/mmm (No. 191)
Superimposed trihexagonal Star of David II 3QM + 3QL (MMM ) + (LLL) 2 × 2 × 2 Yes P6/mmm (No. 191)
Staggered trihexagonal QM + 2QL (M00) + (0LL) 2 × 2 × 2 No Fmmm (No. 69)
Staggered Star of David QM + 2QL (M00) + (0LL) 2 × 2 × 2 No Fmmm (No. 69)

As for the triple-QL phase, it consists of a bond-order
configuration of alternating trihexagonal and Star of David
patterns in consecutive layers, as shown in Fig. 4. In contrast
to the case of CDW order at the M point, there is only a
single eightfold-degenerate triple-QL phase, rather than two
fourfold-degenerate triple-QM phases. This is a consequence
of the fact that the unit cell in the triple-QL phase is enhanced
by a factor of eight. Consequently, the configurations (LLL)
and (LLL) are related by translational symmetry and corre-
spond to different “domains” of the same phase. Interestingly,
as shown in Table I, the alternating trihexagonal Star of David
phase shares the same space group as the planar trihexagonal
and planar Star of David CDW states, which preserves sixfold
rotational symmetry.

Minimizing the free energy FL in each of the two phases
gives

F
1Q
L = −

α2(T − TL )2

4uL

, (16)

F
3Q
L = −

α2(T − TL )2

4uL + 4
3λL

. (17)

Thus, for the free energy to remain bounded, both uL > 0
and 3uL + λL > 0. These are identical to the conditions for
uM and λM reported above. Comparison between F

1Q
L and

F
3Q
L shows that a single-QL phase is favored for λL > 0 and

a triple-QL phase is favored for λL < 0, as anticipated. The
resulting phase diagram is shown in Fig. 5(b), with the colors
corresponding to the CDW states outlined in Table I. As in the
case of FM , a double-QL phase is not favored in any region
of the phase diagram. In contrast to that case, however, no
subleading instabilities appear in the phase diagram.

C. CDW order along the U line

While several experimental observations support a 2 × 2 ×
2 supercell for the CDW phase of CsV3Sb5, the possibility
of a 2 × 2 × 4 phase has been raised in Ref. [28]. Combi-
nations of the Li and Mi order parameters cannot lead to a
supercell with a periodicity of 4 lattice constants along the c

direction. Instead, translational symmetry breaking that leads
to a 2 × 2 × 4, or in general 2 × 2 × n (where n > 2) unit cell,
requires CDW order with wave vectors on the U line of the
Brillouin zone, which connects the M and L points. A generic
wave vector along this line has six vectors in its star, described
by the inversion-symmetry-related pairs ±Q

(1)
U = ±( 1

2 0 qz ),
±Q

(2)
U = ±(0 1

2 qz ), and ±Q
(3)
U = ±(− 1

2 − 1
2 qz ), with qz �=

0, 1
2 .

Our DFT calculations indeed find that, besides the M+
1 and

L−
2 modes, a phonon mode that transforms as the U1 irre-

ducible representation and increases the unit cell by 2 × 2 × 4
is also unstable. As presented in Fig. 2, the absolute value
of the squared frequency of this U1 mode is not as large as
those of the M+

1 and L−
2 modes. Whether this implies that the

corresponding CDW is a subleading instability as compared
to the other two requires further investigation.

While the analysis of the Landau free-energy expansion
for the Ui order parameters is beyond the scope of this work,
we point out some general properties of these CDW order
parameters. Since Q

(i)
U �= −Q

(i)
U , there are 6 wave vectors in

the star of U , and as a result, the order parameter U±i with
i = 1, 2, 3 is six-dimensional. Similar terms to those in FL,
Eq. (6), and FML, Eq. (7), will appear for FU and FUM ,
but with LiL j replaced by UiU− j . Similarly, for the specific
case where qz = 1/4, there will also be a trilinear coupling
between Ui and Li of the form UiU jLk , with i, j, k all different.
The full analysis of this type of U CDW order is a topic for
future studies. In the remainder of the paper, we will focus
on the commensurate case qz = 0, 1/2, for which the order
parameters are real. Thus, in what follows, we only consider
the coupled CDW orders with M and L wave vectors.

IV. PHASE DIAGRAMS FOR COUPLED CDW ORDERS

Having determined the phase diagrams for the “pure”
CDW orders at the M and L points, we now investigate the
phase diagram of the coupled case. The difference between
FM and FL is evident from Secs. III A and III B. While the
trilinear term present in FM ensures that a triple-QM phase
is always favored as the leading instability, its absence in
FL implies that a single-QL phase is favored when λL > 0.
Hence, coupling the two terms can be expected to lead to
phase diagrams exhibiting a multitude of additional phases.

While the full expression Ftot is sufficiently complicated
that the analytical solutions are no longer tractable, a few
insights can be gained before we present the numerical re-
sults. Besides the “pure” phases presented in the previous
section, our numerical analysis reveals that three different
coupled CDW phases, described in Table II and illustrated
in Fig. 6, also appear over a wide range of parameters.
The superimposed trihexagonal Star of David CDW state is
a triple-QM/triple-QL configuration of the form (MMM ) +
(LLL). We emphasize that, in our notation, for a given i, Mi

and Li have the same sign, whereas M i and Li have opposite
signs. We note that changing the sign of only one set of
components, e.g., to (MMM ) + (LLL), does not change the
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FIG. 6. Four possible bond-order patterns arising from the simul-
taneous condensation of Mi and Li order parameters, obtained from
minimizing the coupled free energy, Ftot . The upper panels show
different types of single-QM/double-QL order, whereas the lower
panels illustrate the triple-QM/triple-QL orders. These phases are
described by linear combinations of the orders in Figs. 3 and 4, as
written in Table II.

symmetries of this phase. However, even though they have
the same symmetry, these are two distinct phases and, as such,
will have different free energies, as evidenced by the γM term
in the free-energy expansion (5) and by the phase diagrams in
Fig. 7. We denote these two phases by light and dark blue col-
ors in Table II and in the phase diagrams below. Due to their
similarity, hereafter we will simply refer to them both as the
superimposed trihexagonal Star of David phase. The resulting
space group of the superimposed trihexagonal Star of David
phases, P6/mmm, is the same as the disordered phase and all
the “pure” triple-Q phases: the planar trihexagonal phase, the
planar Star of David phase, and the alternating trihexagonal
Star of David phase discussed in the previous section.

The staggered trihexagonal and staggered Star of David
CDW states are single-QM/double-QL phases described by
(M00) + (0LL) and (M00) + (0LL), respectively. This type
of states has been studied previously using DFT in Ref. [33]
and proposed to be realized in the kagome metal CsV3Sb5. As
shown in Fig. 6, they break the sixfold rotational symmetry
of the system, and are described by the space group Fmmm.

Like the superimposed trihexagonal Star of David phase, these
states increase the unit cell by 2 × 2 × 2. We found that these
three coupled CDW configurations can become leading insta-
bilities of the system, which compete with the “pure” CDW
orders at M and L over some range of parameters. In contrast,
the mixed phases shown in Table III, which were also found
in our numerical phase diagrams, only appeared as secondary
instabilities inside other phases. They can be interpreted as
the superposition of two or more of the phases presented in
Tables I and II.

Insight about the emergence of the three coupled CDW
states of Table II can be obtained by a qualitative analysis
of the different terms of the free energy FML in Eq. (7).
The trilinear term, with coefficient γML, lowers the total free
energy for the triple-QM/triple-QL state regardless of the
sign of γML. It also lowers the free energy of one of the
single-QM/double-QL phases, but by a smaller amount than
for the triple-QM/triple-QL: either the staggered trihexagonal
phase, if γML < 0, or the staggered Star of David phase, if
γML > 0. Notice also that any coupled phase with a single QL

component gains no energy from this cubic term—or from any
other term of Ftot, for that matter.

The quartic terms of FML also impact the three coupled
CDW states in distinct ways. For coefficients λ

(1)
ML, λ

(2)
ML <

0, these quartic terms further lower the energy of the
triple-QM/triple-QL phase, whereas for λ

(1)
ML, λ

(2)
ML > 0 they

increase its energy. In contrast, the energies of both
single-QM/double-QL phases are unaffected by these two
quartic terms, since they vanish for the configurations
(M00) + (0LL) and (M00) + (0LL).

This qualitative analysis suggests that coupled CDW states
may become energetically more favorable than the pure CDW
states in the presence of a large (in magnitude) trilinear co-
efficient γML. The triple-QM/triple-QL phase seems generally
favored over the single-QM/double-QL phases, except when
the λ

(1)
ML, λ

(2)
ML quartic coefficients are sizable and positive.

While this general tendency is confirmed by our numerical
calculations, we will see that other terms also play an im-
portant role, such as λ

(3)
ML and the coefficients γM and λL of

the “pure” free energies. For instance, γML and γM may be
incompatible if they have opposite signs; for example, γM < 0
favors (MMM ) whereas γML > 0 favors (MMM ). Similarly,
λL favors either a single-QL or a triple-QL phase, but not a
double-QL phase, which does not even appear in the phase
diagram of the Li CDW states.

We finish by noting that, due to the sizable parameter
space, we cannot rule out that other coupled CDW states
may be stabilized outside the regimes we investigated. For
instance, there are several possible mixed phases that can
emerge inside the ordered states discussed above. A few of

TABLE III. Additional phases that minimize the coupled free energy Ftot in Eq. (4). In contrast to the phases in Table II, these states do
not occur as leading instabilities of the free energy. They can be described as mixing two or more of the phases in Tables I and II.

Phase Color Q-vector OP Unit cell C6 Space group

2M + M + 2L 3QM + 2QL (M1M1M2) + (L1L10) 2 × 2 × 2 No Cccm (No. 66)
2M + M + 2L + L 3QM + 3QL (M1M1M2) + (L1L1L2) 2 × 2 × 2 No Cmmm (No. 65)
M + L + L QM + 2QL (M00) + (0L1L2) 2 × 2 × 2 No C2/m (No. 12)
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FIG. 7. Phase diagrams for coupled M and L CDW orders for
progressively larger values of λ

(i)
ML (top to bottom) as functions of

γML and T . The parameters used are summarized in Table IV. The
dashed black line denotes TL and the dotted black line denotes TM .
The color scheme is that summarized in Tables I, II, and III. For
panels (a)–(c), TL > TM , and in (d)–(f), TM > TL . The value of γML

required to change the leading instability from a “pure” CDW phase
to a coupled CDW phase is much smaller for TL > TM compared to
TM > TL . While the alternating stripe phase (green) appearing for
TL > TM is rather unaffected by an increasing λ

(i)
ML , the planar Star

of David phase (dark purple) appearing for TM > TL becomes more
prominent as λ

(i)
ML increases. The red dashed line denotes the value of

γML chosen in Figs. 8–10.

these mixed phases were seen in our numerical calculations
(see Table III), all of which break sixfold rotational symmetry.

A. Impact of the coupling between Mi and Li

Here, we illustrate how the coupling between FM and
FL modifies the “pure” phase diagrams in Fig. 5. In Fig. 7
we show the numerically calculated γML-temperature phase
diagrams for TL > TM [panels (a)–(c)] and TM > TL [panels
(d)–(f)]. The phases are labeled according to the color scheme
of Tables I, II, and III. The dashed (dotted) line denotes TL

(TM) in this and all subsequent figures. Upon moving from
the top to the bottom panels, progressively larger values of

TABLE IV. Parameters used for the numerical minimization pre-
sented in Sec. IV (unless the specific parameter is being varied as
indicated in the text). The three rows of λ

(i)
ML denote the three different

sets used in Fig. 7. In Figs. 8–10 we use the middle row values for
λ

(i)
ML .

γM λM uM λL uL γML λ
(1)
ML λ

(2)
ML λ

(3)
ML

0.01 0.015 0.0175
0.25 0.6 1.2 0.8 1.5 −0.7 0.5 0.75 0.875

1.0 1.5 1.75

the quartic couplings λ
(i)
ML are considered, as shown in the last

three columns of Table IV. The coefficients of the uncoupled
free energies are set by the values in the first five columns of
the same table. Because we consider positive values for the
“pure” coefficients γM , λM , and λL, the leading instabilities in
the uncoupled cases are an alternating stripe phase (Li case)
and a planar Star of David phase (Mi case). The addition of
finite λ

(i)
ML and γML changes this, and several additional phases

appear.
Starting with the case TL > TM [panels (a)–(c)] in Fig. 7,

for small values of γML the leading instability remains the
alternating stripe phase (green). It gives way to one of the
superimposed trihexagonal Star of David phases (light/dark
blue) as the magnitude of γML increases. The staggered tri-
hexagonal phase (orange) appears as a subleading instability
in the γML < 0 region, condensing at a lower temperature
inside the superimposed trihexagonal Star of David phase.
Other mixed phases presented in Table III appear for nar-
row ranges of γML at low temperatures. Upon increasing the
positive-valued coefficients λ

(i)
ML [i.e., moving from (a) to (c)],

the staggered trihexagonal phase becomes more prominent.
At the same time, the staggered Star of David phase (brown)
emerges in the γML > 0 region of the phase diagram, although
it occupies a smaller area than its counterpart in the γML < 0
region. The staggered trihexagonal and Star of David phases
do not become the leading instabilities for the parameters
studied in panels (a)–(c).

Moving on to the case TM > TL [panels (d)–(f) in Fig. 7],
the planar Star of David phase (dark purple) remains the
leading instability for a large range of γML values—larger
than the range for which the alternating stripe phase appears
in panels (a)–(c). This range of γML values is only weakly
dependent on the magnitude of λ

(i)
ML, as one moves from

panel (d) to panel (f). Larger absolute values of γML in
panel (d) change the leading CDW instability to one of the
superimposed trihexagonal Star of David phases (light/dark
blue), although the staggered trihexagonal phase (orange)
emerges at lower temperatures. Increasing λ

(i)
ML as one moves

from (d) to (f), the staggered trihexagonal phase expands and
becomes the dominant and only leading instability for γML

negative and large in magnitude. For large enough γML > 0,
the superimposed trihexagonal Star of David phase remains
the leading instability for all values of λ

(i)
ML studied here. In

contrast to the case TL > TM [panels (a)–(c)], the staggered
Star of David phase does not appear on the γML > 0 side
of the phase diagrams (d)–(f). One possible explanation is
that, because γM > 0 (see Table IV), when γML > 0 the
superimposed trihexagonal Star of David II phase (light blue)
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becomes more robust as compared to the case when γML < 0,
since the two cubic terms favor the same sgn(M1M2M3) only
when the two coefficients have the same sign.

B. Robustness of the phase diagrams

The behavior of the phase diagrams shown in Fig. 7 gen-
erally agrees with our qualitative analysis: a coupled CDW
phase is stabilized and wins over the “pure” CDW phase
(green or purple) when the trilinear coefficient γML is rela-
tively large (in magnitude). For most of the phase diagram,
the dominant coupled CDW state is one of the superim-
posed trihexagonal Star of David phases (light/dark blue),
although upon increasing the values of the positive quartic
coefficients λ

(i)
ML, the staggered trihexagonal phase (orange)

becomes more prominent in the γML < 0 side of the phase
diagram.

We now consider the impact of further varying the various
parameters of Ftot to elucidate the robustness of the phase
diagrams of Fig. 7. In particular, we are interested in establish-
ing under which conditions the leading instability is toward
one of the coupled CDW phases that break sixfold rotational
symmetry—i.e., the staggered trihexagonal (orange) and stag-
gered Star of David (brown) phases.

We focus on the set of parameters given by the central
row of Table IV, marked by the vertical red dashed lines in
Figs. 7(b) and 7(e). In particular, across Figs. 8–10, we fix
γML = −0.7 and vary the other eight parameters that appear,
respectively, in FM , FL, and FML, for both TL > TM (left pan-
els) and TM > TL (right panels). In these figures, the arrows
denote the parameter values corresponding to the red dashed
lines of Figs. 7(b) and 7(e), which are the same as those
presented in the central row of Table IV.

We start by analyzing the impact of the changes in the
coefficients of FM in Fig. 8. From simple power counting,
the cubic coefficient γM is expected to have a stronger impact
on the phase diagram compared to the quartic coefficients
λM and uM . This expectation is confirmed by the plots in
Fig. 8. Although changing γM leads to the appearance of a
variety of additional phases as secondary transitions, it does
not alter the leading instabilities, except for the finely tuned
case at γM = 0. Therefore, γML remains the most important of
the two cubic coefficients to determine the leading instability.
Note that the superimposed trihexagonal Star of David phases
(light/dark blue) become more robust when the signs of γM

and γML are the same, in agreement with what we discussed
above.

The coefficients λM and uM , on the other hand, have a more
limited effect, although λM does lead to a few changes at
lower temperatures when the Mi order parameters are dom-
inant, i.e., TM > TL [Figs. 8(d)–8(f)]. Note that uM must be
positive for the free energy to remain bounded, as argued in
Sec. III A. In Figs. 8(d) and 8(e), we observe the appearance
of a state that mixes a triple-QM phase with a double-QL phase
(dark green), described by three distinct order parameters,
(M1M1M2) + (L1L10), as shown in Table III.

Moving on to Fig. 9, we consider the impact of the two
coefficients of FL. While changing λL does not lead to a
qualitatively different phase diagram, it has a minor impact
on the onset temperature of the secondary transition in the

FIG. 8. Impact of changing the coefficients γM , λM , and uM of
FM , for fixed γML = −0.7, on the phase diagrams of Figs. 7(b) and
7(e). Panels (a)–(c) correspond to TL > TM and (d)–(f), to TM >

TL . The arrows denote the parameters’ values corresponding to the
dashed lines in Figs. 7(b) and 7(e). For the majority of cases, the
leading instabilities are unaffected by changing these parameters.
The only exception is the case of γM which, for TM > TL [panel
(d)], causes a change from the planar trihexagonal to the planar
Star of David phase. In this regime, the behavior is reminiscent
of that observed in the “pure” phase diagram Fig. 5(a), indicating
that Li plays nearly no role in this region of the phase diagram. In
addition, changing γM leads to a variety of additional phases at lower
temperatures. In general, the impact of changing the parameters of
FM is the greatest when TM > TL , and the Mi are the leading-order
parameters [panels (d)–(f)].

case TL > TM , as seen in panel (a). On the other hand, uL

prominently impacts the phase diagrams, inducing a transition
between the staggered trihexagonal phase (orange) and the
superimposed trihexagonal Star of David I phase (dark blue)
as the leading instability of the system. Such a transition
occurs for a very small value of uL. Although the transition
is only seen for TL > TM [panel (b)], a similar trend is seen in
the case TM > TL [panel (d)].

Figure 10 shows the effect of the coupling constants
λ

(i)
ML. Generally, their main impact is on the shape of the

phase diagrams below the leading transition temperature. The
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FIG. 9. Impact of changing the coefficients λL and uL of FL , for
fixed γML = −0.7, on the phase diagrams of Figs. 7(b) and 7(e). Pan-
els (a) and (b) correspond to TL > TM , and (c) and (d) to TM > TL . The
arrows denote the parameter values corresponding to the dashed lines
in Figs. 7(b) and 7(e), while the red dotted line denotes the value of
uL chosen in Figs. 11(a)–11(d). Overall, the impact of changing these
parameters is minor, except for small values of uL , where the leading
instability becomes the staggered trihexagonal phase (orange) rather
than the superimposed trihexagonal Star of David I phase (dark blue).

only exception is the case of λ
(3)
ML: negative values of this

coefficient stabilize the staggered trihexagonal phase (orange)
as the leading instability of the system. We emphasize that the
free energy remains bounded in all cases studied here.

Overall, the analyses presented in Figs. 8–10 reveal that,
at least in what concerns the leading instabilities, the phase
diagrams of Fig. 7 are rather robust against independent vari-
ations of the other eight Landau coefficients. This confirms
that it is the cubic coefficient γML of FML which is responsible
for promoting a coupled M − L CDW state, with the quartic
coefficients λ

(i)
ML and the relative sign of γM with respect to

γML selecting between the triple-QM/triple-QL phase and the
single-QM/double-QL phase. We emphasize once again that
the nine-dimensional parameter space is vast, and thus we
cannot rule out the appearance of other states.

C. Sixfold rotational symmetry breaking phases

Recent experiments on kagome metals are consistent with
a CDW state that doubles the unit cell in all directions (2 ×
2 × 2 unit cell) and lowers the sixfold rotational symmetry of
the lattice to twofold [23,24,26,31,33]. In this subsection, we
further explore the possibility of obtaining such a CDW phase
as the leading instability of the system. The breaking of the
sixfold rotational symmetry is signaled by the onset of three

FIG. 10. Impact of changing the coefficients λ
(1)
ML , λ

(2)
ML , and

λ
(3)
ML of FML , for fixed γML = −0.7, on the phase diagrams of

Figs. 7(b) and 7(e). Panels (a)–(c) correspond to TL > TM , and (d)–(f)
to TM > TL . The arrows denote the parameter values corresponding
to the dashed lines in Figs. 7(b) and 7(e), while the red dotted line
denotes the value of λ

(3)
ML chosen in Figs. 11(e)–11(h). The coeffi-

cients λ
(1)
ML and λ

(2)
ML do not change the leading instabilities, affecting

only the secondary transitions at lower temperatures. On the other
hand, when λ

(3)
ML is negative, it can change the leading transition

to the staggered trihexagonal phase (orange), regardless of whether
TL > TM [panel (c)] or TM > TL [panel (f)].

nematic order parameters:

�M =

(

M2
1 + M2

3 − 2M2
2√

3
(

M2
3 − M2

1

)

)

, (18)

�L =

(

L2
1 + L2

3 − 2L2
2√

3
(

L2
3 − L2

1

)

)

, (19)

�ML =

(

M1L2L3 + M3L1L2 − 2M2L1L3
√

3(M3L1L2 − M1L2L3)

)

. (20)

Each of them, obtained using the INVARIANTS tool [47],
transforms as the Ŵ+

5 irreducible representation of the space
group P6/mmm. Ŵ+

5 is the irreducible representation corre-
sponding to three-state Potts-nematic order [52,53] in a lattice
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with sixfold or threefold rotational symmetry, and it is sub-
ducted to the E2g irreducible representation of the D6h point
group [54].

The above composite order parameters are useful to de-
termine whether a specific CDW phase breaks the sixfold
rotational symmetry. Referring to Table I, as one might have
expected, the stripe single-QM and single-QL phases lead to
finite �M and �L, respectively; however, the unit cell does
not double in all three directions. On the other hand, the
“pure” triple-QM and triple-QL phases—planar trihexagonal,
planar Star of David, and superimposed trihexagonal Star of
David—do not result in a finite �M or �L, and thus do not
break the sixfold rotational symmetry of the system.

Meanwhile, the coupling between Mi and Li allows for
coupled CDW phases that do break the sixfold rotational
symmetry and double the unit cell in all directions, being
consistent with experimental observations [23,27,28]. Refer-
ring to Table II, �M , �L, and �ML are all nonzero for
the two types of single-QM/double-QL phases, described
by (M00) + (0LL) (staggered trihexagonal) and (M00) +
(0LL) (staggered Star of David). On the other hand, the
triple-QM/triple-QL superimposed trihexagonal Star of David
phase, given by (MMM ) + (LLL), preserves the sixfold rota-
tional symmetry.

There are other potential coupled CDW phases that also
break C6 symmetry, but either we do not find them, or they
emerge only as subleading instabilities inside another or-
dered state. Consider, for instance, the double-QM/single-QL

phase with (MM0) + (00L) discussed in Ref. [33]; it has
�M,�L �= 0 but �ML = 0. The reason we believe it does not
show up in the phase diagrams is because it does not gain
any energy from the trilinear term of FML. Conversely, the
triple-QM/triple-QL phases described by (MMM ) + (LLL)
and (MMM ) + (LLL) have �M,�L = 0 but �ML �= 0. While
it gains energy from the cubic and quartic terms of FML, it
seems to be not able to compete with the other phases seen in
our phase diagrams. This analysis also indicates that neither
of these phases is likely to be a leading instability of the
system. The reason is because only a subset of the composite
nematic order parameters �i are nonzero. Symmetry imposes
that, once one of the �i is nonzero, all the other ones will
become nonzero as well, since they all belong to the same
irreducible representation Ŵ+

5 . But, clearly, the only way this
can happen for, say, the (MMM ) + (LLL) phase, is by fur-
ther making at least one of the three Mi or Li components
different from the others. This indicates that this phase is
actually one of the mixed states shown in Table III; i.e., the
(MMM ) + (LLL) phase necessarily mixes with other phase(s)
to become (M1M1M2) + (L1L1L2).

Therefore, we conclude that the most promising candi-
dates to explain the experimental observation of C6 symmetry
breaking and 2 × 2 × 2 unit cell enhancement are the stag-
gered trihexagonal phase (orange) and staggered Star of
David phase (brown) depicted in Fig. 6. The main question
is whether they appear as a secondary instability inside the
superimposed trihexagonal Star of David phases (light/dark
blue) or as the leading instability of the system. Based on
the results from Figs. 7–10, besides large and positive λ

(1)
ML

and λ
(2)
ML, two coefficients stand out as promoting the onset

of the staggered trihexagonal phase as the leading instability:
uL [see red dotted lines in Figs. 9(b) and 9(d)] and λ

(3)
ML [see

red dotted lines in Figs. 10(c) and 10(f)]. To further elucidate
whether the parameter range where this state is the leading
instability of the system can be enhanced, in Fig. 11 we
show γML-temperature phase diagrams starting with param-
eters corresponding to the red dotted lines of Figs. 9(b) and
9(d) [arrows in panels (a)–(d)] and the red dotted lines of
Figs. 10(c) and 10(f) [arrows in panels (e)–(h)]. In particular,
we interpolate between the L-dominated case (leftmost pan-
els, TL ≫ TM) and the M-dominated case (rightmost panels,
TM ≫ TL). While these parameter choices are obviously not
exhaustive, they do represent the cases that we found to be the
most favorable for the staggered trihexagonal phase.

From Fig. 11, it is clear that the staggered trihexagonal
phase (orange) only occurs as a leading instability for large (in
magnitude) negative values of γML. For smaller (in magnitude)
negative values, it can appear only as a secondary transition
inside another phase. The center of the phase diagrams remain
dominated by the “pure” alternating stripe (green) and the
planar Star of David (dark purple) phases. Interestingly, there
is an asymmetry in the phase diagram since even for large
positive γML, the staggered Star of David phase (brown) does
not become the leading instability of the system. This is a
consequence of the fact that we chose γM > 0. Had we con-
sidered γM < 0 instead, the superimposed trihexagonal Star
of David II phase (light blue) envelope appearing above the
staggered Star of David phase (brown) would appear above
the staggered trihexagonal phase (orange) instead, and would
be a superimposed trihexagonal Star of David I (dark blue)
phase instead. As a result, the staggered Star of David phase
would become the leading instability for sufficiently large
positive γML.

It is interesting to note how the difference in the bare
transition temperatures, TL and TM , affects the shape of the
phase diagrams. As they correspond to the condensation of
order parameters belonging to different irreducible represen-
tations, they are not guaranteed to be close. In both cases
(TL > TM and TM > TL), upon moving to the left of the phase
diagram along the negative γML axis, the staggered trihexag-
onal phase (orange) first emerges as a secondary instability
before becoming the leading instability. However, when TL >

TM [panels (a)–(b) and (e)–(f)], it is generally preceded by
either of the superimposed trihexagonal Star of David phases
(light/dark blue), whereas when TM > TL [panels (c)–(d) and
(g)–(h)], it is achieved via a direct transition from the “pure”
Star of David phase (dark purple). More generally, it is clear
that for both M and L to condense simultaneously, the cubic
coefficient γML must overcome the splitting between TL and
TM . Whether this is facilitated in AV3Sb5 by an intrinsically
large trilinear coefficient or by an accidental near-degeneracy
of TL and TM requires a microscopic model and is beyond the
scope of this work.

We finish this section by noting that it is possible for CDW
fluctuations to lead to the condensation of the composite ne-
matic order parameters in Eqs. (18) even when Mi = Li = 0,
i.e., above the CDW transition [55]. Such a vestigial nematic
phase arising from partially melted CDW order has been re-
cently proposed in the case of tetragonal Ni-based pnictide
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FIG. 11. Phase diagrams for uL = 0.1 (a)–(d) [see red dotted line in Figs. 9(b) and 9(d)] and λ
(3)
ML = −1.6 (e)–(h) [see red dotted line in

Figs. 10(c) and 10(f)] for different values of TL − TM , from TL − TM = −0.05 (a), (e) to TL − TM = 0.05 (d), (h). TM and TL are denoted by the
dotted and dashed black lines, respectively. The remaining parameters are as presented in Table IV.

superconductors [56]. To the best of our knowledge, no ev-
idence of a separate nematic transition has been reported in
AV3Sb5.

V. SUMMARY AND CONCLUSIONS

In this paper, we derived the Landau free energy appro-
priate for studying coupled CDWs with wave vectors at both
the M and L points of the hexagonal BZ. In the absence of
coupling between the Mi and Li order parameters, the phase
diagrams feature very little variation. For the M-point CDW,
due to the presence of a trilinear term, only a triple-QM phase,
corresponding to either the planar trihexagonal or planar Star
of David bond configuration, occurs as a leading instability.
Because a cubic term is not allowed for the L-point CDW, the
phase diagram features both a single-QL (alternating stripe)
and a triple-QL (alternating trihexagonal Star of David) phase.
This simple picture changes dramatically once the M- and
L-point CDWs are coupled. Crucially, owing to the specific
wave vectors of the order parameters at M and L, both cubic
and quartic coupling terms are allowed. The trilinear coupling,
γML, plays a primary role in determining the leading instabil-
ity as evidenced from Figs. 7–11.

Importantly, even if the transition temperatures TL and
TM of the pure CDW states are not extremely close, a large
enough (in magnitude) trilinear coupling γML is able to sta-
bilize a coupled M − L CDW state. In this case, while for
most of the parameter space studied here the leading coupled
instability is the triple-QM/triple-QL state dubbed super-
imposed trihexagonal Star of David phase, we also find a
range of parameters for which the leading instability is the
single-QM/double-QL states dubbed staggered trihexagonal
and staggered Star of David phases. These phases are interest-
ing because they not only double the size of the unit cell in all

directions, but they also break the sixfold rotational symmetry
of the lattice via the condensation of secondary composite
nematic order parameters. These two features are consistent
with several experimental observations regarding the CDW
state of AV3Sb5 kagome metals [23,24,26,31].

This phenomenological analysis raises interesting ques-
tions that deserve further experimental investigation. For in-
stance, a direct transition to one of the single-QM/double-QL

states seems to require specially tuned Landau parame-
ters. Most commonly, this state onsets inside either the
triple-QM/triple-QL state or one of the “pure” triple-QM states
(i.e., the planar trihexagonal and planar Star of David phases).
Therefore, it is crucial to experimentally establish whether
there is a single or multiple CDW transitions in AV3Sb5.
This will provide important constraints on the Landau param-
eters. Similarly, it will be important to determine whether the
breaking of sixfold rotational symmetry takes place above, si-
multaneously with, or below the first CDW transition. Which
of these scenarios is realized depends roughly on the size of
the trilinear coupling γML relative to the energy difference be-
tween the pure M-point and pure L-point CDW states. Given
the sensitivity of the phase diagram to these two parameters,
it is conceivable that AV3Sb5 compounds with different alkali
metals A may show distinct CDW phase diagrams.

Our results also provide insights about the microscopic
mechanism responsible for the onset of CDW order. Our DFT
calculations reveal two interesting features associated with the
CDW state: (i) three different phonon modes along the U

line (which includes the M and L points) are unstable; and
(ii) the corresponding imaginary-valued frequencies display a
strong dependence on the electronic temperature (as signaled
by the Fermi surface smearing). Taken together, they provide
strong support for the scenario in which the CDW is not the
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consequence of a pure lattice instability, but is driven by the
electronic degrees of freedom. More specifically, because all
points along the U line share the same in-plane momentum,
this suggests a primary role of the in-plane electronic dis-
persion and/or interactions in promoting the CDW transition.
Importantly, an electronically driven CDW instability is likely
to have a more significant intertwining with the superconduct-
ing state. This is supported by recent transport measurements
indicating a strong competition between the CDW and SC
phases [30].
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