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The anticipated enhancements in detector sensitivity and the corresponding increase in the number of
gravitational wave detections will make it possible to estimate parameters of compact binaries with greater
accuracy [assuming general relativity (GR)], and also to carry out sharper tests of GR itself. Crucial to these
procedures are accurate gravitational waveform models. The systematic errors of the models must stay
below statistical errors to prevent biases in parameter estimation and to carry out meaningful tests of GR.
Comparisons of the models against numerical relativity waveforms provide an excellent measure of
systematic errors. A complementary approach is to use balance laws provided by Einstein’s equations to
measure faithfulness of a candidate waveform against exact GR. Each balance law focuses on a physical
observable and measures the accuracy of the candidate waveform vis a vis that observable. Therefore, this
analysis can provide new physical insights into sources of errors. In this paper we focus on the angular
momentum balance law, using post-Newtonian theory to calculate the initial angular momentum, surrogate
fits to obtain the remnant spin, and waveforms from models to calculate the flux. For brevity of presentation
we restrict ourselves to the waveform models IMRPhenomXPHM, NRSur7dq4,SEOBNRv4PHM,
IMRPhenomPv2, and SEOBNRv3. The consistency check provided by the angular momentum balance
law brings out the marked improvement in the passage from IMRPhenomPv2 to IMRPhenomXPHM and
from SEOBNRv3 to SEOBNRv4PHM and shows that the most recent versions agree quite well with exact
GR. For precessing systems, on the other hand, we find that there is room for further improvement,
especially for the Phenom models.

DOI: 10.1103/PhysRevD.104.124071

I. INTRODUCTION

The next generation of gravitational wave detectors with
much higher sensitivity are on the horizon [1–5]. We can
expect detection of compact binaries with orders of
magnitude higher signal-to-noise ratio than current mea-
surements. Consequently it will allow unprecedented
precision in the tests of general relativity (GR) in the
highly-nonlinear regime. Moreover it will allow high-
precision parameter estimation of the compact binary.
However to carry out these procedures, it is essential to
have accurate waveform models whose systematic errors
are smaller than the measurement errors.
Gravitational wave observations allow several families

of tests of GR [6–8]. Many such tests can be done without
waveform models, such as parametrized tests of post-
Newtonian (PN) theory [9–13], tests with the quasinormal

ringdown frequencies [14–16], or “no-hair” tests of the
inspiral phase of binaries [17–19]. However these tests rely
on the analytic solutions from the perturbative regimes. For
testing the highly nonlinear merger regime, waveform
models are indispensable. For example one can perform
the residual test, where the difference between the data and
the best-fit waveform obtained from a model is tested for
consistency with being purely noise [7,8]. Some tests can
combine many events to have increasing stringency.
However it has been shown that accuracy requirements
of models also increase for such tests, and that current
models may not be sufficiently accurate to perform such
tests using detections made so far [20].
Waveform models are created using a diverse range of

innovative ideas. However to obtain any model it is
necessary to make approximations, and the ensuing sys-
tematic errors are unavoidable. A useful way to measure the
error is by computing the mismatch of the models against
numerical relativity (NR) waveforms using a detectors
noise spectrum. If the mismatch M between NR and the*neevkhera@psu.edu
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model satisfies M ≤ 1=ρ2, where ρ is the detector signal-
to-noise ratio of an event, then the model will not have
significant biases in parameter estimation [21,22]. It has
been argued that this sufficient condition can be relaxed in
practice [23]; nevertheless, the mismatch must still scale as
1=ρ2. In these analyses one takes NR to be a proxy for the
exact GR waveform. Therefore, the accuracy for NR must
increase for future detectors as well [24].
On the other hand there are additional tools to measure

errors of waveform models from GR; balance laws. The
balance laws do not depend on NR and can thus be used at
any point in parameter space, especially where NR sim-
ulations are sparse. Moreover, the balance laws may
provide new insights into sources of errors. Exact GR in
asymptotically flat spacetime has a large asymptotic
symmetry group; the Bondi-Metzner-Sachs (BMS) group
[25,26]. This group gives rise to infinitely many balance
laws [27,28]. In addition to the more familiar energy,
momentum, and the Poincaré angular momentum balance
laws, there is an infinite family of supermomentum balance
laws. Application of the supermomentum balance law to
test waveform systematics was discussed in [29,30]. The
application of the three-momentum balance laws has been
discussed further more recently in [31].
In this paper we will focus on using the angular

momentum balance law. There is an important subtlety
with angular momentum in asymptotically flat GR; the
angular momentum suffers from an ambiguity, that arises
from supermomentum. However, a detailed analysis [32]
has shown that this contribution leads to a correction term
that is at most Oðv2Þ in compact binary coalescences,
where v is the kick velocity. Since this effect is too small for
the level of accuracy of interest to this paper we will neglect
it. Therefore, for our purposes, the angular momentum
balance law can be stated simply as

JkðtfÞ ¼ JkðtiÞ þ F k; ð1Þ

where Jk denotes angular momentum vectors, i ¼ 1, 2, 3,
and ti and tf are the initial and final times. Here F k is the
flux between ti and tf, and can be expressed in terms of
the gravitational strain h∘ ¼ rh ¼ rðhþ − ih×Þ, where r is
the luminosity distance to the source. We have, [27,28]

F k ¼ i
32π

Z
tf

ti

dtdΩð̄r̂kð _h∘ðh̄∘ þ _̄h
∘
ðh∘ − 2ðð _h∘h̄∘ÞÞ

þ c:c: ð2Þ

with r̂k ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. Note that since
the flux depends only on h∘—rather than h—dependence
of the balance law on the luminosity distance r is factored
out. For the definition of ð and all other conventions we
follow the Moreschi-Boyle conventions (see Appendix B
of [33]).

The idea is to test the accuracy of a candidate
waveform vis-à-vis exact GR by checking how well it
satisfies the balance law (1). This requires us to evaluate
each term in Eq. (1). The flux in Eq. (2) can be evaluated
directly from the strain given by the candidate waveform
model. But to evaluate the initial and final angular
momentum, one needs additional inputs. For the initial
angular momentum we can resort to post-Newtonian
theory, provided the initial time is chosen to be early
enough that the PN expressions are sufficiently accurate.
For the final spin, we will use fits to the dimensionless spin
 χf and massMf of the remnant black hole, provided by the
surrogate fit NRSur7dq4Remnant [34]. However  χf
gives just the intrinsic angular momentum of the remnant.
Since we work in the rest frame of initial binary, generically
the remnant is not at rest, whence the total final angular
momentum has to be obtained by applying a boost to the
intrinsic angular momentum. Nonetheless, the discrepancy
between the intrinsic and total angular momentum is
typically of order 10−5 [32,35]. This is smaller than the
accuracy levels considered in this paper and thus we
assume JkðtfÞ ¼ M2

fχ
k
f. Therefore, we can calculate all

the ingredients of Eq. (1) and can evaluate the violation of
the equality not only for different waveform models, but
also for numerical simulations.
The plan for the rest of the paper is the following. In

Sec. II we shall expand on the various ingredients that are
needed to test the angular momentum balance. Using
these ingredients, Sec. III tests the waveform models
listed in Table I as well as NR simulations. Finally
Sec. IV concludes with a discussion of the results and
possible future applications. In Appendix A we summa-
rize the procedure used to calculate the initial angular
momentum of the system using the 3.5 PN expansion of
[36]. Appendix B provides plots and heat maps of the
angular balance law violations by various models as
functions of the binary parameters. These offer insights
on the extent to which improvements in the effective one
body (EOB) and Phenom models have decreased errors,
and also provide guidance on regions of the parameter

TABLE I. The waveform models used in the paper and the
modes of the waveform they include in the coprecessing frame of
the binary black hole. For precessing systems the coprecessing
frame is “twisted up” into the inertial frame to obtain the final
waveform.

Waveform model Coprecessing modes included

SEOBNRv3 ð2;�2Þ, ð2;�1Þ
SEOBNRv4PHM ð2;�2Þ, ð2;�1Þ,

ð3;�3Þ, ð4;�4Þ, ð5;�5Þ
IMRPhenomPv2 ð2;�2Þ
IMRPhenomXPHM ð2;�2Þ, ð2;�1Þ,

ð3;�3Þ, ð3;�2Þ, ð4;�4Þ
NRSur7dq4 All modes with l ≤ 4

KHERA, ASHTEKAR, and KRISHNAN PHYS. REV. D 104, 124071 (2021)

124071-2



space where further improvements can be made. We use
units with G ¼ c ¼ 1.

II. METHODOLOGY

To measure the violation of Eq. (1) in a candidate
waveform for binary black holes, we calculate the remnant
dimensionless spin of the black hole using two techniques
and compare them. As mentioned in the Introduction we
work under the approximation [35]

JkðtfÞ ≈M2
fχ

k
f; ð3Þ

where we have ignored terms ∼10−5 linear in kick velocity.
Using Eq. (3), the initial spin JkðtiÞ provided by the PN
expression, and the fluxF calculated from Eq. (2) using the
candidate waveform, the balance law provides the final
dimensionless spin  χbal,

χkbal ¼
1

M2
f

ðJkðtiÞ þ F kÞ: ð4Þ

On the other hand, we can also get the remnant dimension-
less spin  χfit from the NRSur7dq4Remnant fit.
Therefore, by comparing  χfit to  χbal we can measure the
deviation from the balance law in Eq. (1).

A. Flux

To calculate the flux of angular momentum in Eq. (2), we
need the strain between an early time ti and a late time tf.
We can either use waveforms from NR, or from models.
There is a wide variety of models, and we will use some
state of the art models, as well as some older models for
comparison. While several models have been left out for
brevity of presentation, they can be analyzed using similar
techniques. Ideas behind these models and details of how
they are implemented can be found in the references; a
discussion of this diverse material is beyond the scope of
this paper.
Three families of models have been extensively dis-

cussed in the literature. First are the EOB models [37–45].
See [46] for a review. The specific EOB models used in this
paper are SEOBNRv3 [39,40,44] and SEOBNRv4PHM [45].
The second family is the Phenom models [47–54]
and its cousin, the family of PhenomX models [55–57].
Specifically we use IMRPhenomPv2 [52–54] and
IMRPhenomXPHM [55] models. Finally there is the family
of surrogate waveform models [34,58–62], from which we
use the NRSur7dq4 [34] model. See [63] for a review.
All these waveform models first produce the strain in the

coprecessing frame [64], and then apply a “twisting up”
procedure to return the strain in the inertial frame. In the
coprecessing frame different waveform models include
different modes in their modeling. Omission of modes
can introduce significant modeling errors to the flux.

Table I shows the lists of modes included in the waveform
models considered in this paper.
Once we obtain the strain, to evaluate Eq. (2) we find it

useful to expand the strain in terms of the spin-weighted
spherical harmonics. For models that do not provide the
mode decomposition by default, specifically the Phenom
models, we evaluate the waveform on a grid across the sky
and transform into the spin-weighted spherical harmonic
basis using the code spinsfast [65]. The spin-
weighted spherical harmonics are eigenvectors of the
angular derivative ð, simplifying the calculations. We
also express r̂k in terms of spherical harmonics. Then the
integrand of Eq. (2) turns into a product of spin weighted
spherical harmonics, and the angular integration can be
evaluated using the formula for the integral of their triple
product. Finally we perform the time integral numerically
to obtain the flux.

B. Post-Newtonian angular momentum

Critical to our analysis is an expression of the initial
angular momentum of the system. To obtain it, we resort to
post-Newtonian theory, see [66–68] for reviews. The total
angular momentum Jk is traditionally split into the orbital
and spin angular momentum, Lk and Sk respectively,

Jk ¼ Lk þ Sk; ð5Þ

with Sk ¼ m2
1χ

k
1 þm2

2χ
k
2. Here we are interested in the

center of mass frame description of binary black holes that
are in quasicircular orbits. Let the orbital frequency of the
binary at the initial time beΩorb. For quasicircular orbits we
can expand PN expressions in the gauge invariant dimen-
sionless parameter x ¼ ðGMΩorbÞ2=3. This parameter
allows us to connect with the waveform models, where
their start times are specified in terms of Ωorb or the
frequency of the coprecessing (2,2) mode, f22 ≈Ωorb=π
[69]. Thus we would like a PN expression of the orbital
angular momentum Lkðm1; m2;  χ1;  χ2; xÞ for a quasicircular
binary in the center of mass frame. However the spin-spin
interaction terms starting at 2 PN order cause quasicircular
orbits to radially oscillate at the orbital timescale, compli-
cating calculations [70]. (For nonprecessing systems these
issues do not arise and angular momentum can be calcu-
lated with spin-spin terms as well [70–72].) If only linear in
spin terms are kept, an expression for the angular momen-
tum in the desired form is given in Eq. (4.7) of [36] up to
3.5PN. We use this expression for the angular momentum
in our work. (See the Appendix A for details on how we
apply the PN formula.) Thus, we make two approximations
in the calculation of JkðtiÞ; truncating of the PN expansion
at 3.5 order and ignoring all the nonlinear spin contribu-
tions. While we do not estimate systematic errors due to
nonlinear spin interactions, as is common in the literature,
we estimate the truncation errors by comparing the 3.5 PN
and 3 PN results.
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C. Remnant angular momentum

To obtain the final angular momentum we use fits to NR
values of the remnant final mass and dimensionless spin. In
NR the values are typically calculated using quasilocal
measures [73] on the horizon. But it has also been
calculated asymptotically [35] for 13 simulations and
agreement with the horizon values is excellent. In our
analysis we use the horizon values since they are reported
by all simulations. These values can then be interpolated
across parameter space using a catalog of numerical
simulations. While there are several such fits in the
literature, we use the NRSur7dq4Remnant [34,74] fit.
This fit provides us with the remnant mass and the
dimensionless spin vector (as opposed to just the magni-
tude), as well as an estimate of their respective errors.1

Thus we are able to obtain the remnant angular momentum
using Eq. (3).

There is a subtlety with using the fit for precessing
systems: The spins precesses over time, thus the same
system can be labeled by different spins at different
reference times. For various applications it is useful to
have the ability to use the fit with the spins specified at
arbitrary times. This is done in NRSur7dq4Remnant by
implementing a model for the spin evolution to evolve the
spins to a standard time of 100M before the peak of the
strain, whereM in the total mass of the system. The spins at
100M are now used for the interpolation of the remnant
quantities. However the spin evolution introduces new
errors to the fit. These errors are harder to estimate and
are not accurately provided by the model, as already noted
when the fit was introduced in [34]. Thus the error
estimates returned by NRSur7dq4Remnant must be
taken with a grain of salt, as it only represents the errors
from the Gaussian process regression procedure used by
the model.
In Sec. III we will find that these estimates are too small

compared to the actual errors for precessing systems, as
calculated from comparisons to NR. So instead of using the
error estimates from the fit, we use the comparison with NR
to provide us with an estimate of the errors involved.

III. RESULTS

We now apply the methods discussed to waveform
models as well as to NR simulations. To test the waveform
models across parameter space we select random points in
parameter space and check violations of the balance law.
We divide our study of the models in two parts; precessing
and nonprecessing systems. For both these families we
restrict the parameter space to a finite compact region.
Since we are dealing with binary black holes that are

initially in quasicircular orbits, the parameter space
is described by the mass ratio q and the dimensionless
spins  χ1;  χ2. We restrict these parameters to be within
range of applicability of NRSur7dq4. Additionally, since
NRSur7dq4 only models waveforms for finite time, we
would like the NRSur7dq4 waveforms to be long enough
so that we can use PN methods at its start. While
NRSur7dq4 goes up to mass ratio 4, the waveforms
start at higher frequencies with increasing mass ratio.
Therefore to be able to safely use PN expressions, initially
we restrict the mass ratio to 1 ≤ q ≤ 2. This allows
us to safely use waveforms starting at 5.8 × 10−3 in
dimensionless units. Additionally, we also restrict spin
magnitudes to be less than 0.8 to be within the training
data range of NRSur7dq4, as well as the remnant data fit
NRSur7dq4Remnant that we use.
For the NR simulations we use the publicly available

SXS catalog [75] of NR simulations. But we restrict
consideration to numerical simulations that lie in the
parameter range considered above.

A. Nonprecessing systems

In this section we test satisfaction of the balance law for
randomly selected 20,000 nonprecessing points in the
parameter space. The spins are in the z-direction with χz1
and χz2 uniformly and independently distributed in the
interval ½−0.8; 0.8�. We obtain the distribution of mass ratio
q indirectly from the distribution of masses m1 and m2 to
replicate commonly chosen priors. We take masses m1 and
m2 to be independent and uniform, subject to constraints
q < 2 and 20 < m1 þm2 < 160. For later convenience we
would likem1 ≥ m2, therefore ifm1 < m2 we exchange the
labels. Then for each of these points, we will test how well
the balance law is satisfied.
We first calculate the spin of the remnant black hole  χbal

using the balance law, from Eq. (4). For nonprecessing
systems, by symmetry we have that  χbal ¼ abalẑ. We can
compare this to the remnant spin  χfit ¼ afitẑ obtained from
the fit NRSur7dq4Remnant. Mismatch between χbal and
χfit provides us the desired measure of accuracy of the
waveform model under consideration. In Fig. 1 we plot the
distribution of abal − afit across the random points in
parameter space. To help identify the errors coming from
waveform modeling, we also show an estimate of the errors
from the fit, obtained from NRSur7dq4Remnant. For the
region of the parameter space considered, the error esti-
mates are almost constant (the standard deviation of the
distribution of errors being 1% of the mean). We thus use
the mean of this distribution as the fit error for our samples.
Although the PN truncation error is not shown in the plot, it
is 65% of the fit error, but it does not include the errors from
ignoring spin-spin interaction terms.
Figure 1 shows that, overall, the agreement between abal

and afit is of order 10−2. Moreover we see clear evidence for
the improvement of SEOBNRv4PHM over SEOBNRv3 and

1Note that the calculation of  χfit in NRSur7dq4Remnant is
independent of the waveform model NRSur7dq4, and thus the
satisfaction of the balance law for the surrogate wave form is not
tautological; it is a nontrivial consistency check.
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of IMRPhenomXPHM over IMRPhenomPv2. The surro-
gate model has the best performance, with all the balance
law violation consistent with solely coming from the fit and
PN truncation errors. By comparison, although the mis-
match is only at a 10−2 level for EOB and Phenom, the
modeling errors are significantly larger than those coming
from the fit and PN truncation errors; thus there is room for
further improvement.
Note also that for SEOBNRv4PHM the plot has an

interesting double hump. We find that these humps are
correlated with the effective spin parameter χeff defined as

χeff ¼
m1χ

z
1 þm2χ

z
2

m1 þm2

: ð6Þ

The correlation—shown in Fig. 2—brings out the sharp
difference between distributions for χeff < −0.1 and
χeff > −0.1, as can be seen in more detail from the
dependence of the balance-law violation on χeff (See
Appendix B). This illustrates the power of the balance
law to identify regions of parameter space where errors are
higher, thereby providing guidance for further improve-
ments of the waveform model.

B. Precessing systems

As in Sec. III A, we randomly select 20,000 points in
parameter space, but now using precessing systems, and
evaluate the violation of the angular momentum balance
law for them. The spins are sampled independently with an
isotropic distribution. The spin magnitude is taken to be
uniformly distributed in [0, 0.8]. The mass ratio is sampled
from the same distribution as in Sec. III A.
The remnant spin is now arbitrarily oriented. Therefore,

to compare  χbal with  χfit we are led to compare their

magnitudes abal and afit, and also to calculate the angle Δθ
between them. However there is a difference in the
calculation of error estimates because, as discussed in
Sec. II C, for precessing systems the fitting procedure
complicated by evolution of spin with time. This is
accounted for by using a spin evolution model, which
introduces further errors in afit and Δθ. The reported error
estimates from the fit NRSur7dq4Remnant do not
include these errors. Therefore we will estimate these
errors by a direct comparison with NR simulations. The
NR simulations are taken from the SXS public catalog [75]
of NR simulations. We choose quasicircular binary black
hole simulations that are long enough to include our choice
of starting frequency and have parameters that lie within the
range under consideration in this paper. We also drop the
first 337 older simulations and we are then left with 672
precessing NR simulations. For these simulations we
compute the remnant spin using the fit and compare to
the actual NR value. The result is shown in Fig. 3, where we
see that the error quoted in NRSur7dq4Remnant is much
smaller than the actual error. We thus compare the balance
law violations with the errors from these simulations
instead of using the error from the fit. However because
the fit is trained against these simulation, the errors might in
fact be larger for regions of parameter space with a scarcity
of simulations and moreover these 672 simulations do not
represent an unbiased sampling of the parameter space
considered here. Nonetheless for the rest of this paper we
use this error distribution, keeping in mind that they are not
meant to be sharp.
Using the error estimates discussed above, let us examine

the violations of the angular momentum balance law. In
Fig. 4 we see the waveform models continue to have errors
of order 10−2, albeit with larger errors than in the non-
precessing case. For comparisons of the magnitude of the

FIG. 1. Nonprecessing systems: The distribution of the differ-
ence ðabal − afitÞ between the magnitudes of the remnant spin
calculated by using the angular momentum balance law and using
the fit NRSur7dq4Remnant. The distribution is calculated for
different waveform models using the same sample points. The
shaded region shows the error estimate of the fit.

FIG. 2. The distribution of balance law violation for
SEOBNRv4PHM from Fig. 1. Here we have split the points in
parameter space in two, with χeff < −0.1 and χeff > −0.1. This
split separates the double hump in SEOBNRv4PHM, and shows us
that the balance law violation is larger for negative χeff .

TESTING GRAVITATIONAL WAVEFORM MODELS USING … PHYS. REV. D 104, 124071 (2021)

124071-5



remnant spin, NRSur7dq4 again has the best perfor-
mance, and its balance-law violations are consistent with
the fit errors from NR. The PN truncation error is only 9%
of the 90% interval of the fit error here. The accuracy of the
latest EOB and Phenom models, SEOBNRv4PHM and
IMRPhenomXPHM, are very similar to each other.
Furthermore, we can clearly see the improvement of these
EOB and Phenom models over their older versions. On the
other hand, we see different results for the error in the angle
in the lower plot. The lower plot of Fig. 4 shows that the
surrogate and EOB models have violations of the direction
of spin that are consistent with the fit errors. The PN
truncation error is negligible, only 0.7% of the fit error.

However the Phenom models show violations in the angle
that are much larger than the errors. Thus, our analysis
again provides pointers for further improvement.
Finally, we also examine how the balance law violation

seen here varies with parameter space. This allows us to
examine regions of parameter space where different models
have deficiencies and provides guidance on improving this
for future models. See Appendix B for the analysis.

C. Lessons from and for NR

We now apply the angular momentum balance law
directly to NR simulations and discuss its implications.
The procedure is almost identical to the one we used for
waveform models, but uses the NR waveform instead of the
model waveform. More precisely, each NR simulation

FIG. 3. Comparison of the remnant spin from 672 precessing
NR simulations that lie in the parameter range and starting
frequency considered in the paper, to the fit NRSur7dq4Remn-
ant. The shaded region shows the error estimate provided by the
fit model. However as noted in [34], this estimate does not
include errors from the spin evolution; it only includes errors
from the Gaussian process regression procedure that is used.
The upper plot shows the difference in the magnitude of spins,
and the lower plot shows the angle between them. We see that for
the parameters we consider and for the starting frequency we use,
the real errors are much larger than the estimates. We use error
estimates obtained from these 672 NR simulations for the rest of
the paper.

FIG. 4. Precessing systems: The distribution of angular mo-
mentum balance law violation across the parameter range
considered in the paper, using various waveform models. The
upper plot shows the difference between the magnitudes of the
remnant spin abal, computed from the balance law, and afit,
computed using the fit NRSur7dq4Remnant. The lower plot
shows the angleΔθ between the remnant spin computed using the
two different methods. We also show in the shaded region the
distribution of fit errors estimated from direct comparison with
NR as in Fig. 3, as opposed the quoted error estimate in the fit.
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provides us with the waveform to calculate the flux  F . The
waveforms are known to improve significantly in accuracy
by adding the memory effect [76,77]. Therefore we add this
effect to the waveforms to improve the accuracy of the
calculated flux. The waveforms are labeled by the masses,
spins, orbital frequency, and separation of the two progeni-
tors at the starting time. Using these parameters and the 3.5
PN truncation discussed in Sec. II B, we calculate the initial
angular momentum  JðtiÞ that is needed in Eq. (4) of  χbal.
For the remnant spin  χNR, however, there is a key differ-
ence. We do not need the fit since we can directly use the
remnant spin computed in the NR simulation at the horizon.
The difference  χbal −  χNR measures the violation of the
balance law. There is, however, a subtlety; since the binary
system in NR may not be in the same reference frame in
numerical simulations as in the frame we use for the PN
expression, we must perform a rotation to match the frames.
For details see Appendix A.
We use the subset of simulations from the SXS public

catalog [75] described in Sec. III B. However we further
restrict ourselves to simulations where a lower resolution
run is included, allowing us to analyze numerical errors.
There are 131 such nonprecessing NR simulations and 550
such precessing simulations. For all these simulations we
calculate the remnant spin  χbal from Eq. (4) with the highest
resolution run available. Then we take the second highest
resolution waveform to compute  χLowResbal . Finally, by
comparing  χbal to  χLowResbal we obtain an estimate of the
numerical convergence errors, and by comparing  χbal to
the horizon spin  χNR we obtain a quantitative measure of
the violation of the balance law.
In Fig. 5 the solid (blue) curve shows the violation of the

angular momentum balance law for the nonprecessing

simulations. While the limited number of simulations
makes a direct comparison with Fig. 1 difficult, it is clear
that overall the errors are manifestly smaller. However there
is one outlier simulation SXS:BBH:1134 with an error of
order 10−1. On closer inspection we found that the orbital
frequency is erroneous in the metadata file for that
simulation, and computing the orbital frequency using
the code SCRI [64,69,78,79] from the waveform, jabal −
aNRj is brought down to ∼1.5 × 10−3 from ∼0.2. This is a
concrete illustration of checks that balance law consider-
ations can provide on NR simulations themselves.
Aside from the outlier, we also see that the numerical

errors are too small to account for the level of violation of
the balance law shown in Fig. 5. We also find that the PN
truncation error obtained by comparing 3.5 PN to 3 PN is
less than 3.5 × 10−4 for all these simulations, which is
insufficient to account for the violation we found. What
then is the main source of the violation? While in principle
this discrepancy could be due to systematic errors in NR, it
is much more likely that its origin lies primarily in the
assumption that nonlinear spin-spin interaction terms can
be neglected in the PN calculation of  JðtiÞ.
Figure 6 shows the degree of violation of balance law—

as measured by the mismatch of abal and aNR, and by the
angle between  χbal and  χNR—as well as the convergence
error for precessing systems. Overall, the numerical con-
vergence errors are larger than those in the nonprecessing
case shown in Fig. 5 and match the scale of balance law
violations. However several individual simulations still
have balance law violations much higher than their respec-
tive numerical errors. The PN truncation error obtained by
comparing 3.5 PN to 3 PN is less than 3.8 × 10−4 for the
magnitude and 3.7 × 10−4 for the angle for all simulations.
We also see an outlier simulation in the upper plot of Fig. 6.
This is the run SXS:BBH:1131. Unlike the previous
outlier, we were not able to identify why the error is high
nor were we able to ascertain anything special about the
parameters. Therefore this simulation warrants attention of
the NR community.
There are also lessons from NR simulations. That the

violations of the balance law in NR simulations are so small
provides considerable confidence in the overall procedure.
Furthermore, the remaining discrepancies provide a useful
bound on the errors that come from the underlying
assumptions and approximations. Notably we learn that
the nonlinear spin-spin interaction terms that have been
ignored in the PN angular momentum calculation can
indeed be neglected at the current accuracy level of the
waveform models. Secondly, the implicit assumption about
the correspondence of PN and NR parameters is also tested
here. The masses and spins, and especially the direction of
the spin, are defined using distinct procedures in NR and
PN. The direction of the spin is in fact not even a gauge
invariant quantity in PN [36] or NR [80]. Therefore,
a priori we do not have a reliable estimate on the

FIG. 5. The violation of angular momentum balance law for the
131 nonprecessing numerical simulations described in the text.
The solid blue curve shows the difference abal − aNR between the
magnitudes of the remnant spin computed using the balance law,
and of the horizon spin. The dashed gray line represents the
numerical convergence error, i.e., the difference between the spin
magnitudes, abal and aLowResbal , computed using the highest and a
lower resolution NR simulation.
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discrepancies between the NR and PN assignments of these
parameters. Again, the accuracy to which the balance law is
satisfied serves to provide assurance that the discrepancies
are small for the level of accuracy of the current waveform
models.

IV. DISCUSSION

Different observables in full, nonlinear GR can be used
to test different aspects of the accuracy of candidate
waveforms. In this paper we focused on the angular
momentum of black hole binaries. The angular momentum
balance law brings together diverse ideas: post-Newtonian
theory, numerical relativity, waveform modeling and cal-
culations of the mass and spin of the remnant using
surrogate fits. It is rather remarkable that all these

ingredients come together in a consistent and precise
manner. This overall coherence provides us some nontrivial
checks. For example, we found that the spins measured
from the horizon in NR matches very closely to the PN
definition of spin, even though the direction of this three-
vector is gauge dependent in the PN and NR analysis. We
also found that the waveform models capture the physics of
radiated angular momentum quite well as the system
evolves from the inspiral, to the merger, and then ringdown,
although some models capture it better than others.
The balance law provides us a new measure to test the

accuracy of binary black hole waveform models, comple-
mentary to comparisons against NR. It allows us to not only
compare the performance of different models, but identify
regions of parameter space where errors are large without
directly using numerical simulations. We use PN methods
to get the initial angular momentum, and the waveform to
obtain the flux of angular momentum. Then the balance law
in Eq. (4) gives us the remnant spin  χbal. (Here we ignored
the kick velocity and supertranslation corrections as they
are much smaller than the level of accuracy of interest to
this paper.) We then compared this  χbal to the spin  χfit
obtained by the remnant fit NRSur7dq4Remnant (which
is conceptually independent from the waveform model
NRSur7dq4).
We first applied this procedure to waveform models

with nonprecessing parameters and presented the
results in Fig. 1. We found that the surrogate model
NRSur7dq4 performs exceptionally well, in that the
modeling errors are at most the same order as errors from
PN or from the fit to the remnant spin. The SEOBNRv4PHM
and IMRPhenomXPHM models are close behind. The
balance law test also provided a sharp measure of the
improvements over the older EOB and Phenom models, in
part because, as Table I shows, they incorporate modes that
their previous versions did not. Finally we also found that
SEOBNRv4PHM has higher errors for parameters that
correspond to negative effective spin χeff , as illustrated
in Fig. 2. This difference illustrates the utility of using the
balance law to identify regions of parameter space with
higher errors, on which efforts for future improvements
could focus. A more fine-grained study could reveal more
such regions.
For precessing systems, as discussed in Sec. III B, the

remnant fit NRSur7dq4Remnant has to model the spin
evolution of the individual black holes. It was noted in [34]
that this evolution code introduces new errors. These errors
are difficult to estimate accurately and were not included in
NRSur7dq4Remnant, thus only the errors from the
Gaussian process regression used in the procedure is
reported. As Fig. 3 shows, for the typical spin evolution
in our parameter space the Gaussian process regression
errors are much smaller than the “real errors”, obtained by
comparison with NR. We used the comparison to NR
simulations to get a better error estimate for precessing

FIG. 6. The angular momentum balance law violation for the
550 precessing numerical simulations described in the text. The
upper plot shows the violation in the magnitude of the spin, and is
the same as Fig. 5 but for the precessing simulations. The lower
plot in the solid blue line shows the angle Δθ between  χbal, the
remnant dimensionless spin computed using the balance law, and
 χNR computed from the horizon. The dashed gray line represents
the numerical convergence error, and is computed as the angleΔθ
between  χbal and the same quantity computed using a lower
resolution numerical simulation,  χLowResbal .

KHERA, ASHTEKAR, and KRISHNAN PHYS. REV. D 104, 124071 (2021)

124071-8



systems. However, as we emphasized in Sec. III B, this
estimate is not as precise as it is for the nonprecessing
systems.
With this caveat in mind, we applied the balance law to a

distribution sample points in the parameter space describ-
ing precessing systems. For these systems the remnant spin
need not be along the z-axis. Therefore, we could measure
the violations in the magnitude of angular momentum, as
well as the direction. As seen in Fig. 4, for errors in
magnitude we found that NRSur7dq4 again has the best
performance, with violations within the error scale.
However, SEOBNRv4PHM and IMRPhenomXPHM are
not far behind, and are very close to each other. They also
showed clear improvements over their older versions. The
situation turned out to be quite different for errors in angle.
The fitting errors in the angle are large, but the surrogate
and EOB models show violations only within the scale of
this error and their predictions are almost identical to each
other. So, for these models the fitting errors dominate and
these models pass the balance law test within the accuracy
we can consistently demand. However the Phenom models
perform poorly in comparison, and there has been no
improvement over its older version. This suggests that there
is room for improvement. Since Phenom performs well for
nonprecessing systems, it seems likely that the likely
culprit is the twisting up procedure used in this model.
In Appendix B we also analyze how the balance law

violations vary with parameter space for both precessing
and nonprecessing systems considered above. This analysis
provides insights into the regions of parameter space where
errors are large and can help make improvements for future
models.
We also applied the balance law to NR simulations. As

one would expect, the simulations perform better than the
models. The high accuracy to which the balance law is
satisfied provides considerable confidence in the overall
procedure, including the use of the approximation in which
nonlinear spin-spin interaction terms are neglected.
However, we also found that numerical convergence errors
do not by themselves account for the violation of the
balance law. Thus, there is room to improve the accuracy of
the additional ingredients that went into the procedure.
Finally, the use of the balance law enabled us to find two
outliers in the NR simulations. We were able to identify the
underlying problem in the first, SXS:BBH:1134, as
having faulty metadata. However we do not know why
SXS:BBH:1131 has significantly larger errors; we hope it
will receive further scrutiny from the NR community.
This work can be extended in several ways. In this paper

we restricted the parameter space under consideration to
include NRSur7dq4 in the analysis. While the model can
go up to mass ratio 4, the starting frequency becomes
higher with increasing mass ratio, and the use of PN results
becomes less reliable. However the remnant fit
NRSur7dq4Remnant can be used with any starting

frequency. Thus if we use only the EOB and Phenom
models, the analysis can be extended to higher mass ratios.
The starting frequency can also be lowered to reduce PN
truncation effects. This enlarged parameter space has fewer
NR simulations, and thus it would be interesting to identify
regions where the models perform poorly using the balance
law. Furthermore although the remnant fits can be used to
spin magnitudes above 0.8 as well, the errors cannot be
controlled then because of the scarcity of NR simulations.
But this issue doesn’t prevent us from comparing different
models at higher spins. A different application of the
balance law could be to discriminate between choices
made during modeling. For example, one could compare
the consistency of different choices of extrapolation made
by models outside the parameter range of NR. From the
perspective of future detectors with significant enhance-
ment in sensitivity, it is also important to reduce the main
sources of error we encountered by including the spin-spin
interaction terms in the calculation of JkðtiÞ and using a
more accurate method to evolve the spins of the two
black holes.
To summarize, we have shown that the angular momen-

tum balance law can be a valuable tool. It allows one
compare models across all points in parameter space;
enables one to identify—without the need of NR simu-
lations—parameter ranges in which errors are higher in
specific models; provides guidance to waveform models for
further improvements; informs us on the accuracy of the
match between NR and PN parameters that are used to label
the waveforms; and, even offers checks on the numerical
simulations themselves.
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APPENDIX A: POST-NEWTONIAN ANGULAR
MOMENTUM

Here we describe in brief how to use the angular
momentum formula from Eq. (4.7) in [36], also reproduced
below in Eq. (A4), is used to get the initial angular
momentum. To be consistent with [36] we use boldface
to denote vectors, m ¼ m1 þm2 to denote the total mass
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and restore factors of G and c in this section. The post-
Newtonian formula is an expansion in the gauge invariant
dimensionless PN parameter x ¼ ðGmΩorb=c3Þ2=3, where
Ωorb is the orbital angular frequency of the binary. We relate
Ωorb at the beginning of the waveform to the starting
frequency fstart of the (2,2) mode of the waveform model by
Ωorb ¼ πfstart. Thus x can be calculated from the starting
frequency, and is ≈0.012 for the dimensionless starting
frequency of 5.8 × 10−3 used in this paper.
The conventions for the axes followed by the waveform

models used in this paper are that at the reference time
(taken to be the starting time of the waveform), the binary is
separated along the x-axis, and instantaneously orbits
counterclockwise in the x, y plane. However for NR
simulations at the reference time—i.e., at a time when
most of the junk radiation has passed through the outer
boundary [75]—the frame is arbitrary in general. Thus we
perform a rotation to bring NR into the same frame
conventions as the waveform models at its reference time.
We solve for the rotation that brings the coordinate
separation between the black holes be along the x-direction,
and the angular velocity as defined in [69] along the
z-direction. Note that the separation of the black holes is

in general a gauge dependent quantity. However it is still an
essential ingredient of specifying the system that is integral
to any comparison of the waveform against PN or a
waveform model. Once we have fixed the frame, unit
vectors along the x, y, z directions at the start time are
denoted n; λ;l, respectively. Note that this is only at the
reference time and in general n; λ;l, evolve with time.
The spin variables convenient to use for the PN expres-

sions are

S ¼ Gm2
1χ 1 þGm2

2χ 2; ðA1Þ
Σ ¼ Gmm2χ 2 −Gmm1χ 1: ðA2Þ

The x, y, z components of these vectors are Sn; Sλ; Sl and
Σn;Σλ;Σl. It is also convenient to use the parameters total
mass m, symmetric mass ratio ν ¼ m1m2=ðm1 þm2Þ2 and
δm ¼ m1 −m2. Finally, the total angular momentum J is
given by

J ¼ Lþ S=c; ðA3Þ
where L is the orbital angular momentum and for quasi
circular binaries. Keeping only terms in the 3.5 PN
expansion that are linear in spin, L is given by [36],

L ¼ Gm2
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Thus, given the masses and spins of the two black holes
in the binary and the initial orbital frequency, one can use
Eq. (A4) to obtain the initial angular momentum.

APPENDIX B: BALANCE LAW VIOLATION AS
FUNCTION OF PARAMETER SPACE

As discussed, the balance law can be applied to any
point in parameter space and this can help identify

regions with higher errors. These results can help provide
pointers to where newer models can be improved, and
where more numerical simulations are needed. In this
appendix we present various results exploring the param-
eter space for different models we considered.
Specifically, we identify regions in the parameter space
where further work is needed. As before we divide the
study into the family of precessing systems and non-
precessing systems, and use the same distribution of
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points as in Sec. III. Furthermore as before, for precessing
systems we quantify the error in the magnitude jΔaj ¼
jabal − afitj and in angle Δθ between  χbal and  χfit sepa-
rately. In Figs. 7 and 10 we show the error dependence on
mass ratio q and χeff . Since the error depends on many
more parameters, we marginalize over them by binning,
followed by smoothing by a Gaussian convolution. The
mass ratio q does not change strongly with parameter
space, however we see several features of the violation in
terms of χeff . For the nonprecessing systems we study the

spin dependence of the violation in Fig. 8. We again use
binning to marginalize over other parameters, followed
by a smoothing. We find that the Phenom models’
balance law violation varies weakly with the spins. For
EOB and surrogate models the figure identifies regions of
spin-space where errors are larger and smaller. We also
see in Fig. 9 that, for nonprecessing systems, while
NRSur7dq4 has a slight correlation of jΔaj between
q and χeff , for the other models these parameters are very
uncorrelated.

FIG. 7. Nonprecessing systems: Distribution of balance law violation for various models, measured by jΔaj as a function of mass ratio
q for the plot on the left, and χeff for the plot on the right. The dependence of the error on other parameters is marginalized by averaging
over bins.

FIG. 8. Nonprecessing systems: Distribution of balance law violation measured by jΔaj as a function of the spins of the black hole in
the z-direction, χz1 and χz2. Note that by convention we have that χz1 is the spin of the heavier black hole.
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FIG. 9. Nonprecessing systems: Distribution of balance law violation measured by jΔaj as a function of mass ratio q and χeff .

FIG. 10. Precessing systems: The distribution of balance law violation as a function of mass ratio q and χeff . The upper plots show the
violation measured by the magnitude jΔaj and the lower plots show the violation measured by the angle Δθ.
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FIG. 11. Precessing systems: The distribution of the violation in magnitude jΔaj of the balance law as a function of the black hole spin
magnitudes a1 and a2.

FIG. 12. Precessing systems: The distribution of the angle jΔθj of the balance law violation as a function of the black hole spin
magnitudes a1 and a2.

TESTING GRAVITATIONAL WAVEFORM MODELS USING … PHYS. REV. D 104, 124071 (2021)

124071-13



FIG. 13. Precessing systems: The distribution of the violation in magnitude jΔaj of the balance law violation as a function of the black
hole spin magnitudes in the perpendicular direction χ1⊥ and χ2⊥.

FIG. 14. Precessing systems: The distribution of the angle jΔθj of the balance law violation as a function of the black hole spin
magnitudes in the perpendicular direction χ1⊥ and χ2⊥.
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FIG. 15. Precessing systems: The distribution of the violation in magnitude jΔaj of the balance law as a function of the black hole
spins in the z-direction χz1 and χ

z
2. Because for an isotropic distribution of spins, χz being close to the maximum value is suppressed, the

corners do not have sufficient points; bins without any points are in white.

FIG. 16. Precessing systems:The distribution of the angle jΔθj of the balance law violation as a function of the black hole spins in the
z-direction χz1 and χ

z
2. Because for an isotropic distribution of spins, χz being close to the maximum value is supressed, the corners do not

have sufficient points; bins without any points are in white.
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For precessing systems the spin-space has more dimen-
sions, and thus more choices of spin variables are possible.
In Figs. 11 and 12 we show error dependence on the
magnitudes of the spins, in Figs. 13 and 14 in terms of the
spin projected on the orbital plane, χ⊥, and finally in
Figs. 15 and 16 in terms of the z components of the spins.
These figures highlight several differences between the

models. Overall for the Phenom models we do not see
large variations of the violation across parameter space.
For the surrogate models we see a trend of increasing
violations with higher spins. Finally while SEOBNRv3
has several features in these figures we do not see any
distinctive features for SEOBNRv4PHM for the precessing
systems.
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