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ABSTRACT: It is well-known that blackhole and cosmological horizons in equilibrium
situations are well-modeled by non expanding horizons (NEHs) [1-3]. In the first part of
the paper we introduce multipole moments to characterize their geometry, removing the
restriction to axisymmetric situations made in the existing literature [4]. We then show that
the symmetry group & of NEHs is a 1-dimensional extension of the BMS group 5. These
symmetries are used in a companion paper [5] to define charges and fluxes on NEHs, as
well as perturbed NEHs. They have physically attractive properties. Finally, it is generally
not appreciated that Z* of asymptotically flat space-times are NEHs in the conformally
completed space-time. Forthcoming papers will (i) show that Z* have a small additional
structure that reduces & to the BMS group B, and the BMS charges and fluxes can be
recovered from the NEH framework; and, (ii) develop gravitational wave tomography for
the late stage of compact binary coalescences: reading-off the dynamics of perturbed NEHs
in the strong field regime (via evolution of their multipoles), from the waveform at ZT.
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1 Introduction

Let us begin by recalling the basic features of horizons. Event horizons (EHs) are teleologi-
cal: A 2-sphere cross-section of an EH caused by a merger or a collapse that will take place
a billion years from now may well be contained the room you are sitting in, and growing!
Indeed, one needs access to the full evolution of space-time into infinite future even to
know if it admits an event horizon. Finally, since the event horizon is defined as the future
boundary of the past of ZT, the notion is not meaningful in absence of Z+. Non-expanding
horizons (NEHs) and dynamical horizons (DHs) are free of these limitations because they
are quasi-local: they refer to space-time geometry only in their immediate neighborhood
(for reviews, see, e.g., [6-8] and for early papers with similar ideas, [9, 10]). NEHs represent
black hole and cosmological horizons in equilibrium, while DHs describe growing (or, in the
quantum theory, shrinking) black holes. In particular, you can be certain that your room
does not contain a 2-sphere cross-section of an NEH or a DH. Also, since they do not refer
to ZT, NEHs and DHs are well-defined also in spatially compact space-times. Numerical
simulations show that, after the common horizon forms in a binary black hole merger, the
initially rapid evolution of the DH slows down exponentially and is quickly well described



by a perturbed NEH. A series of papers, of which this is the first, will focus on NEHs and
perturbed NEHs.

Killing horizons provide well-known examples of NEHs. However, the notion of an NEH
is significantly weaker. For example, (in the asymptotically de Sitter context) the Kastor-
Traschen solutions represent dynamical, multi-black hole space-times that admit NEHs
which are not Killing horizons [11, 12]. In the zero cosmological context, the Robinson-
Trautman solution admits an NEH, every neighborhood of which contains radiation [13].
These simple examples are taken from explicitly known exact solutions. More generally,
an initial value formulation based on double null surfaces shows that there is an infinite
family of NEHs which cannot be Killing horizons because certain geometrical fields on
them can be explicitly ‘time dependent’ [2]. Nonetheless, one can extend the zeroth and
first laws of black hole mechanics to any NEH by equipping it with a suitable family of
null normals [1, 14], thereby endowing it with the structure of a weakly isolated horizon
(WIH). This can always be done on any NEH and does not entail a restriction. Thus,
while the notion of NEHs is very general, they are nonetheless endowed with sufficiently
rich structure for obtaining results on black hole and cosmological horizons that are of
direct physical interest. For these reasons NEHs have already been studied in some detail
in the literature (see, e.g., [1-3, 6-8, 15] and references therein). In this paper we will
extend that analysis in two directions.

The first extension makes use of a simple observation [16] that has received relatively
little attention so far: Each NEH A comes with a three parameter family of unit, round
2-sphere metrics ¢, that are conformally related to the physical (degenerate) metric g, on
A. Using spherical harmonics of these round metrics, we will define multipole moments that
provide an invariant characterization of the NEH geometry. This construction generalizes
the previous definition of multipoles that was restricted to axisymmetric NEHs [4].

The Second extension refers to symmetries. The original analysis of NEH symmetries
referred to diffeomorphisms that preserve the degenerate metric ¢.,, and the derivative
operator D on the NEH, induced by the space-time V. The possible symmetry groups
were then classified [3]. The pair (¢qu, D) varies from one space-time to another. A generic
NEH admits no symmetry, and the symmetry group can be at most 5 dimensional. This
is analogous to the fact that a generic metric on a 4-manifold has no isometries and the
isometry group can be at most 10 dimensional. In this paper, we adopt a different viewpoint
and focus on the class of all NEHs and the universal structure they have in common. In
the analogy with 4-metrics, this corresponds to, e.g., considering the structure shared at
7T by all asymptotically flat space-times. Because this structure is much weaker than that
encoded in a given space-time metric, the asymptotic symmetry group —the Bondi, Metzner,
Sachs (BMS) group B is infinite dimensional, much larger than the isometry group of any
one metric in this class. Similarly, we will find that the group & preserving the universal
structure on all NEHs is infinite dimensional, much larger than the finite dimensional
symmetry groups that were previously considered. Interestingly, & is isomorphic to a one-
dimensional extension of the (BMS) group 8. In particular, in contrast to other works
[16, 17], the semi-direct product between the supertranslation subgroup and the the Lorentz
group is exactly the same as that of B. As already remarked, in the companion paper [5]



we will discuss charges and fluxes associated with symmetries in &.

The paper is organized as follows. In Sec. 2 we first recall the known results on NEHs
and then discuss multipole moments. In Sec. 3 we introduce the universal structure of
NEHs and investigate the symmetry group & that preserves this structure. We conclude
in Sec. 4 with a summary and a discussion of applications of this framework that will be
developed in forthcoming works.

As noted in the abstract, null infinity, Z*, of an asymptotically flat space-time is also
an NEH, albeit in the conformally completed space-time. In a forthcoming paper, we will
revisit the structures at null infinity from an NEH perspective. In essence, the framework
developed in this paper can be applied to Z* after taking into account the fact that the
NEH structure of Z* refers to the conformally rescaled metric rather than the physical.
Any one conformal completion endows Z* with the structure of an NEH with an additional
small piece of extra structure which removes the ‘extra’ (1-dimensional) symmetry in the
NEH symmetry group & and reduces it to the BMS group 9. Similarly, we will re-analyze
the charges and fluxes at Z* using the framework developed in [5].

Finally, it has been suggested [6] that there may be a correlation between the gravita-
tional dynamics at horizons in the strong field regime, and that at Z in the asymptotic
(and therefore weak field) regime. Several analyses in the literature [18-22] present illus-
trations of such a relation. We will be able to use the close similarly between structures
on NEHs and those at ZT to systematically develop gravitational wave tomography: cal-
culating the evolution of the intrinsic geometry and angular momentum structure on the
horizon, directly from the knowledge of the waveform at infinity. This analysis is likely to
shed light also on the issue of correlations between the horizon structure and radiation at
infinity during the long semi-classical phase, e.g. ~ 100 years it takes for a newly formed
solar mass black hole to shrink to the lunar mass.

2 Non-expanding horizon

This section is divided into three parts. In the first, we recall salient features of the geometry
of NEHs. We then turn to multipole moments that provide an invariant characterization
of this geometry. In the second part we introduce necessary conceptual framework and in
the third we define multipoles and discuss their salient properties.

2.1 Geometrical structures

Consider a smooth space-time (M, gqp). A 3-dimensional submanifold A of M will be said
to be an NEH if it satisfies the following conditions:

(i) A is topologically S? x R and null;
ii) The expansion 8 of every null normal [* to A vanishes; and,
0]
(iii) R,"1% is proportional to [® for any null normal, where R, is the Ricci tensor of ggp.

If these conditions are satisfied by any one null normal [* they are satisfied by all null
normals. The first two conditions are the same as those that were introduced in the first



treatments of NEHs [1-3], while the third condition is a little bit weaker. The original
definition assumed Einstein’s equations and required that —7T,%1% be causal and future di-
rected if [* is so (which is itself a weaker version of the dominant energy condition). As
shown in [1], this requirement, together with vanishing of ;) and the Raychaudhuri equa-
tion, implies that Rqp %1% = 0 on A. The fact that 7,,°1® is causal then implies condition
(iii), i.e., R4 1% is proportional to I°. To summarize, then, the dominant energy condition
implies the requirement made in the previous literature [1-3], and that requirement in turn
implies what we are now assuming. (This slight weakening of the requirement ensures that
Z7 is an NEH in the conformally completed space-time.)

Figures 1 and 2 provide illustrative examples of NEHs in the asymptotically flat context
and in presence of a positive cosmological constant, respectively. The left panels of the two
figures show compact sources that emit gravitational waves. The late time portion A of
the event horizon in Fig. 1 is an NEH if one ignores backscattering, and a perturbed NEH
if one does not. In Fig. 2, the future event horizon E*(i~) of i~ is an NEH because there
is no incoming radiation, while the portion of the past event horizon E~ (i) of i* shown
in the figure is a perturbed NEH, assuming that the radiation emitted by the stellar binary
is sufficiently weak. The right panels of both figures depict NEHs that develop in spherical
collapse. In Fig. 1, the spherical shell that collapses at late time can be replaced by a
smooth profile of infalling gravitational radiation using the Chrusciel-Delay construction
[23] based on gluing techniques.! The space of such solutions is infinite dimensional.

Every Killing horizon is, in particular, an NEH. But the notion of an NEH is much more
general: Space-time need not admit a Killing vector even in a neighborhood of its NEH A.
Indeed, certain geometrical fields can be ‘time dependent’ even on A [2]. Nonetheless, the
immediate consequences of the definition endow every NEH A with a rich structure [1-3]:

1. Denote by qq the pullback gg of the space-time metric to A. Then gq is a
degenerate ‘metric’ on A of signature 0,4+, + with the null normal [* as the degenerate
direction. Further, £; g, = 0 for every null normal [¢.

2. A is ruled by the integral curves of the null normals {*. Denote by A the 2-sphere
obtained by quotienting A with these curves. Properties of g, imply it is the pull-back to
A of a metric g,;, on A. One can also pull-back to A the area 2-form €,, on A, defined by
the metric q,,. Denote it by €q. By definition, it satisfies €4, I° = 0 and Lyeqp = 0.

3. The Raychaudhuri equation implies that shear Ugb) vanishes for every null normal [*.

It then follows that the pull-back V, to A of the space-time derivative operator V, provides
a well-defined (torsion-free) derivative operator D, that acts on tensor fields intrinsically
defined on A.

4. D satisfies Dygpe = 0 and, given any null normal [°, we have D,l° = wyl? for

some 1-form w, that depends on the choice of 1°. (Thus, strictly, w, should carry a label

!'Note incidentally, that the situation depicted in the right panel of Fig. 1 has implications on what one
can hope to image using ingenious techniques employed by the Event Horizon telescope. What is imaged is
a snapshot of the boundary of the past domain of dependence of a dynamical horizon, which may not be a
snapshot of the event horizon if the black hole of interest were to absorb significant amount of matter and
radiation later on in distant future.
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Figure 1. Examples of NEHs in the asymptotically flat (i.e. A = 0) case. Left panel: Non-spherical
gravitational collapse. Since the radiation falling into the black hole rapidly decreases at late time, the
portion A of the event horizon is well modeled by a perturbed NEH. Right panel: Spherical collapse of a
star followed by the collapse of a spherical shell some time later. A; and As are both NEHs. The event
horizon lies outside A1 and grows to join on to Az, although there is no matter or gravitational radiation
falling cross it.
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Figure 2. Examples of NEHs in solutions with positive cosmological constant A. Left panel: Depiction of
a compact binary emitting gravitational waves. The future event horizon E*(i7) of i~ is an NEH because
there is no incoming radiation. If the emitted radiation is weak, the past horizon E~(i*) of it can be
regarded as a perturbed NEH. Right panel: Conformal diagram depicting a spherical collapse. Shaded
(yellow) region corresponds to the collapsing spherical star. The dashed (red) lines with arrows represent
integral curves of the ‘static’ Killing field. Lines at 45° denote Killing horizons that are, in particular,
NEHs. The inner NEH is the black hole horizon and the outer ones are cosmological horizons.

I. We will omit it for notational simplicity.) There is a rescaling freedom among the
future directed null normals: [* — I’ = f 1% where f is positive. Under this rescaling we
have w, — W), = wg + DyIn f. The curl 2Djqwy) of w, is of course invariant under this
change and, as noted below, determines ImW¥s at the NEH. In turn, Im¥5 encodes angular
momentum of the given NEH. Therefore w,, is often referred to as the rotational 1-form.



5. The pull-back Cled to A of the space-time Weyl tensor Cp.q has the property that
C’(a_bcdlc = 0 on A for any null normal [¢. In the Newman-Penrose notation, this implies
that four of the ten components of the Weyl tensor vanish on A:

Ug := Capeq 1*mPIem? = 0 and Uy = Clapeq 1*mbln? = 0. (2.1)

In the choice of the null tetrad there is some freedom even after the first vector is chosen
to be a specific I*. The conditions g = 0 = ¥; at A are insensitive to this gauge freedom.

Furthermore, their vanishing implies that Vo = Cgpeq 1"mbmend is also gauge invariant.

6. Ws can be expressed using geometric fields that are intrinsic to A:

1 A
Re Uy = _Z R + 6 and (ImlIlg) €qb = D[awb] , (22)

where R is the pull-back to A of the scalar curvature R of q,, on A. As discussed in
Sec. 2.2, the real and imaginary parts of W determine the the geometric multipoles of A
that capture the distortion in its intrinsic geometry and its angular momentum content,
respectively.

7. Among null normals {* to A, there is a sub-family [¢ tangential to affinely parame-
terized null geodesics: 1% V412 = 0 or, equivalently, [2Dgl? = 0, i.e., wal® = 0 on A. Thus
the acceleration of these null normals vanishes on A. Note that this acceleration is not
an intrinsic property of the NEH geometry since its value depends on the choice of the
null normal. For Killing horizons, the acceleration of the appropriately normalized Killing
vector field at A is often taken to be the surface gravity x of the horizon itself (and, in
the quantum theory, 27fik is then interpreted as the temperature seen at infinity.) The
NEHs considered in this paper need not be Killing horizons. Therefore the vanishing of
the acceleration has no physical significance; it just refers to a class of null normals [& that
can be chosen on any NEH (including non-extremal Killing horizons that have non-zero
K).

Any two such geodesic null normals (¢ and I, are related by I/* = f12, with £;f =0
for any null normal [*. Now, for these normals we also have

Ly wg =2 I D[awb] + Da(wb lf) =2 (Im\I’Q) lcl: €qap = 0. (2.3)

Therefore, the 1-form w, corresponding to these null normals [¢ is the pull-back to A of a
1-form w, on the 2-sphere A of generators of A. From Eq. (2.2) we know that the curl
of this 1-form is proportional to the gauge invariant scalar ImW¥s, while its divergence on
A changes under rescalings /% = f1%. This ‘gauge freedom’ can be drastically reduced by
asking that w, be divergence free, i.e. ¢®D,w;, = 0 on A: The remaining rescaling freedom
is just 1% = ¢l% where ¢ is constant on A. We will denote these distinguished null normals
by £°.

Thus, each NEH admits a distinguished, small subclass [£*] of geodesic null normals,
for which w, is divergence-free on A. Since w, is a divergence-free 1-form on a 2-sphere, it
is co-exact: It admits a scalar potential B such that

Wq

1
=¢,"D,B whence ImVy = 5 D’B. (2.4)



We will refer to the scalar field B as the ‘magnetic’ potential since its Laplacian determines
ImW,. (Since L£y¥9 = 0 and L,B = 0, one can think of them as function on A or on A.)

In the rest of the paper we will make use of these geometric properties of the fields
defined on any given NEH. The fact that one can only select a canonical equivalence class of
null normals [¢*] —i.e., one cannot eliminate the ambiguity of rescaling the ¢* by a constant—
will have interesting implications in Sec. 3.

2.2 Multipole moments: Conceptual Framework

As explained in [4], multipoles can be used to characterize the horizon geometry in an
invariant fashion. This characterization has been used in numerical relativity to extract
gauge invariant information in the horizon geometry and to compare the results of different
simulations that are typically based on different choices of coordinates and gauges (see, e.g.,
[18—22]). They have also been used in entropy calculations of distorted and rotating hori-
zons in quantum gravity (see, e.g., [24]). However, investigations to date assume that the
horizon is axisymmetric while it is in equilibrium (or asymptotically reaches an equilibrium
state that is axisymmetric [19]). In this section we will provide a definition of multipoles
that does not require this assumption. For simplicity we will restrict our discussion to the
so-called geometric multipoles; the mass and angular momentum multipoles —with correct
physical dimensions— can be obtained from these by appropriate rescalings [4].

We saw in Sec. 2.1, every NEH is equipped with two geometric fields: the degenerate
metric gu and an equivalence class [(?] of normals, where two are equivalent if and only
if they differ by a constant rescaling. A carries a natural derivative operator D satisfying
Daqpe = 0 and Dyl = w,(® for any ¢ € [¢%], (where w, is independent of the choice of £* €
[¢?]). Curvature of g4, and the 1-form w, determine ¥y via Eq. (2.2). Geometric multipole
moments are defined using Ws. There are two sets: the ‘shape’ multipoles that capture
the distortions of the NEH geometry are extracted from ReWVy = —%R + %, the scalar
curvature of gg, and the ‘current’ multipoles, that encapsulate the rotational structure
of the NEH, from ImW¥, = %e“bDawb.2 These numbers, extracted from Ws, provide an
invariant characterization of the horizon geometry [4]. However, to obtain them one needs
a set of spherical harmonics that can be defined using the horizon geometry in an invariant
fashion, i.e. using just the fields available on any given A. The strategy adapted in the
previous works was to restrict oneself to situations in which g, is axisymmetric and its
rotational Killing field Lie drags the 1-form w, on A. Using the orbits of the Killing
field and its norm, one can then construct a canonical unit, round 2-sphere metric which
shares with gq, the rotational Killing field [4]. The spherical harmonics Y}, of the round
metric were then used to extract from R the geometric ‘shape’ multipoles and from w, the
geometric current multipoles. Because of the axisymmetry assumption, only the m = 0
moments were non-zero.

2The inverse €®® of €qp is ambiguous up to addition of terms of the type +@¢%) where t* is any vector
field tangential to A. But because of properties of wg, the expression Im¥s in terms of w, in insensitive to
this ambiguity.



We will now provide another avenue that does not require q,; and w, to be axisymmet-
ric. We begin by recalling that because of its 2-sphere topology, the space A of generators
of A admits precisely a 3-parameter family of unit round metrics g, each member of which
is conformally related to the given q,;. Thus,

Gap = V°qey  where ¢ satisfies 2(D*Iny +¢?) =R
or, equivalently 2(D?Iny +1) =42 R. (2.5)
Here we have used the conformal transformation property of scalar curvature, and the
fact that the scalar curvature of a unit 2-sphere metric is 2. The last equation admits a

3-parameter family of solutions for any q,, on A. It follows immediately from (2.5) that
any two of these round metrics are themselves conformally related:

Qlezb = ngolab where o satisfies (QQ na+1)= a? ) (2.6)

and where D is the derivative operator compatible with dgp- Solutions to Eq. (2.6) can be
written down explicitly:

3
al=ao+ Z a; 7', for real constants ag and oy, with
1=1
3
7 = (sin 6 cos ¢, sin fsin ¢, cos #) and — 048 + Z(ai)z =—1, (2.7)
i=1

where (0, ¢) are spherical polar coordinates adapted to the given round metric §,,. The
eigenvalue problem for the Laplacian of g, provides us with the spherical harmonics }O/l’m
to define multipole moments. (Note that o' is a (appropriately normalized) linear com-
bination of the first four spherical harmonics of q,.)

By pulling-back these unit round 2-sphere metrics from A, we acquire a 3-parameter
family of metrics (o, = ¥?qqy on A, where 1) is the pull-back to A of 1 and hence satisfies
Ly = 0on A (in addition to (2.5) on A). Any two of these metrics are conformally related
via (2.6) where the function o on A, being the pull-back of «, also satisfies Lya = 0. Note
that this construction implies that every NEH 1is equipped with a canonical 3-parameter
family of round metrics §qp. Although the conformal factor 1 relating the physical g, with
any one (,p varies from one NEH to another since it depends on the physical metric g,
the relative conformal factors « relating the ¢, are universal: they make no reference to
dap (or any other structure) that varies from on NEH to another.

Next, let us return to the observation that any given NEH is equipped with a pair
(qap, [€*]). From qq), we extracted a set of 3 parameter family of metrics §u, = 1/2qqp. Given
any spin-dyad m?®, m® for g, (i.e. vector fields satisfying gum®m? = 0 and gumm® = 1)
m® =¥ ~'m® and m® = ¢»~'m? is a spin-dyad for the metric §,;. Thus when the metric is
rescaled by a factor 12, it is natural to rescale the contravariant vector fields by 1~!. With
this motivation, let us consider the 3-parameter family of pairs, (G, [6“]), with Gap = V> qap,
and [(] = [y=17], related to the given (qas, [(?]) by a conformal rescaling. These pairs
exist on every NEH and the conformal rescaling (by powers of «) relating any two members



(dap, [*]) and (@ [¢'2]) of this family is universal, making no reference to the specific NEH
considered.

The rescaling of /% has an added attractive feature in that, as we now show, it enables
one to pull together the scalar curvature R and ImWsy —the seeds of multipole moments—
in a single unified framework. Fix any one /% and consider the 1-form W it defines:

Do’ = 0o’ with &g = —DyIntp+w, = —DoE+¢,"DyB (2.8)

where we have set E' = Inv and used (2.4) to express w, in terms of its potential B.
Let us now recall from (2.5) that the scalar curvature R can be expressed in terms of
1 so that E is a potential for R and hence for ReWy: 3

Reap =2(1+ D*E)égp . (2.9)

Thus Eq. (2.8) implies that the 1-form w, determined by o = 11 4% has the pleasing
property that its divergence determines ReW, and its curl determines ImWs,. Consequently,
we have: A ]

—(Wy — E> €ab = 5((1 + D2E) + iD?B) &4 . (2.10)
To obtain multipoles we have to integrate this 2-form against spherical harmonics of ¢y
over any 2-sphere cross-section of A.

Let us return to &,. It has two potentials: the scalar £ and the pseudo-scalar B,
whose Laplacians determine the real and imaginary parts of Ws. The factor of 1 on the
right side of (2.10) that appears to spoil the complete symmetry between E and B arises
only because of a topological reason. The integral of the left side of (2.9) over a 2-sphere is
87 —the Gauss invariant— while the integral of D2E vanishes identically. For ImW¥, there is
no topological obstruction because ImW¥y ¢, is exact. Put differently, on any NEH, ReWq
has a ‘constant’ (or Y{o) part determined by the 2-sphere topology, while the ‘constant
part’ of ImWy vanishes identically. If we were to remove the ‘constant part’ from ReWo,
the symmetry would have been exact. (Alternatively, if we had a NUT charge, giving rise
to a non-zero constant part in ImWy, the symmetry would have been restored.)

To summarize, the conformal transformation ¢u, = 12¢. leads to a natural rescaling
o = 1) ~14* because of the contravariant nature of these vector fields. This rescaling results
in an unanticipated and pleasing property that the scalar curvature R constructed from
the metric g, and Im Wy constructed from the 1-form w, associated with [¢?] are brought
together and encoded in the scalar potentials of the 1-form w, associated with [Ea] This
synergy holds for every pair (qqp, [E“]) in the 3-parameter family. The spherical harmonics
of the round metrics ¢u, provide the necessary (invariantly defined) ‘weights’ and the 1-
form @, (defined through Dalt = Wal?) provides us with the physical field ¥y that serve
as the seeds of multipoles.

3For notational simplicity, here and what follows we drop the distinction between fields on A and their
pull-backs to A. Thus, for example, D?E and D?B are pull-backs to A of D?E and DB on A.



2.3 Multipole Moments: Definition and Properties

This discussion is divided into three parts. In the first, we introduce the definition of
multipoles —a set of numbers extracted from the NEH geometry. In the second, we show
that this geometry in turn is completely characterized by this set of numbers; there is a
step by step procedure to recover it from its multipoles. In the third put this discussion in
a broader setting by comparing our multipoles with those available in the literature.

2.3.1 Definition

Fix an NEH A and any one pair (g, [E‘l}) from the naturally available 3-parameter family.
Then we define the geometric shape and current multipoles, Iy, and Ly, via:

Ipm = — j{(Re\yz — 2) Yimd?V = % ]{ [(1+ D2E)] Yy, d*V

o

Lym = — ]{(Im%) Yy md?V = % 7{ [D?B] Yy A2V (2.11)

where the integral is taken over any 2-sphere cross-section of A, d?V and d2V are the
area elements defined by €4, and é,5, and ?’gm are the spherical harmonics defined by the
unit, round metric ¢u (constituting the standard orthonormal basis).

As in the previous definitions of geometric multipoles, the monopoles are universal;
they do not depend on the specific NEH considered. We have:

Ino=+/m  and Loo=0. (2.12)

These properties follow from the S? topology of A and smoothness of fields. Non-trivial
information in the geometry of a specific NEH considered is encoded in all the higher
multipoles with ¢ > 1. For these, we have

1 . . .
Tem +iLem = 5 j'{ [D*(E +iB)| Yy, d*V
(L+1)

== jq{(E +iB) Yy, 2V (2.13)
Note that the 2-sphere integrals in (2.13) refer to the area element d2V of Gap and the
Yy m’s constitute a complete, orthonormal eigenbasis of D? on the space of square integrable
functions on the cross section. Hence Iy, +tLy, are independent and together they enable
one to reconstruct E + ¢B as usual:

0o l
2 .
E+iB=Y Y WD (Iran + iLegn) Yo - (2.14)
(=1 m=—¢

All these steps can be carried out for each choice of the naturally available unit,
round, 2-sphere metrics ¢up. At first it may seem surprising that there is a 3-parameter
family of NEH multipoles rather than a unique set as in Newtonian gravity. But note
that multipoles are only meant to provide an invariant characterization of physical fields
and a priori there can be many such characterizations. An early example is provided by
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the Geroch multipoles in static space-times [25] and the Hansen multipoles in stationary
space-times [26]. Because the Hansen’s framework does not reduce to Geroch’ in static
space-times, we have two separate sets of multipoles in the static case, but each suffices
to determine the solution to Einstein’s equations uniquely in a neighborhood of infinity
(up to a diffeomorphism). In our case the situation is even simpler: multipoles defined by
different (g, just correspond to expansions in different basis functions.*

However, in practice it is cumbersome to deal with the 3-parameter family of multipoles
and much easier to just fix this ‘gauge freedom’ by choosing a canonical ¢qup- In particu-
lar; this gauge fixing would simplify comparisons between NEHs that result from distinct
numerical simulations. In each simulation, one would have a well-defined, coordinate and
frame independent prescription to fix the ¢, and then compute multipoles. Simulations
provide realizations of the same NEH geometry —even when they use different coordinates
and frames— if and only if the multipoles agree. While there is no canonical choice of
gauge-fixing, we will introduce one that is conceptually simple: Given any physical metric
qap o0 a NEH, there exists a unique unit, round, 2-sphere metric éab = 1~/12qab for which the
‘area dipole moment’ vanishes, i.e., such that the £ = 1 components of the area element
vanish:

74 Vi 2V = 74 Yim ¢ 2d*V =0, (2.15)

where, again, the integral can be carried over any 2-sphere cross-section of A. The proof of
this assertion is given in the Appendix. Here we only note that the 3-dimensional freedom in
the choice of ¢y, is fixed by imposing three conditions above, one for each m. If one regards
the positive quantity 1~b*2 as a fictitious ‘mass density’, the condition can be interpreted as
going to the corresponding ‘center of mass frame’. For definiteness, from now on by “NEH
multipoles” we will mean multipoles of Eq. (2.13) defined using this choice of g4, on the
given A.

2.3.2 Reconstruction

Let us begin with the issue of reconstructing the horizon geometry from the multipoles.
Suppose we are given an NEH A, the associated pair g, and [¢*], and the action of D
on it: Dagpe = 0 and Dg® = wat?. We will refer to the triplet (qab, [0*], wa) as the NEH
geometry. It satisfies the following conditions: (i) g4 and w, are transverse to ¢%, and (ii)
they are Lie-dragged by ¢%. Furthermore, from the scalar curvature R of ¢, and curl of
wq, wWe can construct the 2-form Vg ey, = iRﬁab + Diywy). Finally, we can single out the
canonical round metric ¢qp using (2.15) and use its spherical harmonics Y7, to calculate
the multipole moments (Iy,, Lym) of the given NEH via Egs. (2.12) and (2.13).

4Because the conformal factors « relating any two unit, round metrics dup satisfy (2.7), one can set up
a 1-1 correspondence between the 3-parameter family of gq.5’s and the hyperboloid of unit time-like vectors
in Minkowski space. Multipoles defined by any g.» can be identified with the components of symmetric
trace-free tensors tangential to the hyperboloid at that ¢,». The Lorentz group has a natural action on the
hyperboloid and the multipole tensors transform covariantly under this action. See Remarks 1 and 2 in the
Appendix).
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Now suppose someone hands us only these multipoles. Then, just from this set of
numbers, can we reconstruct the NEH geometry? As we now show, the answer is in the
affirmative.

Let us begin with a manifold A —unrelated to any space-time— which is topologically
S? x R and introduce on it a ruling by integral curves of a vector field /e, On the 2-sphere
of these integral curves, fix a unit round metric and pull it back to a degenerate metric ¢
on A; thus éabéb =0 and L;gap = 0. Let [ﬁa] denote the equivalence class of vector fields
related to ¢* by a constant rescaling. Using the given set of multipoles, introduce on A a
complex function F + iB using the spherical harmonics of gy, via Eq. (2.14).

Next, let us set ¢ = e”. Since g, was any unit, round, 2-sphere metric, generically the
triplet (%,m,¢7d2‘7) will not satisfy the condition (2.15) requiring that the ‘area dipole
moment’ should vanish. However, by construction (and the existence and uniqueness result
of the Appendix), it follows that there exists a unique conformal rescaling ¢ap — gap = a2
with « given by (2.7) that satisfies (2.15):

74?1,7% P2V =0 with Y =ay. (2.16)

Finally, using this ¢ and B (which is insensitive to the choice of the unit, round metric

dab), We can introduce the desired triplet (qqp, [(?], we) On A:
Qab = @‘2 ab; ()= [y Ea] ; and we =% DyB. (2.17)

(Note that because Gqp, g"ab and gq are all conformally related, éba @bB = ¢, ﬁbB =
¢’y DyB.) Since L =0, it follows that gu and w, are lifts to A of dgp and w, on A. We
now have the NEH A we began with, as well as the abstract A we introduced, and the
corresponding 2-spheres é and A. Our construction implies that there is a diffeomorphism
A from the 2-sphere A to the 2-sphere A —defined by the (6, ¢) charts of dab o0 A and
Af that sends R and ImW¥, on A to those on A. (These charts were used in defining the
multipoles on A, and to reconstruct £, B on A)

To conclude the reconstruction, note first that it is easy to extend A to a diffeomorphism
A from A to the given A such that it also maps the equivalence class [6“] on A to that on
A. This diffeomorphism sends the reconstructed triplet (gup, [¢?], wq) on A to the triplet
we started with, on the given NEH A we began with.

2.3.3 Relation to other notions of multipoles

The multipoles defined here are to be regarded as the ‘source multipoles’ —where the ‘source’
is the NEH— rather than the field multipoles defined at infinity in stationary space-times
[25, 26]. The two sets are not related in a simple manner because, due to non-linearities,
the gravitational field between the horizon and infinity also contributes to multipoles. (For
the Kerr horizon, these differences are discussed in [4].) In this respect, our approach is in
the same spirit as that of [4, 19, 27] which discuss horizon multipoles.

As we already mentioned, there are two sets of multipole moments: The geometrical
shape and current multipoles (that provide an invariant characterization of the NEH geom-
etry), and the mass and angular momentum multipoles (that carry the traditional physical
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dimensions). As explained in [4] one can obtain the second set from the first through an ap-
propriate dimensionfull rescaling that uses the horizon radius and its angular momentum.
One can use the same procedure to define the mass and angular momentum multipoles in
our case.

The previous work most closely related to ours [4] assumes that the pair (qqup, wq) is
axisymmetric. For the angular momentum dipole moment, this conceptually significant
restriction was removed in [28] using the family of round metrics ¢q, conformally related
to the physical ¢, on A. Our work was motivated by the desire to remove the restriction
for all mass and angular momentum multipoles.

Even if one restricts the present framework to axisymmetry, there are some technical
differences. While they are not significant for applications, say to numerical relativity, we
list them for completeness. First, the previous work uses isolated horizons (IHs) with non-
zero surface gravity, which are more restricted than the NEHs considered here: every IH is
an NEH, but the converse is not true; certain geometric fields that are time independent
on an IH can have time dependence on an NEH (as discussed in [2]). Second, in the re-
construction procedure of [4], in addition to the multipoles, one has to provide the horizon
radius. This is not necessary in our case because the round metric ¢y, is conformally related
to the NEH metric g4, whence the conformal factor ¢ knows about the radius. Third, one
can ask whether any given set of multipoles can lead to a horizon geometry of an NEH or
an [H. It is clear that a necessary condition is that the multipoles should decay for large £
so that the appropriate sums (in our case (2.14)) converge. However, in the previous work,
an additional and rather awkward inequality has to be satisfied because of the assumption
of axisymmetry (see Eq. (3.10) of [4]); the present framework does not need such additional
conditions. Finally, in axisymmetric space-times the multipoles defined in Sec. 2.3.1 need
not reduce to those defined in [4]. As discussed above this is not a ‘problem’ because each
set provides an invariant characterization of the horizon geometry. Qualitatively this is
similar to the status of the Geroch’s moments for static space-times [25] and the restriction
of Hansen’s moments [26] from the stationary to the static case. Nonetheless, one difference
is noteworthy. In the approach developed in [4], the mass dipole moment is guaranteed to
vanish. By contrast, in our approach it does not vanish in general; instead it is the ‘area
dipole’ (2.15) that vanishes. Could we have chosen our ‘canonical’ unit, round metric g
differently and asked, instead, that the mass dipole should vanish? As discussed in the
Appendix, there do exist unit, round metrics for which the mass dipole vanishes. How-
ever, in general that metric is not unique and further conditions are needed to eliminate
the freedom. Positivity of ¥ =2 is used in the proof of uniqueness in the Appendix, and
12 ReW¥y —which would replace =2 if we required vanishing of mass dipole in place of
‘area dipole’— is not positive in general. In the Kerr family for example, it is positive if
and only if a < (v/3/2)M (i.e., if and only if the horizon radius Ry, is between 2M and
3M/2; interestingly, 3M /2 is halfway between the Schwarzschild value 2M the extremal
limit, Ryor = M).

Remark: Since the focus of previous discussions of multipoles [4, 19, 27] was on non-
extremal IHs, and since these are more commonly used in the numerical relativity literature
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than NEHs, let us briefly discuss the newly defined multipoles in that context. A non-
extremal IH A is an NEH equipped with a preferred equivalence class of null normals
[¢%] whose acceleration is non-zero, and which satisfy L;qu = 0 and [Lg, D,Jt’ = 0 for
all vector fields t* that are tangential to A. (Again, the equivalence class consists of
null normals that are rescalings of each other by some positive constant). The triplet
(qap, [€%], D) constitutes the IH geometry. By contrast, while on an NEH we can always
choose null normals [* that have non-zero acceleration and satisfy L;q,, = 0 as well as
(L1, Da)lP = (L1wa)l® = 0, generically there is no ¢% that satisfies [Lg, DoJt® = 0 for all
t* tangential to A. Thus, there are NEHs that do not admit an IH structure. This may
suggest that multipole moments of an ITH would be more restricted than those of an NEH.

However, this is not the case for the following reason. Let us restrict ourselves to
multipoles for which the right side of (2.14) converges. As we saw in Sec. 2.3.2, given
any set (Ip,,, Lgm), one can construct an NEH geometry (qqp, [(%], w,). However, there is
additional information in D, contained in its action D,n; on 1-forms n, on A, satisfying
nyt® # 0, that is not part of the NEH geometry. This extra information in D may be such
that there is no ¢ satisfying (L5, D,Jt* = 0 for all t*. By contrast, on a non-extremal
IH, Einstein’s equations imply that D is completely determined by (gup, @s) [2]; there is
no ‘extra information’. Therefore, given any set of multipoles, the procedure given in
Sec. 2.3.2 can be trivially extended to construct a non-extremal IH geometry (qup, [¢?], D)
with those multipoles. To summarize, while NEHs are more general than IHs, their ge-
ometry (qqp, [¢?], w,) contains ‘less information’ than the IH geometry (qup, [(%], D), and
there is ‘as much gauge invariant information’ in either as there is in the set of multipoles

(Ie,m) Le,m)-

Finally, in non-equilibrium situations such as black hole mergers, the NEH (or the
IH) is replaced by a dynamical horizon (DH) which is space-like and naturally foliated
by marginally trapped surfaces (MTS). Each MTS carries an intrinsic 2-metric g, whose
scalar curvature R carries the information about ‘distortions’ in its intrinsic geometry,
and a 1-form w, that carries information about its ‘rotational state’. Both these fields
change as time evolves, i.e., one passes from one MTS to the ‘next’. One might envisage
characterizing this evolution in an invariant way via appropriately defined multipoles. This
requires the introduction of suitable basis functions —analogs of the spherical harmonics
used in the equilibrium situations. There are two approaches [19, 27] to select these and
the relative merits are discussed in [19]. The definition of NEH multipoles presented here
admits an extension to DHs and it would be interesting to investigate it in detail because
the procedure to define the spherical harmonics basis is likely to be simpler than either of
the existing ones. Again, these multipoles would provide an invariant way to compare the
DHs that arise in distinct numerical simulations.

3 Universal Structure and symmetries of NEHs

In this section we will discuss features shared by all NEHs. Thus, the emphasis will shift
from the geometry of individual NEHs to structures that provide a kinematical arena to
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extract physics from this geometry. At null infinity, for example, the universal structure
of Z and its symmetry group —the BMS group 98— provide the kinematical arena that is
common to all asymptotically flat space-times. The Bondi news tensor and the asymptotic
Weyl curvature are geometric fields that vary from one space-time to another. Physical
results —e.g., the expression of energy-momentum charges and fluxes and their properties—
are obtained by combining the geometric fields, that vary from one space-time to another,
with the universally available kinematical symmetries in B [29]. The situation is completely
analogous for the NEHs. In Sec. 3.1 we will discuss the universal structure and in Sec. 3.2
the symmetry group & that preserves it. In the companion paper [5] we use the symmetries
and the geometrical fields that depend on specific NEHs to extract physical quantities —
charges and fluxes, associated with the symmetries in &.

3.1 Universal Structure of NEHs

Recall from Sec. 2.1 that any one NEH is naturally equipped with a metric ¢, a ruling
by null normals [* and a derivative operator D. From this triplet one can obtain a number
of other fields —especially Wo— that encode the NEH geometry. However, these fields vary
from one NEH to another. In Sec. 2.2 we found that, although it is not obvious at first,
every NEH also carries additional fields —pairs (¢qp, [E“]) consisting of a round, unit 2-
sphere metric and an equivalence classes of null normals— that play a key role in defining
multipoles. Interestingly, although their introduction on any specific NEH requires the
knowledge of structures that vary from one NEH to another, relations between these fields
themselves can be specified in a universal fashion, without referring to any specific NEH.

Therefore, we will take the universal structure to be the following. Consider a 3-
manifold A diffeomorphic to the product A x R where A is a 2-sphere. Equip it with pairs
(Gap, [¢%]) such that:

(i) [*] is an equivalence class of complete complete vector fields on A where two
are equivalent if they differ by a rescaling by a positive constant. Vector fields /e in all
equivalence classes share the same integral curves, and the quotient of A by these integral
curves is the 2-sphere A. Thus, A admits a fixed fibration.

] (ii) Each ¢gg is the pull:back to A of a unit, round 2-sphere metric g, on A. Thus
(}abeb =0 and Eé(}ab =0on A.
(iii) Any two pairs (s, [£%]) and (¢, [('%]) are related by

dp =%y, and [ =[a"1]  with  Lya=0. (3.1)

Since A is an abstract 3-manifold that is not embedded in any space-time, we will
make a few remarks to clarify the available structure.

(1) Note that there is no requirement that /% be affinely parameterized geodesic vector
fields, or that they be null, because these notions refer to the 4-metric which is not universal.
(2) However, A is complete in the sense that the vector fields /% are required to be
complete vector fields. Note that if any one /e is complete, so are all because L£;a = 0.
A ‘concrete’ NEH A need not be complete. A provides a universal home for all these
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concrete NEHs in the sense that they can all be embedded into A in such a way that
the pairs (¢up, [6“]) on A are mapped to those on A. Any two embeddings are related by
a horizon symmetry — i.e., a diffeomorphism on A that preserves the universal structure
thereon.

(3) Because each ¢q on A is the pull-back of ¢, on A, there a derivative operator D
that acts on covariant tensor fields t,, o, on A that are pull-backs of tensor fields Yoy ans
i.e. that satlsfy tas,.. €a1 =0, ... ,ta,.a € n = (0 and L; tal a, = 0 for any /% in the
collection: Db ta,..a, is the pull- back to A of Db Yoy ans Where Da gbc =0.

(4) Each ¢up is a degenerate metric with signature 0,4,+ on A. A symmetric con-
travariant tensor field §%° will be said to be an inverse of gy, if it satisfies % Gac God = Ged-
Thus, the inverse is ambiguous up to additions of a term of the type tlagh).

(5) If L; f =0 then D2f := D, Dy f is well-defined, i.e., is insensitive to the ambi-
guity in the choice of the ‘inverse metric’ §*

(6) Since each qgup is a unit, round 2-sphere metric, the conformal factor « relating any
two must satisfy (L;a = 0 and) D?Ina + 1 = a~2. There is precisely a 3-parameter
family of solutions to this equation, given explicitly in Eq. (2.7) in terms of the first 4
spherical harmonics of ¢gp.

(7) Interestingly, these considerations are parallel to those at future null infinity Z* of
an asymptotically flat space-time [29]. There, one specifies the universal structure also on
an abstract 3-manifold —which is not embedded in any 4-dimensional space-time. The pairs
(dap, [(*]) are replaced by (dap, 7%) in Bondi conformal frames. In the case of null infinity,
again, the abstract ZT is required to be complete but there are solutions to Einstein’s
equation (such as the c-metric [30]) in which the concrete Z7 fails to be complete. The one
difference between an NEH and ZT is that Z carries vector fields n® in place of equivalence
class [(%]. As we will see, this difference leads to a 1-dimensional enlargement of the NEH
symmetry group & relative to the BMS group B at Z+.

3.2 Symmetry Group of NEHs

This section is divided into three parts. In the first we introduce the symmetry Lie algebra
g and the symmetry group &; in the second we discuss salient properties first of g and
then of &; and in the third we compare & with the BMS group 8 and also with similar
symmetry groups associated with internal boundaries that have been introduced in the
literature [16, 17, 31-33].

3.2.1 Symmetry Vector fields £°

The symmetry group & is the subgroup of the diffeomorphism group Diff (A) that preserves
the universal structure. As is often the case, it is convenient to begin with the Lie-algebra
g of &. It is generated by vector fields £* on A that map any given pair (Qap, [(“]) in
the collection to another. Recall that any two metrics g5 and ¢, in this collection are
related by a conformal transformation g/, = a?q,,, where « satisfies (2.7). Therefore,
along the 1-parameter family of dlffeomorphlsms generated by £, the given metric gup on
A is mapped to &, ) = a*(t)dy, and [(4] is mapped to [a~1(t)f%], where a(t) satisfies
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D?lna(t) + 1 = a 2(t) and a(t) is as usual the pull-back of a(t) to A. Taking the
derivative w.r.t. ¢, and evaluating at ¢ = 0 we obtain

Leday =204 and  Lel®=—(¢+k) (" (3.2)
where k is a constant and ¢ = de(t)/dt |—o satisfies
D% +26=0, (3.3)

obtained by linearization the equation satisfied by a(t). The constant k arises because the
diffeomorphism has only to map [(%] to [a~1/%] rather than each @ to a~'¢®. Thus, if
q% were to vanish, that symmetry vector field would leave each ¢, invariant but can still
rescale any one fa by a constant.

Since ¢ and k refer to the symmetry vector field £, they should be denoted by qoﬁ(g) and
k(¢) but for notational simplicity we will leave out the subscript when there is no possibility
of confusion. The symmetry Lie algebra g consists of vector fields £ satisfying (3.2), the
Lie bracket being given by the Lie derivative of one symmetry vector field with respect to
another. We will analyze the structure of this Lie algebra step by step.

Let us first consider the ‘vertical’ symmetry vector fields V¢ = fé“. Then, the first of
Egs.(3.2) implies ¢ = 0 and then the second implies £; f = k, whence

f=ko+5 where {%9,0=1, and L;5=0. (3.4)

(Again we have left out the subscript on fy, k) and $(y).) The decomposiotion =
kv + § is not canonical but depends on the choice of the affine parameter ¢ of £¢. Under
the transformation of the affine parameter © — v = © 4 a with L;a = 0, we have
Ve = (kng) + §) /% where § = § — ka. On the other hand, if we were to replace the fiducial
pair (qup, [Ea]) we have used to describe the symmetry vector fields by another pair (¢}, =
a?Gap, [é’a] = [ofléa]), we would have k' = k, ©'#'® = 90%, and § = « &. Thus, of the pair
(k, $) labelling the vertical symmetry V%, § is a scalar field of conformal weight 1, while
the constant k is conformally invariant and is therefore denoted just by k rather than k.
(Recall that at null infinity ZT, the supertranslations can be written as sn® and s is also
a function with conformal weight 1.)

Note that the vertical vector fields constitute a sub-Lie algebra v of g, since the com-
mutator of two vertical vector fields is again vertical:

[Vi, Vo] = (kg 81 — kid2) £°. (3.5)

While this sub-algebra is non-Abelian, it admits an infinite dimensional Abelian sub-Lie
algebra s consisting of vertical vector fields of the type V¢ = § 0% with L;$ = 0. Borrowing
terminology from the BMS group, we will refer to these vector fields as supertranslations
and denote their Lie-algebra by s. Note that the Lie bracket (3.5) of any two vertical vector
fields is a supertranslation.

Let us next consider a general symmetry vector field €% and take its Lie bracket with
a vertical vector field V* = f¢%. Using (3.2) we obtain:

€, V]® = (Lef — (b+K)f) . (3.6)
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The right side is a vertical vector field and hence in v. (In fact an explicit calculation shows
that the right side is a supertranslation. See Eq. (3.14) below.) Thus v is a Lie-ideal of g.

Let us take the quotient g/v. An element of the quotient is an equivalence class [£] of
symmetry vector fields £ where two vector fields are regarded as equivalent if they differ
by a vertical symmetry. Therefore, each equivalence class has a unique projection £ to
the 2-sphere A and the correspondence [£?] <+ £ is an isomorphism of Lie algebras. Now,
the first of Egs. (3.2) implies that £ is a conformal Killing field on (é, dap). As is well
known, the Lie algebra of conformal Killing fields on a round 2-sphere is isomorphic to the
Lorentz Lie algebra [ (see, e.g. [34] or, for a summary, Remarks 1 and 2 of the Appendix).

Hence the quotient Lie-algebra g/v is isomorphic with [.

To summarize, the Lie-algebra g is a semi-direct sum of the Lie-algebra v of vertical
vector fields and the Lorentz Lie algebra [. The finite diffeomorphisms generated of the
vector fields £ constitute the symmetry group &. It is the semi-direct product of the
group U of vertical diffeomorphisms generated by vector fields V' and the Lorentz group,
in which U is the normal subgroup: & =0 x £.

Finally, we chose to discuss the universal structure and NEH symmetries using an ab-
stract 3-manifold A. However, we could also work with 4-dimensional space-times (M, gqp)
admitting an NEH A as the inner boundary, and focus on the universal structure on A. Let
Diffy(M) be the subgroup of the diffeomorphism group of M that preserves the universal
structure. Let Diff)(M) be its subgroup consisting of diffeomorphisms that are identity on
A. Then & = Diffo(M)/Diff)(M).

Note that every Killing field of (M, gqp) that is tangential to A leaves invariant the pair
(Gab, [€?]) on A and therefore preserves the 3-parameter family of pairs (G, [Ea]) Hence its
restriction to A is an infinitesimal NEH symmetry. Thus space-time isometries that leave
A invariant are guaranteed to be NEH symmetries, just as one would expect.

3.2.2 Salient properties of g and &

Recall that the BMS group B is also a semi-direct product, 8 = & x £, of the supertrans-
lation group & with the Lorentz-group. Therefore, there is a close similarity between 5
and ®. However, as the explicit form of (3.4) of vertical vector fields shows, the Lie-algebra
v is a 1-dimensional extension of the Lie-algebra s of supertranslations. Interestingly, this
simple extension endows g and & with a rich set of properties. We will now list the salient
features that arise.

1. Let us ask if the Abelian sub-algebra s of supertranslations is also a Lie-ideal. Given
a supertranslation S% = gba (with £;5 = 0) and a general symmetry vector field £, we
have:

€, 5] = (Leé— (p+c)8) 0o (3.7)

It is easy to check that the coefficient (L’g §— (<Z> +0) 3) is Lie-dragged by /%, whence the
right side is a supertranslation. (Indeed, this is just a special case of the commutator (3.6)).
Therefore the quotient q := g/s is also a Lie algebra. Thus, g can also be written as a
semi-direct sum of the Lie-algebra s of supertranslations and the the Lie algebra .
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As a vector space, each element of the quotient can be labelled by a pair (ko é“, £
consisting of a vertical vector field kv /® on A and a conformal Killing field £ on A.
® Thus, the quotient q is a seven dimensional Lie-algebra — “the Lorentz Lie algebra [,
augmented with a one-dimensional vector field kv 2 . Since this vector field can be written
as kv (0/0v), we will refer to it as the ‘dilation vector field’ and denote it by d*. Note that
its commutator with any supertranslation S¢ = 809 is given by: [S,d]* = kS?; action of d*
just dilates the supertranslation by the constant k.

Let us explore the Lie algebra structure of q. We begin by noting that since £;0 =1,
given any symmetry vector field £%, one can show using Eq.(3.2) that L0 = (¢ + ¢)0 + 5
for some function s satisfying £;5 = 0. Using this fact and Eq. (3.2), it follows that the
commutator has the form

€, d]* = §6° where 5 satisfies L;5=0. (3.8)

Thus, the commutator is a supertranslation, and hence in the kernel of the quotient.
Therefore, the element (kv /e, 0) of q commutes with every other element of g; it is in
the center. Thus, g =R @ [; it is a direct sum of the (trivial) 1-dimensional Lie-algebra R
with the Lorentz Lie algebra.

2. Let us next consider the vector space b of symmetry vector fields b for which the
constant k in (3.2) vanishes, so that:

Lydab = 20 quv and  Lol* =~ 0 (3.9)

It is easy to verify that b is closed under the Lie bracket operation. Indeed, Eqs. (3.9)
are precisely the (direct analogs of ) equations that define the generators of the BMS group
(see, e.g., [29]). Hence b is naturally isomorphic with the BMS Lie algebra.

Let £* be a general symmetry vector field and consider its commutator n® := [¢,b]*
with a BMS vector field b*. Then a simple calculation yields

o

ﬁnéab = 2¢(77) éab and L‘néa = —(5(,7) é’a where ¢?(77) = £§¢?(b) — Ebgg({) (3.10)

(where we have restored the suffix n and b on ¢ since we are dealing with two distinct
symmetry vector fields). Hence n® belongs to b, whence b is also a Lie-ideal in the symmetry
Lie algebra g. The quotient is the 1-dimensional vector space spanned by NEH symmetries
of the type £* = kv é“, i.e. by dilations. Thus, interestingly, g admits another semi-direct
sum structure, now with the BMS Lie-algebra b as the Lie-ideal.

3. As is well-known, the BMS Lie-algebra admits a 4-dimensional sub-algebra t of
translations. Therefore the NEH symmetry algebra g also admits a 4-dimensional Abelian
subalgebra of translations. t is a sub-algebra of the supertranslation algebra s where the
(conformally weighted) coefficients $(0, ¢) satisfy: DoDpé o< Gap. Alternatively, they are
linear combination of the first four spherical harmonics. (The conformal weight ensures
that as we change ¢q to ¢/, the 4-dimensional space is left invariant.) Let us denote the

"Note that if we were to replace the fiducial pair ({ap, [6“]) we used to describe the symmetry vector
fields so far by another pair (,, = a*das, [('*] = [a~"€%]), we have: K’/ (' = ko (*, k' =kand &'*=¢"
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translation vector fields by ¢ and write them as t* = ¢ /%, Since d, té]“ = —kt (o, it follows
that t is a Lie ideal also of the NEH symmetry algebra g. This is in striking contrast with
the symmetry group associated with null surfaces discussed in [17] which does not admit
a translation subgroup.

4. Let us provide explicit expressions of the symmetry vector fields £ by introducing
a convenient chart. Fix a fiducial metric &q, on A and let (6,¢) be the lifts to A of a set
of spherical coordinates on A that are adapted to it. Fix any cross section Cy of A, and
let © be the affine parameter of a vector field ¢/ in [E“] that vanishes on Cy. Then, every
symmetry vector field £% is parametrized by a constant k and functions s, ¥, gb that are
lifts to A of functions on the 2-sphere A:

&8 = ((k+ )i +5))° + & DyX + " Dyg. (3.11)

Here x and qS satisfy (3.3), i.e., are linear combinations of the ¢ = 1 spherical harmonics
of b, and €%, G2 are the contravariant area 2-form and metric on the ¢ = const cross-
sections, respectively. Given this explicit form, one can readily check that £* satisfies Egs.
(3.2) that define infinitesimal horizon symmetries.

In the decomposition provided by Eq. (3.11), we can interpret various terms as fol-
lows: d% := k(% is a dilation (that is absent in the BMS Lie algebra b); S := §/% a
supertranslation; R® := é’“bbb)z a rotation; and B® := °ablo)bg5 + i’}ggé“ a boost. Thus,

€ =d*"+5Y)+ R*+B* = V*+ R*+ B“. (3.12)

However, this decomposition depends on the choice of the fiducial ¢,; and /% as well as the
choice of the cross-section Cy. Nonetheless, it serves to bring out the ‘degrees of freedom’
we have in the Lie algebra g: a 1-dimensional freedom in k; a 3-dimensional freedom in
each of ¢ and ¥; and an infinite dimensional freedom (worth a function on a 2-sphere) in
the choice of §. The decomposition is also useful in exploring the Lie algebra structure of
g explicitly, in particular the various semi-direct sums of Lie algebras involved. For this, it
is simplest to use the expression of the commutator:

€1, &) = &5 (3.13)
with

s =0, S5= [((k‘z + ¢2)s1 — (k1 + ¢1)§2) + (LRr,82 — LRry81) + (LB, 82 — £B2§1)]éa
R} = Lp, RS,  B§={"Dags + 03l where ¢3=(Lr,+5, ¢2 — LRyt By $1) -
(3.14)

5. Finally, we can summarize this rich structure by lifting the Lie algebra results of
this section to groups. The symmetry group & is the subgroup of the diffeomorphism group
of A that preserves the universal structure. It is infinite dimensional. It admits several
normal subgroups. The first, ¥ is generated by the vertical symmetry vector fields and is
non-Abelian. The quotient & /9 is isomorphic to the Lorentz group £. Thus, as we already
noted in Sec. 3.2.1, & has a semi-direct product structure: & =0 x £.
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The second normal subgroup is the Abelian group & of supertranslation. The quotient
® /6 is a seven dimensional group £, the direct product £ x R of the Lorentz group with
the 1-dimensional Abelian group (generated by the dilation vector fields). Thus, the full
symmetry group & is also realized as another semi-direct product: & = & x Q. A third
normal subgroup is the BMS group 8, generated by vector fields £* with £k = 0. Now, the
quotient &/%B is the 1-dimensional subgroup © generated by dilations. Therefore & can
also be written as & =B x D.

Recall that the BMS group admits a 4-dimensional normal subgroup ¥ of translations,
given by v — v 4+ (0, ¢), 0 — 6, ¢ — ¢, in the notation introduced above. Here ¢(6, ) are
conformally weighted functions with weight 1, defined by the property that lo?alo)bt X Gab
for any unit, round, 2-sphere metric ¢4, in our collection. Thus, the NEH symmetry group
® admits a 4-dimensional translation subgroup ¥. Furthermore, ¥ is a normal subgroup
also of &.

Thus, & has a rich and interesting structure. Different features of this structure be-
comes important in various applications. In particular, some play an important role in
the relation between NEHs and null infinity of asymptotically flat space-times discussed
in the forthcoming papers, while others are needed to explore the physics and geometry of
cosmological horizons [16].

3.2.3 Comparisons

We will now compare the structure of & with other similar symmetry groups that have
been discussed in the literature.

1. The difference between the structure of the NEH symmetry group & and the BMS
group B at 7 lies in the fact that & has an extra dimension encoded in the dilation group
®. How did this arise? The defining equation of the NEH symmetries £ is (3.2) while
that of BMS symmetries is (3.9). The extra factor —kf in (3.2) arose because, associated
with a round, unit metric ¢, on A we only have an equivalence class [ﬁ“] of vector fields
that are related by a rescaling by a positive constant, rather than a single vector field ¢*.
As our discussion in Sec. 2 showed, one cannot do better on an NEH. By contrast, at Z,
each ¢, comes with a specific null normal. ©

Indeed, the 1-dimensional enlargement of the BMS Lie algebra b through the presence
of the dilation vector field d* is essential from a space-time perspective. Consider a concrete
NEH, say the future horizon in the Schwarzschild solution. Then, the restriction of the
time translation Killing field to this NEH (which is also the event horizon in this case) is a
dilation. Thus, had the extension from 5 to & not taken place, we would have found that
an exact space-time symmetry is not an NEH symmetry!

Consider the five dimensional group ¥, generated by the dilation group © and the
4-dimensional BMS translation subgroup ¥. It may be appropriate to regard T as the
‘extended translation group’ of NEHs. For, as we just noted, the restriction of the static

SInterestingly, extensions of the BMS group containing our symmetry group @ have appeared in the
literature, motivated by mathematical [32] as well as Hamiltonian [33] considerations at Z*. They have
also appeared in the context of black hole entropy calculations [31]. Typically, these symmetry groups are
significantly larger than our & and their structure does not have as close a relation to B.
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Killing field to A in Schwarzschild space-time is the dilation, while in the extremal Reissner-
Nordstrom space-time, it is an NEH time-translation. Similarly, on the cosmological hori-
zon ET(i7) of perturbed deSitter space-time (see the left panel of Fig. 2), restrictions of
the three space-translations (on the Poincaré patch) of the background de Sitter metric
are NEH space-translations that belong to ¥ while the restriction of the time translation
(of the static patch) is a dilation [35]. The five dimensional ¥ is not Abelian, but is a
semi-direct product of the Abelian, normal subgroup ¥ with the 1-dimensional group © of
dilations: € = T x D. In this semi-direct product, the action of the quotient on the normal
subgroup is just to dilate the translations by a constant.

2. NEHs were considered in a recent investigation of gravitational waves in presence
of a positive cosmological constant as the relevant past null infinity Zy, to specify the
‘no-incoming radiation’ condition in space-times representing isolated systems [16]. In that
analysis, the universal structure was chosen somewhat differently: It consisted of the 3-
parameter family of unit, round metrics ¢,; as in the present case, but a single equivalence
class of null-normals [¢?], associated directly with the NEH, unaffected by the rescalings
by v that relate ¢, to the ¢.p. As we saw in Sec. 2, the strategy of rescaling /¢ used in
this paper is natural from the viewpoint of multipoles (and could also have been used in
[16] without affecting the main conclusions). Still, it is of interest to compare and contrast
the symmetry group Bap obtained in [16] with our group &. Both are one dimensional
extensions of the BMS group, provided by dilations d*. The group U generated by the
vertical vector fields are isomorphic and the quotient & /U and Bap/U are isomorphic
to the Lorentz group £. However, the semi-direct product structure is different —i.e. the
action of the quotient group on the normal subgroups is different (for details, see Sec. IV
B of [16]). In particular, the BMS group 9B is not a subgroup of &p.

Since the difference can be traced back to the universal structures chosen in the two
sets of analyses, it is natural to ask whether we could not add the equivalence class [¢?] to
the universal structure considered in Sec. 3.1. After all, we should include all universally
available fields in specifying the universal structure. However, this is not possible. On
the abstract manifold A, following [16], one can fix an equivalence class [£%] of vertical
vector fields if one wishes: Since any two £ in the class differ just by a constant rescaling,
relation between them can be specified universally. Similarly in our analysis we can specify
the equivalence classes [Ea]’s since, as emphasized in Sec. 3.1, the relation between any two
[éa]’s is again universal (i.e. does not refer to the physical metric gu, that varies from one
NEH to another). However, the relation between [(¢] and the [(%]’s involves the conformal
factor v that relates ¢qp to gqp that varies from one NEH to another. Therefore, we cannot
include both [¢] and [¢%]’s in the universal structure. One has to make a choice. We believe
that the choice made in Sec. 3.1 is better suited for applications because: (i) it is natural
for defining multipoles; (ii) the direct relation to the BMS group is likely to be important
in both classical and quantum considerations; and (iii) the main results of the analysis [16]
of gravitational waves in presence of a positive cosmological constant will go through with
this choice.

3. There is another setting in which the symmetry group associated with an inner
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boundary was discussed recently [17]. In that analysis, the inner boundary N is required
only to be null; it does not have to be an NEH. Therefore, the universal structure on
N is different from that on our A, and hence the symmetry group Gcpp is also quite
different from our & (or, $ap). Because this analysis allows boundaries that are much
more general than our NEHs, &cpp is significantly larger than &. First, in effect, our
constant k is replaced by a function on a 2-sphere; thus the sub-algebra Ucpp of vertical
symmetries is “worth two functions on a 2-sphere”. Furthermore the quotient &cpp/Ucrp
is also infinite dimensional: it is the group Diff (S?) rather than the Lorentz group £. As a
result, apart from the fact that they both admit a semi-direct product structure, there is no
direct relation between &cpp and the BMS group 9. In particular, &cpp does not admit
a natural translation subgroup, while & does. In spite of these conceptual differences in
kinematics, as we discuss in the companion paper [5], results from the phase space analysis
in [17] can be taken over in our framework: Since that framework encompass all space-times
with null boundaries, the results are in particular applicable to space-times in which the
null boundary is an NEH, as well as the first order perturbations on such space-times.

4 Discussion

Let us begin with a summary of the main results. In Sec. 2 we introduced multipole
moments Iy ,, and Ly ,, that characterize the geometry of any given NEH A. The Iy,
capture the distortions in the intrinsic horizon geometry, encoded in the scalar curvature of
its metric (which equals ReWy on A), while L, capture the angular momentum structure
of the horizon, encoded in the ‘rotation 1-form’ w, (that serves as a potential for Im¥s).
To define these multipoles, one needs spherical harmonics. In the previous work, these
were obtained by first restricting oneself to axisymmetric NEH geometries and then using
the fact that every axisymmetric metric qq, on S? naturally defines a canonical round
2-sphere metric g, that shares the rotational Killing vector of g,p [4]. We removed the
restriction to axisymmetric geometries by adopting a new approach based on the following
observation: Given any gu; on S?, there exists a unique 3-parameter family of unit, round
2-sphere metrics (45, conformally related to the given gu,. Each of these 4, defines a set of
spherical harmonics which can be used to extract the geometrical multipole moments from
the given NEH geometry. We then showed that, given just the set of numbers Iy, and
Ly, extracted from an NEH geometry, one can systematically reconstruct that geometry.
Furthermore, given any set of these numbers with an appropriate fall-off for large ¢ for the
spherical harmonic expansion to converge (see Eq. (2.14)), the construction provides an
NEH geometry; additional weak but rather awkward conditions on multipoles that were
necessary to ensure axisymmetry in the previous work are no longer needed. Also, in that
work only the m = 0 multipoles were non vanishing. Now, the set of multipoles is richer:
NEHs can have non vanishing multipoles for all £, m.

Note that to begin with we have a 3-parameter family of multipoles, rather than a
single set, each defined by a round metric d,. As explained in the Appendix, the round
metrics are related by the action of the Lorentz group and multipoles transform in a well-
defined manner as one changes the round metric. The non-uniqueness of multipoles is not
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surprising: one knows already from multipoles characterizing static solutions of Einstein’s
equations that there can be distinct invariant characterizations of a geometry [25, 26].
Nonetheless, in practice it is much more convenient to fix the ‘gauge freedom’ in the choice
of the round metric. We provided one prescription to select a canonical round metric Gqp,
discussed in detail in the Appendix (which also has the property that if the metric qab~ on
a given NEH admits an axisymmetric Killing field R%, then R® is also a Killing field of
Qab). The resulting set of multipoles provide an invariant characterization of the horizon
geometry that can be used, e.g., to compare the horizon structures that result in numerical
simulations that use different coordinates systems, tetrads and gauge fixing procedures
(see, in particular [18, 20-22]).

The discussion that led to multipoles brought out the universal structure of NEHs,
i.e. structure that is shared by all NEHs and can therefore be specified on an abstract
3-manifold A = §? x R, without reference to fields on any specific NEH. It consists of
a 3-parameter family of pairs (gup, [8“]) of unit round metrics, and equivalence classes of
vector fields that rule A, where % ~ cf® with c is a positive constant. Any two pairs in
this collection are related by a conformal factor: ¢/, = a?du and [/'9] = [a~1'9) where
the 3-parameter freedom in the conformal factor « can be made manifest, as in Eq. (2.7).
The group & that preserves this structure is the NEH symmetry group. We explored its
structure in detail in Sec. 3.2. Interestingly, & is a one dimensional extension of the BMS
group B at Z: B is a normal subgroup of & and the quotient &/%B is isomorphic to the
additive group R of reals. One can also understand this difference as a 1-dimensional exten-
sion of the supertranslation subgroup & of the BMS group 8 by a ‘dilation’ whose action
simply rescales the supertranslations. In terms of Lie-algebras, the ‘vertical’ symmetry
vector fields V' are now given by V¢ = d® + 5% = kv fo 4 S, where k is the constant that
characterizes the dilation and S® = §(6, ©)¢® is a supertranslation as on B. (If one uses the
conformal frame (¢, [E’“]) instead, the labels (k, $) of V* transform as (k' = k, §' = a'§;
thus as in the BMS group, § has conformal weight 1, while the label k accompanying the
dilation is conformally invariant.) This 1-dimensional enlargement of the supertranslation
group by the dilation vector field is a direct consequence of the fact that we only have an
equivalence class [ﬂ“] of normals in any conformal frame at NEHs rather than a specific null
normal as at Z. This in turn is forced on us by the fact that any concrete NEH is endowed
only with an equivalence class [¢?] of preferred null normals (selected by the condition that
the ‘rotation’ 1-form w, be divergence-free) rather than a specific null normal ¢*. While
surprising at first, this enlargement cannot be avoided: If the NEH is a (non-extremal)
Killing horizon —say, as in the Schwarzschild space-time— then the restriction of the Killing
vector to the NEH is a dilation! Thus, had dilation been absent in the symmetry group &,
one would have have been led to the conclusion that isometries of a space-time need not
belong to the group & of NEH symmetries even when they leave the NEH invariant. This
does not occur: Just as every space-time Killing field defines an infinitesimal symmetry at
7 in the asymptotically flat case, every space-time Killing vector (that is tangential to an
NEH) defines an infinitesimal NEH symmetry.

In the companion paper [5], we will use the infinitesimal generators £% of the symmetry
group & to define charges Q¢[C] associated with cross-sections C' and the corresponding
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fluxes Fg[NLQ] across the region J\/Lg bounded by two cross-sections C; and C5 of a per-
turbed NEH. A general covariant phase space framework for manifolds with internal null
boundaries N was developed in [17]. Tt is mathematically attractive because it places no
restrictions on the boundary other than requiring it to be smooth and null. On the other
hand, this very generality allows situations in which charges and fluxes have physically
undesirable properties. For example, the framework allows one to take (M, g,p) to be the
exterior of the null cone of a point in Minkowski space (or a part thereof), with the null cone
(or part thereof) serving as the boundary N. But then the charge and the flux associated
with the dilation vector field (which is also a symmetry in the Lie-algebra gorp of [17])
are non-zero. Given that space-time under consideration is flat, it is difficult to associate
physical significance to these charges and, especially, fluxes. More generally, the fluxes as-
sociated with symmetry vector fields which are time-like near A/, and future directed and
null everywhere on N, can be negative. We will find that these undesirable features disap-
pear if one restricts N to be an NEH or a perturbed NEH. As noted in Sec. 1, perturbed
NEHs are meant to approximate dynamical horizons (DHs) in regimes in which fields are
slowly varying, i.e. when the flux of matter and gravitational radiation falling into the
horizon is weak. To encompass fully dynamical situations, it seems necessary to abandon
null boundaries and use instead dynamical horizons (DHs) as interior boundaries.”

But what about event horizons (EHs), then? A covariant phase-space description with
EHs as inner boundaries faces two obstacles. The first is a mathematical difficulty already
noted in [17]: the Raychaudhuri equation implies that generically EHs will not be smooth
boundaries because of conjugate points. This will likely make the task of defining charges
and fluxes quite difficult. The second problem stems from physics. As the Vaidya solution
illustrates, EHs can form and grow in a flat region of space-time (see, e.g., [6, 37]). In
this region the EH is smooth. This suggests that it would be difficult to attribute physical
significance to charges and fluxes, even if one were to restrict oneself to portions of EH that
are smooth. If, instead, one were to extend the Hamiltonian framework with a DH as the
internal boundary, both difficulties would disappear in the full non-perturbative regime.
The issue of non-smoothness will not arise because DHs are smooth and have no problems
associated with geodesic crossing. The physical difficulties would also disappear, since the
growth of the area of 2-sphere cross-sections of a DH is directly related to the flux of energy
falling across it [37]. Thus, an extension of the present framework to space-times with DHs
as internal boundaries appears to be perhaps the most promising avenue to extend the rich
interplay between geometry and physics to full, non-linear situations, e.g., in black hole
mergers.
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A Selecting a canonical round metric

Recall from Sec. 2.2 that every NEH admits a 3-parameter set S of round metrics ¢up,
conformal to the physical metric gq.° Each g, provides the basis functions f@m that can
be used as ‘weights’ to define the geometrical multipoles Iy, Ly . To get a ‘canonical’
set of multipoles, then, we need to choose a canonical round metric ¢4, in S. As explained
in Sec. 2.3, the idea is to select this ¢q) by requiring that the ‘area (iipole moment’ should
vanish (see Eq. (2.15)). The purpose of this appendix is to show that the required g
exists for any g, on A and, furthermore, it is unique.

Let us begin with the issue of existence of gq. Fix a fiducial unit, round metric gqp
on the 2-sphere A and regard this 2-sphere as being embedded in R3, so that points on A
are labeled by coordinates r¢ = (x,v,2) = (sin @ cos ¢, sin #sin ¢, cos ). It turns out to be
more convenient to use the real triplet of functions r* on A in place of the }C)’l,m defined
by {ap- In terms of these r?, the condition (2.15) to select Qab can be rewritten as

%ri d?v = 7{7“’{/72 42V = o, (A.1)
where d?V and and de/ are the area elements defined by the physical metric g, and fjab
respectively. The dipole moment d? := ¢ r*d?V provides a map M from the set S of
round metrics to a subset D of R? : M(§) = d’. Since the fiducial metric §y, is arbitrary,
generically 90(¢) will not vanish. We seek a ¢qp in S such that M(g) = 0.

Now, as we indicated in Sec. 2.2, there is a 1-1 correspondence between the 3-dimensional
space of round metrics ¢, and the hyperboloid of unit time-like vectors in Minkowski space
(see Eq. (2.7) and also Remark 2 below). Moreover the conformal isometry group of each
of these metrics is isomorphic with the Lorentz group (see, e.g., [34]). The fiducial gy is
invariant under an SO(3) subgroup. Therefore, to find the desired mapping from the fidu-
cial gqp 10 gap we can focus on the (complementary) 3-dimensional subset that corresponds
to boosts. This subset is labeled by rapidity 7 € R?. Applying these transformations to
the fiducial g,, we get a three parameter family of metrics ¢q;(77). Each of these metrics
has the associated triplet r%, related to the r® determined by g, via

Ai() + A j rd

Ty = A, +A0j P (A.2)

8For notational simplicity, in this Appendix we will drop the distinction between fields on the 2-sphere
A and their lifts to the NEH A. The integrals below can either be over A, or, over any cross-section of A.
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where A} is given by the Lorentz transformation with rapidity 77, and indices i, j, run over
1,2,3 (see Remark 1). In particular if we take 7 = 72 we get the following transformation:

_zcoshn + sinhp

= A3
1= Coshn + zsinh 7 (A-3)
X
= A4
a coshn + zsinhn (A-4)
Yy = Y (A.5)

coshn + zsinhn

Consequently, in the limit n — oo, we have x,),y, — 0, and z — 1, pointwise. Therefore we
can take the limit under the integral in f rin d2V to obtain limy, o0 j; rin A2V = Aa 5t =
Ap 63, where Ap = ¢ d?V is the area of A in the physical metric g,,. Generalizing the
boost to arbitrary directions in the 77 space, we have that

lim d'(Gz) = lim ¢ r'zd®V = Apdif'. (A.6)
|7]—o00 |7l =00

Thus the map 7 — di(cjﬁ) from the space of rapidities 77 to the set D of area dipole moments
d’ is such that the limiting 2-sphere of infinite radius in the space of rapidities is sent to the
2-sphere of radius A in D. Note that this sphere in D encloses the point d? = 0. This fact
will lead us to a proof of the existence of a ¢ , with d Z(g) = 0, using a higher dimensional
analog of the intermediate value theorem based on homotopy. The idea is simple: If one
continuously deforms a topological sphere that encloses a point p into another that doesn’t
enclose it, p must lie on an intermediate 2-sphere.

Let us return to the fiducial ¢, which corresponds to 77 = 0. If d%(¢) = 0, then g
itself is the required ¢gqp. If d*(§) # 0, then we will not reach the point d* = 0 by performing
boosts with sufficiently small rapidity since the map 7 — di((jﬁ) is continuous. Thus, there
exists a 2-sphere of radius € in the space of rapidities such that the 2-sphere in D consisting
of points d*(¢7) with |n| = € does not contain the point d’ = 0 in its interior. As we
increase |n| from 7 = ¢, in the limit 7 — 0o we obtain a 2-sphere in D that does contain
the point d® = 0 in its interior. Therefore, as |7j] expands, the image in D of the 2-sphere
|77] = const must encounter the point d® = 0. That is, there exists an intermediate 17, such
that d*(¢(7,)) = 0. Our desired metric qap is then this gup(17).

This proof of existence is very general in the sense that it continues to hold if the area
dipole moment d* = ¢ r'd2V is replaced by another one, say di = ¢ rif d?V, so long as the
corresponding ‘monopole’ ¢ f d?V does not vanish. This is precisely what one would expect
from multipoles in Newtonian gravity or electrodynamics. For example, we can use the
mass dipole moment for which Ax would be replaced by the mass monopole. (However, we
cannot use the procedure to set the angular momentum dipole to zero because the angular
momentum monopole moment vanishes.)

Let us now come to the issue of uniqueness of Qab. Let there be two round metrics
satisfying Eq. (A.1). Then there is a conformal transformation given by some 7j; that
relates them. Without loss of generality we can take 777 to be along the z-axis, so that
71 = n1 2. We will now show that 7, must be 0. Let n, = tn; for ¢t € [0,1]. If 9, > 0, then
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using (A.3) we have
d
dtjézm dv = m%(1—z§t)dV>o (A7)

where, in the last step we have used 1 — z?h = x,%t + yfh. Therefore if 71 # 0, the integral is
an increasing function of ¢ and cannot return to 0 at ¢ = 1. Thus, for any metric g, on a
sphere there is a unique, unit round metric ¢, conformal to it such that its £ = 1 spherical
harmonics satisfy Eq. (2.15).

Note that this proof of uniqueness makes a strong use of positivity of the area 2-form,
i.e., the fact that the integral of €,; over any subregion of A is positive. For the mass dipole
moment I ~ § R d?V, the proof would go through only if R > 0 everywhere on A. In
the Kerr family this requirement is satisfied if and only if a < (v/3/2)M (i.e., if and only
if the horizon radius Ry, is between 2M and 3M/2). However, we do not know if there is
an alternate argument —perhaps with a natural additional requirement— that would ensure
uniqueness even in the case when the positivity fails.

Remarks:

1. The isomorphism between the Lorentz group £ and the group € of conformal
isometries of a unit, round, 2-sphere metric ¢, can be geometrically visualized as follows
[34]. Consider the null cone of the origin in Minkowski space and the 2-sphere cross-section
C defined by its intersection with the ¢ = 1 plane. Under a Lorentz transformation A
the null cone is left invariant but the cross-section is generically mapped to another cross-
section C” (the intersection of the ¢’ = 1 plane with the null cone, where ¢’ is the image of ¢
under A). The null rays generating the null cone provide a natural diffeomorphism between
C and C’. If one pulls-back the metric on C’ to C, we obtain a metric ¢/, on C that is
conformally related to ¢u,. Since the Lorentz transformation is an isometry in Minkowski
space, the scalar curvature of the 2-metrics on C and C’ is the same and constant (namely,
2). Hence it follows that ¢/, is also a unit, 2-sphere metric. Therefore, there is a unique
conformal isometry on C' that sends ¢qp to ¢);,. This is the element of € that corresponds to
A € £. Note that the SO(3) subgroup of £ that leaves the vector t* = (1, 0,0, 0) invariant
maps C to itself and therefore induces proper isometries of ¢u;. The ‘genuine’ conformal

transformations in € correspond to ‘pure’ boosts in the rest frame in Minkowski space,
defined by t®.

2. Next, let us elaborate on the relation between the space S of conformally related,
unit 2-sphere metrics ¢q; and the hyperboloid H spanned by the unit time-like vectors in
Minkowski space. Any two metrics on S are related by a conformal isometry, and any two
points on H by a Lorentz transformation. As we saw in Remark 1, the two groups € and
£ are isomorphic. The little group of any point gu, of S is an SO(3) subgroup of € and the
little group of any point p is an SO(3) subgroup of £. Fix a fiducial metric ¢, in S, and
a point p on H, say with coordinates (1,0,0,0) in Minkowski space. We can set up a 1-1,
onto map 7 from S to H as follows. Let us first set 7(¢) = p. Next, note that the isometry
group of ¢,y is the SO(3) subgroup of €, and the rotation group in the x,y, z 3-space leaves
p invariant. Consider the 3-parameter families of ‘genuine’ conformal transformations in €
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and boosts in £ that are complementary to these SO(3) subgroups. The action of these
families extends the map 7 providing us a 1-1 onto correspondence between S and H.

3. How natural is the requirement that the ‘area dipole’ vanish? One test of naturalness
comes from isometries: If K¢ is a Killing vector of the physical metric g, is it also a Killing
vector of the ‘canonical’ metric ¢qp selected by our procedure?

Suppose the physical metric g, itself is spherically symmetric. Then, if R is the
horizon radius (W.r.t. gu), Gap = (1/RX)qay € S, the space of unit, round 2-sphere
metrics conformally related to gu. But it is the ‘canonical’ round metric? The answer is
in the affirmative since this the area dipole moment moment d* of ¢, vanishes trivially.

Next, let us consider an axisymmetric NEH so that q,, admits a rotational Killing
field R®. Since the diffeomorphism generated by R® leaves ¢,; invariant, it follows that
it must preserve the 3-parameter family S of unit, round 2-sphere metrics. Therefore
it is a conformal isometry of the preferred ¢u. But is it an isometry? We will now
show that the answer is again in the affirmative. The argument is in three steps. First,
consider the 1-parameter family of diffeomorphism ¢; generated by R® and denote by
dab(t) the image of our preferred ¢,;. Then each eigenspace of D? with eigenvalue £ (£+1)is
mapped to the eigenspace of 1032(15) with the same eigenvalue, and this is an an isomorphism
between the two subspaces. Consequently every ifl,m (t) is the image of a linear combination
> Bm(t)f/Lm- Second, since the volume element d?V of g, is preserved by ¢;, we have
FVim(t) A2V = § (3, Bn(t)Yem) A2V = 0 where in the last step we have used the fact
that the area dipole moment vanishes for Qab. Since this equality holds for m = 0, £1; the
area dipole moment w.r.t. gu(t) also vanishes. Finally, recall that there is a unique unit,
round metric éab with this property. Hence Gub(t) = ap; i-e., ¢ is a Killing vector of gp.

4. In the Kerr family, the conformal factor i relating the physical NEH metric gqp to
the ‘canonical’ round metric gqp = gb?qab is given, in the Boyer-Lindquist coordinates, by

V(r2 + a2 cos? 0)(1 — Z2)
= h
4 207 sin 0 e

(2M(a tan—1(2<259) 4 ptanh~! (cos 9)))

T

Z = tanh PR

(A.8)

Note that in the Schwarzschild space-time, Z = cos 6.

5. After this work was completed we became aware of a paper [38] which provides a
different proof of the main result of this Appendix. Since the motivation of that work was
quite different, the proof is also quite different, with emphasis on analysis involving Holder
spaces, rather than on the direct geometric interplay between the action of the Lorentz
group on a null cone and the conformal isometries of its 2-sphere cross-sections.
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